gcc/libsanitizer/hwasan/hwasan_report.cpp

782 lines
29 KiB
C++

//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//
#include "hwasan_report.h"
#include <dlfcn.h>
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_globals.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
using namespace __sanitizer;
namespace __hwasan {
class ScopedReport {
public:
ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
Lock lock(&error_message_lock_);
error_message_ptr_ = fatal ? &error_message_ : nullptr;
++hwasan_report_count;
}
~ScopedReport() {
void (*report_cb)(const char *);
{
Lock lock(&error_message_lock_);
report_cb = error_report_callback_;
error_message_ptr_ = nullptr;
}
if (report_cb)
report_cb(error_message_.data());
if (fatal)
SetAbortMessage(error_message_.data());
if (common_flags()->print_module_map >= 2 ||
(fatal && common_flags()->print_module_map))
DumpProcessMap();
if (fatal)
Die();
}
static void MaybeAppendToErrorMessage(const char *msg) {
Lock lock(&error_message_lock_);
if (!error_message_ptr_)
return;
uptr len = internal_strlen(msg);
uptr old_size = error_message_ptr_->size();
error_message_ptr_->resize(old_size + len);
// overwrite old trailing '\0', keep new trailing '\0' untouched.
internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
}
static void SetErrorReportCallback(void (*callback)(const char *)) {
Lock lock(&error_message_lock_);
error_report_callback_ = callback;
}
private:
ScopedErrorReportLock error_report_lock_;
InternalMmapVector<char> error_message_;
bool fatal;
static InternalMmapVector<char> *error_message_ptr_;
static Mutex error_message_lock_;
static void (*error_report_callback_)(const char *);
};
InternalMmapVector<char> *ScopedReport::error_message_ptr_;
Mutex ScopedReport::error_message_lock_;
void (*ScopedReport::error_report_callback_)(const char *);
// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
ScopedReport::MaybeAppendToErrorMessage(buffer);
}
static StackTrace GetStackTraceFromId(u32 id) {
CHECK(id);
StackTrace res = StackDepotGet(id);
CHECK(res.trace);
return res;
}
// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
public:
SavedStackAllocations(StackAllocationsRingBuffer *rb) {
uptr size = rb->size() * sizeof(uptr);
void *storage =
MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
new (&rb_) StackAllocationsRingBuffer(*rb, storage);
}
~SavedStackAllocations() {
StackAllocationsRingBuffer *rb = get();
UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
}
StackAllocationsRingBuffer *get() {
return (StackAllocationsRingBuffer *)&rb_;
}
private:
uptr rb_;
};
class Decorator: public __sanitizer::SanitizerCommonDecorator {
public:
Decorator() : SanitizerCommonDecorator() { }
const char *Access() { return Blue(); }
const char *Allocation() const { return Magenta(); }
const char *Origin() const { return Magenta(); }
const char *Name() const { return Green(); }
const char *Location() { return Green(); }
const char *Thread() { return Green(); }
};
static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
HeapAllocationRecord *har, uptr *ring_index,
uptr *num_matching_addrs,
uptr *num_matching_addrs_4b) {
if (!rb) return false;
*num_matching_addrs = 0;
*num_matching_addrs_4b = 0;
for (uptr i = 0, size = rb->size(); i < size; i++) {
auto h = (*rb)[i];
if (h.tagged_addr <= tagged_addr &&
h.tagged_addr + h.requested_size > tagged_addr) {
*har = h;
*ring_index = i;
return true;
}
// Measure the number of heap ring buffer entries that would have matched
// if we had only one entry per address (e.g. if the ring buffer data was
// stored at the address itself). This will help us tune the allocator
// implementation for MTE.
if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
++*num_matching_addrs;
}
// Measure the number of heap ring buffer entries that would have matched
// if we only had 4 tag bits, which is the case for MTE.
auto untag_4b = [](uptr p) {
return p & ((1ULL << 60) - 1);
};
if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
++*num_matching_addrs_4b;
}
}
return false;
}
static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
tag_t addr_tag, uptr untagged_addr) {
uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
bool found_local = false;
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
tag_t base_tag =
reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
uptr pc_mask = (1ULL << kRecordFPShift) - 1;
uptr pc = record & pc_mask;
FrameInfo frame;
if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
for (LocalInfo &local : frame.locals) {
if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
continue;
tag_t obj_tag = base_tag ^ local.tag_offset;
if (obj_tag != addr_tag)
continue;
// Calculate the offset from the object address to the faulting
// address. Because we only store bits 4-19 of FP (bits 0-3 are
// guaranteed to be zero), the calculation is performed mod 2^20 and may
// harmlessly underflow if the address mod 2^20 is below the object
// address.
uptr obj_offset =
(untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
if (obj_offset >= local.size)
continue;
if (!found_local) {
Printf("Potentially referenced stack objects:\n");
found_local = true;
}
Printf(" %s in %s %s:%d\n", local.name, local.function_name,
local.decl_file, local.decl_line);
}
frame.Clear();
}
}
if (found_local)
return;
// We didn't find any locals. Most likely we don't have symbols, so dump
// the information that we have for offline analysis.
InternalScopedString frame_desc;
Printf("Previously allocated frames:\n");
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
uptr pc_mask = (1ULL << 48) - 1;
uptr pc = record & pc_mask;
frame_desc.append(" record_addr:0x%zx record:0x%zx",
reinterpret_cast<uptr>(record_addr), record);
if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
RenderFrame(&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
common_flags()->symbolize_vs_style,
common_flags()->strip_path_prefix);
frame->ClearAll();
}
Printf("%s\n", frame_desc.data());
frame_desc.clear();
}
}
// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
if (tag == *tag_ptr)
return true;
if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
return false;
uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
return tag == inline_tag;
}
// HWASan globals store the size of the global in the descriptor. In cases where
// we don't have a binary with symbols, we can't grab the size of the global
// from the debug info - but we might be able to retrieve it from the
// descriptor. Returns zero if the lookup failed.
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
// Find the ELF object that this global resides in.
Dl_info info;
if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
return 0;
auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
// Get the load bias. This is normally the same as the dli_fbase address on
// position-independent code, but can be different on non-PIE executables,
// binaries using LLD's partitioning feature, or binaries compiled with a
// linker script.
ElfW(Addr) load_bias = 0;
for (const auto &phdr :
ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
continue;
load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
break;
}
// Walk all globals in this ELF object, looking for the one we're interested
// in. Once we find it, we can stop iterating and return the size of the
// global we're interested in.
for (const hwasan_global &global :
HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
if (global.addr() <= ptr && ptr < global.addr() + global.size())
return global.size();
return 0;
}
static void ShowHeapOrGlobalCandidate(uptr untagged_addr, tag_t *candidate,
tag_t *left, tag_t *right) {
Decorator d;
uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
HwasanChunkView chunk = FindHeapChunkByAddress(mem);
if (chunk.IsAllocated()) {
uptr offset;
const char *whence;
if (untagged_addr < chunk.End() && untagged_addr >= chunk.Beg()) {
offset = untagged_addr - chunk.Beg();
whence = "inside";
} else if (candidate == left) {
offset = untagged_addr - chunk.End();
whence = "to the right of";
} else {
offset = chunk.Beg() - untagged_addr;
whence = "to the left of";
}
Printf("%s", d.Error());
Printf("\nCause: heap-buffer-overflow\n");
Printf("%s", d.Default());
Printf("%s", d.Location());
Printf("%p is located %zd bytes %s %zd-byte region [%p,%p)\n",
untagged_addr, offset, whence, chunk.UsedSize(), chunk.Beg(),
chunk.End());
Printf("%s", d.Allocation());
Printf("allocated here:\n");
Printf("%s", d.Default());
GetStackTraceFromId(chunk.GetAllocStackId()).Print();
return;
}
// Check whether the address points into a loaded library. If so, this is
// most likely a global variable.
const char *module_name;
uptr module_address;
Symbolizer *sym = Symbolizer::GetOrInit();
if (sym->GetModuleNameAndOffsetForPC(mem, &module_name, &module_address)) {
Printf("%s", d.Error());
Printf("\nCause: global-overflow\n");
Printf("%s", d.Default());
DataInfo info;
Printf("%s", d.Location());
if (sym->SymbolizeData(mem, &info) && info.start) {
Printf(
"%p is located %zd bytes to the %s of %zd-byte global variable "
"%s [%p,%p) in %s\n",
untagged_addr,
candidate == left ? untagged_addr - (info.start + info.size)
: info.start - untagged_addr,
candidate == left ? "right" : "left", info.size, info.name,
info.start, info.start + info.size, module_name);
} else {
uptr size = GetGlobalSizeFromDescriptor(mem);
if (size == 0)
// We couldn't find the size of the global from the descriptors.
Printf(
"%p is located to the %s of a global variable in "
"\n #0 0x%x (%s+0x%x)\n",
untagged_addr, candidate == left ? "right" : "left", mem,
module_name, module_address);
else
Printf(
"%p is located to the %s of a %zd-byte global variable in "
"\n #0 0x%x (%s+0x%x)\n",
untagged_addr, candidate == left ? "right" : "left", size, mem,
module_name, module_address);
}
Printf("%s", d.Default());
}
}
void PrintAddressDescription(
uptr tagged_addr, uptr access_size,
StackAllocationsRingBuffer *current_stack_allocations) {
Decorator d;
int num_descriptions_printed = 0;
uptr untagged_addr = UntagAddr(tagged_addr);
if (MemIsShadow(untagged_addr)) {
Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
d.Default());
return;
}
// Print some very basic information about the address, if it's a heap.
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
if (uptr beg = chunk.Beg()) {
uptr size = chunk.ActualSize();
Printf("%s[%p,%p) is a %s %s heap chunk; "
"size: %zd offset: %zd\n%s",
d.Location(),
beg, beg + size,
chunk.FromSmallHeap() ? "small" : "large",
chunk.IsAllocated() ? "allocated" : "unallocated",
size, untagged_addr - beg,
d.Default());
}
tag_t addr_tag = GetTagFromPointer(tagged_addr);
bool on_stack = false;
// Check stack first. If the address is on the stack of a live thread, we
// know it cannot be a heap / global overflow.
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
if (t->AddrIsInStack(untagged_addr)) {
on_stack = true;
// TODO(fmayer): figure out how to distinguish use-after-return and
// stack-buffer-overflow.
Printf("%s", d.Error());
Printf("\nCause: stack tag-mismatch\n");
Printf("%s", d.Location());
Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
t->unique_id());
Printf("%s", d.Default());
t->Announce();
auto *sa = (t == GetCurrentThread() && current_stack_allocations)
? current_stack_allocations
: t->stack_allocations();
PrintStackAllocations(sa, addr_tag, untagged_addr);
num_descriptions_printed++;
}
});
// Check if this looks like a heap buffer overflow by scanning
// the shadow left and right and looking for the first adjacent
// object with a different memory tag. If that tag matches addr_tag,
// check the allocator if it has a live chunk there.
tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
uptr candidate_distance = 0;
for (; candidate_distance < 1000; candidate_distance++) {
if (MemIsShadow(reinterpret_cast<uptr>(left)) &&
TagsEqual(addr_tag, left)) {
candidate = left;
break;
}
--left;
if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
TagsEqual(addr_tag, right)) {
candidate = right;
break;
}
++right;
}
constexpr auto kCloseCandidateDistance = 1;
if (!on_stack && candidate && candidate_distance <= kCloseCandidateDistance) {
ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
num_descriptions_printed++;
}
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
// Scan all threads' ring buffers to find if it's a heap-use-after-free.
HeapAllocationRecord har;
uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
&ring_index, &num_matching_addrs,
&num_matching_addrs_4b)) {
Printf("%s", d.Error());
Printf("\nCause: use-after-free\n");
Printf("%s", d.Location());
Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
har.requested_size, UntagAddr(har.tagged_addr),
UntagAddr(har.tagged_addr) + har.requested_size);
Printf("%s", d.Allocation());
Printf("freed by thread T%zd here:\n", t->unique_id());
Printf("%s", d.Default());
GetStackTraceFromId(har.free_context_id).Print();
Printf("%s", d.Allocation());
Printf("previously allocated here:\n", t);
Printf("%s", d.Default());
GetStackTraceFromId(har.alloc_context_id).Print();
// Print a developer note: the index of this heap object
// in the thread's deallocation ring buffer.
Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
flags()->heap_history_size);
Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
num_matching_addrs_4b);
t->Announce();
num_descriptions_printed++;
}
});
if (candidate && num_descriptions_printed == 0) {
ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
num_descriptions_printed++;
}
// Print the remaining threads, as an extra information, 1 line per thread.
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
if (!num_descriptions_printed)
// We exhausted our possibilities. Bail out.
Printf("HWAddressSanitizer can not describe address in more detail.\n");
if (num_descriptions_printed > 1) {
Printf(
"There are %d potential causes, printed above in order "
"of likeliness.\n",
num_descriptions_printed);
}
}
void ReportStats() {}
static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
void (*print_tag)(InternalScopedString &s,
tag_t *tag)) {
const uptr row_len = 16; // better be power of two.
tag_t *center_row_beg = reinterpret_cast<tag_t *>(
RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
InternalScopedString s;
for (tag_t *row = beg_row; row < end_row; row += row_len) {
s.append("%s", row == center_row_beg ? "=>" : " ");
s.append("%p:", (void *)row);
for (uptr i = 0; i < row_len; i++) {
s.append("%s", row + i == tag_ptr ? "[" : " ");
print_tag(s, &row[i]);
s.append("%s", row + i == tag_ptr ? "]" : " ");
}
s.append("\n");
}
Printf("%s", s.data());
}
static void PrintTagsAroundAddr(tag_t *tag_ptr) {
Printf(
"Memory tags around the buggy address (one tag corresponds to %zd "
"bytes):\n", kShadowAlignment);
PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
s.append("%02x", *tag);
});
Printf(
"Tags for short granules around the buggy address (one tag corresponds "
"to %zd bytes):\n",
kShadowAlignment);
PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
if (*tag >= 1 && *tag <= kShadowAlignment) {
uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
s.append("%02x",
*reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
} else {
s.append("..");
}
});
Printf(
"See "
"https://clang.llvm.org/docs/"
"HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
"description of short granule tags\n");
}
uptr GetTopPc(StackTrace *stack) {
return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
: 0;
}
void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
ScopedReport R(flags()->halt_on_error);
uptr untagged_addr = UntagAddr(tagged_addr);
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
tag_t *tag_ptr = nullptr;
tag_t mem_tag = 0;
if (MemIsApp(untagged_addr)) {
tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
if (MemIsShadow(reinterpret_cast<uptr>(tag_ptr)))
mem_tag = *tag_ptr;
else
tag_ptr = nullptr;
}
Decorator d;
Printf("%s", d.Error());
uptr pc = GetTopPc(stack);
const char *bug_type = "invalid-free";
const Thread *thread = GetCurrentThread();
if (thread) {
Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
} else {
Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
SanitizerToolName, bug_type, untagged_addr, pc);
}
Printf("%s", d.Access());
if (tag_ptr)
Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription(tagged_addr, 0, nullptr);
if (tag_ptr)
PrintTagsAroundAddr(tag_ptr);
ReportErrorSummary(bug_type, stack);
}
void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
const u8 *expected) {
uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
u8 actual_expected[kShadowAlignment];
internal_memcpy(actual_expected, expected, tail_size);
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
// Short granule is stashed in the last byte of the magic string. To avoid
// confusion, make the expected magic string contain the short granule tag.
if (orig_size % kShadowAlignment != 0) {
actual_expected[tail_size - 1] = ptr_tag;
}
ScopedReport R(flags()->halt_on_error);
Decorator d;
uptr untagged_addr = UntagAddr(tagged_addr);
Printf("%s", d.Error());
const char *bug_type = "allocation-tail-overwritten";
Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
Printf("\n%s", d.Default());
Printf(
"Stack of invalid access unknown. Issue detected at deallocation "
"time.\n");
Printf("%s", d.Allocation());
Printf("deallocated here:\n");
Printf("%s", d.Default());
stack->Print();
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
if (chunk.Beg()) {
Printf("%s", d.Allocation());
Printf("allocated here:\n");
Printf("%s", d.Default());
GetStackTraceFromId(chunk.GetAllocStackId()).Print();
}
InternalScopedString s;
CHECK_GT(tail_size, 0U);
CHECK_LT(tail_size, kShadowAlignment);
u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
s.append("Tail contains: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
s.append(".. ");
for (uptr i = 0; i < tail_size; i++)
s.append("%02x ", tail[i]);
s.append("\n");
s.append("Expected: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
s.append(".. ");
for (uptr i = 0; i < tail_size; i++) s.append("%02x ", actual_expected[i]);
s.append("\n");
s.append(" ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
s.append(" ");
for (uptr i = 0; i < tail_size; i++)
s.append("%s ", actual_expected[i] != tail[i] ? "^^" : " ");
s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
"to the right of a heap object, but within the %zd-byte granule, e.g.\n"
" char *x = new char[20];\n"
" x[25] = 42;\n"
"%s does not detect such bugs in uninstrumented code at the time of write,"
"\nbut can detect them at the time of free/delete.\n"
"To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
kShadowAlignment, SanitizerToolName);
Printf("%s", s.data());
GetCurrentThread()->Announce();
tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
PrintTagsAroundAddr(tag_ptr);
ReportErrorSummary(bug_type, stack);
}
void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
bool is_store, bool fatal, uptr *registers_frame) {
ScopedReport R(fatal);
SavedStackAllocations current_stack_allocations(
GetCurrentThread()->stack_allocations());
Decorator d;
uptr untagged_addr = UntagAddr(tagged_addr);
// TODO: when possible, try to print heap-use-after-free, etc.
const char *bug_type = "tag-mismatch";
uptr pc = GetTopPc(stack);
Printf("%s", d.Error());
Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
untagged_addr, pc);
Thread *t = GetCurrentThread();
sptr offset =
__hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
tag_t *tag_ptr =
reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
tag_t mem_tag = *tag_ptr;
Printf("%s", d.Access());
if (mem_tag && mem_tag < kShadowAlignment) {
tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
~(kShadowAlignment - 1));
// If offset is 0, (untagged_addr + offset) is not aligned to granules.
// This is the offset of the leftmost accessed byte within the bad granule.
u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
tag_t short_tag = granule_ptr[kShadowAlignment - 1];
// The first mismatch was a short granule that matched the ptr_tag.
if (short_tag == ptr_tag) {
// If the access starts after the end of the short granule, then the first
// bad byte is the first byte of the access; otherwise it is the first
// byte past the end of the short granule
if (mem_tag > in_granule_offset) {
offset += mem_tag - in_granule_offset;
}
}
Printf(
"%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, short_tag, t->unique_id());
} else {
Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, t->unique_id());
}
if (offset != 0)
Printf("Invalid access starting at offset %zu\n", offset);
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription(tagged_addr, access_size,
current_stack_allocations.get());
t->Announce();
PrintTagsAroundAddr(tag_ptr);
if (registers_frame)
ReportRegisters(registers_frame, pc);
ReportErrorSummary(bug_type, stack);
}
// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_aarch64.S).
void ReportRegisters(uptr *frame, uptr pc) {
Printf("Registers where the failure occurred (pc %p):\n", pc);
// We explicitly print a single line (4 registers/line) each iteration to
// reduce the amount of logcat error messages printed. Each Printf() will
// result in a new logcat line, irrespective of whether a newline is present,
// and so we wish to reduce the number of Printf() calls we have to make.
Printf(" x0 %016llx x1 %016llx x2 %016llx x3 %016llx\n",
frame[0], frame[1], frame[2], frame[3]);
Printf(" x4 %016llx x5 %016llx x6 %016llx x7 %016llx\n",
frame[4], frame[5], frame[6], frame[7]);
Printf(" x8 %016llx x9 %016llx x10 %016llx x11 %016llx\n",
frame[8], frame[9], frame[10], frame[11]);
Printf(" x12 %016llx x13 %016llx x14 %016llx x15 %016llx\n",
frame[12], frame[13], frame[14], frame[15]);
Printf(" x16 %016llx x17 %016llx x18 %016llx x19 %016llx\n",
frame[16], frame[17], frame[18], frame[19]);
Printf(" x20 %016llx x21 %016llx x22 %016llx x23 %016llx\n",
frame[20], frame[21], frame[22], frame[23]);
Printf(" x24 %016llx x25 %016llx x26 %016llx x27 %016llx\n",
frame[24], frame[25], frame[26], frame[27]);
// hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
// passes it to this function.
Printf(" x28 %016llx x29 %016llx x30 %016llx sp %016llx\n", frame[28],
frame[29], frame[30], reinterpret_cast<u8 *>(frame) + 256);
}
} // namespace __hwasan
void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
__hwasan::ScopedReport::SetErrorReportCallback(callback);
}