782 lines
29 KiB
C++
782 lines
29 KiB
C++
//===-- hwasan_report.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of HWAddressSanitizer.
|
|
//
|
|
// Error reporting.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "hwasan_report.h"
|
|
|
|
#include <dlfcn.h>
|
|
|
|
#include "hwasan.h"
|
|
#include "hwasan_allocator.h"
|
|
#include "hwasan_globals.h"
|
|
#include "hwasan_mapping.h"
|
|
#include "hwasan_thread.h"
|
|
#include "hwasan_thread_list.h"
|
|
#include "sanitizer_common/sanitizer_allocator_internal.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_flags.h"
|
|
#include "sanitizer_common/sanitizer_mutex.h"
|
|
#include "sanitizer_common/sanitizer_report_decorator.h"
|
|
#include "sanitizer_common/sanitizer_stackdepot.h"
|
|
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
|
|
#include "sanitizer_common/sanitizer_symbolizer.h"
|
|
|
|
using namespace __sanitizer;
|
|
|
|
namespace __hwasan {
|
|
|
|
class ScopedReport {
|
|
public:
|
|
ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
|
|
Lock lock(&error_message_lock_);
|
|
error_message_ptr_ = fatal ? &error_message_ : nullptr;
|
|
++hwasan_report_count;
|
|
}
|
|
|
|
~ScopedReport() {
|
|
void (*report_cb)(const char *);
|
|
{
|
|
Lock lock(&error_message_lock_);
|
|
report_cb = error_report_callback_;
|
|
error_message_ptr_ = nullptr;
|
|
}
|
|
if (report_cb)
|
|
report_cb(error_message_.data());
|
|
if (fatal)
|
|
SetAbortMessage(error_message_.data());
|
|
if (common_flags()->print_module_map >= 2 ||
|
|
(fatal && common_flags()->print_module_map))
|
|
DumpProcessMap();
|
|
if (fatal)
|
|
Die();
|
|
}
|
|
|
|
static void MaybeAppendToErrorMessage(const char *msg) {
|
|
Lock lock(&error_message_lock_);
|
|
if (!error_message_ptr_)
|
|
return;
|
|
uptr len = internal_strlen(msg);
|
|
uptr old_size = error_message_ptr_->size();
|
|
error_message_ptr_->resize(old_size + len);
|
|
// overwrite old trailing '\0', keep new trailing '\0' untouched.
|
|
internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
|
|
}
|
|
|
|
static void SetErrorReportCallback(void (*callback)(const char *)) {
|
|
Lock lock(&error_message_lock_);
|
|
error_report_callback_ = callback;
|
|
}
|
|
|
|
private:
|
|
ScopedErrorReportLock error_report_lock_;
|
|
InternalMmapVector<char> error_message_;
|
|
bool fatal;
|
|
|
|
static InternalMmapVector<char> *error_message_ptr_;
|
|
static Mutex error_message_lock_;
|
|
static void (*error_report_callback_)(const char *);
|
|
};
|
|
|
|
InternalMmapVector<char> *ScopedReport::error_message_ptr_;
|
|
Mutex ScopedReport::error_message_lock_;
|
|
void (*ScopedReport::error_report_callback_)(const char *);
|
|
|
|
// If there is an active ScopedReport, append to its error message.
|
|
void AppendToErrorMessageBuffer(const char *buffer) {
|
|
ScopedReport::MaybeAppendToErrorMessage(buffer);
|
|
}
|
|
|
|
static StackTrace GetStackTraceFromId(u32 id) {
|
|
CHECK(id);
|
|
StackTrace res = StackDepotGet(id);
|
|
CHECK(res.trace);
|
|
return res;
|
|
}
|
|
|
|
// A RAII object that holds a copy of the current thread stack ring buffer.
|
|
// The actual stack buffer may change while we are iterating over it (for
|
|
// example, Printf may call syslog() which can itself be built with hwasan).
|
|
class SavedStackAllocations {
|
|
public:
|
|
SavedStackAllocations(StackAllocationsRingBuffer *rb) {
|
|
uptr size = rb->size() * sizeof(uptr);
|
|
void *storage =
|
|
MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
|
|
new (&rb_) StackAllocationsRingBuffer(*rb, storage);
|
|
}
|
|
|
|
~SavedStackAllocations() {
|
|
StackAllocationsRingBuffer *rb = get();
|
|
UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
|
|
}
|
|
|
|
StackAllocationsRingBuffer *get() {
|
|
return (StackAllocationsRingBuffer *)&rb_;
|
|
}
|
|
|
|
private:
|
|
uptr rb_;
|
|
};
|
|
|
|
class Decorator: public __sanitizer::SanitizerCommonDecorator {
|
|
public:
|
|
Decorator() : SanitizerCommonDecorator() { }
|
|
const char *Access() { return Blue(); }
|
|
const char *Allocation() const { return Magenta(); }
|
|
const char *Origin() const { return Magenta(); }
|
|
const char *Name() const { return Green(); }
|
|
const char *Location() { return Green(); }
|
|
const char *Thread() { return Green(); }
|
|
};
|
|
|
|
static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
|
|
HeapAllocationRecord *har, uptr *ring_index,
|
|
uptr *num_matching_addrs,
|
|
uptr *num_matching_addrs_4b) {
|
|
if (!rb) return false;
|
|
|
|
*num_matching_addrs = 0;
|
|
*num_matching_addrs_4b = 0;
|
|
for (uptr i = 0, size = rb->size(); i < size; i++) {
|
|
auto h = (*rb)[i];
|
|
if (h.tagged_addr <= tagged_addr &&
|
|
h.tagged_addr + h.requested_size > tagged_addr) {
|
|
*har = h;
|
|
*ring_index = i;
|
|
return true;
|
|
}
|
|
|
|
// Measure the number of heap ring buffer entries that would have matched
|
|
// if we had only one entry per address (e.g. if the ring buffer data was
|
|
// stored at the address itself). This will help us tune the allocator
|
|
// implementation for MTE.
|
|
if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
|
|
UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
|
|
++*num_matching_addrs;
|
|
}
|
|
|
|
// Measure the number of heap ring buffer entries that would have matched
|
|
// if we only had 4 tag bits, which is the case for MTE.
|
|
auto untag_4b = [](uptr p) {
|
|
return p & ((1ULL << 60) - 1);
|
|
};
|
|
if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
|
|
untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
|
|
++*num_matching_addrs_4b;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
|
|
tag_t addr_tag, uptr untagged_addr) {
|
|
uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
|
|
bool found_local = false;
|
|
for (uptr i = 0; i < frames; i++) {
|
|
const uptr *record_addr = &(*sa)[i];
|
|
uptr record = *record_addr;
|
|
if (!record)
|
|
break;
|
|
tag_t base_tag =
|
|
reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
|
|
uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
|
|
uptr pc_mask = (1ULL << kRecordFPShift) - 1;
|
|
uptr pc = record & pc_mask;
|
|
FrameInfo frame;
|
|
if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
|
|
for (LocalInfo &local : frame.locals) {
|
|
if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
|
|
continue;
|
|
tag_t obj_tag = base_tag ^ local.tag_offset;
|
|
if (obj_tag != addr_tag)
|
|
continue;
|
|
// Calculate the offset from the object address to the faulting
|
|
// address. Because we only store bits 4-19 of FP (bits 0-3 are
|
|
// guaranteed to be zero), the calculation is performed mod 2^20 and may
|
|
// harmlessly underflow if the address mod 2^20 is below the object
|
|
// address.
|
|
uptr obj_offset =
|
|
(untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
|
|
if (obj_offset >= local.size)
|
|
continue;
|
|
if (!found_local) {
|
|
Printf("Potentially referenced stack objects:\n");
|
|
found_local = true;
|
|
}
|
|
Printf(" %s in %s %s:%d\n", local.name, local.function_name,
|
|
local.decl_file, local.decl_line);
|
|
}
|
|
frame.Clear();
|
|
}
|
|
}
|
|
|
|
if (found_local)
|
|
return;
|
|
|
|
// We didn't find any locals. Most likely we don't have symbols, so dump
|
|
// the information that we have for offline analysis.
|
|
InternalScopedString frame_desc;
|
|
Printf("Previously allocated frames:\n");
|
|
for (uptr i = 0; i < frames; i++) {
|
|
const uptr *record_addr = &(*sa)[i];
|
|
uptr record = *record_addr;
|
|
if (!record)
|
|
break;
|
|
uptr pc_mask = (1ULL << 48) - 1;
|
|
uptr pc = record & pc_mask;
|
|
frame_desc.append(" record_addr:0x%zx record:0x%zx",
|
|
reinterpret_cast<uptr>(record_addr), record);
|
|
if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
|
|
RenderFrame(&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
|
|
common_flags()->symbolize_vs_style,
|
|
common_flags()->strip_path_prefix);
|
|
frame->ClearAll();
|
|
}
|
|
Printf("%s\n", frame_desc.data());
|
|
frame_desc.clear();
|
|
}
|
|
}
|
|
|
|
// Returns true if tag == *tag_ptr, reading tags from short granules if
|
|
// necessary. This may return a false positive if tags 1-15 are used as a
|
|
// regular tag rather than a short granule marker.
|
|
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
|
|
if (tag == *tag_ptr)
|
|
return true;
|
|
if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
|
|
return false;
|
|
uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
|
|
tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
|
|
return tag == inline_tag;
|
|
}
|
|
|
|
// HWASan globals store the size of the global in the descriptor. In cases where
|
|
// we don't have a binary with symbols, we can't grab the size of the global
|
|
// from the debug info - but we might be able to retrieve it from the
|
|
// descriptor. Returns zero if the lookup failed.
|
|
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
|
|
// Find the ELF object that this global resides in.
|
|
Dl_info info;
|
|
if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
|
|
return 0;
|
|
auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
|
|
auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
|
|
reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
|
|
|
|
// Get the load bias. This is normally the same as the dli_fbase address on
|
|
// position-independent code, but can be different on non-PIE executables,
|
|
// binaries using LLD's partitioning feature, or binaries compiled with a
|
|
// linker script.
|
|
ElfW(Addr) load_bias = 0;
|
|
for (const auto &phdr :
|
|
ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
|
|
if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
|
|
continue;
|
|
load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
|
|
break;
|
|
}
|
|
|
|
// Walk all globals in this ELF object, looking for the one we're interested
|
|
// in. Once we find it, we can stop iterating and return the size of the
|
|
// global we're interested in.
|
|
for (const hwasan_global &global :
|
|
HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
|
|
if (global.addr() <= ptr && ptr < global.addr() + global.size())
|
|
return global.size();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ShowHeapOrGlobalCandidate(uptr untagged_addr, tag_t *candidate,
|
|
tag_t *left, tag_t *right) {
|
|
Decorator d;
|
|
uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
|
|
HwasanChunkView chunk = FindHeapChunkByAddress(mem);
|
|
if (chunk.IsAllocated()) {
|
|
uptr offset;
|
|
const char *whence;
|
|
if (untagged_addr < chunk.End() && untagged_addr >= chunk.Beg()) {
|
|
offset = untagged_addr - chunk.Beg();
|
|
whence = "inside";
|
|
} else if (candidate == left) {
|
|
offset = untagged_addr - chunk.End();
|
|
whence = "to the right of";
|
|
} else {
|
|
offset = chunk.Beg() - untagged_addr;
|
|
whence = "to the left of";
|
|
}
|
|
Printf("%s", d.Error());
|
|
Printf("\nCause: heap-buffer-overflow\n");
|
|
Printf("%s", d.Default());
|
|
Printf("%s", d.Location());
|
|
Printf("%p is located %zd bytes %s %zd-byte region [%p,%p)\n",
|
|
untagged_addr, offset, whence, chunk.UsedSize(), chunk.Beg(),
|
|
chunk.End());
|
|
Printf("%s", d.Allocation());
|
|
Printf("allocated here:\n");
|
|
Printf("%s", d.Default());
|
|
GetStackTraceFromId(chunk.GetAllocStackId()).Print();
|
|
return;
|
|
}
|
|
// Check whether the address points into a loaded library. If so, this is
|
|
// most likely a global variable.
|
|
const char *module_name;
|
|
uptr module_address;
|
|
Symbolizer *sym = Symbolizer::GetOrInit();
|
|
if (sym->GetModuleNameAndOffsetForPC(mem, &module_name, &module_address)) {
|
|
Printf("%s", d.Error());
|
|
Printf("\nCause: global-overflow\n");
|
|
Printf("%s", d.Default());
|
|
DataInfo info;
|
|
Printf("%s", d.Location());
|
|
if (sym->SymbolizeData(mem, &info) && info.start) {
|
|
Printf(
|
|
"%p is located %zd bytes to the %s of %zd-byte global variable "
|
|
"%s [%p,%p) in %s\n",
|
|
untagged_addr,
|
|
candidate == left ? untagged_addr - (info.start + info.size)
|
|
: info.start - untagged_addr,
|
|
candidate == left ? "right" : "left", info.size, info.name,
|
|
info.start, info.start + info.size, module_name);
|
|
} else {
|
|
uptr size = GetGlobalSizeFromDescriptor(mem);
|
|
if (size == 0)
|
|
// We couldn't find the size of the global from the descriptors.
|
|
Printf(
|
|
"%p is located to the %s of a global variable in "
|
|
"\n #0 0x%x (%s+0x%x)\n",
|
|
untagged_addr, candidate == left ? "right" : "left", mem,
|
|
module_name, module_address);
|
|
else
|
|
Printf(
|
|
"%p is located to the %s of a %zd-byte global variable in "
|
|
"\n #0 0x%x (%s+0x%x)\n",
|
|
untagged_addr, candidate == left ? "right" : "left", size, mem,
|
|
module_name, module_address);
|
|
}
|
|
Printf("%s", d.Default());
|
|
}
|
|
}
|
|
|
|
void PrintAddressDescription(
|
|
uptr tagged_addr, uptr access_size,
|
|
StackAllocationsRingBuffer *current_stack_allocations) {
|
|
Decorator d;
|
|
int num_descriptions_printed = 0;
|
|
uptr untagged_addr = UntagAddr(tagged_addr);
|
|
|
|
if (MemIsShadow(untagged_addr)) {
|
|
Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
|
|
d.Default());
|
|
return;
|
|
}
|
|
|
|
// Print some very basic information about the address, if it's a heap.
|
|
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
|
|
if (uptr beg = chunk.Beg()) {
|
|
uptr size = chunk.ActualSize();
|
|
Printf("%s[%p,%p) is a %s %s heap chunk; "
|
|
"size: %zd offset: %zd\n%s",
|
|
d.Location(),
|
|
beg, beg + size,
|
|
chunk.FromSmallHeap() ? "small" : "large",
|
|
chunk.IsAllocated() ? "allocated" : "unallocated",
|
|
size, untagged_addr - beg,
|
|
d.Default());
|
|
}
|
|
|
|
tag_t addr_tag = GetTagFromPointer(tagged_addr);
|
|
|
|
bool on_stack = false;
|
|
// Check stack first. If the address is on the stack of a live thread, we
|
|
// know it cannot be a heap / global overflow.
|
|
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
|
|
if (t->AddrIsInStack(untagged_addr)) {
|
|
on_stack = true;
|
|
// TODO(fmayer): figure out how to distinguish use-after-return and
|
|
// stack-buffer-overflow.
|
|
Printf("%s", d.Error());
|
|
Printf("\nCause: stack tag-mismatch\n");
|
|
Printf("%s", d.Location());
|
|
Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
|
|
t->unique_id());
|
|
Printf("%s", d.Default());
|
|
t->Announce();
|
|
|
|
auto *sa = (t == GetCurrentThread() && current_stack_allocations)
|
|
? current_stack_allocations
|
|
: t->stack_allocations();
|
|
PrintStackAllocations(sa, addr_tag, untagged_addr);
|
|
num_descriptions_printed++;
|
|
}
|
|
});
|
|
|
|
// Check if this looks like a heap buffer overflow by scanning
|
|
// the shadow left and right and looking for the first adjacent
|
|
// object with a different memory tag. If that tag matches addr_tag,
|
|
// check the allocator if it has a live chunk there.
|
|
tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
|
|
tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
|
|
uptr candidate_distance = 0;
|
|
for (; candidate_distance < 1000; candidate_distance++) {
|
|
if (MemIsShadow(reinterpret_cast<uptr>(left)) &&
|
|
TagsEqual(addr_tag, left)) {
|
|
candidate = left;
|
|
break;
|
|
}
|
|
--left;
|
|
if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
|
|
TagsEqual(addr_tag, right)) {
|
|
candidate = right;
|
|
break;
|
|
}
|
|
++right;
|
|
}
|
|
|
|
constexpr auto kCloseCandidateDistance = 1;
|
|
|
|
if (!on_stack && candidate && candidate_distance <= kCloseCandidateDistance) {
|
|
ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
|
|
num_descriptions_printed++;
|
|
}
|
|
|
|
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
|
|
// Scan all threads' ring buffers to find if it's a heap-use-after-free.
|
|
HeapAllocationRecord har;
|
|
uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
|
|
if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
|
|
&ring_index, &num_matching_addrs,
|
|
&num_matching_addrs_4b)) {
|
|
Printf("%s", d.Error());
|
|
Printf("\nCause: use-after-free\n");
|
|
Printf("%s", d.Location());
|
|
Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
|
|
untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
|
|
har.requested_size, UntagAddr(har.tagged_addr),
|
|
UntagAddr(har.tagged_addr) + har.requested_size);
|
|
Printf("%s", d.Allocation());
|
|
Printf("freed by thread T%zd here:\n", t->unique_id());
|
|
Printf("%s", d.Default());
|
|
GetStackTraceFromId(har.free_context_id).Print();
|
|
|
|
Printf("%s", d.Allocation());
|
|
Printf("previously allocated here:\n", t);
|
|
Printf("%s", d.Default());
|
|
GetStackTraceFromId(har.alloc_context_id).Print();
|
|
|
|
// Print a developer note: the index of this heap object
|
|
// in the thread's deallocation ring buffer.
|
|
Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
|
|
flags()->heap_history_size);
|
|
Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
|
|
Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
|
|
num_matching_addrs_4b);
|
|
|
|
t->Announce();
|
|
num_descriptions_printed++;
|
|
}
|
|
});
|
|
|
|
if (candidate && num_descriptions_printed == 0) {
|
|
ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
|
|
num_descriptions_printed++;
|
|
}
|
|
|
|
// Print the remaining threads, as an extra information, 1 line per thread.
|
|
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
|
|
|
|
if (!num_descriptions_printed)
|
|
// We exhausted our possibilities. Bail out.
|
|
Printf("HWAddressSanitizer can not describe address in more detail.\n");
|
|
if (num_descriptions_printed > 1) {
|
|
Printf(
|
|
"There are %d potential causes, printed above in order "
|
|
"of likeliness.\n",
|
|
num_descriptions_printed);
|
|
}
|
|
}
|
|
|
|
void ReportStats() {}
|
|
|
|
static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
|
|
void (*print_tag)(InternalScopedString &s,
|
|
tag_t *tag)) {
|
|
const uptr row_len = 16; // better be power of two.
|
|
tag_t *center_row_beg = reinterpret_cast<tag_t *>(
|
|
RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
|
|
tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
|
|
tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
|
|
InternalScopedString s;
|
|
for (tag_t *row = beg_row; row < end_row; row += row_len) {
|
|
s.append("%s", row == center_row_beg ? "=>" : " ");
|
|
s.append("%p:", (void *)row);
|
|
for (uptr i = 0; i < row_len; i++) {
|
|
s.append("%s", row + i == tag_ptr ? "[" : " ");
|
|
print_tag(s, &row[i]);
|
|
s.append("%s", row + i == tag_ptr ? "]" : " ");
|
|
}
|
|
s.append("\n");
|
|
}
|
|
Printf("%s", s.data());
|
|
}
|
|
|
|
static void PrintTagsAroundAddr(tag_t *tag_ptr) {
|
|
Printf(
|
|
"Memory tags around the buggy address (one tag corresponds to %zd "
|
|
"bytes):\n", kShadowAlignment);
|
|
PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
|
|
s.append("%02x", *tag);
|
|
});
|
|
|
|
Printf(
|
|
"Tags for short granules around the buggy address (one tag corresponds "
|
|
"to %zd bytes):\n",
|
|
kShadowAlignment);
|
|
PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
|
|
if (*tag >= 1 && *tag <= kShadowAlignment) {
|
|
uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
|
|
s.append("%02x",
|
|
*reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
|
|
} else {
|
|
s.append("..");
|
|
}
|
|
});
|
|
Printf(
|
|
"See "
|
|
"https://clang.llvm.org/docs/"
|
|
"HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
|
|
"description of short granule tags\n");
|
|
}
|
|
|
|
uptr GetTopPc(StackTrace *stack) {
|
|
return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
|
|
: 0;
|
|
}
|
|
|
|
void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
|
|
ScopedReport R(flags()->halt_on_error);
|
|
|
|
uptr untagged_addr = UntagAddr(tagged_addr);
|
|
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
|
|
tag_t *tag_ptr = nullptr;
|
|
tag_t mem_tag = 0;
|
|
if (MemIsApp(untagged_addr)) {
|
|
tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
|
|
if (MemIsShadow(reinterpret_cast<uptr>(tag_ptr)))
|
|
mem_tag = *tag_ptr;
|
|
else
|
|
tag_ptr = nullptr;
|
|
}
|
|
Decorator d;
|
|
Printf("%s", d.Error());
|
|
uptr pc = GetTopPc(stack);
|
|
const char *bug_type = "invalid-free";
|
|
const Thread *thread = GetCurrentThread();
|
|
if (thread) {
|
|
Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
|
|
SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
|
|
} else {
|
|
Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
|
|
SanitizerToolName, bug_type, untagged_addr, pc);
|
|
}
|
|
Printf("%s", d.Access());
|
|
if (tag_ptr)
|
|
Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
|
|
Printf("%s", d.Default());
|
|
|
|
stack->Print();
|
|
|
|
PrintAddressDescription(tagged_addr, 0, nullptr);
|
|
|
|
if (tag_ptr)
|
|
PrintTagsAroundAddr(tag_ptr);
|
|
|
|
ReportErrorSummary(bug_type, stack);
|
|
}
|
|
|
|
void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
|
|
const u8 *expected) {
|
|
uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
|
|
u8 actual_expected[kShadowAlignment];
|
|
internal_memcpy(actual_expected, expected, tail_size);
|
|
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
|
|
// Short granule is stashed in the last byte of the magic string. To avoid
|
|
// confusion, make the expected magic string contain the short granule tag.
|
|
if (orig_size % kShadowAlignment != 0) {
|
|
actual_expected[tail_size - 1] = ptr_tag;
|
|
}
|
|
|
|
ScopedReport R(flags()->halt_on_error);
|
|
Decorator d;
|
|
uptr untagged_addr = UntagAddr(tagged_addr);
|
|
Printf("%s", d.Error());
|
|
const char *bug_type = "allocation-tail-overwritten";
|
|
Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
|
|
bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
|
|
Printf("\n%s", d.Default());
|
|
Printf(
|
|
"Stack of invalid access unknown. Issue detected at deallocation "
|
|
"time.\n");
|
|
Printf("%s", d.Allocation());
|
|
Printf("deallocated here:\n");
|
|
Printf("%s", d.Default());
|
|
stack->Print();
|
|
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
|
|
if (chunk.Beg()) {
|
|
Printf("%s", d.Allocation());
|
|
Printf("allocated here:\n");
|
|
Printf("%s", d.Default());
|
|
GetStackTraceFromId(chunk.GetAllocStackId()).Print();
|
|
}
|
|
|
|
InternalScopedString s;
|
|
CHECK_GT(tail_size, 0U);
|
|
CHECK_LT(tail_size, kShadowAlignment);
|
|
u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
|
|
s.append("Tail contains: ");
|
|
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
|
|
s.append(".. ");
|
|
for (uptr i = 0; i < tail_size; i++)
|
|
s.append("%02x ", tail[i]);
|
|
s.append("\n");
|
|
s.append("Expected: ");
|
|
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
|
|
s.append(".. ");
|
|
for (uptr i = 0; i < tail_size; i++) s.append("%02x ", actual_expected[i]);
|
|
s.append("\n");
|
|
s.append(" ");
|
|
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
|
|
s.append(" ");
|
|
for (uptr i = 0; i < tail_size; i++)
|
|
s.append("%s ", actual_expected[i] != tail[i] ? "^^" : " ");
|
|
|
|
s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
|
|
"to the right of a heap object, but within the %zd-byte granule, e.g.\n"
|
|
" char *x = new char[20];\n"
|
|
" x[25] = 42;\n"
|
|
"%s does not detect such bugs in uninstrumented code at the time of write,"
|
|
"\nbut can detect them at the time of free/delete.\n"
|
|
"To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
|
|
kShadowAlignment, SanitizerToolName);
|
|
Printf("%s", s.data());
|
|
GetCurrentThread()->Announce();
|
|
|
|
tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
|
|
PrintTagsAroundAddr(tag_ptr);
|
|
|
|
ReportErrorSummary(bug_type, stack);
|
|
}
|
|
|
|
void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
|
|
bool is_store, bool fatal, uptr *registers_frame) {
|
|
ScopedReport R(fatal);
|
|
SavedStackAllocations current_stack_allocations(
|
|
GetCurrentThread()->stack_allocations());
|
|
|
|
Decorator d;
|
|
uptr untagged_addr = UntagAddr(tagged_addr);
|
|
// TODO: when possible, try to print heap-use-after-free, etc.
|
|
const char *bug_type = "tag-mismatch";
|
|
uptr pc = GetTopPc(stack);
|
|
Printf("%s", d.Error());
|
|
Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
|
|
untagged_addr, pc);
|
|
|
|
Thread *t = GetCurrentThread();
|
|
|
|
sptr offset =
|
|
__hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
|
|
CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
|
|
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
|
|
tag_t *tag_ptr =
|
|
reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
|
|
tag_t mem_tag = *tag_ptr;
|
|
|
|
Printf("%s", d.Access());
|
|
if (mem_tag && mem_tag < kShadowAlignment) {
|
|
tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
|
|
~(kShadowAlignment - 1));
|
|
// If offset is 0, (untagged_addr + offset) is not aligned to granules.
|
|
// This is the offset of the leftmost accessed byte within the bad granule.
|
|
u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
|
|
tag_t short_tag = granule_ptr[kShadowAlignment - 1];
|
|
// The first mismatch was a short granule that matched the ptr_tag.
|
|
if (short_tag == ptr_tag) {
|
|
// If the access starts after the end of the short granule, then the first
|
|
// bad byte is the first byte of the access; otherwise it is the first
|
|
// byte past the end of the short granule
|
|
if (mem_tag > in_granule_offset) {
|
|
offset += mem_tag - in_granule_offset;
|
|
}
|
|
}
|
|
Printf(
|
|
"%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
|
|
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
|
|
mem_tag, short_tag, t->unique_id());
|
|
} else {
|
|
Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
|
|
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
|
|
mem_tag, t->unique_id());
|
|
}
|
|
if (offset != 0)
|
|
Printf("Invalid access starting at offset %zu\n", offset);
|
|
Printf("%s", d.Default());
|
|
|
|
stack->Print();
|
|
|
|
PrintAddressDescription(tagged_addr, access_size,
|
|
current_stack_allocations.get());
|
|
t->Announce();
|
|
|
|
PrintTagsAroundAddr(tag_ptr);
|
|
|
|
if (registers_frame)
|
|
ReportRegisters(registers_frame, pc);
|
|
|
|
ReportErrorSummary(bug_type, stack);
|
|
}
|
|
|
|
// See the frame breakdown defined in __hwasan_tag_mismatch (from
|
|
// hwasan_tag_mismatch_aarch64.S).
|
|
void ReportRegisters(uptr *frame, uptr pc) {
|
|
Printf("Registers where the failure occurred (pc %p):\n", pc);
|
|
|
|
// We explicitly print a single line (4 registers/line) each iteration to
|
|
// reduce the amount of logcat error messages printed. Each Printf() will
|
|
// result in a new logcat line, irrespective of whether a newline is present,
|
|
// and so we wish to reduce the number of Printf() calls we have to make.
|
|
Printf(" x0 %016llx x1 %016llx x2 %016llx x3 %016llx\n",
|
|
frame[0], frame[1], frame[2], frame[3]);
|
|
Printf(" x4 %016llx x5 %016llx x6 %016llx x7 %016llx\n",
|
|
frame[4], frame[5], frame[6], frame[7]);
|
|
Printf(" x8 %016llx x9 %016llx x10 %016llx x11 %016llx\n",
|
|
frame[8], frame[9], frame[10], frame[11]);
|
|
Printf(" x12 %016llx x13 %016llx x14 %016llx x15 %016llx\n",
|
|
frame[12], frame[13], frame[14], frame[15]);
|
|
Printf(" x16 %016llx x17 %016llx x18 %016llx x19 %016llx\n",
|
|
frame[16], frame[17], frame[18], frame[19]);
|
|
Printf(" x20 %016llx x21 %016llx x22 %016llx x23 %016llx\n",
|
|
frame[20], frame[21], frame[22], frame[23]);
|
|
Printf(" x24 %016llx x25 %016llx x26 %016llx x27 %016llx\n",
|
|
frame[24], frame[25], frame[26], frame[27]);
|
|
// hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
|
|
// passes it to this function.
|
|
Printf(" x28 %016llx x29 %016llx x30 %016llx sp %016llx\n", frame[28],
|
|
frame[29], frame[30], reinterpret_cast<u8 *>(frame) + 256);
|
|
}
|
|
|
|
} // namespace __hwasan
|
|
|
|
void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
|
|
__hwasan::ScopedReport::SetErrorReportCallback(callback);
|
|
}
|