gcc/libsanitizer/tsan/tsan_dense_alloc.h

166 lines
4.9 KiB
C++

//===-- tsan_dense_alloc.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// A DenseSlabAlloc is a freelist-based allocator of fixed-size objects.
// DenseSlabAllocCache is a thread-local cache for DenseSlabAlloc.
// The only difference with traditional slab allocators is that DenseSlabAlloc
// allocates/free indices of objects and provide a functionality to map
// the index onto the real pointer. The index is u32, that is, 2 times smaller
// than uptr (hense the Dense prefix).
//===----------------------------------------------------------------------===//
#ifndef TSAN_DENSE_ALLOC_H
#define TSAN_DENSE_ALLOC_H
#include "sanitizer_common/sanitizer_common.h"
#include "tsan_defs.h"
namespace __tsan {
class DenseSlabAllocCache {
static const uptr kSize = 128;
typedef u32 IndexT;
uptr pos;
IndexT cache[kSize];
template <typename, uptr, uptr, u64>
friend class DenseSlabAlloc;
};
template <typename T, uptr kL1Size, uptr kL2Size, u64 kReserved = 0>
class DenseSlabAlloc {
public:
typedef DenseSlabAllocCache Cache;
typedef typename Cache::IndexT IndexT;
static_assert((kL1Size & (kL1Size - 1)) == 0,
"kL1Size must be a power-of-two");
static_assert((kL2Size & (kL2Size - 1)) == 0,
"kL2Size must be a power-of-two");
static_assert((kL1Size * kL2Size) <= (1ull << (sizeof(IndexT) * 8)),
"kL1Size/kL2Size are too large");
static_assert(((kL1Size * kL2Size - 1) & kReserved) == 0,
"reserved bits don't fit");
static_assert(sizeof(T) > sizeof(IndexT),
"it doesn't make sense to use dense alloc");
DenseSlabAlloc(LinkerInitialized, const char *name) : name_(name) {}
explicit DenseSlabAlloc(const char *name)
: DenseSlabAlloc(LINKER_INITIALIZED, name) {
// It can be very large.
// Don't page it in for linker initialized objects.
internal_memset(map_, 0, sizeof(map_));
}
~DenseSlabAlloc() {
for (uptr i = 0; i < kL1Size; i++) {
if (map_[i] != 0)
UnmapOrDie(map_[i], kL2Size * sizeof(T));
}
}
IndexT Alloc(Cache *c) {
if (c->pos == 0)
Refill(c);
return c->cache[--c->pos];
}
void Free(Cache *c, IndexT idx) {
DCHECK_NE(idx, 0);
if (c->pos == Cache::kSize)
Drain(c);
c->cache[c->pos++] = idx;
}
T *Map(IndexT idx) {
DCHECK_NE(idx, 0);
DCHECK_LE(idx, kL1Size * kL2Size);
return &map_[idx / kL2Size][idx % kL2Size];
}
void FlushCache(Cache *c) {
if (!c->pos)
return;
SpinMutexLock lock(&mtx_);
while (c->pos) {
IndexT idx = c->cache[--c->pos];
*(IndexT*)Map(idx) = freelist_;
freelist_ = idx;
}
}
void InitCache(Cache *c) {
c->pos = 0;
internal_memset(c->cache, 0, sizeof(c->cache));
}
uptr AllocatedMemory() const {
return atomic_load_relaxed(&fillpos_) * kL2Size * sizeof(T);
}
template <typename Func>
void ForEach(Func func) {
SpinMutexLock lock(&mtx_);
uptr fillpos = atomic_load_relaxed(&fillpos_);
for (uptr l1 = 0; l1 < fillpos; l1++) {
for (IndexT l2 = l1 == 0 ? 1 : 0; l2 < kL2Size; l2++) func(&map_[l1][l2]);
}
}
private:
T *map_[kL1Size];
SpinMutex mtx_;
IndexT freelist_ = {0};
atomic_uintptr_t fillpos_ = {0};
const char *const name_;
void Refill(Cache *c) {
SpinMutexLock lock(&mtx_);
if (freelist_ == 0) {
uptr fillpos = atomic_load_relaxed(&fillpos_);
if (fillpos == kL1Size) {
Printf("ThreadSanitizer: %s overflow (%zu*%zu). Dying.\n",
name_, kL1Size, kL2Size);
Die();
}
VPrintf(2, "ThreadSanitizer: growing %s: %zu out of %zu*%zu\n", name_,
fillpos, kL1Size, kL2Size);
T *batch = (T*)MmapOrDie(kL2Size * sizeof(T), name_);
// Reserve 0 as invalid index.
IndexT start = fillpos == 0 ? 1 : 0;
for (IndexT i = start; i < kL2Size; i++) {
new(batch + i) T;
*(IndexT *)(batch + i) = i + 1 + fillpos * kL2Size;
}
*(IndexT*)(batch + kL2Size - 1) = 0;
freelist_ = fillpos * kL2Size + start;
map_[fillpos] = batch;
atomic_store_relaxed(&fillpos_, fillpos + 1);
}
for (uptr i = 0; i < Cache::kSize / 2 && freelist_ != 0; i++) {
IndexT idx = freelist_;
c->cache[c->pos++] = idx;
freelist_ = *(IndexT*)Map(idx);
}
}
void Drain(Cache *c) {
SpinMutexLock lock(&mtx_);
for (uptr i = 0; i < Cache::kSize / 2; i++) {
IndexT idx = c->cache[--c->pos];
*(IndexT*)Map(idx) = freelist_;
freelist_ = idx;
}
}
};
} // namespace __tsan
#endif // TSAN_DENSE_ALLOC_H