534 lines
17 KiB
C++
534 lines
17 KiB
C++
//===-- tsan_platform_linux.cpp -------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
// Linux- and BSD-specific code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_common/sanitizer_platform.h"
|
|
#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_libc.h"
|
|
#include "sanitizer_common/sanitizer_linux.h"
|
|
#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
|
|
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
|
|
#include "sanitizer_common/sanitizer_posix.h"
|
|
#include "sanitizer_common/sanitizer_procmaps.h"
|
|
#include "sanitizer_common/sanitizer_stackdepot.h"
|
|
#include "sanitizer_common/sanitizer_stoptheworld.h"
|
|
#include "tsan_flags.h"
|
|
#include "tsan_platform.h"
|
|
#include "tsan_rtl.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <sys/mman.h>
|
|
#if SANITIZER_LINUX
|
|
#include <sys/personality.h>
|
|
#include <setjmp.h>
|
|
#endif
|
|
#include <sys/syscall.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <sched.h>
|
|
#include <dlfcn.h>
|
|
#if SANITIZER_LINUX
|
|
#define __need_res_state
|
|
#include <resolv.h>
|
|
#endif
|
|
|
|
#ifdef sa_handler
|
|
# undef sa_handler
|
|
#endif
|
|
|
|
#ifdef sa_sigaction
|
|
# undef sa_sigaction
|
|
#endif
|
|
|
|
#if SANITIZER_FREEBSD
|
|
extern "C" void *__libc_stack_end;
|
|
void *__libc_stack_end = 0;
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX && defined(__aarch64__) && !SANITIZER_GO
|
|
# define INIT_LONGJMP_XOR_KEY 1
|
|
#else
|
|
# define INIT_LONGJMP_XOR_KEY 0
|
|
#endif
|
|
|
|
#if INIT_LONGJMP_XOR_KEY
|
|
#include "interception/interception.h"
|
|
// Must be declared outside of other namespaces.
|
|
DECLARE_REAL(int, _setjmp, void *env)
|
|
#endif
|
|
|
|
namespace __tsan {
|
|
|
|
#if INIT_LONGJMP_XOR_KEY
|
|
static void InitializeLongjmpXorKey();
|
|
static uptr longjmp_xor_key;
|
|
#endif
|
|
|
|
// Runtime detected VMA size.
|
|
uptr vmaSize;
|
|
|
|
enum {
|
|
MemTotal,
|
|
MemShadow,
|
|
MemMeta,
|
|
MemFile,
|
|
MemMmap,
|
|
MemHeap,
|
|
MemOther,
|
|
MemCount,
|
|
};
|
|
|
|
void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem) {
|
|
mem[MemTotal] += rss;
|
|
if (p >= ShadowBeg() && p < ShadowEnd())
|
|
mem[MemShadow] += rss;
|
|
else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
|
|
mem[MemMeta] += rss;
|
|
else if ((p >= LoAppMemBeg() && p < LoAppMemEnd()) ||
|
|
(p >= MidAppMemBeg() && p < MidAppMemEnd()) ||
|
|
(p >= HiAppMemBeg() && p < HiAppMemEnd()))
|
|
mem[file ? MemFile : MemMmap] += rss;
|
|
else if (p >= HeapMemBeg() && p < HeapMemEnd())
|
|
mem[MemHeap] += rss;
|
|
else
|
|
mem[MemOther] += rss;
|
|
}
|
|
|
|
void WriteMemoryProfile(char *buf, uptr buf_size, u64 uptime_ns) {
|
|
uptr mem[MemCount];
|
|
internal_memset(mem, 0, sizeof(mem));
|
|
GetMemoryProfile(FillProfileCallback, mem);
|
|
auto meta = ctx->metamap.GetMemoryStats();
|
|
StackDepotStats stacks = StackDepotGetStats();
|
|
uptr nthread, nlive;
|
|
ctx->thread_registry.GetNumberOfThreads(&nthread, &nlive);
|
|
uptr trace_mem;
|
|
{
|
|
Lock l(&ctx->slot_mtx);
|
|
trace_mem = ctx->trace_part_total_allocated * sizeof(TracePart);
|
|
}
|
|
uptr internal_stats[AllocatorStatCount];
|
|
internal_allocator()->GetStats(internal_stats);
|
|
// All these are allocated from the common mmap region.
|
|
mem[MemMmap] -= meta.mem_block + meta.sync_obj + trace_mem +
|
|
stacks.allocated + internal_stats[AllocatorStatMapped];
|
|
if (s64(mem[MemMmap]) < 0)
|
|
mem[MemMmap] = 0;
|
|
internal_snprintf(
|
|
buf, buf_size,
|
|
"==%zu== %llus [%zu]: RSS %zd MB: shadow:%zd meta:%zd file:%zd"
|
|
" mmap:%zd heap:%zd other:%zd intalloc:%zd memblocks:%zd syncobj:%zu"
|
|
" trace:%zu stacks=%zd threads=%zu/%zu\n",
|
|
internal_getpid(), uptime_ns / (1000 * 1000 * 1000), ctx->global_epoch,
|
|
mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
|
|
mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemHeap] >> 20,
|
|
mem[MemOther] >> 20, internal_stats[AllocatorStatMapped] >> 20,
|
|
meta.mem_block >> 20, meta.sync_obj >> 20, trace_mem >> 20,
|
|
stacks.allocated >> 20, nlive, nthread);
|
|
}
|
|
|
|
#if !SANITIZER_GO
|
|
// Mark shadow for .rodata sections with the special Shadow::kRodata marker.
|
|
// Accesses to .rodata can't race, so this saves time, memory and trace space.
|
|
static void MapRodata() {
|
|
// First create temp file.
|
|
const char *tmpdir = GetEnv("TMPDIR");
|
|
if (tmpdir == 0)
|
|
tmpdir = GetEnv("TEST_TMPDIR");
|
|
#ifdef P_tmpdir
|
|
if (tmpdir == 0)
|
|
tmpdir = P_tmpdir;
|
|
#endif
|
|
if (tmpdir == 0)
|
|
return;
|
|
char name[256];
|
|
internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
|
|
tmpdir, (int)internal_getpid());
|
|
uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
|
|
if (internal_iserror(openrv))
|
|
return;
|
|
internal_unlink(name); // Unlink it now, so that we can reuse the buffer.
|
|
fd_t fd = openrv;
|
|
// Fill the file with Shadow::kRodata.
|
|
const uptr kMarkerSize = 512 * 1024 / sizeof(RawShadow);
|
|
InternalMmapVector<RawShadow> marker(kMarkerSize);
|
|
// volatile to prevent insertion of memset
|
|
for (volatile RawShadow *p = marker.data(); p < marker.data() + kMarkerSize;
|
|
p++)
|
|
*p = Shadow::kRodata;
|
|
internal_write(fd, marker.data(), marker.size() * sizeof(RawShadow));
|
|
// Map the file into memory.
|
|
uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
|
|
if (internal_iserror(page)) {
|
|
internal_close(fd);
|
|
return;
|
|
}
|
|
// Map the file into shadow of .rodata sections.
|
|
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
|
|
// Reusing the buffer 'name'.
|
|
MemoryMappedSegment segment(name, ARRAY_SIZE(name));
|
|
while (proc_maps.Next(&segment)) {
|
|
if (segment.filename[0] != 0 && segment.filename[0] != '[' &&
|
|
segment.IsReadable() && segment.IsExecutable() &&
|
|
!segment.IsWritable() && IsAppMem(segment.start)) {
|
|
// Assume it's .rodata
|
|
char *shadow_start = (char *)MemToShadow(segment.start);
|
|
char *shadow_end = (char *)MemToShadow(segment.end);
|
|
for (char *p = shadow_start; p < shadow_end;
|
|
p += marker.size() * sizeof(RawShadow)) {
|
|
internal_mmap(
|
|
p, Min<uptr>(marker.size() * sizeof(RawShadow), shadow_end - p),
|
|
PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
|
|
}
|
|
}
|
|
}
|
|
internal_close(fd);
|
|
}
|
|
|
|
void InitializeShadowMemoryPlatform() {
|
|
MapRodata();
|
|
}
|
|
|
|
#endif // #if !SANITIZER_GO
|
|
|
|
void InitializePlatformEarly() {
|
|
vmaSize =
|
|
(MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
|
|
#if defined(__aarch64__)
|
|
# if !SANITIZER_GO
|
|
if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) {
|
|
Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
|
|
Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize);
|
|
Die();
|
|
}
|
|
#else
|
|
if (vmaSize != 48) {
|
|
Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
|
|
Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
|
|
Die();
|
|
}
|
|
#endif
|
|
#elif defined(__powerpc64__)
|
|
# if !SANITIZER_GO
|
|
if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) {
|
|
Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
|
|
Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize);
|
|
Die();
|
|
}
|
|
# else
|
|
if (vmaSize != 46 && vmaSize != 47) {
|
|
Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
|
|
Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize);
|
|
Die();
|
|
}
|
|
# endif
|
|
#elif defined(__mips64)
|
|
# if !SANITIZER_GO
|
|
if (vmaSize != 40) {
|
|
Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
|
|
Printf("FATAL: Found %zd - Supported 40\n", vmaSize);
|
|
Die();
|
|
}
|
|
# else
|
|
if (vmaSize != 47) {
|
|
Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
|
|
Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
|
|
Die();
|
|
}
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
void InitializePlatform() {
|
|
DisableCoreDumperIfNecessary();
|
|
|
|
// Go maps shadow memory lazily and works fine with limited address space.
|
|
// Unlimited stack is not a problem as well, because the executable
|
|
// is not compiled with -pie.
|
|
#if !SANITIZER_GO
|
|
{
|
|
bool reexec = false;
|
|
// TSan doesn't play well with unlimited stack size (as stack
|
|
// overlaps with shadow memory). If we detect unlimited stack size,
|
|
// we re-exec the program with limited stack size as a best effort.
|
|
if (StackSizeIsUnlimited()) {
|
|
const uptr kMaxStackSize = 32 * 1024 * 1024;
|
|
VReport(1, "Program is run with unlimited stack size, which wouldn't "
|
|
"work with ThreadSanitizer.\n"
|
|
"Re-execing with stack size limited to %zd bytes.\n",
|
|
kMaxStackSize);
|
|
SetStackSizeLimitInBytes(kMaxStackSize);
|
|
reexec = true;
|
|
}
|
|
|
|
if (!AddressSpaceIsUnlimited()) {
|
|
Report("WARNING: Program is run with limited virtual address space,"
|
|
" which wouldn't work with ThreadSanitizer.\n");
|
|
Report("Re-execing with unlimited virtual address space.\n");
|
|
SetAddressSpaceUnlimited();
|
|
reexec = true;
|
|
}
|
|
#if SANITIZER_LINUX && defined(__aarch64__)
|
|
// After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
|
|
// linux kernel, the random gap between stack and mapped area is increased
|
|
// from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
|
|
// this big range, we should disable randomized virtual space on aarch64.
|
|
int old_personality = personality(0xffffffff);
|
|
if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
|
|
VReport(1, "WARNING: Program is run with randomized virtual address "
|
|
"space, which wouldn't work with ThreadSanitizer.\n"
|
|
"Re-execing with fixed virtual address space.\n");
|
|
CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
|
|
reexec = true;
|
|
}
|
|
// Initialize the xor key used in {sig}{set,long}jump.
|
|
InitializeLongjmpXorKey();
|
|
#endif
|
|
if (reexec)
|
|
ReExec();
|
|
}
|
|
|
|
CheckAndProtect();
|
|
InitTlsSize();
|
|
#endif // !SANITIZER_GO
|
|
}
|
|
|
|
#if !SANITIZER_GO
|
|
// Extract file descriptors passed to glibc internal __res_iclose function.
|
|
// This is required to properly "close" the fds, because we do not see internal
|
|
// closes within glibc. The code is a pure hack.
|
|
int ExtractResolvFDs(void *state, int *fds, int nfd) {
|
|
#if SANITIZER_LINUX && !SANITIZER_ANDROID
|
|
int cnt = 0;
|
|
struct __res_state *statp = (struct __res_state*)state;
|
|
for (int i = 0; i < MAXNS && cnt < nfd; i++) {
|
|
if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
|
|
fds[cnt++] = statp->_u._ext.nssocks[i];
|
|
}
|
|
return cnt;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
// Extract file descriptors passed via UNIX domain sockets.
|
|
// This is required to properly handle "open" of these fds.
|
|
// see 'man recvmsg' and 'man 3 cmsg'.
|
|
int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
|
|
int res = 0;
|
|
msghdr *msg = (msghdr*)msgp;
|
|
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
|
|
for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
|
|
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
|
|
continue;
|
|
int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
|
|
for (int i = 0; i < n; i++) {
|
|
fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
|
|
if (res == nfd)
|
|
return res;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Reverse operation of libc stack pointer mangling
|
|
static uptr UnmangleLongJmpSp(uptr mangled_sp) {
|
|
#if defined(__x86_64__)
|
|
# if SANITIZER_LINUX
|
|
// Reverse of:
|
|
// xor %fs:0x30, %rsi
|
|
// rol $0x11, %rsi
|
|
uptr sp;
|
|
asm("ror $0x11, %0 \n"
|
|
"xor %%fs:0x30, %0 \n"
|
|
: "=r" (sp)
|
|
: "0" (mangled_sp));
|
|
return sp;
|
|
# else
|
|
return mangled_sp;
|
|
# endif
|
|
#elif defined(__aarch64__)
|
|
# if SANITIZER_LINUX
|
|
return mangled_sp ^ longjmp_xor_key;
|
|
# else
|
|
return mangled_sp;
|
|
# endif
|
|
#elif defined(__powerpc64__)
|
|
// Reverse of:
|
|
// ld r4, -28696(r13)
|
|
// xor r4, r3, r4
|
|
uptr xor_key;
|
|
asm("ld %0, -28696(%%r13)" : "=r" (xor_key));
|
|
return mangled_sp ^ xor_key;
|
|
#elif defined(__mips__)
|
|
return mangled_sp;
|
|
#elif defined(__s390x__)
|
|
// tcbhead_t.stack_guard
|
|
uptr xor_key = ((uptr *)__builtin_thread_pointer())[5];
|
|
return mangled_sp ^ xor_key;
|
|
#else
|
|
#error "Unknown platform"
|
|
#endif
|
|
}
|
|
|
|
#if SANITIZER_NETBSD
|
|
# ifdef __x86_64__
|
|
# define LONG_JMP_SP_ENV_SLOT 6
|
|
# else
|
|
# error unsupported
|
|
# endif
|
|
#elif defined(__powerpc__)
|
|
# define LONG_JMP_SP_ENV_SLOT 0
|
|
#elif SANITIZER_FREEBSD
|
|
# define LONG_JMP_SP_ENV_SLOT 2
|
|
#elif SANITIZER_LINUX
|
|
# ifdef __aarch64__
|
|
# define LONG_JMP_SP_ENV_SLOT 13
|
|
# elif defined(__mips64)
|
|
# define LONG_JMP_SP_ENV_SLOT 1
|
|
# elif defined(__s390x__)
|
|
# define LONG_JMP_SP_ENV_SLOT 9
|
|
# else
|
|
# define LONG_JMP_SP_ENV_SLOT 6
|
|
# endif
|
|
#endif
|
|
|
|
uptr ExtractLongJmpSp(uptr *env) {
|
|
uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
|
|
return UnmangleLongJmpSp(mangled_sp);
|
|
}
|
|
|
|
#if INIT_LONGJMP_XOR_KEY
|
|
// GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp
|
|
// functions) by XORing them with a random key. For AArch64 it is a global
|
|
// variable rather than a TCB one (as for x86_64/powerpc). We obtain the key by
|
|
// issuing a setjmp and XORing the SP pointer values to derive the key.
|
|
static void InitializeLongjmpXorKey() {
|
|
// 1. Call REAL(setjmp), which stores the mangled SP in env.
|
|
jmp_buf env;
|
|
REAL(_setjmp)(env);
|
|
|
|
// 2. Retrieve vanilla/mangled SP.
|
|
uptr sp;
|
|
asm("mov %0, sp" : "=r" (sp));
|
|
uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT];
|
|
|
|
// 3. xor SPs to obtain key.
|
|
longjmp_xor_key = mangled_sp ^ sp;
|
|
}
|
|
#endif
|
|
|
|
extern "C" void __tsan_tls_initialization() {}
|
|
|
|
void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
|
|
// Check that the thr object is in tls;
|
|
const uptr thr_beg = (uptr)thr;
|
|
const uptr thr_end = (uptr)thr + sizeof(*thr);
|
|
CHECK_GE(thr_beg, tls_addr);
|
|
CHECK_LE(thr_beg, tls_addr + tls_size);
|
|
CHECK_GE(thr_end, tls_addr);
|
|
CHECK_LE(thr_end, tls_addr + tls_size);
|
|
// Since the thr object is huge, skip it.
|
|
const uptr pc = StackTrace::GetNextInstructionPc(
|
|
reinterpret_cast<uptr>(__tsan_tls_initialization));
|
|
MemoryRangeImitateWrite(thr, pc, tls_addr, thr_beg - tls_addr);
|
|
MemoryRangeImitateWrite(thr, pc, thr_end, tls_addr + tls_size - thr_end);
|
|
}
|
|
|
|
// Note: this function runs with async signals enabled,
|
|
// so it must not touch any tsan state.
|
|
int call_pthread_cancel_with_cleanup(int (*fn)(void *arg),
|
|
void (*cleanup)(void *arg), void *arg) {
|
|
// pthread_cleanup_push/pop are hardcore macros mess.
|
|
// We can't intercept nor call them w/o including pthread.h.
|
|
int res;
|
|
pthread_cleanup_push(cleanup, arg);
|
|
res = fn(arg);
|
|
pthread_cleanup_pop(0);
|
|
return res;
|
|
}
|
|
#endif // !SANITIZER_GO
|
|
|
|
#if !SANITIZER_GO
|
|
void ReplaceSystemMalloc() { }
|
|
#endif
|
|
|
|
#if !SANITIZER_GO
|
|
#if SANITIZER_ANDROID
|
|
// On Android, one thread can call intercepted functions after
|
|
// DestroyThreadState(), so add a fake thread state for "dead" threads.
|
|
static ThreadState *dead_thread_state = nullptr;
|
|
|
|
ThreadState *cur_thread() {
|
|
ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
|
|
if (thr == nullptr) {
|
|
__sanitizer_sigset_t emptyset;
|
|
internal_sigfillset(&emptyset);
|
|
__sanitizer_sigset_t oldset;
|
|
CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
|
|
thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
|
|
if (thr == nullptr) {
|
|
thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
|
|
"ThreadState"));
|
|
*get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
|
|
if (dead_thread_state == nullptr) {
|
|
dead_thread_state = reinterpret_cast<ThreadState*>(
|
|
MmapOrDie(sizeof(ThreadState), "ThreadState"));
|
|
dead_thread_state->fast_state.SetIgnoreBit();
|
|
dead_thread_state->ignore_interceptors = 1;
|
|
dead_thread_state->is_dead = true;
|
|
*const_cast<u32*>(&dead_thread_state->tid) = -1;
|
|
CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
|
|
PROT_READ));
|
|
}
|
|
}
|
|
CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
|
|
}
|
|
return thr;
|
|
}
|
|
|
|
void set_cur_thread(ThreadState *thr) {
|
|
*get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
|
|
}
|
|
|
|
void cur_thread_finalize() {
|
|
__sanitizer_sigset_t emptyset;
|
|
internal_sigfillset(&emptyset);
|
|
__sanitizer_sigset_t oldset;
|
|
CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
|
|
ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
|
|
if (thr != dead_thread_state) {
|
|
*get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state);
|
|
UnmapOrDie(thr, sizeof(ThreadState));
|
|
}
|
|
CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
|
|
}
|
|
#endif // SANITIZER_ANDROID
|
|
#endif // if !SANITIZER_GO
|
|
|
|
} // namespace __tsan
|
|
|
|
#endif // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
|