gcc/gcc/tree-vectorizer.c

5761 lines
175 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Loop Vectorization
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Loop Vectorization Pass.
This pass tries to vectorize loops. This first implementation focuses on
simple inner-most loops, with no conditional control flow, and a set of
simple operations which vector form can be expressed using existing
tree codes (PLUS, MULT etc).
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop_nest().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It insert the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
support different sizes of vectors, for now will need to specify one value
for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "optabs.h"
#include "toplev.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"
#include "langhooks.h"
/*************************************************************************
Simple Loop Peeling Utilities
*************************************************************************/
/* Entry point for peeling of simple loops.
Peel the first/last iterations of a loop.
It can be used outside of the vectorizer for loops that are simple enough
(see function documentation). In the vectorizer it is used to peel the
last few iterations when the loop bound is unknown or does not evenly
divide by the vectorization factor, and to peel the first few iterations
to force the alignment of data references in the loop. */
struct loop *slpeel_tree_peel_loop_to_edge
(struct loop *, struct loops *, edge, tree, tree, bool);
static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg
(struct loop *, struct loops *, edge);
static void slpeel_update_phis_for_duplicate_loop
(struct loop *, struct loop *, bool after);
static void slpeel_update_phi_nodes_for_guard (edge, struct loop *, bool, bool);
static void slpeel_make_loop_iterate_ntimes (struct loop *, tree);
static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
static bool slpeel_can_duplicate_loop_p (struct loop *, edge);
static void allocate_new_names (bitmap);
static void rename_use_op (use_operand_p);
static void rename_def_op (def_operand_p, tree);
static void rename_variables_in_bb (basic_block);
static void free_new_names (bitmap);
static void rename_variables_in_loop (struct loop *);
#ifdef ENABLE_CHECKING
static void slpeel_verify_cfg_after_peeling (struct loop *, struct loop *);
#endif
/*************************************************************************
Vectorization Utilities.
*************************************************************************/
/* Main analysis functions. */
static loop_vec_info vect_analyze_loop (struct loop *);
static loop_vec_info vect_analyze_loop_form (struct loop *);
static bool vect_analyze_data_refs (loop_vec_info);
static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
static bool vect_analyze_scalar_cycles (loop_vec_info);
static bool vect_analyze_data_ref_accesses (loop_vec_info);
static bool vect_analyze_data_refs_alignment (loop_vec_info);
static bool vect_compute_data_refs_alignment (loop_vec_info);
static bool vect_analyze_operations (loop_vec_info);
/* Main code transformation functions. */
static void vect_transform_loop (loop_vec_info, struct loops *);
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static bool vectorizable_load (tree, block_stmt_iterator *, tree *);
static bool vectorizable_store (tree, block_stmt_iterator *, tree *);
static bool vectorizable_operation (tree, block_stmt_iterator *, tree *);
static bool vectorizable_assignment (tree, block_stmt_iterator *, tree *);
static enum dr_alignment_support vect_supportable_dr_alignment
(struct data_reference *);
static void vect_align_data_ref (tree);
static void vect_enhance_data_refs_alignment (loop_vec_info);
/* Utility functions for the analyses. */
static bool vect_is_simple_use (tree , struct loop *, tree *);
static bool exist_non_indexing_operands_for_use_p (tree, tree);
static bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *, bool);
static void vect_mark_relevant (varray_type, tree);
static bool vect_stmt_relevant_p (tree, loop_vec_info);
static tree vect_get_loop_niters (struct loop *, tree *);
static bool vect_compute_data_ref_alignment
(struct data_reference *, loop_vec_info);
static bool vect_analyze_data_ref_access (struct data_reference *);
static bool vect_get_first_index (tree, tree *);
static bool vect_can_force_dr_alignment_p (tree, unsigned int);
static struct data_reference * vect_analyze_pointer_ref_access
(tree, tree, bool);
static bool vect_can_advance_ivs_p (struct loop *);
static tree vect_get_base_and_bit_offset
(struct data_reference *, tree, tree, loop_vec_info, tree *, bool*);
static struct data_reference * vect_analyze_pointer_ref_access
(tree, tree, bool);
static tree vect_compute_array_base_alignment (tree, tree, tree *, tree *);
static tree vect_compute_array_ref_alignment
(struct data_reference *, loop_vec_info, tree, tree *);
static tree vect_get_ptr_offset (tree, tree, tree *);
static tree vect_get_symbl_and_dr
(tree, tree, bool, loop_vec_info, struct data_reference **);
/* Utility functions for the code transformation. */
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref_ptr
(tree, block_stmt_iterator *, tree, tree *, bool);
static tree vect_create_index_for_vector_ref
(struct loop *, block_stmt_iterator *);
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree get_vectype_for_scalar_type (tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree);
static tree vect_init_vector (tree, tree);
static void vect_finish_stmt_generation
(tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
/* Utility function dealing with loop peeling (not peeling itself). */
static void vect_generate_tmps_on_preheader
(loop_vec_info, tree *, tree *, tree *);
static tree vect_build_loop_niters (loop_vec_info);
static void vect_update_ivs_after_vectorizer (struct loop *, tree, edge);
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
static void vect_update_inits_of_dr
(struct data_reference *, struct loop *, tree niters);
static void vect_update_inits_of_drs (loop_vec_info, tree);
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
static void vect_do_peeling_for_loop_bound
(loop_vec_info, tree *, struct loops *);
/* Utilities for creation and deletion of vec_info structs. */
loop_vec_info new_loop_vec_info (struct loop *loop);
void destroy_loop_vec_info (loop_vec_info);
stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop);
static bool vect_debug_stats (struct loop *loop);
static bool vect_debug_details (struct loop *loop);
/*************************************************************************
Simple Loop Peeling Utilities
Utilities to support loop peeling for vectorization purposes.
*************************************************************************/
/* For each definition in DEFINITIONS this function allocates
new ssa name. */
static void
allocate_new_names (bitmap definitions)
{
unsigned ver;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
{
tree def = ssa_name (ver);
tree *new_name_ptr = xmalloc (sizeof (tree));
bool abnormal = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def);
*new_name_ptr = duplicate_ssa_name (def, SSA_NAME_DEF_STMT (def));
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*new_name_ptr) = abnormal;
SSA_NAME_AUX (def) = new_name_ptr;
}
}
/* Renames the use *OP_P. */
static void
rename_use_op (use_operand_p op_p)
{
tree *new_name_ptr;
if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
return;
new_name_ptr = SSA_NAME_AUX (USE_FROM_PTR (op_p));
/* Something defined outside of the loop. */
if (!new_name_ptr)
return;
/* An ordinary ssa name defined in the loop. */
SET_USE (op_p, *new_name_ptr);
}
/* Renames the def *OP_P in statement STMT. */
static void
rename_def_op (def_operand_p op_p, tree stmt)
{
tree *new_name_ptr;
if (TREE_CODE (DEF_FROM_PTR (op_p)) != SSA_NAME)
return;
new_name_ptr = SSA_NAME_AUX (DEF_FROM_PTR (op_p));
/* Something defined outside of the loop. */
if (!new_name_ptr)
return;
/* An ordinary ssa name defined in the loop. */
SET_DEF (op_p, *new_name_ptr);
SSA_NAME_DEF_STMT (DEF_FROM_PTR (op_p)) = stmt;
}
/* Renames the variables in basic block BB. */
static void
rename_variables_in_bb (basic_block bb)
{
tree phi;
block_stmt_iterator bsi;
tree stmt;
stmt_ann_t ann;
use_optype uses;
vuse_optype vuses;
def_optype defs;
v_may_def_optype v_may_defs;
v_must_def_optype v_must_defs;
unsigned i;
edge e;
edge_iterator ei;
struct loop *loop = bb->loop_father;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
rename_def_op (PHI_RESULT_PTR (phi), phi);
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
uses = USE_OPS (ann);
for (i = 0; i < NUM_USES (uses); i++)
rename_use_op (USE_OP_PTR (uses, i));
defs = DEF_OPS (ann);
for (i = 0; i < NUM_DEFS (defs); i++)
rename_def_op (DEF_OP_PTR (defs, i), stmt);
vuses = VUSE_OPS (ann);
for (i = 0; i < NUM_VUSES (vuses); i++)
rename_use_op (VUSE_OP_PTR (vuses, i));
v_may_defs = V_MAY_DEF_OPS (ann);
for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
{
rename_use_op (V_MAY_DEF_OP_PTR (v_may_defs, i));
rename_def_op (V_MAY_DEF_RESULT_PTR (v_may_defs, i), stmt);
}
v_must_defs = V_MUST_DEF_OPS (ann);
for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
{
rename_use_op (V_MUST_DEF_KILL_PTR (v_must_defs, i));
rename_def_op (V_MUST_DEF_RESULT_PTR (v_must_defs, i), stmt);
}
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!flow_bb_inside_loop_p (loop, e->dest))
continue;
for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
}
}
/* Releases the structures holding the new ssa names. */
static void
free_new_names (bitmap definitions)
{
unsigned ver;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
{
tree def = ssa_name (ver);
if (SSA_NAME_AUX (def))
{
free (SSA_NAME_AUX (def));
SSA_NAME_AUX (def) = NULL;
}
}
}
/* Renames variables in new generated LOOP. */
static void
rename_variables_in_loop (struct loop *loop)
{
unsigned i;
basic_block *bbs;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
rename_variables_in_bb (bbs[i]);
free (bbs);
}
/* Update the PHI nodes of NEW_LOOP.
NEW_LOOP is a duplicate of ORIG_LOOP.
AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
executes before it. */
static void
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
struct loop *new_loop, bool after)
{
tree *new_name_ptr, new_ssa_name;
tree phi_new, phi_orig;
tree def;
edge orig_loop_latch = loop_latch_edge (orig_loop);
edge orig_entry_e = loop_preheader_edge (orig_loop);
edge new_loop_exit_e = new_loop->exit_edges[0];
edge new_loop_entry_e = loop_preheader_edge (new_loop);
edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
/*
step 1. For each loop-header-phi:
Add the first phi argument for the phi in NEW_LOOP
(the one associated with the entry of NEW_LOOP)
step 2. For each loop-header-phi:
Add the second phi argument for the phi in NEW_LOOP
(the one associated with the latch of NEW_LOOP)
step 3. Update the phis in the successor block of NEW_LOOP.
case 1: NEW_LOOP was placed before ORIG_LOOP:
The successor block of NEW_LOOP is the header of ORIG_LOOP.
Updating the phis in the successor block can therefore be done
along with the scanning of the loop header phis, because the
header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
phi nodes, organized in the same order.
case 2: NEW_LOOP was placed after ORIG_LOOP:
The successor block of NEW_LOOP is the original exit block of
ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
We postpone updating these phis to a later stage (when
loop guards are added).
*/
/* Scan the phis in the headers of the old and new loops
(they are organized in exactly the same order). */
for (phi_new = phi_nodes (new_loop->header),
phi_orig = phi_nodes (orig_loop->header);
phi_new && phi_orig;
phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
{
/* step 1. */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
add_phi_arg (phi_new, def, new_loop_entry_e);
/* step 2. */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
if (TREE_CODE (def) != SSA_NAME)
continue;
new_name_ptr = SSA_NAME_AUX (def);
if (!new_name_ptr)
/* Something defined outside of the loop. */
continue;
/* An ordinary ssa name defined in the loop. */
new_ssa_name = *new_name_ptr;
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
/* step 3 (case 1). */
if (!after)
{
gcc_assert (new_loop_exit_e == orig_entry_e);
SET_PHI_ARG_DEF (phi_orig,
phi_arg_from_edge (phi_orig, new_loop_exit_e),
new_ssa_name);
}
}
}
/* Update PHI nodes for a guard of the LOOP.
Input:
- LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
controls whether LOOP is to be executed. GUARD_EDGE is the edge that
originates from the guard-bb, skips LOOP and reaches the (unique) exit
bb of LOOP. This loop-exit-bb is an empty bb with one successor.
We denote this bb NEW_MERGE_BB because it had a single predecessor (the
LOOP header) before the guard code was added, and now it became a merge
point of two paths - the path that ends with the LOOP exit-edge, and
the path that ends with GUARD_EDGE.
This function creates and updates the relevant phi nodes to account for
the new incoming edge (GUARD_EDGE) into NEW_MERGE_BB:
1. Create phi nodes at NEW_MERGE_BB.
2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
was added:
===> The CFG before the guard-code was added:
LOOP_header_bb:
if (exit_loop) goto update_bb : LOOP_header_bb
update_bb:
==> The CFG after the guard-code was added:
guard_bb:
if (LOOP_guard_condition) goto new_merge_bb : LOOP_header_bb
LOOP_header_bb:
if (exit_loop_condition) goto new_merge_bb : LOOP_header_bb
new_merge_bb:
goto update_bb
update_bb:
- ENTRY_PHIS: If ENTRY_PHIS is TRUE, this indicates that the phis in
UPDATE_BB are loop entry phis, like the phis in the LOOP header,
organized in the same order.
If ENTRY_PHIs is FALSE, this indicates that the phis in UPDATE_BB are
loop exit phis.
- IS_NEW_LOOP: TRUE if LOOP is a new loop (a duplicated copy of another
"original" loop). FALSE if LOOP is an original loop (not a newly
created copy). The SSA_NAME_AUX fields of the defs in the original
loop are the corresponding new ssa-names used in the new duplicated
loop copy. IS_NEW_LOOP indicates which of the two args of the phi
nodes in UPDATE_BB takes the original ssa-name, and which takes the
new name: If IS_NEW_LOOP is TRUE, the phi-arg that is associated with
the LOOP-exit-edge takes the new-name, and the phi-arg that is
associated with GUARD_EDGE takes the original name. If IS_NEW_LOOP is
FALSE, it's the other way around.
*/
static void
slpeel_update_phi_nodes_for_guard (edge guard_edge,
struct loop *loop,
bool entry_phis,
bool is_new_loop)
{
tree orig_phi, new_phi, update_phi;
tree guard_arg, loop_arg;
basic_block new_merge_bb = guard_edge->dest;
edge e = EDGE_SUCC (new_merge_bb, 0);
basic_block update_bb = e->dest;
basic_block orig_bb = (entry_phis ? loop->header : update_bb);
for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
orig_phi && update_phi;
orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
{
/* 1. Generate new phi node in NEW_MERGE_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
new_merge_bb);
/* 2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
of LOOP. Set the two phi args in NEW_PHI for these edges: */
if (entry_phis)
{
loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi,
EDGE_SUCC (loop->latch, 0));
guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop->entry_edges[0]);
}
else /* exit phis */
{
tree orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
tree *new_name_ptr = SSA_NAME_AUX (orig_def);
tree new_name;
if (new_name_ptr)
new_name = *new_name_ptr;
else
/* Something defined outside of the loop */
new_name = orig_def;
if (is_new_loop)
{
guard_arg = orig_def;
loop_arg = new_name;
}
else
{
guard_arg = new_name;
loop_arg = orig_def;
}
}
add_phi_arg (new_phi, loop_arg, loop->exit_edges[0]);
add_phi_arg (new_phi, guard_arg, guard_edge);
/* 3. Update phi in successor block. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
|| PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
SET_PHI_ARG_DEF (update_phi, phi_arg_from_edge (update_phi, e),
PHI_RESULT (new_phi));
}
set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
}
/* Make the LOOP iterate NITERS times. This is done by adding a new IV
that starts at zero, increases by one and its limit is NITERS.
Assumption: the exit-condition of LOOP is the last stmt in the loop. */
static void
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
{
tree indx_before_incr, indx_after_incr, cond_stmt, cond;
tree orig_cond;
edge exit_edge = loop->exit_edges[0];
block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src);
tree begin_label = tree_block_label (loop->latch);
tree exit_label = tree_block_label (loop->single_exit->dest);
tree init = build_int_cst (TREE_TYPE (niters), 0);
tree step = build_int_cst (TREE_TYPE (niters), 1);
orig_cond = get_loop_exit_condition (loop);
gcc_assert (orig_cond);
create_iv (init, step, NULL_TREE, loop,
&loop_exit_bsi, false, &indx_before_incr, &indx_after_incr);
/* CREATE_IV uses BSI_INSERT with TSI_NEW_STMT, so we want to get
back to the exit condition statement. */
bsi_next (&loop_exit_bsi);
gcc_assert (bsi_stmt (loop_exit_bsi) == orig_cond);
if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
else /* 'then' edge loops back. */
cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
begin_label = build1 (GOTO_EXPR, void_type_node, begin_label);
exit_label = build1 (GOTO_EXPR, void_type_node, exit_label);
cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
begin_label, exit_label);
bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT);
/* Remove old loop exit test: */
bsi_remove (&loop_exit_bsi);
if (vect_debug_stats (loop) || vect_debug_details (loop))
print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
loop->nb_iterations = niters;
}
/* Given LOOP this function generates a new copy of it and puts it
on E which is either the entry or exit of LOOP. */
static struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
edge e)
{
struct loop *new_loop;
basic_block *new_bbs, *bbs;
bool at_exit;
bool was_imm_dom;
basic_block exit_dest;
tree phi, phi_arg;
at_exit = (e == loop->exit_edges[0]);
if (!at_exit && e != loop_preheader_edge (loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Edge is not an entry nor an exit edge.\n");
return NULL;
}
bbs = get_loop_body (loop);
/* Check whether duplication is possible. */
if (!can_copy_bbs_p (bbs, loop->num_nodes))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "Cannot copy basic blocks.\n");
free (bbs);
return NULL;
}
/* Generate new loop structure. */
new_loop = duplicate_loop (loops, loop, loop->outer);
if (!new_loop)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "duplicate_loop returns NULL.\n");
free (bbs);
return NULL;
}
exit_dest = loop->exit_edges[0]->dest;
was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
exit_dest) == loop->header ?
true : false);
new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
copy_bbs (bbs, loop->num_nodes, new_bbs, NULL, 0, NULL, NULL);
/* Duplicating phi args at exit bbs as coming
also from exit of duplicated loop. */
for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
{
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->exit_edges[0]);
if (phi_arg)
{
edge new_loop_exit_edge;
if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
else
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
add_phi_arg (phi, phi_arg, new_loop_exit_edge);
}
}
if (at_exit) /* Add the loop copy at exit. */
{
redirect_edge_and_branch_force (e, new_loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
if (was_imm_dom)
set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
}
else /* Add the copy at entry. */
{
edge new_exit_e;
edge entry_e = loop_preheader_edge (loop);
basic_block preheader = entry_e->src;
if (!flow_bb_inside_loop_p (new_loop,
EDGE_SUCC (new_loop->header, 0)->dest))
new_exit_e = EDGE_SUCC (new_loop->header, 0);
else
new_exit_e = EDGE_SUCC (new_loop->header, 1);
redirect_edge_and_branch_force (new_exit_e, loop->header);
set_immediate_dominator (CDI_DOMINATORS, loop->header,
new_exit_e->src);
/* We have to add phi args to the loop->header here as coming
from new_exit_e edge. */
for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
{
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
if (phi_arg)
add_phi_arg (phi, phi_arg, new_exit_e);
}
redirect_edge_and_branch_force (entry_e, new_loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
}
flow_loop_scan (new_loop, LOOP_ALL);
flow_loop_scan (loop, LOOP_ALL);
free (new_bbs);
free (bbs);
return new_loop;
}
/* Given the condition statement COND, put it as the last statement
of GUARD_BB; EXIT_BB is the basic block to skip the loop;
Assumes that this is the single exit of the guarded loop.
Returns the skip edge. */
static edge
slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
basic_block dom_bb)
{
block_stmt_iterator bsi;
edge new_e, enter_e;
tree cond_stmt, then_label, else_label;
enter_e = EDGE_SUCC (guard_bb, 0);
enter_e->flags &= ~EDGE_FALLTHRU;
enter_e->flags |= EDGE_FALSE_VALUE;
bsi = bsi_last (guard_bb);
then_label = build1 (GOTO_EXPR, void_type_node,
tree_block_label (exit_bb));
else_label = build1 (GOTO_EXPR, void_type_node,
tree_block_label (enter_e->dest));
cond_stmt = build3 (COND_EXPR, void_type_node, cond,
then_label, else_label);
bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
/* Add new edge to connect entry block to the second loop. */
new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
return new_e;
}
/* This function verifies that the following restrictions apply to LOOP:
(1) it is innermost
(2) it consists of exactly 2 basic blocks - header, and an empty latch.
(3) it is single entry, single exit
(4) its exit condition is the last stmt in the header
(5) E is the entry/exit edge of LOOP.
*/
static bool
slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
{
edge exit_e = loop->exit_edges [0];
edge entry_e = loop_preheader_edge (loop);
tree orig_cond = get_loop_exit_condition (loop);
block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
if (any_marked_for_rewrite_p ())
return false;
if (loop->inner
/* All loops have an outer scope; the only case loop->outer is NULL is for
the function itself. */
|| !loop->outer
|| loop->num_nodes != 2
|| !empty_block_p (loop->latch)
|| loop->num_exits != 1
|| loop->num_entries != 1
/* Verify that new loop exit condition can be trivially modified. */
|| (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
|| (e != exit_e && e != entry_e))
return false;
return true;
}
#ifdef ENABLE_CHECKING
static void
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
struct loop *second_loop)
{
basic_block loop1_exit_bb = first_loop->exit_edges[0]->dest;
basic_block loop2_entry_bb = second_loop->pre_header;
basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
/* A guard that controls whether the second_loop is to be executed or skipped
is placed in first_loop->exit. first_loopt->exit therefore has two
successors - one is the preheader of second_loop, and the other is a bb
after second_loop.
*/
gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
/* 1. Verify that one of the successors of first_loopt->exit is the preheader
of second_loop. */
/* The preheader of new_loop is expected to have two predessors:
first_loop->exit and the block that precedes first_loop. */
gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
&& ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
&& EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
|| (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
&& EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
/* Verify that the other successor of first_loopt->exit is after the
second_loop. */
/* TODO */
}
#endif
/* Function slpeel_tree_peel_loop_to_edge.
Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
that is placed on the entry (exit) edge E of LOOP. After this transformation
we have two loops one after the other - first-loop iterates FIRST_NITERS
times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
Input:
- LOOP: the loop to be peeled.
- E: the exit or entry edge of LOOP.
If it is the entry edge, we peel the first iterations of LOOP. In this
case first-loop is LOOP, and second-loop is the newly created loop.
If it is the exit edge, we peel the last iterations of LOOP. In this
case, first-loop is the newly created loop, and second-loop is LOOP.
- NITERS: the number of iterations that LOOP iterates.
- FIRST_NITERS: the number of iterations that the first-loop should iterate.
- UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
for updating the loop bound of the first-loop to FIRST_NITERS. If it
is false, the caller of this function may want to take care of this
(this can be useful if we don't want new stmts added to first-loop).
Output:
The function returns a pointer to the new loop-copy, or NULL if it failed
to perform the transformation.
The function generates two if-then-else guards: one before the first loop,
and the other before the second loop:
The first guard is:
if (FIRST_NITERS == 0) then skip the first loop,
and go directly to the second loop.
The second guard is:
if (FIRST_NITERS == NITERS) then skip the second loop.
FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
FORNOW the resulting code will not be in loop-closed-ssa form.
*/
struct loop*
slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
edge e, tree first_niters,
tree niters, bool update_first_loop_count)
{
struct loop *new_loop = NULL, *first_loop, *second_loop;
edge skip_e;
tree pre_condition;
bitmap definitions;
basic_block bb_before_second_loop, bb_after_second_loop;
basic_block bb_before_first_loop;
basic_block bb_between_loops;
edge exit_e = loop->exit_edges [0];
if (!slpeel_can_duplicate_loop_p (loop, e))
return NULL;
/* We have to initialize cfg_hooks. Then, when calling
cfg_hooks->split_edge, the function tree_split_edge
is actually called and, when calling cfg_hooks->duplicate_block,
the function tree_duplicate_bb is called. */
tree_register_cfg_hooks ();
/* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
Resulting CFG would be:
first_loop:
do {
} while ...
second_loop:
do {
} while ...
orig_exit_bb:
*/
if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
return NULL;
}
if (e == exit_e)
{
/* NEW_LOOP was placed after LOOP. */
first_loop = loop;
second_loop = new_loop;
}
else
{
/* NEW_LOOP was placed before LOOP. */
first_loop = new_loop;
second_loop = loop;
}
definitions = marked_ssa_names ();
allocate_new_names (definitions);
slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
rename_variables_in_loop (new_loop);
/* 2. Add the guard that controls whether the first loop is executed.
Resulting CFG would be:
bb_before_first_loop:
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
GOTO first-loop
first_loop:
do {
} while ...
bb_before_second_loop:
second_loop:
do {
} while ...
orig_exit_bb:
*/
bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
add_bb_to_loop (bb_before_first_loop, first_loop->outer);
bb_before_second_loop = split_edge (first_loop->exit_edges[0]);
add_bb_to_loop (bb_before_second_loop, first_loop->outer);
flow_loop_scan (first_loop, LOOP_ALL);
flow_loop_scan (second_loop, LOOP_ALL);
pre_condition =
build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node);
skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
bb_before_second_loop, bb_before_first_loop);
slpeel_update_phi_nodes_for_guard (skip_e, first_loop, true /* entry-phis */,
first_loop == new_loop);
/* 3. Add the guard that controls whether the second loop is executed.
Resulting CFG would be:
bb_before_first_loop:
if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
GOTO first-loop
first_loop:
do {
} while ...
bb_between_loops:
if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
GOTO bb_before_second_loop
bb_before_second_loop:
second_loop:
do {
} while ...
bb_after_second_loop:
orig_exit_bb:
*/
bb_between_loops = split_edge (first_loop->exit_edges[0]);
add_bb_to_loop (bb_between_loops, first_loop->outer);
bb_after_second_loop = split_edge (second_loop->exit_edges[0]);
add_bb_to_loop (bb_after_second_loop, second_loop->outer);
flow_loop_scan (first_loop, LOOP_ALL);
flow_loop_scan (second_loop, LOOP_ALL);
pre_condition = build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
bb_after_second_loop, bb_before_first_loop);
slpeel_update_phi_nodes_for_guard (skip_e, second_loop, false /* exit-phis */,
second_loop == new_loop);
/* Flow loop scan does not update loop->single_exit field. */
first_loop->single_exit = first_loop->exit_edges[0];
second_loop->single_exit = second_loop->exit_edges[0];
/* 4. Make first-loop iterate FIRST_NITERS times, if requested.
*/
if (update_first_loop_count)
slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
free_new_names (definitions);
BITMAP_XFREE (definitions);
unmark_all_for_rewrite ();
return new_loop;
}
/* Here the proper Vectorizer starts. */
/*************************************************************************
Vectorization Utilities.
*************************************************************************/
/* Function new_stmt_vec_info.
Create and initialize a new stmt_vec_info struct for STMT. */
stmt_vec_info
new_stmt_vec_info (tree stmt, struct loop *loop)
{
stmt_vec_info res;
res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
STMT_VINFO_TYPE (res) = undef_vec_info_type;
STMT_VINFO_STMT (res) = stmt;
STMT_VINFO_LOOP (res) = loop;
STMT_VINFO_RELEVANT_P (res) = 0;
STMT_VINFO_VECTYPE (res) = NULL;
STMT_VINFO_VEC_STMT (res) = NULL;
STMT_VINFO_DATA_REF (res) = NULL;
STMT_VINFO_MEMTAG (res) = NULL;
STMT_VINFO_VECT_DR_BASE (res) = NULL;
return res;
}
/* Function new_loop_vec_info.
Create and initialize a new loop_vec_info struct for LOOP, as well as
stmt_vec_info structs for all the stmts in LOOP. */
loop_vec_info
new_loop_vec_info (struct loop *loop)
{
loop_vec_info res;
basic_block *bbs;
block_stmt_iterator si;
unsigned int i;
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
bbs = get_loop_body (loop);
/* Create stmt_info for all stmts in the loop. */
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
stmt_ann_t ann;
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
set_stmt_info (ann, new_stmt_vec_info (stmt, loop));
}
}
LOOP_VINFO_LOOP (res) = loop;
LOOP_VINFO_BBS (res) = bbs;
LOOP_VINFO_EXIT_COND (res) = NULL;
LOOP_VINFO_NITERS (res) = NULL;
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
LOOP_DO_PEELING_FOR_ALIGNMENT (res) = false;
LOOP_VINFO_VECT_FACTOR (res) = 0;
VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
"loop_write_datarefs");
VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
"loop_read_datarefs");
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
return res;
}
/* Function destroy_loop_vec_info.
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
stmts in the loop. */
void
destroy_loop_vec_info (loop_vec_info loop_vinfo)
{
struct loop *loop;
basic_block *bbs;
int nbbs;
block_stmt_iterator si;
int j;
if (!loop_vinfo)
return;
loop = LOOP_VINFO_LOOP (loop_vinfo);
bbs = LOOP_VINFO_BBS (loop_vinfo);
nbbs = loop->num_nodes;
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
stmt_ann_t ann = stmt_ann (stmt);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
free (stmt_info);
set_stmt_info (ann, NULL);
}
}
free (LOOP_VINFO_BBS (loop_vinfo));
varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));
free (loop_vinfo);
}
/* Function debug_loop_stats.
For vectorization statistics dumps. */
static bool
vect_debug_stats (struct loop *loop)
{
basic_block bb;
block_stmt_iterator si;
tree node = NULL_TREE;
if (!dump_file || !(dump_flags & TDF_STATS))
return false;
if (!loop)
{
fprintf (dump_file, "\n");
return true;
}
if (!loop->header)
return false;
bb = loop->header;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
node = bsi_stmt (si);
if (node && EXPR_P (node) && EXPR_LOCUS (node))
break;
}
if (node && EXPR_P (node) && EXPR_LOCUS (node)
&& EXPR_FILENAME (node) && EXPR_LINENO (node))
{
fprintf (dump_file, "\nloop at %s:%d: ",
EXPR_FILENAME (node), EXPR_LINENO (node));
return true;
}
return false;
}
/* Function debug_loop_details.
For vectorization debug dumps. */
static bool
vect_debug_details (struct loop *loop)
{
basic_block bb;
block_stmt_iterator si;
tree node = NULL_TREE;
if (!dump_file || !(dump_flags & TDF_DETAILS))
return false;
if (!loop)
{
fprintf (dump_file, "\n");
return true;
}
if (!loop->header)
return false;
bb = loop->header;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
node = bsi_stmt (si);
if (node && EXPR_P (node) && EXPR_LOCUS (node))
break;
}
if (node && EXPR_P (node) && EXPR_LOCUS (node)
&& EXPR_FILENAME (node) && EXPR_LINENO (node))
{
fprintf (dump_file, "\nloop at %s:%d: ",
EXPR_FILENAME (node), EXPR_LINENO (node));
return true;
}
return false;
}
/* Function vect_get_ptr_offset
Compute the OFFSET modulo vector-type alignment of pointer REF in bits. */
static tree
vect_get_ptr_offset (tree ref ATTRIBUTE_UNUSED,
tree vectype ATTRIBUTE_UNUSED,
tree *offset ATTRIBUTE_UNUSED)
{
/* TODO: Use alignment information. */
return NULL_TREE;
}
/* Function vect_get_base_and_bit_offset
Return the BASE of the data reference EXPR.
If VECTYPE is given, also compute the OFFSET from BASE in bits.
E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset in
bits of 'a.b[i] + 4B' from a.
Input:
EXPR - the memory reference that is being analyzed
DR - the data_reference struct of the _original_ memory reference
(Note: DR_REF (DR) is not necessarily EXPR)
VECTYPE - the type that defines the alignment (i.e, we compute
alignment relative to TYPE_ALIGN(VECTYPE))
Output:
BASE (returned value) - the base of the data reference EXPR.
E.g, if EXPR is a.b[k].c[i][j] the returned
base is a.
OFFSET - offset of EXPR from BASE in bits
BASE_ALIGNED_P - indicates if BASE is aligned
If something unexpected is encountered (an unsupported form of data-ref),
or if VECTYPE is given but OFFSET cannot be determined:
then NULL_TREE is returned. */
static tree
vect_get_base_and_bit_offset (struct data_reference *dr,
tree expr,
tree vectype,
loop_vec_info loop_vinfo,
tree *offset,
bool *base_aligned_p)
{
tree this_offset = size_zero_node;
tree base = NULL_TREE;
tree next_ref;
tree oprnd0, oprnd1;
struct data_reference *array_dr;
enum tree_code code = TREE_CODE (expr);
*base_aligned_p = false;
switch (code)
{
/* These cases end the recursion: */
case VAR_DECL:
*offset = size_zero_node;
if (vectype && DECL_ALIGN (expr) >= TYPE_ALIGN (vectype))
*base_aligned_p = true;
return expr;
case SSA_NAME:
if (!vectype)
return expr;
if (TREE_CODE (TREE_TYPE (expr)) != POINTER_TYPE)
return NULL_TREE;
if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (expr))) < TYPE_ALIGN (vectype))
{
base = vect_get_ptr_offset (expr, vectype, offset);
if (base)
*base_aligned_p = true;
}
else
{
*base_aligned_p = true;
*offset = size_zero_node;
base = expr;
}
return base;
case INTEGER_CST:
*offset = int_const_binop (MULT_EXPR, expr,
build_int_cst (NULL_TREE, BITS_PER_UNIT), 1);
return expr;
/* These cases continue the recursion: */
case COMPONENT_REF:
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
this_offset = bit_position (oprnd1);
if (vectype && !host_integerp (this_offset, 1))
return NULL_TREE;
next_ref = oprnd0;
break;
case ADDR_EXPR:
oprnd0 = TREE_OPERAND (expr, 0);
next_ref = oprnd0;
break;
case INDIRECT_REF:
oprnd0 = TREE_OPERAND (expr, 0);
next_ref = oprnd0;
break;
case ARRAY_REF:
if (DR_REF (dr) != expr)
/* Build array data_reference struct if the existing DR_REF
doesn't match EXPR. This happens, for example, when the
EXPR is *T and T is initialized to &arr[indx]. The DR struct
contains information on the access of T, not of arr. In order
to continue the analysis, we create a new DR struct that
describes the access of arr.
*/
array_dr = analyze_array (DR_STMT (dr), expr, DR_IS_READ (dr));
else
array_dr = dr;
next_ref = vect_compute_array_ref_alignment (array_dr, loop_vinfo,
vectype, &this_offset);
if (!next_ref)
return NULL_TREE;
if (vectype &&
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (next_ref))) >= TYPE_ALIGN (vectype))
{
*offset = this_offset;
*base_aligned_p = true;
return next_ref;
}
break;
case PLUS_EXPR:
case MINUS_EXPR:
/* In case we have a PLUS_EXPR of the form
(oprnd0 + oprnd1), we assume that only oprnd0 determines the base.
This is verified in vect_get_symbl_and_dr. */
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
base = vect_get_base_and_bit_offset
(dr, oprnd1, vectype, loop_vinfo, &this_offset, base_aligned_p);
if (vectype && !base)
return NULL_TREE;
next_ref = oprnd0;
break;
default:
return NULL_TREE;
}
base = vect_get_base_and_bit_offset (dr, next_ref, vectype,
loop_vinfo, offset, base_aligned_p);
if (vectype && base)
{
*offset = int_const_binop (PLUS_EXPR, *offset, this_offset, 1);
if (!host_integerp (*offset, 1) || TREE_OVERFLOW (*offset))
return NULL_TREE;
if (vect_debug_details (NULL))
{
print_generic_expr (dump_file, expr, TDF_SLIM);
fprintf (dump_file, " --> total offset for ref: ");
print_generic_expr (dump_file, *offset, TDF_SLIM);
}
}
return base;
}
/* Function vect_force_dr_alignment_p.
Returns whether the alignment of a DECL can be forced to be aligned
on ALIGNMENT bit boundary. */
static bool
vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
{
if (TREE_CODE (decl) != VAR_DECL)
return false;
if (DECL_EXTERNAL (decl))
return false;
if (TREE_ASM_WRITTEN (decl))
return false;
if (TREE_STATIC (decl))
return (alignment <= MAX_OFILE_ALIGNMENT);
else
/* This is not 100% correct. The absolute correct stack alignment
is STACK_BOUNDARY. We're supposed to hope, but not assume, that
PREFERRED_STACK_BOUNDARY is honored by all translation units.
However, until someone implements forced stack alignment, SSE
isn't really usable without this. */
return (alignment <= PREFERRED_STACK_BOUNDARY);
}
/* Function vect_get_new_vect_var.
Returns a name for a new variable. The current naming scheme appends the
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
the name of vectorizer generated variables, and appends that to NAME if
provided. */
static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
const char *prefix;
int prefix_len;
tree new_vect_var;
if (var_kind == vect_simple_var)
prefix = "vect_";
else
prefix = "vect_p";
prefix_len = strlen (prefix);
if (name)
new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
else
new_vect_var = create_tmp_var (type, prefix);
return new_vect_var;
}
/* Function vect_create_index_for_vector_ref.
Create (and return) an index variable, along with it's update chain in the
loop. This variable will be used to access a memory location in a vector
operation.
Input:
LOOP: The loop being vectorized.
BSI: The block_stmt_iterator where STMT is. Any new stmts created by this
function can be added here, or in the loop pre-header.
Output:
Return an index that will be used to index a vector array. It is expected
that a pointer to the first vector will be used as the base address for the
indexed reference.
FORNOW: we are not trying to be efficient, just creating a new index each
time from scratch. At this time all vector references could use the same
index.
TODO: create only one index to be used by all vector references. Record
the index in the LOOP_VINFO the first time this procedure is called and
return it on subsequent calls. The increment of this index must be placed
just before the conditional expression that ends the single block loop. */
static tree
vect_create_index_for_vector_ref (struct loop *loop, block_stmt_iterator *bsi)
{
tree init, step;
tree indx_before_incr, indx_after_incr;
/* It is assumed that the base pointer used for vectorized access contains
the address of the first vector. Therefore the index used for vectorized
access must be initialized to zero and incremented by 1. */
init = integer_zero_node;
step = integer_one_node;
/* Assuming that bsi_insert is used with BSI_NEW_STMT */
create_iv (init, step, NULL_TREE, loop, bsi, false,
&indx_before_incr, &indx_after_incr);
return indx_before_incr;
}
/* Function vect_create_addr_base_for_vector_ref.
Create an expression that computes the address of the first memory location
that will be accessed for a data reference.
Input:
STMT: The statement containing the data reference.
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
OFFSET: Optional. If supplied, it is be added to the initial address.
Output:
1. Return an SSA_NAME whose value is the address of the memory location of
the first vector of the data reference.
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
these statement(s) which define the returned SSA_NAME.
FORNOW: We are only handling array accesses with step 1. */
static tree
vect_create_addr_base_for_vector_ref (tree stmt,
tree *new_stmt_list,
tree offset)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree data_ref_base = unshare_expr (STMT_VINFO_VECT_DR_BASE (stmt_info));
tree base_name = unshare_expr (DR_BASE_NAME (dr));
tree ref = DR_REF (dr);
tree data_ref_base_type = TREE_TYPE (data_ref_base);
tree scalar_type = TREE_TYPE (ref);
tree scalar_ptr_type = build_pointer_type (scalar_type);
tree access_fn;
tree init_val, step, init_oval;
bool ok;
bool is_ptr_ref, is_array_ref, is_addr_expr;
tree array_base;
tree vec_stmt;
tree new_temp;
tree array_ref;
tree addr_base, addr_expr;
tree dest, new_stmt;
/* Only the access function of the last index is relevant (i_n in
a[i_1][i_2]...[i_n]), the others correspond to loop invariants. */
access_fn = DR_ACCESS_FN (dr, 0);
ok = vect_is_simple_iv_evolution (loop->num, access_fn, &init_oval, &step,
true);
if (!ok)
init_oval = integer_zero_node;
is_ptr_ref = TREE_CODE (data_ref_base_type) == POINTER_TYPE
&& TREE_CODE (data_ref_base) == SSA_NAME;
is_array_ref = TREE_CODE (data_ref_base_type) == ARRAY_TYPE;
is_addr_expr = TREE_CODE (data_ref_base) == ADDR_EXPR
|| TREE_CODE (data_ref_base) == PLUS_EXPR
|| TREE_CODE (data_ref_base) == MINUS_EXPR;
gcc_assert (is_ptr_ref || is_array_ref || is_addr_expr);
/** Create: &(base[init_val])
if data_ref_base is an ARRAY_TYPE:
base = data_ref_base
if data_ref_base is the SSA_NAME of a POINTER_TYPE:
base = *((scalar_array *) data_ref_base)
**/
if (is_array_ref)
array_base = data_ref_base;
else /* is_ptr_ref or is_addr_expr */
{
/* array_ptr = (scalar_array_ptr_type *) data_ref_base; */
tree scalar_array_type = build_array_type (scalar_type, 0);
tree scalar_array_ptr_type = build_pointer_type (scalar_array_type);
tree array_ptr = create_tmp_var (scalar_array_ptr_type, "array_ptr");
add_referenced_tmp_var (array_ptr);
dest = create_tmp_var (TREE_TYPE (data_ref_base), "dataref");
add_referenced_tmp_var (dest);
data_ref_base =
force_gimple_operand (data_ref_base, &new_stmt, false, dest);
append_to_statement_list_force (new_stmt, new_stmt_list);
vec_stmt = fold_convert (scalar_array_ptr_type, data_ref_base);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, array_ptr, vec_stmt);
new_temp = make_ssa_name (array_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
append_to_statement_list_force (vec_stmt, new_stmt_list);
/* (*array_ptr) */
array_base = build_fold_indirect_ref (new_temp);
}
dest = create_tmp_var (TREE_TYPE (init_oval), "newinit");
add_referenced_tmp_var (dest);
init_val = force_gimple_operand (init_oval, &new_stmt, false, dest);
append_to_statement_list_force (new_stmt, new_stmt_list);
if (offset)
{
tree tmp = create_tmp_var (TREE_TYPE (init_val), "offset");
add_referenced_tmp_var (tmp);
vec_stmt = build2 (PLUS_EXPR, TREE_TYPE (init_val), init_val, offset);
vec_stmt = build2 (MODIFY_EXPR, TREE_TYPE (init_val), tmp, vec_stmt);
init_val = make_ssa_name (tmp, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = init_val;
append_to_statement_list_force (vec_stmt, new_stmt_list);
}
array_ref = build4 (ARRAY_REF, scalar_type, array_base, init_val,
NULL_TREE, NULL_TREE);
addr_base = build_fold_addr_expr (array_ref);
/* addr_expr = addr_base */
addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
get_name (base_name));
add_referenced_tmp_var (addr_expr);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
new_temp = make_ssa_name (addr_expr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
append_to_statement_list_force (vec_stmt, new_stmt_list);
return new_temp;
}
/* Function get_vectype_for_scalar_type.
Returns the vector type corresponding to SCALAR_TYPE as supported
by the target. */
static tree
get_vectype_for_scalar_type (tree scalar_type)
{
enum machine_mode inner_mode = TYPE_MODE (scalar_type);
int nbytes = GET_MODE_SIZE (inner_mode);
int nunits;
tree vectype;
if (nbytes == 0)
return NULL_TREE;
/* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
is expected. */
nunits = UNITS_PER_SIMD_WORD / nbytes;
vectype = build_vector_type (scalar_type, nunits);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "get vectype with %d units of type ", nunits);
print_generic_expr (dump_file, scalar_type, TDF_SLIM);
}
if (!vectype)
return NULL_TREE;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vectype: ");
print_generic_expr (dump_file, vectype, TDF_SLIM);
}
if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
{
/* TODO: tree-complex.c sometimes can parallelize operations
on generic vectors. We can vectorize the loop in that case,
but then we should re-run the lowering pass. */
if (vect_debug_details (NULL))
fprintf (dump_file, "mode not supported by target.");
return NULL_TREE;
}
return vectype;
}
/* Function vect_align_data_ref.
Handle mislignment of a memory accesses.
FORNOW: Can't handle misaligned accesses.
Make sure that the dataref is aligned. */
static void
vect_align_data_ref (tree stmt)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
/* FORNOW: can't handle misaligned accesses;
all accesses expected to be aligned. */
gcc_assert (aligned_access_p (dr));
}
/* Function vect_create_data_ref_ptr.
Create a memory reference expression for vector access, to be used in a
vector load/store stmt. The reference is based on a new pointer to vector
type (vp).
Input:
1. STMT: a stmt that references memory. Expected to be of the form
MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
2. BSI: block_stmt_iterator where new stmts can be added.
3. OFFSET (optional): an offset to be added to the initial address accessed
by the data-ref in STMT.
4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
pointing to the initial address.
Output:
1. Declare a new ptr to vector_type, and have it point to the base of the
data reference (initial addressed accessed by the data reference).
For example, for vector of type V8HI, the following code is generated:
v8hi *vp;
vp = (v8hi *)initial_address;
if OFFSET is not supplied:
initial_address = &a[init];
if OFFSET is supplied:
initial_address = &a[init + OFFSET];
Return the initial_address in INITIAL_ADDRESS.
2. Create a data-reference in the loop based on the new vector pointer vp,
and using a new index variable 'idx' as follows:
vp' = vp + update
where if ONLY_INIT is true:
update = zero
and otherwise
update = idx + vector_type_size
Return the pointer vp'.
FORNOW: handle only aligned and consecutive accesses. */
static tree
vect_create_data_ref_ptr (tree stmt, block_stmt_iterator *bsi, tree offset,
tree *initial_address, bool only_init)
{
tree base_name;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree vect_ptr_type;
tree vect_ptr;
tree tag;
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
vuse_optype vuses = STMT_VUSE_OPS (stmt);
int nvuses, nv_may_defs, nv_must_defs;
int i;
tree new_temp;
tree vec_stmt;
tree new_stmt_list = NULL_TREE;
tree idx;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree vect_ptr_init;
tree vectype_size;
tree ptr_update;
tree data_ref_ptr;
tree type, tmp, size;
base_name = unshare_expr (DR_BASE_NAME (dr));
if (vect_debug_details (NULL))
{
tree data_ref_base = base_name;
fprintf (dump_file, "create array_ref of type: ");
print_generic_expr (dump_file, vectype, TDF_SLIM);
if (TREE_CODE (data_ref_base) == VAR_DECL)
fprintf (dump_file, "vectorizing a one dimensional array ref: ");
else if (TREE_CODE (data_ref_base) == ARRAY_REF)
fprintf (dump_file, "vectorizing a multidimensional array ref: ");
else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
fprintf (dump_file, "vectorizing a record based array ref: ");
else if (TREE_CODE (data_ref_base) == SSA_NAME)
fprintf (dump_file, "vectorizing a pointer ref: ");
print_generic_expr (dump_file, base_name, TDF_SLIM);
}
/** (1) Create the new vector-pointer variable: **/
vect_ptr_type = build_pointer_type (vectype);
vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
get_name (base_name));
add_referenced_tmp_var (vect_ptr);
/** (2) Handle aliasing information of the new vector-pointer: **/
tag = STMT_VINFO_MEMTAG (stmt_info);
gcc_assert (tag);
get_var_ann (vect_ptr)->type_mem_tag = tag;
/* Mark for renaming all aliased variables
(i.e, the may-aliases of the type-mem-tag). */
nvuses = NUM_VUSES (vuses);
nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
for (i = 0; i < nvuses; i++)
{
tree use = VUSE_OP (vuses, i);
if (TREE_CODE (use) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid);
}
for (i = 0; i < nv_may_defs; i++)
{
tree def = V_MAY_DEF_RESULT (v_may_defs, i);
if (TREE_CODE (def) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
}
for (i = 0; i < nv_must_defs; i++)
{
tree def = V_MUST_DEF_RESULT (v_must_defs, i);
if (TREE_CODE (def) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
}
/** (3) Calculate the initial address the vector-pointer, and set
the vector-pointer to point to it before the loop: **/
/* Create: (&(base[init_val+offset]) in the loop preheader. */
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
offset);
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
gcc_assert (!new_bb);
*initial_address = new_temp;
/* Create: p = (vectype *) initial_base */
vec_stmt = fold_convert (vect_ptr_type, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
new_temp = make_ssa_name (vect_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
gcc_assert (!new_bb);
vect_ptr_init = TREE_OPERAND (vec_stmt, 0);
/** (4) Handle the updating of the vector-pointer inside the loop: **/
if (only_init) /* No update in loop is required. */
return vect_ptr_init;
idx = vect_create_index_for_vector_ref (loop, bsi);
/* Create: update = idx * vectype_size */
tmp = create_tmp_var (integer_type_node, "update");
add_referenced_tmp_var (tmp);
size = TYPE_SIZE (vect_ptr_type);
type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
ptr_update = create_tmp_var (type, "update");
add_referenced_tmp_var (ptr_update);
vectype_size = build_int_cst (integer_type_node,
GET_MODE_SIZE (TYPE_MODE (vectype)));
vec_stmt = build2 (MULT_EXPR, integer_type_node, idx, vectype_size);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, tmp, vec_stmt);
new_temp = make_ssa_name (tmp, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
vec_stmt = fold_convert (type, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, ptr_update, vec_stmt);
new_temp = make_ssa_name (ptr_update, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
/* Create: data_ref_ptr = vect_ptr_init + update */
vec_stmt = build2 (PLUS_EXPR, vect_ptr_type, vect_ptr_init, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
new_temp = make_ssa_name (vect_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
data_ref_ptr = TREE_OPERAND (vec_stmt, 0);
return data_ref_ptr;
}
/* Function vect_create_destination_var.
Create a new temporary of type VECTYPE. */
static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
tree vec_dest;
const char *new_name;
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
new_name = get_name (scalar_dest);
if (!new_name)
new_name = "var_";
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name);
add_referenced_tmp_var (vec_dest);
return vec_dest;
}
/* Function vect_init_vector.
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
used in the vectorization of STMT. */
static tree
vect_init_vector (tree stmt, tree vector_var)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
tree new_var;
tree init_stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
tree vec_oprnd;
edge pe;
tree new_temp;
basic_block new_bb;
new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
add_referenced_tmp_var (new_var);
init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
new_temp = make_ssa_name (new_var, init_stmt);
TREE_OPERAND (init_stmt, 0) = new_temp;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
gcc_assert (!new_bb);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "created new init_stmt: ");
print_generic_expr (dump_file, init_stmt, TDF_SLIM);
}
vec_oprnd = TREE_OPERAND (init_stmt, 0);
return vec_oprnd;
}
/* Function vect_get_vec_def_for_operand.
OP is an operand in STMT. This function returns a (vector) def that will be
used in the vectorized stmt for STMT.
In the case that OP is an SSA_NAME which is defined in the loop, then
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
In case OP is an invariant or constant, a new stmt that creates a vector def
needs to be introduced. */
static tree
vect_get_vec_def_for_operand (tree op, tree stmt)
{
tree vec_oprnd;
tree vec_stmt;
tree def_stmt;
stmt_vec_info def_stmt_info = NULL;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
basic_block bb;
tree vec_inv;
tree t = NULL_TREE;
tree def;
int i;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vect_get_vec_def_for_operand: ");
print_generic_expr (dump_file, op, TDF_SLIM);
}
/** ===> Case 1: operand is a constant. **/
if (TREE_CODE (op) == INTEGER_CST || TREE_CODE (op) == REAL_CST)
{
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
tree vec_cst;
/* Build a tree with vector elements. */
if (vect_debug_details (NULL))
fprintf (dump_file, "Create vector_cst. nunits = %d", nunits);
for (i = nunits - 1; i >= 0; --i)
{
t = tree_cons (NULL_TREE, op, t);
}
vec_cst = build_vector (vectype, t);
return vect_init_vector (stmt, vec_cst);
}
gcc_assert (TREE_CODE (op) == SSA_NAME);
/** ===> Case 2: operand is an SSA_NAME - find the stmt that defines it. **/
def_stmt = SSA_NAME_DEF_STMT (op);
def_stmt_info = vinfo_for_stmt (def_stmt);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vect_get_vec_def_for_operand: def_stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
/** ==> Case 2.1: operand is defined inside the loop. **/
if (def_stmt_info)
{
/* Get the def from the vectorized stmt. */
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
gcc_assert (vec_stmt);
vec_oprnd = TREE_OPERAND (vec_stmt, 0);
return vec_oprnd;
}
/** ==> Case 2.2: operand is defined by the loop-header phi-node -
it is a reduction/induction. **/
bb = bb_for_stmt (def_stmt);
if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "reduction/induction - unsupported.");
internal_error ("no support for reduction/induction"); /* FORNOW */
}
/** ==> Case 2.3: operand is defined outside the loop -
it is a loop invariant. */
switch (TREE_CODE (def_stmt))
{
case PHI_NODE:
def = PHI_RESULT (def_stmt);
break;
case MODIFY_EXPR:
def = TREE_OPERAND (def_stmt, 0);
break;
case NOP_EXPR:
def = TREE_OPERAND (def_stmt, 0);
gcc_assert (IS_EMPTY_STMT (def_stmt));
def = op;
break;
default:
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unsupported defining stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
internal_error ("unsupported defining stmt");
}
/* Build a tree with vector elements. Create 'vec_inv = {inv,inv,..,inv}' */
if (vect_debug_details (NULL))
fprintf (dump_file, "Create vector_inv.");
for (i = nunits - 1; i >= 0; --i)
{
t = tree_cons (NULL_TREE, def, t);
}
vec_inv = build_constructor (vectype, t);
return vect_init_vector (stmt, vec_inv);
}
/* Function vect_finish_stmt_generation.
Insert a new stmt. */
static void
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
{
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "add new stmt: ");
print_generic_expr (dump_file, vec_stmt, TDF_SLIM);
}
/* Make sure bsi points to the stmt that is being vectorized. */
/* Assumption: any stmts created for the vectorization of stmt S were
inserted before S. BSI is expected to point to S or some new stmt before S.
*/
while (stmt != bsi_stmt (*bsi) && !bsi_end_p (*bsi))
bsi_next (bsi);
gcc_assert (stmt == bsi_stmt (*bsi));
}
/* Function vectorizable_assignment.
Check if STMT performs an assignment (copy) that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree op;
tree vec_oprnd;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
tree new_temp;
/* Is vectorizable assignment? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != SSA_NAME)
return false;
op = TREE_OPERAND (stmt, 1);
if (!vect_is_simple_use (op, loop, NULL))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "use not simple.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
return true;
}
/** Trasform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform assignment.");
/* Handle def. */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* Handle use. */
op = TREE_OPERAND (stmt, 1);
vec_oprnd = vect_get_vec_def_for_operand (op, stmt);
/* Arguments are ready. create the new vector stmt. */
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
new_temp = make_ssa_name (vec_dest, *vec_stmt);
TREE_OPERAND (*vec_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* Function vectorizable_operation.
Check if STMT performs a binary or unary operation that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree operation;
tree op0, op1 = NULL;
tree vec_oprnd0, vec_oprnd1=NULL;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
int i;
enum tree_code code;
enum machine_mode vec_mode;
tree new_temp;
int op_type;
tree op;
optab optab;
/* Is STMT a vectorizable binary/unary operation? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
return false;
operation = TREE_OPERAND (stmt, 1);
code = TREE_CODE (operation);
optab = optab_for_tree_code (code, vectype);
/* Support only unary or binary operations. */
op_type = TREE_CODE_LENGTH (code);
if (op_type != unary_op && op_type != binary_op)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "num. args = %d (not unary/binary op).", op_type);
return false;
}
for (i = 0; i < op_type; i++)
{
op = TREE_OPERAND (operation, i);
if (!vect_is_simple_use (op, loop, NULL))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "use not simple.");
return false;
}
}
/* Supportable by target? */
if (!optab)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "no optab.");
return false;
}
vec_mode = TYPE_MODE (vectype);
if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "op not supported by target.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
return true;
}
/** Transform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform binary/unary operation.");
/* Handle def. */
scalar_dest = TREE_OPERAND (stmt, 0);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* Handle uses. */
op0 = TREE_OPERAND (operation, 0);
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
if (op_type == binary_op)
{
op1 = TREE_OPERAND (operation, 1);
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
}
/* Arguments are ready. create the new vector stmt. */
if (op_type == binary_op)
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
build2 (code, vectype, vec_oprnd0, vec_oprnd1));
else
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
build1 (code, vectype, vec_oprnd0));
new_temp = make_ssa_name (vec_dest, *vec_stmt);
TREE_OPERAND (*vec_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* Function vectorizable_store.
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree scalar_dest;
tree data_ref;
tree op;
tree vec_oprnd1;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
enum machine_mode vec_mode;
tree dummy;
enum dr_alignment_support alignment_support_cheme;
/* Is vectorizable store? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != ARRAY_REF
&& TREE_CODE (scalar_dest) != INDIRECT_REF)
return false;
op = TREE_OPERAND (stmt, 1);
if (!vect_is_simple_use (op, loop, NULL))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "use not simple.");
return false;
}
vec_mode = TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - array initialization with 0). */
if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
return false;
if (!STMT_VINFO_DATA_REF (stmt_info))
return false;
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
return true;
}
/** Trasform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform store");
alignment_support_cheme = vect_supportable_dr_alignment (dr);
gcc_assert (alignment_support_cheme);
gcc_assert (alignment_support_cheme = dr_aligned); /* FORNOW */
/* Handle use - get the vectorized def from the defining stmt. */
vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt);
/* Handle def. */
/* FORNOW: make sure the data reference is aligned. */
vect_align_data_ref (stmt);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
data_ref = build_fold_indirect_ref (data_ref);
/* Arguments are ready. create the new vector stmt. */
*vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* vectorizable_load.
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree scalar_dest;
tree vec_dest = NULL;
tree data_ref = NULL;
tree op;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree new_temp;
int mode;
tree init_addr;
tree new_stmt;
tree dummy;
basic_block new_bb;
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
edge pe = loop_preheader_edge (loop);
enum dr_alignment_support alignment_support_cheme;
/* Is vectorizable load? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != SSA_NAME)
return false;
op = TREE_OPERAND (stmt, 1);
if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
return false;
if (!STMT_VINFO_DATA_REF (stmt_info))
return false;
mode = (int) TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - data copies). */
if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
{
if (vect_debug_details (loop))
fprintf (dump_file, "Aligned load, but unsupported type.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
return true;
}
/** Trasform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform load.");
alignment_support_cheme = vect_supportable_dr_alignment (dr);
gcc_assert (alignment_support_cheme);
if (alignment_support_cheme == dr_aligned
|| alignment_support_cheme == dr_unaligned_supported)
{
/* Create:
p = initial_addr;
indx = 0;
loop {
vec_dest = *(p);
indx = indx + 1;
}
*/
vec_dest = vect_create_destination_var (scalar_dest, vectype);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
if (aligned_access_p (dr))
data_ref = build_fold_indirect_ref (data_ref);
else
{
int mis = DR_MISALIGNMENT (dr);
tree tmis = (mis == -1 ?
integer_zero_node :
build_int_cst (integer_type_node, mis));
tmis = int_const_binop (MULT_EXPR, tmis,
build_int_cst (integer_type_node, BITS_PER_UNIT), 1);
data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
}
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
}
else if (alignment_support_cheme == dr_unaligned_software_pipeline)
{
/* Create:
p1 = initial_addr;
msq_init = *(floor(p1))
p2 = initial_addr + VS - 1;
magic = have_builtin ? builtin_result : initial_address;
indx = 0;
loop {
p2' = p2 + indx * vectype_size
lsq = *(floor(p2'))
vec_dest = realign_load (msq, lsq, magic)
indx = indx + 1;
msq = lsq;
}
*/
tree offset;
tree magic;
tree phi_stmt;
tree msq_init;
tree msq, lsq;
tree dataref_ptr;
tree params;
/* <1> Create msq_init = *(floor(p1)) in the loop preheader */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
&init_addr, true);
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
msq_init = TREE_OPERAND (new_stmt, 0);
/* <2> Create lsq = *(floor(p2')) in the loop */
offset = build_int_cst (integer_type_node,
GET_MODE_NUNITS (TYPE_MODE (vectype)));
offset = int_const_binop (MINUS_EXPR, offset, integer_one_node, 1);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
lsq = TREE_OPERAND (new_stmt, 0);
/* <3> */
if (targetm.vectorize.builtin_mask_for_load)
{
/* Create permutation mask, if required, in loop preheader. */
tree builtin_decl;
params = build_tree_list (NULL_TREE, init_addr);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
new_stmt = build_function_call_expr (builtin_decl, params);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
magic = TREE_OPERAND (new_stmt, 0);
}
else
{
/* Use current address instead of init_addr for reduced reg pressure.
*/
magic = dataref_ptr;
}
/* <4> Create msq = phi <msq_init, lsq> in loop */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
msq = make_ssa_name (vec_dest, NULL_TREE);
phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
SSA_NAME_DEF_STMT (msq) = phi_stmt;
add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
/* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
}
else
gcc_unreachable ();
*vec_stmt = new_stmt;
return true;
}
/* Function vect_supportable_dr_alignment
Return whether the data reference DR is supported with respect to its
alignment. */
static enum dr_alignment_support
vect_supportable_dr_alignment (struct data_reference *dr)
{
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
enum machine_mode mode = (int) TYPE_MODE (vectype);
if (aligned_access_p (dr))
return dr_aligned;
/* Possibly unaligned access. */
if (DR_IS_READ (dr))
{
if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
&& (!targetm.vectorize.builtin_mask_for_load
|| targetm.vectorize.builtin_mask_for_load ()))
return dr_unaligned_software_pipeline;
if (targetm.vectorize.misaligned_mem_ok (mode))
/* Can't software pipeline the loads. */
return dr_unaligned_supported;
}
/* Unsupported. */
return dr_unaligned_unsupported;
}
/* Function vect_transform_stmt.
Create a vectorized stmt to replace STMT, and insert it at BSI. */
static bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
bool is_store = false;
tree vec_stmt = NULL_TREE;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
bool done;
switch (STMT_VINFO_TYPE (stmt_info))
{
case op_vec_info_type:
done = vectorizable_operation (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case assignment_vec_info_type:
done = vectorizable_assignment (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case load_vec_info_type:
done = vectorizable_load (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case store_vec_info_type:
done = vectorizable_store (stmt, bsi, &vec_stmt);
gcc_assert (done);
is_store = true;
break;
default:
if (vect_debug_details (NULL))
fprintf (dump_file, "stmt not supported.");
gcc_unreachable ();
}
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
return is_store;
}
/* This function builds ni_name = number of iterations loop executes
on the loop preheader. */
static tree
vect_build_loop_niters (loop_vec_info loop_vinfo)
{
tree ni_name, stmt, var;
edge pe;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
var = create_tmp_var (TREE_TYPE (ni), "niters");
add_referenced_tmp_var (var);
ni_name = force_gimple_operand (ni, &stmt, false, var);
pe = loop_preheader_edge (loop);
if (stmt)
{
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
}
return ni_name;
}
/* This function generates the following statements:
ni_name = number of iterations loop executes
ratio = ni_name / vf
ratio_mult_vf_name = ratio * vf
and places them at the loop preheader edge. */
static void
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
tree *ni_name_ptr,
tree *ratio_mult_vf_name_ptr,
tree *ratio_name_ptr)
{
edge pe;
basic_block new_bb;
tree stmt, ni_name;
tree var;
tree ratio_name;
tree ratio_mult_vf_name;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree ni = LOOP_VINFO_NITERS (loop_vinfo);
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
tree log_vf = build_int_cst (unsigned_type_node, exact_log2 (vf));
pe = loop_preheader_edge (loop);
/* Generate temporary variable that contains
number of iterations loop executes. */
ni_name = vect_build_loop_niters (loop_vinfo);
/* Create: ratio = ni >> log2(vf) */
var = create_tmp_var (TREE_TYPE (ni), "bnd");
add_referenced_tmp_var (var);
ratio_name = make_ssa_name (var, NULL_TREE);
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
SSA_NAME_DEF_STMT (ratio_name) = stmt;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
/* Create: ratio_mult_vf = ratio << log2 (vf). */
var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
add_referenced_tmp_var (var);
ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
*ni_name_ptr = ni_name;
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
*ratio_name_ptr = ratio_name;
return;
}
/* Function vect_update_ivs_after_vectorizer.
"Advance" the induction variables of LOOP to the value they should take
after the execution of LOOP. This is currently necessary because the
vectorizer does not handle induction variables that are used after the
loop. Such a situation occurs when the last iterations of LOOP are
peeled, because:
1. We introduced new uses after LOOP for IVs that were not originally used
after LOOP: the IVs of LOOP are now used by an epilog loop.
2. LOOP is going to be vectorized; this means that it will iterate N/VF
times, whereas the loop IVs should be bumped N times.
Input:
- LOOP - a loop that is going to be vectorized. The last few iterations
of LOOP were peeled.
- NITERS - the number of iterations that LOOP executes (before it is
vectorized). i.e, the number of times the ivs should be bumped.
- UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
coming out from LOOP on which there are uses of the LOOP ivs
(this is the path from LOOP->exit to epilog_loop->preheader).
The new definitions of the ivs are placed in LOOP->exit.
The phi args associated with the edge UPDATE_E in the bb
UPDATE_E->dest are updated accordingly.
Assumption 1: Like the rest of the vectorizer, this function assumes
a single loop exit that has a single predecessor.
Assumption 2: The phi nodes in the LOOP header and in update_bb are
organized in the same order.
Assumption 3: The access function of the ivs is simple enough (see
vect_can_advance_ivs_p). This assumption will be relaxed in the future.
Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
coming out of LOOP on which the ivs of LOOP are used (this is the path
that leads to the epilog loop; other paths skip the epilog loop). This
path starts with the edge UPDATE_E, and its destination (denoted update_bb)
needs to have its phis updated.
*/
static void
vect_update_ivs_after_vectorizer (struct loop *loop, tree niters, edge update_e)
{
basic_block exit_bb = loop->exit_edges[0]->dest;
tree phi, phi1;
basic_block update_bb = update_e->dest;
/* gcc_assert (vect_can_advance_ivs_p (loop)); */
/* Make sure there exists a single-predecessor exit bb: */
gcc_assert (EDGE_COUNT (exit_bb->preds) == 1);
for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
phi && phi1;
phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
{
tree access_fn = NULL;
tree evolution_part;
tree init_expr;
tree step_expr;
tree var, stmt, ni, ni_name;
block_stmt_iterator last_bsi;
/* Skip virtual phi's. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "virtual phi. skip.");
continue;
}
access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
gcc_assert (access_fn);
evolution_part =
unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
gcc_assert (evolution_part != NULL_TREE);
/* FORNOW: We do not support IVs whose evolution function is a polynomial
of degree >= 2 or exponential. */
gcc_assert (!tree_is_chrec (evolution_part));
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition (access_fn));
ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
build2 (MULT_EXPR, TREE_TYPE (niters),
niters, step_expr), init_expr);
var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
add_referenced_tmp_var (var);
ni_name = force_gimple_operand (ni, &stmt, false, var);
/* Insert stmt into exit_bb. */
last_bsi = bsi_last (exit_bb);
if (stmt)
bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
/* Fix phi expressions in the successor bb. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (phi1, update_e) ==
PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0)));
SET_PHI_ARG_DEF (phi1, phi_arg_from_edge (phi1, update_e), ni_name);
}
}
/* Function vect_do_peeling_for_loop_bound
Peel the last iterations of the loop represented by LOOP_VINFO.
The peeled iterations form a new epilog loop. Given that the loop now
iterates NITERS times, the new epilog loop iterates
NITERS % VECTORIZATION_FACTOR times.
The original loop will later be made to iterate
NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
static void
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
struct loops *loops)
{
tree ni_name, ratio_mult_vf_name;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
struct loop *new_loop;
edge update_e;
#ifdef ENABLE_CHECKING
int loop_num;
#endif
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_transtorm_for_unknown_loop_bound>>\n");
/* Generate the following variables on the preheader of original loop:
ni_name = number of iteration the original loop executes
ratio = ni_name / vf
ratio_mult_vf_name = ratio * vf */
vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
&ratio_mult_vf_name, ratio);
/* Update loop info. */
loop->pre_header = loop_preheader_edge (loop)->src;
loop->pre_header_edges[0] = loop_preheader_edge (loop);
#ifdef ENABLE_CHECKING
loop_num = loop->num;
#endif
new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->exit_edges[0],
ratio_mult_vf_name, ni_name, false);
#ifdef ENABLE_CHECKING
gcc_assert (new_loop);
gcc_assert (loop_num == loop->num);
slpeel_verify_cfg_after_peeling (loop, new_loop);
#endif
/* A guard that controls whether the new_loop is to be executed or skipped
is placed in LOOP->exit. LOOP->exit therefore has two successors - one
is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
is on the path where the LOOP IVs are used and need to be updated. */
if (EDGE_PRED (new_loop->pre_header, 0)->src == loop->exit_edges[0]->dest)
update_e = EDGE_PRED (new_loop->pre_header, 0);
else
update_e = EDGE_PRED (new_loop->pre_header, 1);
/* Update IVs of original loop as if they were advanced
by ratio_mult_vf_name steps. */
vect_update_ivs_after_vectorizer (loop, ratio_mult_vf_name, update_e);
/* After peeling we have to reset scalar evolution analyzer. */
scev_reset ();
return;
}
/* Function vect_gen_niters_for_prolog_loop
Set the number of iterations for the loop represented by LOOP_VINFO
to the minimum between LOOP_NITERS (the original iteration count of the loop)
and the misalignment of DR - the first data reference recorded in
LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
this loop, the data reference DR will refer to an aligned location.
The following computation is generated:
compute address misalignment in bytes:
addr_mis = addr & (vectype_size - 1)
prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
(elem_size = element type size; an element is the scalar element
whose type is the inner type of the vectype) */
static tree
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
{
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree var, stmt;
tree iters, iters_name;
edge pe;
basic_block new_bb;
tree dr_stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
tree elem_misalign;
tree byte_misalign;
tree new_stmts = NULL_TREE;
tree start_addr =
vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
tree ptr_type = TREE_TYPE (start_addr);
tree size = TYPE_SIZE (ptr_type);
tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
tree vf_minus_1 = build_int_cst (unsigned_type_node, vf - 1);
tree niters_type = TREE_TYPE (loop_niters);
tree elem_size_log =
build_int_cst (unsigned_type_node, exact_log2 (vectype_align/vf));
tree vf_tree = build_int_cst (unsigned_type_node, vf);
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
gcc_assert (!new_bb);
/* Create: byte_misalign = addr & (vectype_size - 1) */
byte_misalign = build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
/* Create: elem_misalign = byte_misalign / element_size */
elem_misalign =
build2 (RSHIFT_EXPR, unsigned_type_node, byte_misalign, elem_size_log);
/* Create: (niters_type) (VF - elem_misalign)&(VF - 1) */
iters = build2 (MINUS_EXPR, unsigned_type_node, vf_tree, elem_misalign);
iters = build2 (BIT_AND_EXPR, unsigned_type_node, iters, vf_minus_1);
iters = fold_convert (niters_type, iters);
/* Create: prolog_loop_niters = min (iters, loop_niters) */
/* If the loop bound is known at compile time we already verified that it is
greater than vf; since the misalignment ('iters') is at most vf, there's
no need to generate the MIN_EXPR in this case. */
if (!host_integerp (loop_niters, 0))
iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
var = create_tmp_var (niters_type, "prolog_loop_niters");
add_referenced_tmp_var (var);
iters_name = force_gimple_operand (iters, &stmt, false, var);
/* Insert stmt on loop preheader edge. */
pe = loop_preheader_edge (loop);
if (stmt)
{
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
}
return iters_name;
}
/* Function vect_update_inits_of_dr
NITERS iterations were peeled from LOOP. DR represents a data reference
in LOOP. This function updates the information recorded in DR to
account for the fact that the first NITERS iterations had already been
executed. Specifically, it updates the initial_condition of the
access_function of DR. */
static void
vect_update_inits_of_dr (struct data_reference *dr, struct loop *loop,
tree niters)
{
tree access_fn = DR_ACCESS_FN (dr, 0);
tree init, init_new, step;
step = evolution_part_in_loop_num (access_fn, loop->num);
init = initial_condition (access_fn);
init_new = build2 (PLUS_EXPR, TREE_TYPE (init),
build2 (MULT_EXPR, TREE_TYPE (niters),
niters, step), init);
DR_ACCESS_FN (dr, 0) = chrec_replace_initial_condition (access_fn, init_new);
return;
}
/* Function vect_update_inits_of_drs
NITERS iterations were peeled from the loop represented by LOOP_VINFO.
This function updates the information recorded for the data references in
the loop to account for the fact that the first NITERS iterations had
already been executed. Specifically, it updates the initial_condition of the
access_function of all the data_references in the loop. */
static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
{
unsigned int i;
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\n<<vect_update_inits_of_dr>>\n");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
vect_update_inits_of_dr (dr, loop, niters);
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
vect_update_inits_of_dr (dr, loop, niters);
}
}
/* Function vect_do_peeling_for_alignment
Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
'niters' is set to the misalignment of one of the data references in the
loop, thereby forcing it to refer to an aligned location at the beginning
of the execution of this loop. The data reference for which we are
peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
static void
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree niters_of_prolog_loop, ni_name;
tree n_iters;
struct loop *new_loop;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_do_peeling_for_alignment>>\n");
ni_name = vect_build_loop_niters (loop_vinfo);
niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
/* Peel the prolog loop and iterate it niters_of_prolog_loop. */
new_loop =
slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
niters_of_prolog_loop, ni_name, true);
#ifdef ENABLE_CHECKING
gcc_assert (new_loop);
slpeel_verify_cfg_after_peeling (new_loop, loop);
#endif
/* Update number of times loop executes. */
n_iters = LOOP_VINFO_NITERS (loop_vinfo);
LOOP_VINFO_NITERS (loop_vinfo) =
build2 (MINUS_EXPR, TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
/* Update the init conditions of the access functions of all data refs. */
vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
/* After peeling we have to reset scalar evolution analyzer. */
scev_reset ();
return;
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition. */
static void
vect_transform_loop (loop_vec_info loop_vinfo,
struct loops *loops ATTRIBUTE_UNUSED)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
int i;
tree ratio = NULL;
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vec_transform_loop>>\n");
/* Peel the loop if there are data refs with unknown alignment.
Only one data ref with unknown store is allowed. */
if (LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo))
vect_do_peeling_for_alignment (loop_vinfo, loops);
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
compile time constant), or it is a constant that doesn't divide by the
vectorization factor, then an epilog loop needs to be created.
We therefore duplicate the loop: the original loop will be vectorized,
and will compute the first (n/VF) iterations. The second copy of the loop
will remain scalar and will compute the remaining (n%VF) iterations.
(VF is the vectorization factor). */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
else
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
loop_split_edge_with (loop_preheader_edge (loop), NULL);
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si);)
{
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info;
bool is_store;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "------>vectorizing statement: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
gcc_assert (stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
bsi_next (&si);
continue;
}
#ifdef ENABLE_CHECKING
/* FORNOW: Verify that all stmts operate on the same number of
units and no inner unrolling is necessary. */
gcc_assert
(GET_MODE_NUNITS (TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info)))
== vectorization_factor);
#endif
/* -------- vectorize statement ------------ */
if (vect_debug_details (NULL))
fprintf (dump_file, "transform statement.");
is_store = vect_transform_stmt (stmt, &si);
if (is_store)
{
/* free the attached stmt_vec_info and remove the stmt. */
stmt_ann_t ann = stmt_ann (stmt);
free (stmt_info);
set_stmt_info (ann, NULL);
bsi_remove (&si);
continue;
}
bsi_next (&si);
} /* stmts in BB */
} /* BBs in loop */
slpeel_make_loop_iterate_ntimes (loop, ratio);
if (vect_debug_details (loop))
fprintf (dump_file,"Success! loop vectorized.");
if (vect_debug_stats (loop))
fprintf (dump_file, "LOOP VECTORIZED.");
}
/* Function vect_is_simple_use.
Input:
LOOP - the loop that is being vectorized.
OPERAND - operand of a stmt in LOOP.
DEF - the defining stmt in case OPERAND is an SSA_NAME.
Returns whether a stmt with OPERAND can be vectorized.
Supportable operands are constants, loop invariants, and operands that are
defined by the current iteration of the loop. Unsupportable operands are
those that are defined by a previous iteration of the loop (as is the case
in reduction/induction computations). */
static bool
vect_is_simple_use (tree operand, struct loop *loop, tree *def)
{
tree def_stmt;
basic_block bb;
if (def)
*def = NULL_TREE;
if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
return true;
if (TREE_CODE (operand) != SSA_NAME)
return false;
def_stmt = SSA_NAME_DEF_STMT (operand);
if (def_stmt == NULL_TREE )
{
if (vect_debug_details (NULL))
fprintf (dump_file, "no def_stmt.");
return false;
}
/* empty stmt is expected only in case of a function argument.
(Otherwise - we expect a phi_node or a modify_expr). */
if (IS_EMPTY_STMT (def_stmt))
{
tree arg = TREE_OPERAND (def_stmt, 0);
if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
return true;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Unexpected empty stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
return false;
}
/* phi_node inside the loop indicates an induction/reduction pattern.
This is not supported yet. */
bb = bb_for_stmt (def_stmt);
if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "reduction/induction - unsupported.");
return false; /* FORNOW: not supported yet. */
}
/* Expecting a modify_expr or a phi_node. */
if (TREE_CODE (def_stmt) == MODIFY_EXPR
|| TREE_CODE (def_stmt) == PHI_NODE)
{
if (def)
*def = def_stmt;
return true;
}
return false;
}
/* Function vect_analyze_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static bool
vect_analyze_operations (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
unsigned int vectorization_factor = 0;
int i;
bool ok;
tree scalar_type;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_operations>>\n");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
unsigned int nunits;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "==> examining statement: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
gcc_assert (stmt_info);
/* skip stmts which do not need to be vectorized.
this is expected to include:
- the COND_EXPR which is the loop exit condition
- any LABEL_EXPRs in the loop
- computations that are used only for array indexing or loop
control */
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "irrelevant.");
continue;
}
if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: vector stmt in loop:");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
if (STMT_VINFO_DATA_REF (stmt_info))
scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
else if (TREE_CODE (stmt) == MODIFY_EXPR)
scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
else
scalar_type = TREE_TYPE (stmt);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "get vectype for scalar type: ");
print_generic_expr (dump_file, scalar_type, TDF_SLIM);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: unsupported data-type ");
print_generic_expr (dump_file, scalar_type, TDF_SLIM);
}
return false;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vectype: ");
print_generic_expr (dump_file, vectype, TDF_SLIM);
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
ok = (vectorizable_operation (stmt, NULL, NULL)
|| vectorizable_assignment (stmt, NULL, NULL)
|| vectorizable_load (stmt, NULL, NULL)
|| vectorizable_store (stmt, NULL, NULL));
if (!ok)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: stmt not supported: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
if (vect_debug_details (NULL))
fprintf (dump_file, "nunits = %d", nunits);
if (vectorization_factor)
{
/* FORNOW: don't allow mixed units.
This restriction will be relaxed in the future. */
if (nunits != vectorization_factor)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: mixed data-types");
return false;
}
}
else
vectorization_factor = nunits;
#ifdef ENABLE_CHECKING
gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type))
* vectorization_factor == UNITS_PER_SIMD_WORD);
#endif
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (vectorization_factor <= 1)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unsupported data-type");
return false;
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && vect_debug_details (NULL))
fprintf (dump_file,
"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: iteration count too small.");
return false;
}
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "epilog loop required.");
if (!vect_can_advance_ivs_p (loop))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: can't create epilog loop 1.");
return false;
}
if (!slpeel_can_duplicate_loop_p (loop, loop->exit_edges[0]))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: can't create epilog loop 2.");
return false;
}
}
return true;
}
/* Function exist_non_indexing_operands_for_use_p
USE is one of the uses attached to STMT. Check if USE is
used in STMT for anything other than indexing an array. */
static bool
exist_non_indexing_operands_for_use_p (tree use, tree stmt)
{
tree operand;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
/* USE corresponds to some operand in STMT. If there is no data
reference in STMT, then any operand that corresponds to USE
is not indexing an array. */
if (!STMT_VINFO_DATA_REF (stmt_info))
return true;
/* STMT has a data_ref. FORNOW this means that its of one of
the following forms:
-1- ARRAY_REF = var
-2- var = ARRAY_REF
(This should have been verified in analyze_data_refs).
'var' in the second case corresponds to a def, not a use,
so USE cannot correspond to any operands that are not used
for array indexing.
Therefore, all we need to check is if STMT falls into the
first case, and whether var corresponds to USE. */
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
return false;
operand = TREE_OPERAND (stmt, 1);
if (TREE_CODE (operand) != SSA_NAME)
return false;
if (operand == use)
return true;
return false;
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution with constant step. */
static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step, bool strict)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition (access_fn));
if (vect_debug_details (NULL))
{
fprintf (dump_file, "step: ");
print_generic_expr (dump_file, step_expr, TDF_SLIM);
fprintf (dump_file, ", init: ");
print_generic_expr (dump_file, init_expr, TDF_SLIM);
}
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "step unknown.");
return false;
}
if (strict)
if (!integer_onep (step_expr))
{
if (vect_debug_details (NULL))
print_generic_expr (dump_file, step_expr, TDF_SLIM);
return false;
}
return true;
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
cycles that they represent do not impede vectorization.
FORNOW: Reduction as in the following loop, is not supported yet:
loop1:
for (i=0; i<N; i++)
sum += a[i];
The cross-iteration cycle corresponding to variable 'sum' will be
considered too complicated and will impede vectorization.
FORNOW: Induction as in the following loop, is not supported yet:
loop2:
for (i=0; i<N; i++)
a[i] = i;
However, the following loop *is* vectorizable:
loop3:
for (i=0; i<N; i++)
a[i] = b[i];
In both loops there exists a def-use cycle for the variable i:
loop: i_2 = PHI (i_0, i_1)
a[i_2] = ...;
i_1 = i_2 + 1;
GOTO loop;
The evolution of the above cycle is considered simple enough,
however, we also check that the cycle does not need to be
vectorized, i.e - we check that the variable that this cycle
defines is only used for array indexing or in stmts that do not
need to be vectorized. This is not the case in loop2, but it
*is* the case in loop3. */
static bool
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
tree phi;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block bb = loop->header;
tree dummy;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_scalar_cycles>>\n");
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree access_fn = NULL;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Analyze phi: ");
print_generic_expr (dump_file, phi, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "virtual phi. skip.");
continue;
}
/* Analyze the evolution function. */
/* FORNOW: The only scalar cross-iteration cycles that we allow are
those of loop induction variables; This property is verified here.
Furthermore, if that induction variable is used in an operation
that needs to be vectorized (i.e, is not solely used to index
arrays and check the exit condition) - we do not support its
vectorization yet. This property is verified in vect_is_simple_use,
during vect_analyze_operations. */
access_fn = /* instantiate_parameters
(loop,*/
analyze_scalar_evolution (loop, PHI_RESULT (phi));
if (!access_fn)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
return false;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of PHI: ");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy,
&dummy, false))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
return false;
}
}
return true;
}
/* Function vect_analyze_data_ref_dependence.
Return TRUE if there (might) exist a dependence between a memory-reference
DRA and a memory-reference DRB. */
static bool
vect_analyze_data_ref_dependence (struct data_reference *dra,
struct data_reference *drb,
struct loop *loop)
{
bool differ_p;
struct data_dependence_relation *ddr;
if (!array_base_name_differ_p (dra, drb, &differ_p))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file,
"not vectorized: can't determine dependence between: ");
print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
fprintf (dump_file, " and ");
print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
}
return true;
}
if (differ_p)
return false;
ddr = initialize_data_dependence_relation (dra, drb);
compute_affine_dependence (ddr);
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
return false;
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file,
"not vectorized: possible dependence between data-refs ");
print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
fprintf (dump_file, " and ");
print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
}
return true;
}
/* Function vect_analyze_data_ref_dependences.
Examine all the data references in the loop, and make sure there do not
exist any data dependences between them.
TODO: dependences which distance is greater than the vectorization factor
can be ignored. */
static bool
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
{
unsigned int i, j;
varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Examine store-store (output) dependences. */
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_dependences>>\n");
if (vect_debug_details (NULL))
fprintf (dump_file, "compare all store-store pairs.");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
{
for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
{
struct data_reference *dra =
VARRAY_GENERIC_PTR (loop_write_refs, i);
struct data_reference *drb =
VARRAY_GENERIC_PTR (loop_write_refs, j);
if (vect_analyze_data_ref_dependence (dra, drb, loop))
return false;
}
}
/* Examine load-store (true/anti) dependences. */
if (vect_debug_details (NULL))
fprintf (dump_file, "compare all load-store pairs.");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
{
for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
{
struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
struct data_reference *drb =
VARRAY_GENERIC_PTR (loop_write_refs, j);
if (vect_analyze_data_ref_dependence (dra, drb, loop))
return false;
}
}
return true;
}
/* Function vect_get_first_index.
REF is a data reference.
If it is an ARRAY_REF: if its lower bound is simple enough,
put it in ARRAY_FIRST_INDEX and return TRUE; otherwise - return FALSE.
If it is not an ARRAY_REF: REF has no "first index";
ARRAY_FIRST_INDEX in zero, and the function returns TRUE. */
static bool
vect_get_first_index (tree ref, tree *array_first_index)
{
tree array_start;
if (TREE_CODE (ref) != ARRAY_REF)
*array_first_index = size_zero_node;
else
{
array_start = array_ref_low_bound (ref);
if (!host_integerp (array_start, 0))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "array min val not simple integer cst.");
print_generic_expr (dump_file, array_start, TDF_DETAILS);
}
return false;
}
*array_first_index = array_start;
}
return true;
}
/* Function vect_compute_array_base_alignment.
A utility function of vect_compute_array_ref_alignment.
Compute the misalignment of ARRAY in bits.
Input:
ARRAY - an array_ref (possibly multidimensional) of type ARRAY_TYPE.
VECTYPE - we are interested in the misalignment modulo the size of vectype.
if NULL: don't compute misalignment, just return the base of ARRAY.
PREV_DIMENSIONS - initialized to one.
MISALIGNMENT - the computed misalignment in bits.
Output:
If VECTYPE is not NULL:
Return NULL_TREE if the misalignment cannot be computed. Otherwise, return
the base of the array, and put the computed misalignment in MISALIGNMENT.
If VECTYPE is NULL:
Return the base of the array.
For a[idx_N]...[idx_2][idx_1][idx_0], the address of
a[idx_N]...[idx_2][idx_1] is
{&a + idx_1 * dim_0 + idx_2 * dim_0 * dim_1 + ...
... + idx_N * dim_0 * ... * dim_N-1}.
(The misalignment of &a is not checked here).
Note, that every term contains dim_0, therefore, if dim_0 is a
multiple of NUNITS, the whole sum is a multiple of NUNITS.
Otherwise, if idx_1 is constant, and dim_1 is a multiple of
NUINTS, we can say that the misalignment of the sum is equal to
the misalignment of {idx_1 * dim_0}. If idx_1 is not constant,
we can't determine this array misalignment, and we return
false.
We proceed recursively in this manner, accumulating total misalignment
and the multiplication of previous dimensions for correct misalignment
calculation. */
static tree
vect_compute_array_base_alignment (tree array,
tree vectype,
tree *prev_dimensions,
tree *misalignment)
{
tree index;
tree domain;
tree dimension_size;
tree mis;
tree bits_per_vectype;
tree bits_per_vectype_unit;
/* The 'stop condition' of the recursion. */
if (TREE_CODE (array) != ARRAY_REF)
return array;
if (!vectype)
/* Just get the base decl. */
return vect_compute_array_base_alignment
(TREE_OPERAND (array, 0), NULL, NULL, NULL);
if (!host_integerp (*misalignment, 1) || TREE_OVERFLOW (*misalignment) ||
!host_integerp (*prev_dimensions, 1) || TREE_OVERFLOW (*prev_dimensions))
return NULL_TREE;
domain = TYPE_DOMAIN (TREE_TYPE (array));
dimension_size =
int_const_binop (PLUS_EXPR,
int_const_binop (MINUS_EXPR, TYPE_MAX_VALUE (domain),
TYPE_MIN_VALUE (domain), 1),
size_one_node, 1);
/* Check if the dimension size is a multiple of NUNITS, the remaining sum
is a multiple of NUNITS:
dimension_size % GET_MODE_NUNITS (TYPE_MODE (vectype)) == 0 ?
*/
mis = int_const_binop (TRUNC_MOD_EXPR, dimension_size,
build_int_cst (NULL_TREE, GET_MODE_NUNITS (TYPE_MODE (vectype))), 1);
if (integer_zerop (mis))
/* This array is aligned. Continue just in order to get the base decl. */
return vect_compute_array_base_alignment
(TREE_OPERAND (array, 0), NULL, NULL, NULL);
index = TREE_OPERAND (array, 1);
if (!host_integerp (index, 1))
/* The current index is not constant. */
return NULL_TREE;
index = int_const_binop (MINUS_EXPR, index, TYPE_MIN_VALUE (domain), 0);
bits_per_vectype = fold_convert (unsigned_type_node,
build_int_cst (NULL_TREE, BITS_PER_UNIT *
GET_MODE_SIZE (TYPE_MODE (vectype))));
bits_per_vectype_unit = fold_convert (unsigned_type_node,
build_int_cst (NULL_TREE, BITS_PER_UNIT *
GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (vectype)))));
/* Add {idx_i * dim_i-1 * ... * dim_0 } to the misalignment computed
earlier:
*misalignment =
(*misalignment + index_val * dimension_size * *prev_dimensions)
% vectype_nunits;
*/
mis = int_const_binop (MULT_EXPR, index, dimension_size, 1);
mis = int_const_binop (MULT_EXPR, mis, *prev_dimensions, 1);
mis = int_const_binop (MULT_EXPR, mis, bits_per_vectype_unit, 1);
mis = int_const_binop (PLUS_EXPR, *misalignment, mis, 1);
*misalignment = int_const_binop (TRUNC_MOD_EXPR, mis, bits_per_vectype, 1);
*prev_dimensions = int_const_binop (MULT_EXPR,
*prev_dimensions, dimension_size, 1);
return vect_compute_array_base_alignment (TREE_OPERAND (array, 0), vectype,
prev_dimensions,
misalignment);
}
/* Function vect_compute_data_ref_alignment
Compute the misalignment of the data reference DR.
Output:
1. If during the misalignment computation it is found that the data reference
cannot be vectorized then false is returned.
2. DR_MISALIGNMENT (DR) is defined.
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static bool
vect_compute_data_ref_alignment (struct data_reference *dr,
loop_vec_info loop_vinfo)
{
tree stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree ref = DR_REF (dr);
tree vectype;
tree scalar_type;
tree offset = size_zero_node;
tree base, bit_offset, alignment;
tree unit_bits = fold_convert (unsigned_type_node,
build_int_cst (NULL_TREE, BITS_PER_UNIT));
tree dr_base;
bool base_aligned_p;
if (vect_debug_details (NULL))
fprintf (dump_file, "vect_compute_data_ref_alignment:");
/* Initialize misalignment to unknown. */
DR_MISALIGNMENT (dr) = -1;
scalar_type = TREE_TYPE (ref);
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "no vectype for stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
fprintf (dump_file, " scalar_type: ");
print_generic_expr (dump_file, scalar_type, TDF_DETAILS);
}
/* It is not possible to vectorize this data reference. */
return false;
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
gcc_assert (TREE_CODE (ref) == ARRAY_REF || TREE_CODE (ref) == INDIRECT_REF);
if (TREE_CODE (ref) == ARRAY_REF)
dr_base = ref;
else
dr_base = STMT_VINFO_VECT_DR_BASE (stmt_info);
base = vect_get_base_and_bit_offset (dr, dr_base, vectype,
loop_vinfo, &bit_offset, &base_aligned_p);
if (!base)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Unknown alignment for access: ");
print_generic_expr (dump_file,
STMT_VINFO_VECT_DR_BASE (stmt_info), TDF_SLIM);
}
return true;
}
if (!base_aligned_p)
{
if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "can't force alignment of ref: ");
print_generic_expr (dump_file, ref, TDF_SLIM);
}
return true;
}
/* Force the alignment of the decl.
NOTE: This is the only change to the code we make during
the analysis phase, before deciding to vectorize the loop. */
if (vect_debug_details (NULL))
fprintf (dump_file, "force alignment");
DECL_ALIGN (base) = TYPE_ALIGN (vectype);
DECL_USER_ALIGN (base) = 1;
}
/* At this point we assume that the base is aligned, and the offset from it
(including index, if relevant) has been computed and is in BIT_OFFSET. */
gcc_assert (base_aligned_p
|| (TREE_CODE (base) == VAR_DECL
&& DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
/* Convert into bytes. */
offset = int_const_binop (TRUNC_DIV_EXPR, bit_offset, unit_bits, 1);
/* Check that there is no remainder in bits. */
bit_offset = int_const_binop (TRUNC_MOD_EXPR, bit_offset, unit_bits, 1);
if (!integer_zerop (bit_offset))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "bit offset alignment: ");
print_generic_expr (dump_file, bit_offset, TDF_SLIM);
}
return false;
}
/* Alignment required, in bytes: */
alignment = fold_convert (unsigned_type_node,
build_int_cst (NULL_TREE, TYPE_ALIGN (vectype)/BITS_PER_UNIT));
/* Modulo alignment. */
offset = int_const_binop (TRUNC_MOD_EXPR, offset, alignment, 0);
if (!host_integerp (offset, 1) || TREE_OVERFLOW (offset))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "unexpected misalign value");
return false;
}
DR_MISALIGNMENT (dr) = tree_low_cst (offset, 1);
if (vect_debug_details (NULL))
fprintf (dump_file, "misalign = %d", DR_MISALIGNMENT (dr));
return true;
}
/* Function vect_compute_array_ref_alignment
Compute the alignment of an array-ref.
The alignment we compute here is relative to
TYPE_ALIGN(VECTYPE) boundary.
Output:
OFFSET - the alignment in bits
Return value - the base of the array-ref. E.g,
if the array-ref is a.b[k].c[i][j] the returned
base is a.b[k].c
*/
static tree
vect_compute_array_ref_alignment (struct data_reference *dr,
loop_vec_info loop_vinfo,
tree vectype,
tree *offset)
{
tree array_first_index = size_zero_node;
tree init;
tree ref = DR_REF (dr);
tree scalar_type = TREE_TYPE (ref);
tree oprnd0 = TREE_OPERAND (ref, 0);
tree dims = size_one_node;
tree misalign = size_zero_node;
tree next_ref, this_offset = size_zero_node;
tree nunits;
tree nbits;
if (TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
/* The reference is an array without its last index. */
next_ref = vect_compute_array_base_alignment (ref, vectype, &dims,
&misalign);
else
next_ref = vect_compute_array_base_alignment (oprnd0, vectype, &dims,
&misalign);
if (!vectype)
/* Alignment is not requested. Just return the base. */
return next_ref;
/* Compute alignment. */
if (!host_integerp (misalign, 1) || TREE_OVERFLOW (misalign) || !next_ref)
return NULL_TREE;
this_offset = misalign;
/* Check the first index accessed. */
if (!vect_get_first_index (ref, &array_first_index))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "no first_index for array.");
return NULL_TREE;
}
/* Check the index of the array_ref. */
init = initial_condition_in_loop_num (DR_ACCESS_FN (dr, 0),
LOOP_VINFO_LOOP (loop_vinfo)->num);
/* FORNOW: In order to simplify the handling of alignment, we make sure
that the first location at which the array is accessed ('init') is on an
'NUNITS' boundary, since we are assuming here that 'array base' is aligned.
This is too conservative, since we require that
both {'array_base' is a multiple of NUNITS} && {'init' is a multiple of
NUNITS}, instead of just {('array_base' + 'init') is a multiple of NUNITS}.
This should be relaxed in the future. */
if (!init || !host_integerp (init, 0))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "non constant init. ");
return NULL_TREE;
}
/* bytes per scalar element: */
nunits = fold_convert (unsigned_type_node,
build_int_cst (NULL_TREE, GET_MODE_SIZE (TYPE_MODE (scalar_type))));
nbits = int_const_binop (MULT_EXPR, nunits,
build_int_cst (NULL_TREE, BITS_PER_UNIT), 1);
/* misalign = offset + (init-array_first_index)*nunits*bits_in_byte */
misalign = int_const_binop (MINUS_EXPR, init, array_first_index, 0);
misalign = int_const_binop (MULT_EXPR, misalign, nbits, 0);
misalign = int_const_binop (PLUS_EXPR, misalign, this_offset, 0);
/* TODO: allow negative misalign values. */
if (!host_integerp (misalign, 1) || TREE_OVERFLOW (misalign))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "unexpected misalign value");
return NULL_TREE;
}
*offset = misalign;
return next_ref;
}
/* Function vect_compute_data_refs_alignment
Compute the misalignment of data references in the loop.
This pass may take place at function granularity instead of at loop
granularity.
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static bool
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (!vect_compute_data_ref_alignment (dr, loop_vinfo))
return false;
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
if (!vect_compute_data_ref_alignment (dr, loop_vinfo))
return false;
}
return true;
}
/* Function vect_enhance_data_refs_alignment
This pass will use loop versioning and loop peeling in order to enhance
the alignment of data references in the loop.
FOR NOW: we assume that whatever versioning/peeling takes place, only the
original loop is to be vectorized; Any other loops that are created by
the transformations performed in this pass - are not supposed to be
vectorized. This restriction will be relaxed. */
static void
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned int i;
/*
This pass will require a cost model to guide it whether to apply peeling
or versioning or a combination of the two. For example, the scheme that
intel uses when given a loop with several memory accesses, is as follows:
choose one memory access ('p') which alignment you want to force by doing
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
other accesses are not necessarily aligned, or (2) use loop versioning to
generate one loop in which all accesses are aligned, and another loop in
which only 'p' is necessarily aligned.
("Automatic Intra-Register Vectorization for the Intel Architecture",
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
Devising a cost model is the most critical aspect of this work. It will
guide us on which access to peel for, whether to use loop versioning, how
many versions to create, etc. The cost model will probably consist of
generic considerations as well as target specific considerations (on
powerpc for example, misaligned stores are more painful than misaligned
loads).
Here is the general steps involved in alignment enhancements:
-- original loop, before alignment analysis:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = unknown
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- After vect_compute_data_refs_alignment:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 1: we do loop versioning:
if (p is aligned) {
for (i=0; i<N; i++){ # loop 1A
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i=0; i<N; i++){ # loop 1B
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
-- Possibility 2: we do loop peeling:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
for (i = 3; i < N; i++){ # loop 2A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 3: combination of loop peeling and versioning:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
if (p is aligned) {
for (i = 3; i<N; i++){ # loop 3A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i = 3; i<N; i++){ # loop 3B
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
These loops are later passed to loop_transform to be vectorized. The
vectorizer will use the alignment information to guide the transformation
(whether to generate regular loads/stores, or with special handling for
misalignment).
*/
/* (1) Peeling to force alignment. */
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
Considerations:
+ How many accesses will become aligned due to the peeling
- How many accesses will become unaligned due to the peeling,
and the cost of misaligned accesses.
- The cost of peeling (the extra runtime checks, the increase
in code size).
The scheme we use FORNOW: peel to force the alignment of the first
misaligned store in the loop.
Rationale: misaligned stores are not yet supported.
TODO: Use a better cost model. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (!aligned_access_p (dr))
{
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr;
LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo) = true;
break;
}
}
if (!LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
{
if (vect_debug_details (loop))
fprintf (dump_file, "Peeling for alignment will not be applied.");
return;
}
else
if (vect_debug_details (loop))
fprintf (dump_file, "Peeling for alignment will be applied.");
/* (1.2) Update the alignment info according to the peeling factor.
If the misalignment of the DR we peel for is M, then the
peeling factor is VF - M, and the misalignment of each access DR_i
in the loop is DR_MISALIGNMENT (DR_i) + VF - M.
If the misalignment of the DR we peel for is unknown, then the
misalignment of each access DR_i in the loop is also unknown.
FORNOW: set the misalignment of the accesses to unknown even
if the peeling factor is known at compile time.
TODO: - if the peeling factor is known at compile time, use that
when updating the misalignment info of the loop DRs.
- consider accesses that are known to have the same
alignment, even if that alignment is unknown. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (dr == LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
DR_MISALIGNMENT (dr) = 0;
else
DR_MISALIGNMENT (dr) = -1;
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
if (dr == LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
DR_MISALIGNMENT (dr) = 0;
else
DR_MISALIGNMENT (dr) = -1;
}
}
/* Function vect_analyze_data_refs_alignment
Analyze the alignment of the data-references in the loop.
FOR NOW: Until support for misliagned accesses is in place, only if all
accesses are aligned can the loop be vectorized. This restriction will be
relaxed. */
static bool
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
enum dr_alignment_support supportable_dr_alignment;
unsigned int i;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_data_refs_alignment>>\n");
/* This pass may take place at function granularity instead of at loop
granularity. */
if (!vect_compute_data_refs_alignment (loop_vinfo))
{
if (vect_debug_details (loop) || vect_debug_stats (loop))
fprintf (dump_file,
"not vectorized: can't calculate alignment for data ref.");
return false;
}
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
vect_enhance_data_refs_alignment (loop_vinfo);
/* Finally, check that all the data references in the loop can be
handled with respect to their alignment. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
supportable_dr_alignment = vect_supportable_dr_alignment (dr);
if (!supportable_dr_alignment)
{
if (vect_debug_details (loop) || vect_debug_stats (loop))
fprintf (dump_file, "not vectorized: unsupported unaligned load.");
return false;
}
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
supportable_dr_alignment = vect_supportable_dr_alignment (dr);
if (!supportable_dr_alignment)
{
if (vect_debug_details (loop) || vect_debug_stats (loop))
fprintf (dump_file, "not vectorized: unsupported unaligned store.");
return false;
}
}
return true;
}
/* Function vect_analyze_data_ref_access.
Analyze the access pattern of the data-reference DR. For now, a data access
has to consecutive and aligned to be considered vectorizable. */
static bool
vect_analyze_data_ref_access (struct data_reference *dr)
{
varray_type access_fns = DR_ACCESS_FNS (dr);
tree access_fn;
tree init, step;
unsigned int dimensions, i;
/* Check that in case of multidimensional array ref A[i1][i2]..[iN],
i1, i2, ..., iN-1 are loop invariant (to make sure that the memory
access is contiguous). */
dimensions = VARRAY_ACTIVE_SIZE (access_fns);
for (i = 1; i < dimensions; i++) /* Not including the last dimension. */
{
access_fn = DR_ACCESS_FN (dr, i);
if (evolution_part_in_loop_num (access_fn,
loop_containing_stmt (DR_STMT (dr))->num))
{
/* Evolution part is not NULL in this loop (it is neither constant
nor invariant). */
if (vect_debug_details (NULL))
{
fprintf (dump_file,
"not vectorized: complicated multidim. array access.");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
return false;
}
}
access_fn = DR_ACCESS_FN (dr, 0); /* The last dimension access function. */
if (!evolution_function_is_constant_p (access_fn)
&& !vect_is_simple_iv_evolution (loop_containing_stmt (DR_STMT (dr))->num,
access_fn, &init, &step, true))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "not vectorized: complicated access function.");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
return false;
}
return true;
}
/* Function vect_analyze_data_ref_accesses.
Analyze the access pattern of all the data references in the loop.
FORNOW: the only access pattern that is considered vectorizable is a
simple step 1 (consecutive) access.
FORNOW: handle only arrays and pointer accesses. */
static bool
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
{
unsigned int i;
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_data_ref_accesses>>\n");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
bool ok = vect_analyze_data_ref_access (dr);
if (!ok)
{
if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
|| vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
fprintf (dump_file, "not vectorized: complicated access pattern.");
return false;
}
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
bool ok = vect_analyze_data_ref_access (dr);
if (!ok)
{
if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
|| vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
fprintf (dump_file, "not vectorized: complicated access pattern.");
return false;
}
}
return true;
}
/* Function vect_analyze_pointer_ref_access.
Input:
STMT - a stmt that contains a data-ref
MEMREF - a data-ref in STMT, which is an INDIRECT_REF.
If the data-ref access is vectorizable, return a data_reference structure
that represents it (DR). Otherwise - return NULL. */
static struct data_reference *
vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
tree access_fn = analyze_scalar_evolution (loop, TREE_OPERAND (memref, 0));
tree init, step;
int step_val;
tree reftype, innertype;
enum machine_mode innermode;
tree indx_access_fn;
int loopnum = loop->num;
struct data_reference *dr;
if (!access_fn)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: complicated pointer access.");
return NULL;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of ptr: ");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step, false))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: pointer access is not simple.");
return NULL;
}
STRIP_NOPS (init);
if (!host_integerp (step,0))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file,
"not vectorized: non constant step for pointer access.");
return NULL;
}
step_val = TREE_INT_CST_LOW (step);
reftype = TREE_TYPE (TREE_OPERAND (memref, 0));
if (TREE_CODE (reftype) != POINTER_TYPE)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpected pointer access form.");
return NULL;
}
reftype = TREE_TYPE (init);
if (TREE_CODE (reftype) != POINTER_TYPE)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpected pointer access form.");
return NULL;
}
innertype = TREE_TYPE (reftype);
innermode = TYPE_MODE (innertype);
if (GET_MODE_SIZE (innermode) != step_val)
{
/* FORNOW: support only consecutive access */
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: non consecutive access.");
return NULL;
}
indx_access_fn =
build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of ptr indx: ");
print_generic_expr (dump_file, indx_access_fn, TDF_SLIM);
}
dr = init_data_ref (stmt, memref, init, indx_access_fn, is_read);
return dr;
}
/* Function vect_get_symbl_and_dr.
The function returns SYMBL - the relevant variable for
memory tag (for aliasing purposes).
Also data reference structure DR is created.
Input:
MEMREF - data reference in STMT
IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
Output:
DR - data_reference struct for MEMREF
return value - the relevant variable for memory tag (for aliasing purposes).
*/
static tree
vect_get_symbl_and_dr (tree memref, tree stmt, bool is_read,
loop_vec_info loop_vinfo, struct data_reference **dr)
{
tree symbl, oprnd0, oprnd1;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree offset;
tree array_base, base;
struct data_reference *new_dr;
bool base_aligned_p;
*dr = NULL;
switch (TREE_CODE (memref))
{
case INDIRECT_REF:
new_dr = vect_analyze_pointer_ref_access (memref, stmt, is_read);
if (! new_dr)
return NULL_TREE;
*dr = new_dr;
symbl = DR_BASE_NAME (new_dr);
STMT_VINFO_VECT_DR_BASE (stmt_info) = symbl;
switch (TREE_CODE (symbl))
{
case PLUS_EXPR:
case MINUS_EXPR:
oprnd0 = TREE_OPERAND (symbl, 0);
oprnd1 = TREE_OPERAND (symbl, 1);
STRIP_NOPS(oprnd1);
/* Only {address_base + offset} expressions are supported,
where address_base can be POINTER_TYPE or ARRAY_TYPE and
offset can be anything but POINTER_TYPE or ARRAY_TYPE.
TODO: swap operands if {offset + address_base}. */
if ((TREE_CODE (TREE_TYPE (oprnd1)) == POINTER_TYPE
&& TREE_CODE (oprnd1) != INTEGER_CST)
|| TREE_CODE (TREE_TYPE (oprnd1)) == ARRAY_TYPE)
return NULL_TREE;
if (TREE_CODE (TREE_TYPE (oprnd0)) == POINTER_TYPE)
symbl = oprnd0;
else
symbl = vect_get_symbl_and_dr (oprnd0, stmt, is_read,
loop_vinfo, &new_dr);
case SSA_NAME:
case ADDR_EXPR:
/* symbl remains unchanged. */
break;
default:
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unhandled data ref: ");
print_generic_expr (dump_file, memref, TDF_SLIM);
fprintf (dump_file, " (symbl ");
print_generic_expr (dump_file, symbl, TDF_SLIM);
fprintf (dump_file, ") in stmt ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return NULL_TREE;
}
break;
case ARRAY_REF:
offset = size_zero_node;
/* Store the array base in the stmt info.
For one dimensional array ref a[i], the base is a,
for multidimensional a[i1][i2]..[iN], the base is
a[i1][i2]..[iN-1]. */
array_base = TREE_OPERAND (memref, 0);
STMT_VINFO_VECT_DR_BASE (stmt_info) = array_base;
new_dr = analyze_array (stmt, memref, is_read);
*dr = new_dr;
/* Find the relevant symbol for aliasing purposes. */
base = DR_BASE_NAME (new_dr);
switch (TREE_CODE (base))
{
case VAR_DECL:
symbl = base;
break;
case INDIRECT_REF:
symbl = TREE_OPERAND (base, 0);
break;
case COMPONENT_REF:
/* Could have recorded more accurate information -
i.e, the actual FIELD_DECL that is being referenced -
but later passes expect VAR_DECL as the nmt. */
symbl = vect_get_base_and_bit_offset (new_dr, base, NULL_TREE,
loop_vinfo, &offset, &base_aligned_p);
if (symbl)
break;
/* fall through */
default:
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unhandled struct/class field access ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return NULL_TREE;
}
break;
default:
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unhandled data ref: ");
print_generic_expr (dump_file, memref, TDF_SLIM);
fprintf (dump_file, " in stmt ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return NULL_TREE;
}
return symbl;
}
/* Function vect_analyze_data_refs.
Find all the data references in the loop.
FORNOW: Handle aligned INDIRECT_REFs and ARRAY_REFs
which base is really an array (not a pointer) and which alignment
can be forced. This restriction will be relaxed. */
static bool
vect_analyze_data_refs (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
int j;
struct data_reference *dr;
tree tag;
tree address_base;
bool base_aligned_p;
tree offset;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_data_refs>>\n");
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
bool is_read = false;
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
vuse_optype vuses = STMT_VUSE_OPS (stmt);
varray_type *datarefs = NULL;
int nvuses, nv_may_defs, nv_must_defs;
tree memref = NULL;
tree symbl;
/* Assumption: there exists a data-ref in stmt, if and only if
it has vuses/vdefs. */
if (!vuses && !v_may_defs && !v_must_defs)
continue;
nvuses = NUM_VUSES (vuses);
nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
if (nvuses && (nv_may_defs || nv_must_defs))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unexpected vdefs and vuses in stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
if (TREE_CODE (stmt) != MODIFY_EXPR)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unexpected vops in stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
if (vuses)
{
memref = TREE_OPERAND (stmt, 1);
datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
is_read = true;
}
else /* vdefs */
{
memref = TREE_OPERAND (stmt, 0);
datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
is_read = false;
}
/* Analyze MEMREF. If it is of a supported form, build data_reference
struct for it (DR) and find the relevant symbol for aliasing
purposes. */
symbl = vect_get_symbl_and_dr (memref, stmt, is_read, loop_vinfo,
&dr);
if (!symbl)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: unhandled data ref: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
/* Find and record the memtag assigned to this data-ref. */
switch (TREE_CODE (symbl))
{
case VAR_DECL:
STMT_VINFO_MEMTAG (stmt_info) = symbl;
break;
case SSA_NAME:
symbl = SSA_NAME_VAR (symbl);
tag = get_var_ann (symbl)->type_mem_tag;
if (!tag)
{
tree ptr = TREE_OPERAND (memref, 0);
if (TREE_CODE (ptr) == SSA_NAME)
tag = get_var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
}
if (!tag)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: no memtag for ref.");
return false;
}
STMT_VINFO_MEMTAG (stmt_info) = tag;
break;
case ADDR_EXPR:
address_base = TREE_OPERAND (symbl, 0);
switch (TREE_CODE (address_base))
{
case ARRAY_REF:
{
struct data_reference *tmp_dr;
tmp_dr = analyze_array (stmt, TREE_OPERAND (symbl, 0),
DR_IS_READ (dr));
tag = vect_get_base_and_bit_offset
(tmp_dr, DR_BASE_NAME (tmp_dr),
NULL_TREE, loop_vinfo, &offset, &base_aligned_p);
if (!tag)
{
if (vect_debug_stats (loop)
|| vect_debug_details (loop))
fprintf (dump_file,
"not vectorized: no memtag for ref.");
return false;
}
STMT_VINFO_MEMTAG (stmt_info) = tag;
}
break;
case VAR_DECL:
STMT_VINFO_MEMTAG (stmt_info) = address_base;
break;
default:
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file,
"not vectorized: unhandled address expr: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
break;
default:
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: unsupported data-ref: ");
print_generic_expr (dump_file, memref, TDF_SLIM);
}
return false;
}
VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
STMT_VINFO_DATA_REF (stmt_info) = dr;
}
}
return true;
}
/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
/* Function vect_mark_relevant.
Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
static void
vect_mark_relevant (varray_type worklist, tree stmt)
{
stmt_vec_info stmt_info;
if (vect_debug_details (NULL))
fprintf (dump_file, "mark relevant.");
if (TREE_CODE (stmt) == PHI_NODE)
{
VARRAY_PUSH_TREE (worklist, stmt);
return;
}
stmt_info = vinfo_for_stmt (stmt);
if (!stmt_info)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "mark relevant: no stmt info!!.");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return;
}
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "already marked relevant.");
return;
}
STMT_VINFO_RELEVANT_P (stmt_info) = 1;
VARRAY_PUSH_TREE (worklist, stmt);
}
/* Function vect_stmt_relevant_p.
Return true if STMT in loop that is represented by LOOP_VINFO is
"relevant for vectorization".
A stmt is considered "relevant for vectorization" if:
- it has uses outside the loop.
- it has vdefs (it alters memory).
- control stmts in the loop (except for the exit condition).
CHECKME: what other side effects would the vectorizer allow? */
static bool
vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
{
v_may_def_optype v_may_defs;
v_must_def_optype v_must_defs;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
dataflow_t df;
int num_uses;
/* cond stmt other than loop exit cond. */
if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
return true;
/* changing memory. */
v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
if (v_may_defs || v_must_defs)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "vec_stmt_relevant_p: stmt has vdefs.");
return true;
}
/* uses outside the loop. */
df = get_immediate_uses (stmt);
num_uses = num_immediate_uses (df);
for (i = 0; i < num_uses; i++)
{
tree use = immediate_use (df, i);
basic_block bb = bb_for_stmt (use);
if (!flow_bb_inside_loop_p (loop, bb))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "vec_stmt_relevant_p: used out of loop.");
return true;
}
}
return false;
}
/* Function vect_mark_stmts_to_be_vectorized.
Not all stmts in the loop need to be vectorized. For example:
for i...
for j...
1. T0 = i + j
2. T1 = a[T0]
3. j = j + 1
Stmt 1 and 3 do not need to be vectorized, because loop control and
addressing of vectorized data-refs are handled differently.
This pass detects such stmts. */
static bool
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
{
varray_type worklist;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
block_stmt_iterator si;
tree stmt;
stmt_ann_t ann;
unsigned int i;
int j;
use_optype use_ops;
stmt_vec_info stmt_info;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_mark_stmts_to_be_vectorized>>\n");
VARRAY_TREE_INIT (worklist, 64, "work list");
/* 1. Init worklist. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
stmt = bsi_stmt (si);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "init: stmt relevant? ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
STMT_VINFO_RELEVANT_P (stmt_info) = 0;
if (vect_stmt_relevant_p (stmt, loop_vinfo))
vect_mark_relevant (worklist, stmt);
}
}
/* 2. Process_worklist */
while (VARRAY_ACTIVE_SIZE (worklist) > 0)
{
stmt = VARRAY_TOP_TREE (worklist);
VARRAY_POP (worklist);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "worklist: examine stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
/* Examine the USES in this statement. Mark all the statements which
feed this statement's uses as "relevant", unless the USE is used as
an array index. */
if (TREE_CODE (stmt) == PHI_NODE)
{
/* follow the def-use chain inside the loop. */
for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
{
tree arg = PHI_ARG_DEF (stmt, j);
tree def_stmt = NULL_TREE;
basic_block bb;
if (!vect_is_simple_use (arg, loop, &def_stmt))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "worklist: unsupported use.");
varray_clear (worklist);
return false;
}
if (!def_stmt)
continue;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "worklist: def_stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
bb = bb_for_stmt (def_stmt);
if (flow_bb_inside_loop_p (loop, bb))
vect_mark_relevant (worklist, def_stmt);
}
}
ann = stmt_ann (stmt);
use_ops = USE_OPS (ann);
for (i = 0; i < NUM_USES (use_ops); i++)
{
tree use = USE_OP (use_ops, i);
/* We are only interested in uses that need to be vectorized. Uses
that are used for address computation are not considered relevant.
*/
if (exist_non_indexing_operands_for_use_p (use, stmt))
{
tree def_stmt = NULL_TREE;
basic_block bb;
if (!vect_is_simple_use (use, loop, &def_stmt))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "worklist: unsupported use.");
varray_clear (worklist);
return false;
}
if (!def_stmt)
continue;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "worklist: examine use %d: ", i);
print_generic_expr (dump_file, use, TDF_SLIM);
}
bb = bb_for_stmt (def_stmt);
if (flow_bb_inside_loop_p (loop, bb))
vect_mark_relevant (worklist, def_stmt);
}
}
} /* while worklist */
varray_clear (worklist);
return true;
}
/* Function vect_can_advance_ivs_p
In case the number of iterations that LOOP iterates in unknown at compile
time, an epilog loop will be generated, and the loop induction variables
(IVs) will be "advanced" to the value they are supposed to take just before
the epilog loop. Here we check that the access function of the loop IVs
and the expression that represents the loop bound are simple enough.
These restrictions will be relaxed in the future. */
static bool
vect_can_advance_ivs_p (struct loop *loop)
{
basic_block bb = loop->header;
tree phi;
/* Analyze phi functions of the loop header. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree access_fn = NULL;
tree evolution_part;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Analyze phi: ");
print_generic_expr (dump_file, phi, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "virtual phi. skip.");
continue;
}
/* Analyze the evolution function. */
access_fn = instantiate_parameters
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
if (!access_fn)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "No Access function.");
return false;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of PHI: ");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
if (evolution_part == NULL_TREE)
return false;
/* FORNOW: We do not transform initial conditions of IVs
which evolution functions are a polynomial of degree >= 2. */
if (tree_is_chrec (evolution_part))
return false;
}
return true;
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed.
If an expression that represents the number of iterations
can be constructed, place it in NUMBER_OF_ITERATIONS.
Return the loop exit condition. */
static tree
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
{
tree niters;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<get_loop_niters>>\n");
niters = number_of_iterations_in_loop (loop);
if (niters != NULL_TREE
&& niters != chrec_dont_know)
{
*number_of_iterations = niters;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "==> get_loop_niters:" );
print_generic_expr (dump_file, *number_of_iterations, TDF_SLIM);
}
}
return get_loop_exit_condition (loop);
}
/* Function vect_analyze_loop_form.
Verify the following restrictions (some may be relaxed in the future):
- it's an inner-most loop
- number of BBs = 2 (which are the loop header and the latch)
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough, and the number of iterations
can be analyzed (a countable loop). */
static loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
loop_vec_info loop_vinfo;
tree loop_cond;
tree number_of_iterations = NULL;
bool rescan = false;
if (vect_debug_details (loop))
fprintf (dump_file, "\n<<vect_analyze_loop_form>>\n");
if (loop->inner
|| !loop->single_exit
|| loop->num_nodes != 2
|| EDGE_COUNT (loop->header->preds) != 2
|| loop->num_entries != 1)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: bad loop form. ");
if (loop->inner)
fprintf (dump_file, "nested loop.");
else if (!loop->single_exit)
fprintf (dump_file, "multiple exits.");
else if (loop->num_nodes != 2)
fprintf (dump_file, "too many BBs in loop.");
else if (EDGE_COUNT (loop->header->preds) != 2)
fprintf (dump_file, "too many incoming edges.");
else if (loop->num_entries != 1)
fprintf (dump_file, "too many entries.");
}
return NULL;
}
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpectd loop form.");
return NULL;
}
/* Make sure we have a preheader basic block. */
if (!loop->pre_header)
{
rescan = true;
loop_split_edge_with (loop_preheader_edge (loop), NULL);
}
/* Make sure there exists a single-predecessor exit bb: */
if (EDGE_COUNT (loop->exit_edges[0]->dest->preds) != 1)
{
rescan = true;
loop_split_edge_with (loop->exit_edges[0], NULL);
}
if (rescan)
{
flow_loop_scan (loop, LOOP_ALL);
/* Flow loop scan does not update loop->single_exit field. */
loop->single_exit = loop->exit_edges[0];
}
if (empty_block_p (loop->header))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: empty loop.");
return NULL;
}
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
if (!loop_cond)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: complicated exit condition.");
return NULL;
}
if (!number_of_iterations)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file,
"not vectorized: number of iterations cannot be computed.");
return NULL;
}
if (chrec_contains_undetermined (number_of_iterations))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "Infinite number of iterations.");
return false;
}
loop_vinfo = new_loop_vec_info (loop);
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
if (vect_debug_details (loop))
{
fprintf (dump_file, "loop bound unknown.\n");
fprintf (dump_file, "Symbolic number of iterations is ");
print_generic_expr (dump_file, number_of_iterations, TDF_DETAILS);
}
}
else
if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: number of iterations = 0.");
return NULL;
}
LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
return loop_vinfo;
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
static loop_vec_info
vect_analyze_loop (struct loop *loop)
{
bool ok;
loop_vec_info loop_vinfo;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<<<<<< analyze_loop_nest >>>>>>>\n");
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad loop form.");
return NULL;
}
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop.
FORNOW: Handle only simple, array references, which
alignment can be forced, and aligned pointer-references. */
ok = vect_analyze_data_refs (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data references.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "unexpected pattern.");
if (vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpected pattern.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Check that all cross-iteration scalar data-flow cycles are OK.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
ok = vect_analyze_scalar_cycles (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad scalar cycle.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze data dependences between the data-refs in the loop.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data dependence.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data access.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze the alignment of the data-refs in the loop.
FORNOW: Only aligned accesses are handled. */
ok = vect_analyze_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data alignment.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Scan all the operations in the loop and make sure they are
vectorizable. */
ok = vect_analyze_operations (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad operation or unsupported loop bound.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return loop_vinfo;
}
/* Function need_imm_uses_for.
Return whether we ought to include information for 'var'
when calculating immediate uses. For this pass we only want use
information for non-virtual variables. */
static bool
need_imm_uses_for (tree var)
{
return is_gimple_reg (var);
}
/* Function vectorize_loops.
Entry Point to loop vectorization phase. */
void
vectorize_loops (struct loops *loops)
{
unsigned int i, loops_num;
unsigned int num_vectorized_loops = 0;
/* Does the target support SIMD? */
/* FORNOW: until more sophisticated machine modelling is in place. */
if (!UNITS_PER_SIMD_WORD)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "vectorizer: target vector size is not defined.");
return;
}
#ifdef ENABLE_CHECKING
verify_loop_closed_ssa ();
#endif
compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);
/* ----------- Analyze loops. ----------- */
/* If some loop was duplicated, it gets bigger number
than all previously defined loops. This fact allows us to run
only over initial loops skipping newly generated ones. */
loops_num = loops->num;
for (i = 1; i < loops_num; i++)
{
loop_vec_info loop_vinfo;
struct loop *loop = loops->parray[i];
if (!loop)
continue;
loop_vinfo = vect_analyze_loop (loop);
loop->aux = loop_vinfo;
if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
continue;
vect_transform_loop (loop_vinfo, loops);
num_vectorized_loops++;
}
if (vect_debug_stats (NULL) || vect_debug_details (NULL))
fprintf (dump_file, "\nvectorized %u loops in function.\n",
num_vectorized_loops);
/* ----------- Finalize. ----------- */
free_df ();
for (i = 1; i < loops_num; i++)
{
struct loop *loop = loops->parray[i];
loop_vec_info loop_vinfo;
if (!loop)
continue;
loop_vinfo = loop->aux;
destroy_loop_vec_info (loop_vinfo);
loop->aux = NULL;
}
rewrite_into_ssa (false);
rewrite_into_loop_closed_ssa (); /* FORNOW */
bitmap_clear (vars_to_rename);
}