gcc/libgo/go/big/calibrate_test.go
Ian Lance Taylor 7a9389330e Add Go frontend, libgo library, and Go testsuite.
gcc/:
	* gcc.c (default_compilers): Add entry for ".go".
	* common.opt: Add -static-libgo as a driver option.
	* doc/install.texi (Configuration): Mention libgo as an option for
	--enable-shared.  Mention go as an option for --enable-languages.
	* doc/invoke.texi (Overall Options): Mention .go as a file name
	suffix.  Mention go as a -x option.
	* doc/frontends.texi (G++ and GCC): Mention Go as a supported
	language.
	* doc/sourcebuild.texi (Top Level): Mention libgo.
	* doc/standards.texi (Standards): Add section on Go language.
	Move references for other languages into their own section.
	* doc/contrib.texi (Contributors): Mention that I contributed the
	Go frontend.
gcc/testsuite/:
	* lib/go.exp: New file.
	* lib/go-dg.exp: New file.
	* lib/go-torture.exp: New file.
	* lib/target-supports.exp (check_compile): Match // Go.

From-SVN: r167407
2010-12-03 04:34:57 +00:00

93 lines
2.0 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file prints execution times for the Mul benchmark
// given different Karatsuba thresholds. The result may be
// used to manually fine-tune the threshold constant. The
// results are somewhat fragile; use repeated runs to get
// a clear picture.
// Usage: gotest -calibrate
package big
import (
"flag"
"fmt"
"testing"
"time"
)
var calibrate = flag.Bool("calibrate", false, "run calibration test")
// measure returns the time to run f
func measure(f func()) int64 {
const N = 100
start := time.Nanoseconds()
for i := N; i > 0; i-- {
f()
}
stop := time.Nanoseconds()
return (stop - start) / N
}
func computeThresholds() {
fmt.Printf("Multiplication times for varying Karatsuba thresholds\n")
fmt.Printf("(run repeatedly for good results)\n")
// determine Tk, the work load execution time using basic multiplication
karatsubaThreshold = 1e9 // disable karatsuba
Tb := measure(benchmarkMulLoad)
fmt.Printf("Tb = %dns\n", Tb)
// thresholds
n := 8 // any lower values for the threshold lead to very slow multiplies
th1 := -1
th2 := -1
var deltaOld int64
for count := -1; count != 0; count-- {
// determine Tk, the work load execution time using Karatsuba multiplication
karatsubaThreshold = n // enable karatsuba
Tk := measure(benchmarkMulLoad)
// improvement over Tb
delta := (Tb - Tk) * 100 / Tb
fmt.Printf("n = %3d Tk = %8dns %4d%%", n, Tk, delta)
// determine break-even point
if Tk < Tb && th1 < 0 {
th1 = n
fmt.Print(" break-even point")
}
// determine diminishing return
if 0 < delta && delta < deltaOld && th2 < 0 {
th2 = n
fmt.Print(" diminishing return")
}
deltaOld = delta
fmt.Println()
// trigger counter
if th1 >= 0 && th2 >= 0 && count < 0 {
count = 20 // this many extra measurements after we got both thresholds
}
n++
}
}
func TestCalibrate(t *testing.T) {
if *calibrate {
computeThresholds()
}
}