gcc/libgo/runtime/chan.c
Ian Lance Taylor a42a906c42 libgo: Update to current master library sources.
From-SVN: r194460
2012-12-12 23:13:29 +00:00

1431 lines
26 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch.h"
#include "go-type.h"
#include "race.h"
#include "malloc.h"
#define NOSELGEN 1
static int32 debug = 0;
typedef struct WaitQ WaitQ;
typedef struct SudoG SudoG;
typedef struct Select Select;
typedef struct Scase Scase;
typedef struct __go_type_descriptor Type;
typedef struct __go_channel_type ChanType;
struct SudoG
{
G* g; // g and selgen constitute
uint32 selgen; // a weak pointer to g
SudoG* link;
int64 releasetime;
byte* elem; // data element
};
struct WaitQ
{
SudoG* first;
SudoG* last;
};
struct Hchan
{
uintgo qcount; // total data in the q
uintgo dataqsiz; // size of the circular q
uint16 elemsize;
bool closed;
uint8 elemalign;
uintgo sendx; // send index
uintgo recvx; // receive index
WaitQ recvq; // list of recv waiters
WaitQ sendq; // list of send waiters
Lock;
};
// Buffer follows Hchan immediately in memory.
// chanbuf(c, i) is pointer to the i'th slot in the buffer.
#define chanbuf(c, i) ((byte*)((c)+1)+(uintptr)(c)->elemsize*(i))
enum
{
// Scase.kind
CaseRecv,
CaseSend,
CaseDefault,
};
struct Scase
{
SudoG sg; // must be first member (cast to Scase)
Hchan* chan; // chan
uint16 kind;
uint16 index; // index to return
bool* receivedp; // pointer to received bool (recv2)
};
struct Select
{
uint16 tcase; // total count of scase[]
uint16 ncase; // currently filled scase[]
uint16* pollorder; // case poll order
Hchan** lockorder; // channel lock order
Scase scase[1]; // one per case (in order of appearance)
};
static void dequeueg(WaitQ*);
static SudoG* dequeue(WaitQ*);
static void enqueue(WaitQ*, SudoG*);
static void racesync(Hchan*, SudoG*);
Hchan*
runtime_makechan_c(ChanType *t, int64 hint)
{
Hchan *c;
uintptr n;
const Type *elem;
elem = t->__element_type;
// compiler checks this but be safe.
if(elem->__size >= (1<<16))
runtime_throw("makechan: invalid channel element type");
if(hint < 0 || (intgo)hint != hint || (elem->__size > 0 && (uintptr)hint > MaxMem / elem->__size))
runtime_panicstring("makechan: size out of range");
n = sizeof(*c);
// allocate memory in one call
c = (Hchan*)runtime_mal(n + hint*elem->__size);
c->elemsize = elem->__size;
c->elemalign = elem->__align;
c->dataqsiz = hint;
if(debug)
runtime_printf("makechan: chan=%p; elemsize=%D; elemalign=%d; dataqsiz=%D\n",
c, (int64)elem->__size, elem->__align, (int64)c->dataqsiz);
return c;
}
// For reflect
// func makechan(typ *ChanType, size uint64) (chan)
uintptr reflect_makechan(ChanType *, uint64)
asm ("reflect.makechan");
uintptr
reflect_makechan(ChanType *t, uint64 size)
{
void *ret;
Hchan *c;
c = runtime_makechan_c(t, size);
ret = runtime_mal(sizeof(void*));
__builtin_memcpy(ret, &c, sizeof(void*));
return (uintptr)ret;
}
// makechan(t *ChanType, hint int64) (hchan *chan any);
Hchan*
__go_new_channel(ChanType *t, uintptr hint)
{
return runtime_makechan_c(t, hint);
}
Hchan*
__go_new_channel_big(ChanType *t, uint64 hint)
{
return runtime_makechan_c(t, hint);
}
/*
* generic single channel send/recv
* if the bool pointer is nil,
* then the full exchange will
* occur. if pres is not nil,
* then the protocol will not
* sleep but return if it could
* not complete.
*
* sleep can wake up with g->param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.
*/
void
runtime_chansend(ChanType *t, Hchan *c, byte *ep, bool *pres, void *pc)
{
SudoG *sg;
SudoG mysg;
G* gp;
int64 t0;
G* g;
g = runtime_g();
if(c == nil) {
USED(t);
if(pres != nil) {
*pres = false;
return;
}
runtime_park(nil, nil, "chan send (nil chan)");
return; // not reached
}
if(runtime_gcwaiting)
runtime_gosched();
if(debug) {
runtime_printf("chansend: chan=%p\n", c);
}
t0 = 0;
mysg.releasetime = 0;
if(runtime_blockprofilerate > 0) {
t0 = runtime_cputicks();
mysg.releasetime = -1;
}
runtime_lock(c);
// TODO(dvyukov): add similar instrumentation to select.
if(raceenabled)
runtime_racereadpc(c, pc, runtime_chansend);
if(c->closed)
goto closed;
if(c->dataqsiz > 0)
goto asynch;
sg = dequeue(&c->recvq);
if(sg != nil) {
if(raceenabled)
racesync(c, sg);
runtime_unlock(c);
gp = sg->g;
gp->param = sg;
if(sg->elem != nil)
runtime_memmove(sg->elem, ep, c->elemsize);
if(sg->releasetime)
sg->releasetime = runtime_cputicks();
runtime_ready(gp);
if(pres != nil)
*pres = true;
return;
}
if(pres != nil) {
runtime_unlock(c);
*pres = false;
return;
}
mysg.elem = ep;
mysg.g = g;
mysg.selgen = NOSELGEN;
g->param = nil;
enqueue(&c->sendq, &mysg);
runtime_park(runtime_unlock, c, "chan send");
if(g->param == nil) {
runtime_lock(c);
if(!c->closed)
runtime_throw("chansend: spurious wakeup");
goto closed;
}
if(mysg.releasetime > 0)
runtime_blockevent(mysg.releasetime - t0, 2);
return;
asynch:
if(c->closed)
goto closed;
if(c->qcount >= c->dataqsiz) {
if(pres != nil) {
runtime_unlock(c);
*pres = false;
return;
}
mysg.g = g;
mysg.elem = nil;
mysg.selgen = NOSELGEN;
enqueue(&c->sendq, &mysg);
runtime_park(runtime_unlock, c, "chan send");
runtime_lock(c);
goto asynch;
}
if(raceenabled)
runtime_racerelease(chanbuf(c, c->sendx));
runtime_memmove(chanbuf(c, c->sendx), ep, c->elemsize);
if(++c->sendx == c->dataqsiz)
c->sendx = 0;
c->qcount++;
sg = dequeue(&c->recvq);
if(sg != nil) {
gp = sg->g;
runtime_unlock(c);
if(sg->releasetime)
sg->releasetime = runtime_cputicks();
runtime_ready(gp);
} else
runtime_unlock(c);
if(pres != nil)
*pres = true;
if(mysg.releasetime > 0)
runtime_blockevent(mysg.releasetime - t0, 2);
return;
closed:
runtime_unlock(c);
runtime_panicstring("send on closed channel");
}
void
runtime_chanrecv(ChanType *t, Hchan* c, byte *ep, bool *selected, bool *received)
{
SudoG *sg;
SudoG mysg;
G *gp;
int64 t0;
G *g;
if(runtime_gcwaiting)
runtime_gosched();
if(debug)
runtime_printf("chanrecv: chan=%p\n", c);
g = runtime_g();
if(c == nil) {
USED(t);
if(selected != nil) {
*selected = false;
return;
}
runtime_park(nil, nil, "chan receive (nil chan)");
return; // not reached
}
t0 = 0;
mysg.releasetime = 0;
if(runtime_blockprofilerate > 0) {
t0 = runtime_cputicks();
mysg.releasetime = -1;
}
runtime_lock(c);
if(c->dataqsiz > 0)
goto asynch;
if(c->closed)
goto closed;
sg = dequeue(&c->sendq);
if(sg != nil) {
if(raceenabled)
racesync(c, sg);
runtime_unlock(c);
if(ep != nil)
runtime_memmove(ep, sg->elem, c->elemsize);
gp = sg->g;
gp->param = sg;
if(sg->releasetime)
sg->releasetime = runtime_cputicks();
runtime_ready(gp);
if(selected != nil)
*selected = true;
if(received != nil)
*received = true;
return;
}
if(selected != nil) {
runtime_unlock(c);
*selected = false;
return;
}
mysg.elem = ep;
mysg.g = g;
mysg.selgen = NOSELGEN;
g->param = nil;
enqueue(&c->recvq, &mysg);
runtime_park(runtime_unlock, c, "chan receive");
if(g->param == nil) {
runtime_lock(c);
if(!c->closed)
runtime_throw("chanrecv: spurious wakeup");
goto closed;
}
if(received != nil)
*received = true;
if(mysg.releasetime > 0)
runtime_blockevent(mysg.releasetime - t0, 2);
return;
asynch:
if(c->qcount <= 0) {
if(c->closed)
goto closed;
if(selected != nil) {
runtime_unlock(c);
*selected = false;
if(received != nil)
*received = false;
return;
}
mysg.g = g;
mysg.elem = nil;
mysg.selgen = NOSELGEN;
enqueue(&c->recvq, &mysg);
runtime_park(runtime_unlock, c, "chan receive");
runtime_lock(c);
goto asynch;
}
if(raceenabled)
runtime_raceacquire(chanbuf(c, c->recvx));
if(ep != nil)
runtime_memmove(ep, chanbuf(c, c->recvx), c->elemsize);
runtime_memclr(chanbuf(c, c->recvx), c->elemsize);
if(++c->recvx == c->dataqsiz)
c->recvx = 0;
c->qcount--;
sg = dequeue(&c->sendq);
if(sg != nil) {
gp = sg->g;
runtime_unlock(c);
if(sg->releasetime)
sg->releasetime = runtime_cputicks();
runtime_ready(gp);
} else
runtime_unlock(c);
if(selected != nil)
*selected = true;
if(received != nil)
*received = true;
if(mysg.releasetime > 0)
runtime_blockevent(mysg.releasetime - t0, 2);
return;
closed:
if(ep != nil)
runtime_memclr(ep, c->elemsize);
if(selected != nil)
*selected = true;
if(received != nil)
*received = false;
if(raceenabled)
runtime_raceacquire(c);
runtime_unlock(c);
if(mysg.releasetime > 0)
runtime_blockevent(mysg.releasetime - t0, 2);
}
// The compiler generates a call to __go_send_small to send a value 8
// bytes or smaller.
void
__go_send_small(ChanType *t, Hchan* c, uint64 val)
{
union
{
byte b[sizeof(uint64)];
uint64 v;
} u;
byte *p;
u.v = val;
#ifndef WORDS_BIGENDIAN
p = u.b;
#else
p = u.b + sizeof(uint64) - t->__element_type->__size;
#endif
runtime_chansend(t, c, p, nil, runtime_getcallerpc(&t));
}
// The compiler generates a call to __go_send_big to send a value
// larger than 8 bytes or smaller.
void
__go_send_big(ChanType *t, Hchan* c, byte* p)
{
runtime_chansend(t, c, p, nil, runtime_getcallerpc(&t));
}
// The compiler generates a call to __go_receive_small to receive a
// value 8 bytes or smaller.
uint64
__go_receive_small(ChanType *t, Hchan* c)
{
union {
byte b[sizeof(uint64)];
uint64 v;
} u;
byte *p;
u.v = 0;
#ifndef WORDS_BIGENDIAN
p = u.b;
#else
p = u.b + sizeof(uint64) - t->__element_type->__size;
#endif
runtime_chanrecv(t, c, p, nil, nil);
return u.v;
}
// The compiler generates a call to __go_receive_big to receive a
// value larger than 8 bytes.
void
__go_receive_big(ChanType *t, Hchan* c, byte* p)
{
runtime_chanrecv(t, c, p, nil, nil);
}
_Bool runtime_chanrecv2(ChanType *t, Hchan* c, byte* p)
__asm__("runtime.chanrecv2");
_Bool
runtime_chanrecv2(ChanType *t, Hchan* c, byte* p)
{
bool received;
runtime_chanrecv(t, c, p, nil, &received);
return received;
}
// func selectnbsend(c chan any, elem any) bool
//
// compiler implements
//
// select {
// case c <- v:
// ... foo
// default:
// ... bar
// }
//
// as
//
// if selectnbsend(c, v) {
// ... foo
// } else {
// ... bar
// }
//
_Bool
runtime_selectnbsend(ChanType *t, Hchan *c, byte *p)
{
bool res;
runtime_chansend(t, c, p, &res, runtime_getcallerpc(&t));
return res;
}
// func selectnbrecv(elem *any, c chan any) bool
//
// compiler implements
//
// select {
// case v = <-c:
// ... foo
// default:
// ... bar
// }
//
// as
//
// if selectnbrecv(&v, c) {
// ... foo
// } else {
// ... bar
// }
//
_Bool
runtime_selectnbrecv(ChanType *t, byte *v, Hchan *c)
{
bool selected;
runtime_chanrecv(t, c, v, &selected, nil);
return selected;
}
// func selectnbrecv2(elem *any, ok *bool, c chan any) bool
//
// compiler implements
//
// select {
// case v, ok = <-c:
// ... foo
// default:
// ... bar
// }
//
// as
//
// if c != nil && selectnbrecv2(&v, &ok, c) {
// ... foo
// } else {
// ... bar
// }
//
_Bool
runtime_selectnbrecv2(ChanType *t, byte *v, _Bool *received, Hchan *c)
{
bool selected;
bool r;
r = false;
runtime_chanrecv(t, c, v, &selected, received == nil ? nil : &r);
if(received != nil)
*received = r;
return selected;
}
// For reflect:
// func chansend(c chan, val iword, nb bool) (selected bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
_Bool reflect_chansend(ChanType *, Hchan *, uintptr, _Bool)
__asm__("reflect.chansend");
_Bool
reflect_chansend(ChanType *t, Hchan *c, uintptr val, _Bool nb)
{
bool selected;
bool *sp;
byte *vp;
if(nb) {
selected = false;
sp = (bool*)&selected;
} else {
selected = true;
sp = nil;
}
if(__go_is_pointer_type(t->__element_type))
vp = (byte*)&val;
else
vp = (byte*)val;
runtime_chansend(t, c, vp, sp, runtime_getcallerpc(&t));
return selected;
}
// For reflect:
// func chanrecv(c chan, nb bool) (val iword, selected, received bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
struct chanrecv_ret
{
uintptr val;
_Bool selected;
_Bool received;
};
struct chanrecv_ret reflect_chanrecv(ChanType *, Hchan *, _Bool)
__asm__("reflect.chanrecv");
struct chanrecv_ret
reflect_chanrecv(ChanType *t, Hchan *c, _Bool nb)
{
struct chanrecv_ret ret;
byte *vp;
bool *sp;
bool selected;
bool received;
if(nb) {
selected = false;
sp = &selected;
} else {
ret.selected = true;
sp = nil;
}
received = false;
if(__go_is_pointer_type(t->__element_type)) {
vp = (byte*)&ret.val;
} else {
vp = runtime_mal(t->__element_type->__size);
ret.val = (uintptr)vp;
}
runtime_chanrecv(t, c, vp, sp, &received);
if(nb)
ret.selected = selected;
ret.received = received;
return ret;
}
static void newselect(int32, Select**);
// newselect(size uint32) (sel *byte);
void* runtime_newselect(int32) __asm__("runtime.newselect");
void*
runtime_newselect(int32 size)
{
Select *sel;
newselect(size, &sel);
return (void*)sel;
}
static void
newselect(int32 size, Select **selp)
{
int32 n;
Select *sel;
n = 0;
if(size > 1)
n = size-1;
// allocate all the memory we need in a single allocation
// start with Select with size cases
// then lockorder with size entries
// then pollorder with size entries
sel = runtime_mal(sizeof(*sel) +
n*sizeof(sel->scase[0]) +
size*sizeof(sel->lockorder[0]) +
size*sizeof(sel->pollorder[0]));
sel->tcase = size;
sel->ncase = 0;
sel->lockorder = (void*)(sel->scase + size);
sel->pollorder = (void*)(sel->lockorder + size);
*selp = sel;
if(debug)
runtime_printf("newselect s=%p size=%d\n", sel, size);
}
// cut in half to give stack a chance to split
static void selectsend(Select *sel, Hchan *c, int index, void *elem);
// selectsend(sel *byte, hchan *chan any, elem *any) (selected bool);
void runtime_selectsend(Select *, Hchan *, void *, int32)
__asm__("runtime.selectsend");
void
runtime_selectsend(Select *sel, Hchan *c, void *elem, int32 index)
{
// nil cases do not compete
if(c == nil)
return;
selectsend(sel, c, index, elem);
}
static void
selectsend(Select *sel, Hchan *c, int index, void *elem)
{
int32 i;
Scase *cas;
i = sel->ncase;
if(i >= sel->tcase)
runtime_throw("selectsend: too many cases");
sel->ncase = i+1;
cas = &sel->scase[i];
cas->index = index;
cas->chan = c;
cas->kind = CaseSend;
cas->sg.elem = elem;
if(debug)
runtime_printf("selectsend s=%p index=%d chan=%p\n",
sel, cas->index, cas->chan);
}
// cut in half to give stack a chance to split
static void selectrecv(Select *sel, Hchan *c, int index, void *elem, bool*);
// selectrecv(sel *byte, hchan *chan any, elem *any) (selected bool);
void runtime_selectrecv(Select *, Hchan *, void *, int32)
__asm__("runtime.selectrecv");
void
runtime_selectrecv(Select *sel, Hchan *c, void *elem, int32 index)
{
// nil cases do not compete
if(c == nil)
return;
selectrecv(sel, c, index, elem, nil);
}
// selectrecv2(sel *byte, hchan *chan any, elem *any, received *bool) (selected bool);
void runtime_selectrecv2(Select *, Hchan *, void *, bool *, int32)
__asm__("runtime.selectrecv2");
void
runtime_selectrecv2(Select *sel, Hchan *c, void *elem, bool *received, int32 index)
{
// nil cases do not compete
if(c == nil)
return;
selectrecv(sel, c, index, elem, received);
}
static void
selectrecv(Select *sel, Hchan *c, int index, void *elem, bool *received)
{
int32 i;
Scase *cas;
i = sel->ncase;
if(i >= sel->tcase)
runtime_throw("selectrecv: too many cases");
sel->ncase = i+1;
cas = &sel->scase[i];
cas->index = index;
cas->chan = c;
cas->kind = CaseRecv;
cas->sg.elem = elem;
cas->receivedp = received;
if(debug)
runtime_printf("selectrecv s=%p index=%d chan=%p\n",
sel, cas->index, cas->chan);
}
// cut in half to give stack a chance to split
static void selectdefault(Select*, int);
// selectdefault(sel *byte) (selected bool);
void runtime_selectdefault(Select *, int32) __asm__("runtime.selectdefault");
void
runtime_selectdefault(Select *sel, int32 index)
{
selectdefault(sel, index);
}
static void
selectdefault(Select *sel, int32 index)
{
int32 i;
Scase *cas;
i = sel->ncase;
if(i >= sel->tcase)
runtime_throw("selectdefault: too many cases");
sel->ncase = i+1;
cas = &sel->scase[i];
cas->index = index;
cas->chan = nil;
cas->kind = CaseDefault;
if(debug)
runtime_printf("selectdefault s=%p index=%d\n",
sel, cas->index);
}
static void
sellock(Select *sel)
{
uint32 i;
Hchan *c, *c0;
c = nil;
for(i=0; i<sel->ncase; i++) {
c0 = sel->lockorder[i];
if(c0 && c0 != c) {
c = sel->lockorder[i];
runtime_lock(c);
}
}
}
static void
selunlock(Select *sel)
{
uint32 i;
Hchan *c, *c0;
c = nil;
for(i=sel->ncase; i-->0;) {
c0 = sel->lockorder[i];
if(c0 && c0 != c) {
c = c0;
runtime_unlock(c);
}
}
}
void
runtime_block(void)
{
runtime_park(nil, nil, "select (no cases)"); // forever
}
static int selectgo(Select**);
// selectgo(sel *byte);
int runtime_selectgo(Select *) __asm__("runtime.selectgo");
int
runtime_selectgo(Select *sel)
{
return selectgo(&sel);
}
static int
selectgo(Select **selp)
{
Select *sel;
uint32 o, i, j;
Scase *cas, *dfl;
Hchan *c;
SudoG *sg;
G *gp;
int index;
G *g;
sel = *selp;
if(runtime_gcwaiting)
runtime_gosched();
if(debug)
runtime_printf("select: sel=%p\n", sel);
g = runtime_g();
// The compiler rewrites selects that statically have
// only 0 or 1 cases plus default into simpler constructs.
// The only way we can end up with such small sel->ncase
// values here is for a larger select in which most channels
// have been nilled out. The general code handles those
// cases correctly, and they are rare enough not to bother
// optimizing (and needing to test).
// generate permuted order
for(i=0; i<sel->ncase; i++)
sel->pollorder[i] = i;
for(i=1; i<sel->ncase; i++) {
o = sel->pollorder[i];
j = runtime_fastrand1()%(i+1);
sel->pollorder[i] = sel->pollorder[j];
sel->pollorder[j] = o;
}
// sort the cases by Hchan address to get the locking order.
for(i=0; i<sel->ncase; i++) {
c = sel->scase[i].chan;
for(j=i; j>0 && sel->lockorder[j-1] >= c; j--)
sel->lockorder[j] = sel->lockorder[j-1];
sel->lockorder[j] = c;
}
sellock(sel);
loop:
// pass 1 - look for something already waiting
dfl = nil;
for(i=0; i<sel->ncase; i++) {
o = sel->pollorder[i];
cas = &sel->scase[o];
c = cas->chan;
switch(cas->kind) {
case CaseRecv:
if(c->dataqsiz > 0) {
if(c->qcount > 0)
goto asyncrecv;
} else {
sg = dequeue(&c->sendq);
if(sg != nil)
goto syncrecv;
}
if(c->closed)
goto rclose;
break;
case CaseSend:
if(c->closed)
goto sclose;
if(c->dataqsiz > 0) {
if(c->qcount < c->dataqsiz)
goto asyncsend;
} else {
sg = dequeue(&c->recvq);
if(sg != nil)
goto syncsend;
}
break;
case CaseDefault:
dfl = cas;
break;
}
}
if(dfl != nil) {
selunlock(sel);
cas = dfl;
goto retc;
}
// pass 2 - enqueue on all chans
for(i=0; i<sel->ncase; i++) {
o = sel->pollorder[i];
cas = &sel->scase[o];
c = cas->chan;
sg = &cas->sg;
sg->g = g;
sg->selgen = g->selgen;
switch(cas->kind) {
case CaseRecv:
enqueue(&c->recvq, sg);
break;
case CaseSend:
enqueue(&c->sendq, sg);
break;
}
}
g->param = nil;
runtime_park((void(*)(Lock*))selunlock, (Lock*)sel, "select");
sellock(sel);
sg = g->param;
// pass 3 - dequeue from unsuccessful chans
// otherwise they stack up on quiet channels
for(i=0; i<sel->ncase; i++) {
cas = &sel->scase[i];
if(cas != (Scase*)sg) {
c = cas->chan;
if(cas->kind == CaseSend)
dequeueg(&c->sendq);
else
dequeueg(&c->recvq);
}
}
if(sg == nil)
goto loop;
cas = (Scase*)sg;
c = cas->chan;
if(c->dataqsiz > 0)
runtime_throw("selectgo: shouldnt happen");
if(debug)
runtime_printf("wait-return: sel=%p c=%p cas=%p kind=%d\n",
sel, c, cas, cas->kind);
if(cas->kind == CaseRecv) {
if(cas->receivedp != nil)
*cas->receivedp = true;
}
selunlock(sel);
goto retc;
asyncrecv:
// can receive from buffer
if(raceenabled)
runtime_raceacquire(chanbuf(c, c->recvx));
if(cas->receivedp != nil)
*cas->receivedp = true;
if(cas->sg.elem != nil)
runtime_memmove(cas->sg.elem, chanbuf(c, c->recvx), c->elemsize);
runtime_memclr(chanbuf(c, c->recvx), c->elemsize);
if(++c->recvx == c->dataqsiz)
c->recvx = 0;
c->qcount--;
sg = dequeue(&c->sendq);
if(sg != nil) {
gp = sg->g;
selunlock(sel);
runtime_ready(gp);
} else {
selunlock(sel);
}
goto retc;
asyncsend:
// can send to buffer
if(raceenabled)
runtime_racerelease(chanbuf(c, c->sendx));
runtime_memmove(chanbuf(c, c->sendx), cas->sg.elem, c->elemsize);
if(++c->sendx == c->dataqsiz)
c->sendx = 0;
c->qcount++;
sg = dequeue(&c->recvq);
if(sg != nil) {
gp = sg->g;
selunlock(sel);
runtime_ready(gp);
} else {
selunlock(sel);
}
goto retc;
syncrecv:
// can receive from sleeping sender (sg)
if(raceenabled)
racesync(c, sg);
selunlock(sel);
if(debug)
runtime_printf("syncrecv: sel=%p c=%p o=%d\n", sel, c, o);
if(cas->receivedp != nil)
*cas->receivedp = true;
if(cas->sg.elem != nil)
runtime_memmove(cas->sg.elem, sg->elem, c->elemsize);
gp = sg->g;
gp->param = sg;
runtime_ready(gp);
goto retc;
rclose:
// read at end of closed channel
selunlock(sel);
if(cas->receivedp != nil)
*cas->receivedp = false;
if(cas->sg.elem != nil)
runtime_memclr(cas->sg.elem, c->elemsize);
if(raceenabled)
runtime_raceacquire(c);
goto retc;
syncsend:
// can send to sleeping receiver (sg)
if(raceenabled)
racesync(c, sg);
selunlock(sel);
if(debug)
runtime_printf("syncsend: sel=%p c=%p o=%d\n", sel, c, o);
if(sg->elem != nil)
runtime_memmove(sg->elem, cas->sg.elem, c->elemsize);
gp = sg->g;
gp->param = sg;
runtime_ready(gp);
retc:
// return index corresponding to chosen case
index = cas->index;
runtime_free(sel);
return index;
sclose:
// send on closed channel
selunlock(sel);
runtime_panicstring("send on closed channel");
return 0; // not reached
}
// This struct must match ../reflect/value.go:/runtimeSelect.
typedef struct runtimeSelect runtimeSelect;
struct runtimeSelect
{
uintptr dir;
ChanType *typ;
Hchan *ch;
uintptr val;
};
// This enum must match ../reflect/value.go:/SelectDir.
enum SelectDir {
SelectSend = 1,
SelectRecv,
SelectDefault,
};
struct rselect_ret {
intgo chosen;
uintptr word;
bool recvOK;
};
// func rselect(cases []runtimeSelect) (chosen int, word uintptr, recvOK bool)
struct rselect_ret reflect_rselect(Slice)
asm("reflect.rselect");
struct rselect_ret
reflect_rselect(Slice cases)
{
struct rselect_ret ret;
int32 i;
Select *sel;
runtimeSelect* rcase, *rc;
void *elem;
void *recvptr;
uintptr maxsize;
bool onlyptr;
ret.chosen = -1;
ret.word = 0;
ret.recvOK = false;
maxsize = 0;
onlyptr = true;
rcase = (runtimeSelect*)cases.__values;
for(i=0; i<cases.__count; i++) {
rc = &rcase[i];
if(rc->dir == SelectRecv && rc->ch != nil) {
if(maxsize < rc->typ->__element_type->__size)
maxsize = rc->typ->__element_type->__size;
if(!__go_is_pointer_type(rc->typ->__element_type))
onlyptr = false;
}
}
recvptr = nil;
if(!onlyptr)
recvptr = runtime_mal(maxsize);
newselect(cases.__count, &sel);
for(i=0; i<cases.__count; i++) {
rc = &rcase[i];
switch(rc->dir) {
case SelectDefault:
selectdefault(sel, i);
break;
case SelectSend:
if(rc->ch == nil)
break;
if(!__go_is_pointer_type(rc->typ->__element_type))
elem = (void*)rc->val;
else
elem = (void*)&rc->val;
selectsend(sel, rc->ch, i, elem);
break;
case SelectRecv:
if(rc->ch == nil)
break;
if(!__go_is_pointer_type(rc->typ->__element_type))
elem = recvptr;
else
elem = &ret.word;
selectrecv(sel, rc->ch, i, elem, &ret.recvOK);
break;
}
}
ret.chosen = (intgo)(uintptr)selectgo(&sel);
if(rcase[ret.chosen].dir == SelectRecv && !__go_is_pointer_type(rcase[ret.chosen].typ->__element_type))
ret.word = (uintptr)recvptr;
return ret;
}
// closechan(sel *byte);
void
runtime_closechan(Hchan *c)
{
SudoG *sg;
G* gp;
if(c == nil)
runtime_panicstring("close of nil channel");
if(runtime_gcwaiting)
runtime_gosched();
runtime_lock(c);
if(c->closed) {
runtime_unlock(c);
runtime_panicstring("close of closed channel");
}
if(raceenabled) {
runtime_racewritepc(c, runtime_getcallerpc(&c), runtime_closechan);
runtime_racerelease(c);
}
c->closed = true;
// release all readers
for(;;) {
sg = dequeue(&c->recvq);
if(sg == nil)
break;
gp = sg->g;
gp->param = nil;
runtime_ready(gp);
}
// release all writers
for(;;) {
sg = dequeue(&c->sendq);
if(sg == nil)
break;
gp = sg->g;
gp->param = nil;
runtime_ready(gp);
}
runtime_unlock(c);
}
void
__go_builtin_close(Hchan *c)
{
runtime_closechan(c);
}
// For reflect
// func chanclose(c chan)
void reflect_chanclose(uintptr) __asm__("reflect.chanclose");
void
reflect_chanclose(uintptr c)
{
runtime_closechan((Hchan*)c);
}
// For reflect
// func chanlen(c chan) (len int)
intgo reflect_chanlen(uintptr) __asm__("reflect.chanlen");
intgo
reflect_chanlen(uintptr ca)
{
Hchan *c;
intgo len;
c = (Hchan*)ca;
if(c == nil)
len = 0;
else
len = c->qcount;
return len;
}
intgo
__go_chan_len(Hchan *c)
{
return reflect_chanlen((uintptr)c);
}
// For reflect
// func chancap(c chan) (cap intgo)
intgo reflect_chancap(uintptr) __asm__("reflect.chancap");
intgo
reflect_chancap(uintptr ca)
{
Hchan *c;
intgo cap;
c = (Hchan*)ca;
if(c == nil)
cap = 0;
else
cap = c->dataqsiz;
return cap;
}
intgo
__go_chan_cap(Hchan *c)
{
return reflect_chancap((uintptr)c);
}
static SudoG*
dequeue(WaitQ *q)
{
SudoG *sgp;
loop:
sgp = q->first;
if(sgp == nil)
return nil;
q->first = sgp->link;
// if sgp is stale, ignore it
if(sgp->selgen != NOSELGEN &&
(sgp->selgen != sgp->g->selgen ||
!runtime_cas(&sgp->g->selgen, sgp->selgen, sgp->selgen + 2))) {
//prints("INVALID PSEUDOG POINTER\n");
goto loop;
}
return sgp;
}
static void
dequeueg(WaitQ *q)
{
SudoG **l, *sgp, *prevsgp;
G *g;
g = runtime_g();
prevsgp = nil;
for(l=&q->first; (sgp=*l) != nil; l=&sgp->link, prevsgp=sgp) {
if(sgp->g == g) {
*l = sgp->link;
if(q->last == sgp)
q->last = prevsgp;
break;
}
}
}
static void
enqueue(WaitQ *q, SudoG *sgp)
{
sgp->link = nil;
if(q->first == nil) {
q->first = sgp;
q->last = sgp;
return;
}
q->last->link = sgp;
q->last = sgp;
}
static void
racesync(Hchan *c, SudoG *sg)
{
runtime_racerelease(chanbuf(c, 0));
runtime_raceacquireg(sg->g, chanbuf(c, 0));
runtime_racereleaseg(sg->g, chanbuf(c, 0));
runtime_raceacquire(chanbuf(c, 0));
}