gcc/libgo/go/encoding/gob/encoder_test.go
Ian Lance Taylor c2047754c3 libgo: update to Go 1.8 release candidate 1
Compiler changes:
      * Change map assignment to use mapassign and assign value directly.
      * Change string iteration to use decoderune, faster for ASCII strings.
      * Change makeslice to take int, and use makeslice64 for larger values.
      * Add new noverflow field to hmap struct used for maps.
    
    Unresolved problems, to be fixed later:
      * Commented out test in go/types/sizes_test.go that doesn't compile.
      * Commented out reflect.TestStructOf test for padding after zero-sized field.
    
    Reviewed-on: https://go-review.googlesource.com/35231

gotools/:
	Updates for Go 1.8rc1.
	* Makefile.am (go_cmd_go_files): Add bug.go.
	(s-zdefaultcc): Write defaultPkgConfig.
	* Makefile.in: Rebuild.

From-SVN: r244456
2017-01-14 00:05:42 +00:00

1083 lines
26 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
import (
"bytes"
"encoding/hex"
"fmt"
"io/ioutil"
"reflect"
"strings"
"testing"
)
// Test basic operations in a safe manner.
func TestBasicEncoderDecoder(t *testing.T) {
var values = []interface{}{
true,
int(123),
int8(123),
int16(-12345),
int32(123456),
int64(-1234567),
uint(123),
uint8(123),
uint16(12345),
uint32(123456),
uint64(1234567),
uintptr(12345678),
float32(1.2345),
float64(1.2345678),
complex64(1.2345 + 2.3456i),
complex128(1.2345678 + 2.3456789i),
[]byte("hello"),
string("hello"),
}
for _, value := range values {
b := new(bytes.Buffer)
enc := NewEncoder(b)
err := enc.Encode(value)
if err != nil {
t.Error("encoder fail:", err)
}
dec := NewDecoder(b)
result := reflect.New(reflect.TypeOf(value))
err = dec.Decode(result.Interface())
if err != nil {
t.Fatalf("error decoding %T: %v:", reflect.TypeOf(value), err)
}
if !reflect.DeepEqual(value, result.Elem().Interface()) {
t.Fatalf("%T: expected %v got %v", value, value, result.Elem().Interface())
}
}
}
type ET0 struct {
A int
B string
}
type ET2 struct {
X string
}
type ET1 struct {
A int
Et2 *ET2
Next *ET1
}
// Like ET1 but with a different name for a field
type ET3 struct {
A int
Et2 *ET2
DifferentNext *ET1
}
// Like ET1 but with a different type for a field
type ET4 struct {
A int
Et2 float64
Next int
}
func TestEncoderDecoder(t *testing.T) {
b := new(bytes.Buffer)
enc := NewEncoder(b)
et0 := new(ET0)
et0.A = 7
et0.B = "gobs of fun"
err := enc.Encode(et0)
if err != nil {
t.Error("encoder fail:", err)
}
//fmt.Printf("% x %q\n", b, b)
//Debug(b)
dec := NewDecoder(b)
newEt0 := new(ET0)
err = dec.Decode(newEt0)
if err != nil {
t.Fatal("error decoding ET0:", err)
}
if !reflect.DeepEqual(et0, newEt0) {
t.Fatalf("invalid data for et0: expected %+v; got %+v", *et0, *newEt0)
}
if b.Len() != 0 {
t.Error("not at eof;", b.Len(), "bytes left")
}
// t.FailNow()
b = new(bytes.Buffer)
enc = NewEncoder(b)
et1 := new(ET1)
et1.A = 7
et1.Et2 = new(ET2)
err = enc.Encode(et1)
if err != nil {
t.Error("encoder fail:", err)
}
dec = NewDecoder(b)
newEt1 := new(ET1)
err = dec.Decode(newEt1)
if err != nil {
t.Fatal("error decoding ET1:", err)
}
if !reflect.DeepEqual(et1, newEt1) {
t.Fatalf("invalid data for et1: expected %+v; got %+v", *et1, *newEt1)
}
if b.Len() != 0 {
t.Error("not at eof;", b.Len(), "bytes left")
}
enc.Encode(et1)
newEt1 = new(ET1)
err = dec.Decode(newEt1)
if err != nil {
t.Fatal("round 2: error decoding ET1:", err)
}
if !reflect.DeepEqual(et1, newEt1) {
t.Fatalf("round 2: invalid data for et1: expected %+v; got %+v", *et1, *newEt1)
}
if b.Len() != 0 {
t.Error("round 2: not at eof;", b.Len(), "bytes left")
}
// Now test with a running encoder/decoder pair that we recognize a type mismatch.
err = enc.Encode(et1)
if err != nil {
t.Error("round 3: encoder fail:", err)
}
newEt2 := new(ET2)
err = dec.Decode(newEt2)
if err == nil {
t.Fatal("round 3: expected `bad type' error decoding ET2")
}
}
// Run one value through the encoder/decoder, but use the wrong type.
// Input is always an ET1; we compare it to whatever is under 'e'.
func badTypeCheck(e interface{}, shouldFail bool, msg string, t *testing.T) {
b := new(bytes.Buffer)
enc := NewEncoder(b)
et1 := new(ET1)
et1.A = 7
et1.Et2 = new(ET2)
err := enc.Encode(et1)
if err != nil {
t.Error("encoder fail:", err)
}
dec := NewDecoder(b)
err = dec.Decode(e)
if shouldFail && err == nil {
t.Error("expected error for", msg)
}
if !shouldFail && err != nil {
t.Error("unexpected error for", msg, err)
}
}
// Test that we recognize a bad type the first time.
func TestWrongTypeDecoder(t *testing.T) {
badTypeCheck(new(ET2), true, "no fields in common", t)
badTypeCheck(new(ET3), false, "different name of field", t)
badTypeCheck(new(ET4), true, "different type of field", t)
}
// Types not supported at top level by the Encoder.
var unsupportedValues = []interface{}{
make(chan int),
func(a int) bool { return true },
}
func TestUnsupported(t *testing.T) {
var b bytes.Buffer
enc := NewEncoder(&b)
for _, v := range unsupportedValues {
err := enc.Encode(v)
if err == nil {
t.Errorf("expected error for %T; got none", v)
}
}
}
func encAndDec(in, out interface{}) error {
b := new(bytes.Buffer)
enc := NewEncoder(b)
err := enc.Encode(in)
if err != nil {
return err
}
dec := NewDecoder(b)
err = dec.Decode(out)
if err != nil {
return err
}
return nil
}
func TestTypeToPtrType(t *testing.T) {
// Encode a T, decode a *T
type Type0 struct {
A int
}
t0 := Type0{7}
t0p := new(Type0)
if err := encAndDec(t0, t0p); err != nil {
t.Error(err)
}
}
func TestPtrTypeToType(t *testing.T) {
// Encode a *T, decode a T
type Type1 struct {
A uint
}
t1p := &Type1{17}
var t1 Type1
if err := encAndDec(t1, t1p); err != nil {
t.Error(err)
}
}
func TestTypeToPtrPtrPtrPtrType(t *testing.T) {
type Type2 struct {
A ****float64
}
t2 := Type2{}
t2.A = new(***float64)
*t2.A = new(**float64)
**t2.A = new(*float64)
***t2.A = new(float64)
****t2.A = 27.4
t2pppp := new(***Type2)
if err := encAndDec(t2, t2pppp); err != nil {
t.Fatal(err)
}
if ****(****t2pppp).A != ****t2.A {
t.Errorf("wrong value after decode: %g not %g", ****(****t2pppp).A, ****t2.A)
}
}
func TestSlice(t *testing.T) {
type Type3 struct {
A []string
}
t3p := &Type3{[]string{"hello", "world"}}
var t3 Type3
if err := encAndDec(t3, t3p); err != nil {
t.Error(err)
}
}
func TestValueError(t *testing.T) {
// Encode a *T, decode a T
type Type4 struct {
A int
}
t4p := &Type4{3}
var t4 Type4 // note: not a pointer.
if err := encAndDec(t4p, t4); err == nil || !strings.Contains(err.Error(), "pointer") {
t.Error("expected error about pointer; got", err)
}
}
func TestArray(t *testing.T) {
type Type5 struct {
A [3]string
B [3]byte
}
type Type6 struct {
A [2]string // can't hold t5.a
}
t5 := Type5{[3]string{"hello", ",", "world"}, [3]byte{1, 2, 3}}
var t5p Type5
if err := encAndDec(t5, &t5p); err != nil {
t.Error(err)
}
var t6 Type6
if err := encAndDec(t5, &t6); err == nil {
t.Error("should fail with mismatched array sizes")
}
}
func TestRecursiveMapType(t *testing.T) {
type recursiveMap map[string]recursiveMap
r1 := recursiveMap{"A": recursiveMap{"B": nil, "C": nil}, "D": nil}
r2 := make(recursiveMap)
if err := encAndDec(r1, &r2); err != nil {
t.Error(err)
}
}
func TestRecursiveSliceType(t *testing.T) {
type recursiveSlice []recursiveSlice
r1 := recursiveSlice{0: recursiveSlice{0: nil}, 1: nil}
r2 := make(recursiveSlice, 0)
if err := encAndDec(r1, &r2); err != nil {
t.Error(err)
}
}
// Regression test for bug: must send zero values inside arrays
func TestDefaultsInArray(t *testing.T) {
type Type7 struct {
B []bool
I []int
S []string
F []float64
}
t7 := Type7{
[]bool{false, false, true},
[]int{0, 0, 1},
[]string{"hi", "", "there"},
[]float64{0, 0, 1},
}
var t7p Type7
if err := encAndDec(t7, &t7p); err != nil {
t.Error(err)
}
}
var testInt int
var testFloat32 float32
var testString string
var testSlice []string
var testMap map[string]int
var testArray [7]int
type SingleTest struct {
in interface{}
out interface{}
err string
}
var singleTests = []SingleTest{
{17, &testInt, ""},
{float32(17.5), &testFloat32, ""},
{"bike shed", &testString, ""},
{[]string{"bike", "shed", "paint", "color"}, &testSlice, ""},
{map[string]int{"seven": 7, "twelve": 12}, &testMap, ""},
{[7]int{4, 55, 0, 0, 0, 0, 0}, &testArray, ""}, // case that once triggered a bug
{[7]int{4, 55, 1, 44, 22, 66, 1234}, &testArray, ""},
// Decode errors
{172, &testFloat32, "type"},
}
func TestSingletons(t *testing.T) {
b := new(bytes.Buffer)
enc := NewEncoder(b)
dec := NewDecoder(b)
for _, test := range singleTests {
b.Reset()
err := enc.Encode(test.in)
if err != nil {
t.Errorf("error encoding %v: %s", test.in, err)
continue
}
err = dec.Decode(test.out)
switch {
case err != nil && test.err == "":
t.Errorf("error decoding %v: %s", test.in, err)
continue
case err == nil && test.err != "":
t.Errorf("expected error decoding %v: %s", test.in, test.err)
continue
case err != nil && test.err != "":
if !strings.Contains(err.Error(), test.err) {
t.Errorf("wrong error decoding %v: wanted %s, got %v", test.in, test.err, err)
}
continue
}
// Get rid of the pointer in the rhs
val := reflect.ValueOf(test.out).Elem().Interface()
if !reflect.DeepEqual(test.in, val) {
t.Errorf("decoding singleton: expected %v got %v", test.in, val)
}
}
}
func TestStructNonStruct(t *testing.T) {
type Struct struct {
A string
}
type NonStruct string
s := Struct{"hello"}
var sp Struct
if err := encAndDec(s, &sp); err != nil {
t.Error(err)
}
var ns NonStruct
if err := encAndDec(s, &ns); err == nil {
t.Error("should get error for struct/non-struct")
} else if !strings.Contains(err.Error(), "type") {
t.Error("for struct/non-struct expected type error; got", err)
}
// Now try the other way
var nsp NonStruct
if err := encAndDec(ns, &nsp); err != nil {
t.Error(err)
}
if err := encAndDec(ns, &s); err == nil {
t.Error("should get error for non-struct/struct")
} else if !strings.Contains(err.Error(), "type") {
t.Error("for non-struct/struct expected type error; got", err)
}
}
type interfaceIndirectTestI interface {
F() bool
}
type interfaceIndirectTestT struct{}
func (this *interfaceIndirectTestT) F() bool {
return true
}
// A version of a bug reported on golang-nuts. Also tests top-level
// slice of interfaces. The issue was registering *T caused T to be
// stored as the concrete type.
func TestInterfaceIndirect(t *testing.T) {
Register(&interfaceIndirectTestT{})
b := new(bytes.Buffer)
w := []interfaceIndirectTestI{&interfaceIndirectTestT{}}
err := NewEncoder(b).Encode(w)
if err != nil {
t.Fatal("encode error:", err)
}
var r []interfaceIndirectTestI
err = NewDecoder(b).Decode(&r)
if err != nil {
t.Fatal("decode error:", err)
}
}
// Now follow various tests that decode into things that can't represent the
// encoded value, all of which should be legal.
// Also, when the ignored object contains an interface value, it may define
// types. Make sure that skipping the value still defines the types by using
// the encoder/decoder pair to send a value afterwards. If an interface
// is sent, its type in the test is always NewType0, so this checks that the
// encoder and decoder don't skew with respect to type definitions.
type Struct0 struct {
I interface{}
}
type NewType0 struct {
S string
}
type ignoreTest struct {
in, out interface{}
}
var ignoreTests = []ignoreTest{
// Decode normal struct into an empty struct
{&struct{ A int }{23}, &struct{}{}},
// Decode normal struct into a nil.
{&struct{ A int }{23}, nil},
// Decode singleton string into a nil.
{"hello, world", nil},
// Decode singleton slice into a nil.
{[]int{1, 2, 3, 4}, nil},
// Decode struct containing an interface into a nil.
{&Struct0{&NewType0{"value0"}}, nil},
// Decode singleton slice of interfaces into a nil.
{[]interface{}{"hi", &NewType0{"value1"}, 23}, nil},
}
func TestDecodeIntoNothing(t *testing.T) {
Register(new(NewType0))
for i, test := range ignoreTests {
b := new(bytes.Buffer)
enc := NewEncoder(b)
err := enc.Encode(test.in)
if err != nil {
t.Errorf("%d: encode error %s:", i, err)
continue
}
dec := NewDecoder(b)
err = dec.Decode(test.out)
if err != nil {
t.Errorf("%d: decode error: %s", i, err)
continue
}
// Now see if the encoder and decoder are in a consistent state.
str := fmt.Sprintf("Value %d", i)
err = enc.Encode(&NewType0{str})
if err != nil {
t.Fatalf("%d: NewType0 encode error: %s", i, err)
}
ns := new(NewType0)
err = dec.Decode(ns)
if err != nil {
t.Fatalf("%d: NewType0 decode error: %s", i, err)
}
if ns.S != str {
t.Fatalf("%d: expected %q got %q", i, str, ns.S)
}
}
}
func TestIgnoreRecursiveType(t *testing.T) {
// It's hard to build a self-contained test for this because
// we can't build compatible types in one package with
// different items so something is ignored. Here is
// some data that represents, according to debug.go:
// type definition {
// slice "recursiveSlice" id=106
// elem id=106
// }
data := []byte{
0x1d, 0xff, 0xd3, 0x02, 0x01, 0x01, 0x0e, 0x72,
0x65, 0x63, 0x75, 0x72, 0x73, 0x69, 0x76, 0x65,
0x53, 0x6c, 0x69, 0x63, 0x65, 0x01, 0xff, 0xd4,
0x00, 0x01, 0xff, 0xd4, 0x00, 0x00, 0x07, 0xff,
0xd4, 0x00, 0x02, 0x01, 0x00, 0x00,
}
dec := NewDecoder(bytes.NewReader(data))
// Issue 10415: This caused infinite recursion.
err := dec.Decode(nil)
if err != nil {
t.Fatal(err)
}
}
// Another bug from golang-nuts, involving nested interfaces.
type Bug0Outer struct {
Bug0Field interface{}
}
type Bug0Inner struct {
A int
}
func TestNestedInterfaces(t *testing.T) {
var buf bytes.Buffer
e := NewEncoder(&buf)
d := NewDecoder(&buf)
Register(new(Bug0Outer))
Register(new(Bug0Inner))
f := &Bug0Outer{&Bug0Outer{&Bug0Inner{7}}}
var v interface{} = f
err := e.Encode(&v)
if err != nil {
t.Fatal("Encode:", err)
}
err = d.Decode(&v)
if err != nil {
t.Fatal("Decode:", err)
}
// Make sure it decoded correctly.
outer1, ok := v.(*Bug0Outer)
if !ok {
t.Fatalf("v not Bug0Outer: %T", v)
}
outer2, ok := outer1.Bug0Field.(*Bug0Outer)
if !ok {
t.Fatalf("v.Bug0Field not Bug0Outer: %T", outer1.Bug0Field)
}
inner, ok := outer2.Bug0Field.(*Bug0Inner)
if !ok {
t.Fatalf("v.Bug0Field.Bug0Field not Bug0Inner: %T", outer2.Bug0Field)
}
if inner.A != 7 {
t.Fatalf("final value %d; expected %d", inner.A, 7)
}
}
// The bugs keep coming. We forgot to send map subtypes before the map.
type Bug1Elem struct {
Name string
Id int
}
type Bug1StructMap map[string]Bug1Elem
func TestMapBug1(t *testing.T) {
in := make(Bug1StructMap)
in["val1"] = Bug1Elem{"elem1", 1}
in["val2"] = Bug1Elem{"elem2", 2}
b := new(bytes.Buffer)
enc := NewEncoder(b)
err := enc.Encode(in)
if err != nil {
t.Fatal("encode:", err)
}
dec := NewDecoder(b)
out := make(Bug1StructMap)
err = dec.Decode(&out)
if err != nil {
t.Fatal("decode:", err)
}
if !reflect.DeepEqual(in, out) {
t.Errorf("mismatch: %v %v", in, out)
}
}
func TestGobMapInterfaceEncode(t *testing.T) {
m := map[string]interface{}{
"up": uintptr(0),
"i0": []int{-1},
"i1": []int8{-1},
"i2": []int16{-1},
"i3": []int32{-1},
"i4": []int64{-1},
"u0": []uint{1},
"u1": []uint8{1},
"u2": []uint16{1},
"u3": []uint32{1},
"u4": []uint64{1},
"f0": []float32{1},
"f1": []float64{1},
"c0": []complex64{complex(2, -2)},
"c1": []complex128{complex(2, float64(-2))},
"us": []uintptr{0},
"bo": []bool{false},
"st": []string{"s"},
}
enc := NewEncoder(new(bytes.Buffer))
err := enc.Encode(m)
if err != nil {
t.Errorf("encode map: %s", err)
}
}
func TestSliceReusesMemory(t *testing.T) {
buf := new(bytes.Buffer)
// Bytes
{
x := []byte("abcd")
enc := NewEncoder(buf)
err := enc.Encode(x)
if err != nil {
t.Errorf("bytes: encode: %s", err)
}
// Decode into y, which is big enough.
y := []byte("ABCDE")
addr := &y[0]
dec := NewDecoder(buf)
err = dec.Decode(&y)
if err != nil {
t.Fatal("bytes: decode:", err)
}
if !bytes.Equal(x, y) {
t.Errorf("bytes: expected %q got %q\n", x, y)
}
if addr != &y[0] {
t.Errorf("bytes: unnecessary reallocation")
}
}
// general slice
{
x := []rune("abcd")
enc := NewEncoder(buf)
err := enc.Encode(x)
if err != nil {
t.Errorf("ints: encode: %s", err)
}
// Decode into y, which is big enough.
y := []rune("ABCDE")
addr := &y[0]
dec := NewDecoder(buf)
err = dec.Decode(&y)
if err != nil {
t.Fatal("ints: decode:", err)
}
if !reflect.DeepEqual(x, y) {
t.Errorf("ints: expected %q got %q\n", x, y)
}
if addr != &y[0] {
t.Errorf("ints: unnecessary reallocation")
}
}
}
// Used to crash: negative count in recvMessage.
func TestBadCount(t *testing.T) {
b := []byte{0xfb, 0xa5, 0x82, 0x2f, 0xca, 0x1}
if err := NewDecoder(bytes.NewReader(b)).Decode(nil); err == nil {
t.Error("expected error from bad count")
} else if err.Error() != errBadCount.Error() {
t.Error("expected bad count error; got", err)
}
}
// Verify that sequential Decoders built on a single input will
// succeed if the input implements ReadByte and there is no
// type information in the stream.
func TestSequentialDecoder(t *testing.T) {
b := new(bytes.Buffer)
enc := NewEncoder(b)
const count = 10
for i := 0; i < count; i++ {
s := fmt.Sprintf("%d", i)
if err := enc.Encode(s); err != nil {
t.Error("encoder fail:", err)
}
}
for i := 0; i < count; i++ {
dec := NewDecoder(b)
var s string
if err := dec.Decode(&s); err != nil {
t.Fatal("decoder fail:", err)
}
if s != fmt.Sprintf("%d", i) {
t.Fatalf("decode expected %d got %s", i, s)
}
}
}
// Should be able to have unrepresentable fields (chan, func, *chan etc.); we just ignore them.
type Bug2 struct {
A int
C chan int
CP *chan int
F func()
FPP **func()
}
func TestChanFuncIgnored(t *testing.T) {
c := make(chan int)
f := func() {}
fp := &f
b0 := Bug2{23, c, &c, f, &fp}
var buf bytes.Buffer
enc := NewEncoder(&buf)
if err := enc.Encode(b0); err != nil {
t.Fatal("error encoding:", err)
}
var b1 Bug2
err := NewDecoder(&buf).Decode(&b1)
if err != nil {
t.Fatal("decode:", err)
}
if b1.A != b0.A {
t.Fatalf("got %d want %d", b1.A, b0.A)
}
if b1.C != nil || b1.CP != nil || b1.F != nil || b1.FPP != nil {
t.Fatal("unexpected value for chan or func")
}
}
func TestSliceIncompatibility(t *testing.T) {
var in = []byte{1, 2, 3}
var out []int
if err := encAndDec(in, &out); err == nil {
t.Error("expected compatibility error")
}
}
// Mutually recursive slices of structs caused problems.
type Bug3 struct {
Num int
Children []*Bug3
}
func TestGobPtrSlices(t *testing.T) {
in := []*Bug3{
{1, nil},
{2, nil},
}
b := new(bytes.Buffer)
err := NewEncoder(b).Encode(&in)
if err != nil {
t.Fatal("encode:", err)
}
var out []*Bug3
err = NewDecoder(b).Decode(&out)
if err != nil {
t.Fatal("decode:", err)
}
if !reflect.DeepEqual(in, out) {
t.Fatalf("got %v; wanted %v", out, in)
}
}
// getDecEnginePtr cached engine for ut.base instead of ut.user so we passed
// a *map and then tried to reuse its engine to decode the inner map.
func TestPtrToMapOfMap(t *testing.T) {
Register(make(map[string]interface{}))
subdata := make(map[string]interface{})
subdata["bar"] = "baz"
data := make(map[string]interface{})
data["foo"] = subdata
b := new(bytes.Buffer)
err := NewEncoder(b).Encode(data)
if err != nil {
t.Fatal("encode:", err)
}
var newData map[string]interface{}
err = NewDecoder(b).Decode(&newData)
if err != nil {
t.Fatal("decode:", err)
}
if !reflect.DeepEqual(data, newData) {
t.Fatalf("expected %v got %v", data, newData)
}
}
// Test that untyped nils generate an error, not a panic.
// See Issue 16204.
func TestCatchInvalidNilValue(t *testing.T) {
encodeErr, panicErr := encodeAndRecover(nil)
if panicErr != nil {
t.Fatalf("panicErr=%v, should not panic encoding untyped nil", panicErr)
}
if encodeErr == nil {
t.Errorf("got err=nil, want non-nil error when encoding untyped nil value")
} else if !strings.Contains(encodeErr.Error(), "nil value") {
t.Errorf("expected 'nil value' error; got err=%v", encodeErr)
}
}
// A top-level nil pointer generates a panic with a helpful string-valued message.
func TestTopLevelNilPointer(t *testing.T) {
var ip *int
encodeErr, panicErr := encodeAndRecover(ip)
if encodeErr != nil {
t.Fatal("error in encode:", encodeErr)
}
if panicErr == nil {
t.Fatal("top-level nil pointer did not panic")
}
errMsg := panicErr.Error()
if !strings.Contains(errMsg, "nil pointer") {
t.Fatal("expected nil pointer error, got:", errMsg)
}
}
func encodeAndRecover(value interface{}) (encodeErr, panicErr error) {
defer func() {
e := recover()
if e != nil {
switch err := e.(type) {
case error:
panicErr = err
default:
panicErr = fmt.Errorf("%v", err)
}
}
}()
encodeErr = NewEncoder(ioutil.Discard).Encode(value)
return
}
func TestNilPointerPanics(t *testing.T) {
var (
nilStringPtr *string
intMap = make(map[int]int)
intMapPtr = &intMap
nilIntMapPtr *map[int]int
zero int
nilBoolChannel chan bool
nilBoolChannelPtr *chan bool
nilStringSlice []string
stringSlice = make([]string, 1)
nilStringSlicePtr *[]string
)
testCases := []struct {
value interface{}
mustPanic bool
}{
{nilStringPtr, true},
{intMap, false},
{intMapPtr, false},
{nilIntMapPtr, true},
{zero, false},
{nilStringSlice, false},
{stringSlice, false},
{nilStringSlicePtr, true},
{nilBoolChannel, false},
{nilBoolChannelPtr, true},
}
for _, tt := range testCases {
_, panicErr := encodeAndRecover(tt.value)
if tt.mustPanic {
if panicErr == nil {
t.Errorf("expected panic with input %#v, did not panic", tt.value)
}
continue
}
if panicErr != nil {
t.Fatalf("expected no panic with input %#v, got panic=%v", tt.value, panicErr)
}
}
}
func TestNilPointerInsideInterface(t *testing.T) {
var ip *int
si := struct {
I interface{}
}{
I: ip,
}
buf := new(bytes.Buffer)
err := NewEncoder(buf).Encode(si)
if err == nil {
t.Fatal("expected error, got none")
}
errMsg := err.Error()
if !strings.Contains(errMsg, "nil pointer") || !strings.Contains(errMsg, "interface") {
t.Fatal("expected error about nil pointer and interface, got:", errMsg)
}
}
type Bug4Public struct {
Name string
Secret Bug4Secret
}
type Bug4Secret struct {
a int // error: no exported fields.
}
// Test that a failed compilation doesn't leave around an executable encoder.
// Issue 3273.
func TestMutipleEncodingsOfBadType(t *testing.T) {
x := Bug4Public{
Name: "name",
Secret: Bug4Secret{1},
}
buf := new(bytes.Buffer)
enc := NewEncoder(buf)
err := enc.Encode(x)
if err == nil {
t.Fatal("first encoding: expected error")
}
buf.Reset()
enc = NewEncoder(buf)
err = enc.Encode(x)
if err == nil {
t.Fatal("second encoding: expected error")
}
if !strings.Contains(err.Error(), "no exported fields") {
t.Errorf("expected error about no exported fields; got %v", err)
}
}
// There was an error check comparing the length of the input with the
// length of the slice being decoded. It was wrong because the next
// thing in the input might be a type definition, which would lead to
// an incorrect length check. This test reproduces the corner case.
type Z struct {
}
func Test29ElementSlice(t *testing.T) {
Register(Z{})
src := make([]interface{}, 100) // Size needs to be bigger than size of type definition.
for i := range src {
src[i] = Z{}
}
buf := new(bytes.Buffer)
err := NewEncoder(buf).Encode(src)
if err != nil {
t.Fatalf("encode: %v", err)
return
}
var dst []interface{}
err = NewDecoder(buf).Decode(&dst)
if err != nil {
t.Errorf("decode: %v", err)
return
}
}
// Don't crash, just give error when allocating a huge slice.
// Issue 8084.
func TestErrorForHugeSlice(t *testing.T) {
// Encode an int slice.
buf := new(bytes.Buffer)
slice := []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
err := NewEncoder(buf).Encode(slice)
if err != nil {
t.Fatal("encode:", err)
}
// Reach into the buffer and smash the count to make the encoded slice very long.
buf.Bytes()[buf.Len()-len(slice)-1] = 0xfa
// Decode and see error.
err = NewDecoder(buf).Decode(&slice)
if err == nil {
t.Fatal("decode: no error")
}
if !strings.Contains(err.Error(), "slice too big") {
t.Fatalf("decode: expected slice too big error, got %s", err.Error())
}
}
type badDataTest struct {
input string // The input encoded as a hex string.
error string // A substring of the error that should result.
data interface{} // What to decode into.
}
var badDataTests = []badDataTest{
{"", "EOF", nil},
{"7F6869", "unexpected EOF", nil},
{"036e6f77206973207468652074696d6520666f7220616c6c20676f6f64206d656e", "unknown type id", new(ET2)},
{"0424666f6f", "field numbers out of bounds", new(ET2)}, // Issue 6323.
{"05100028557b02027f8302", "interface encoding", nil}, // Issue 10270.
// Issue 10273.
{"130a00fb5dad0bf8ff020263e70002fa28020202a89859", "slice length too large", nil},
{"0f1000fb285d003316020735ff023a65c5", "interface encoding", nil},
{"03fffb0616fffc00f902ff02ff03bf005d02885802a311a8120228022c028ee7", "GobDecoder", nil},
// Issue 10491.
{"10fe010f020102fe01100001fe010e000016fe010d030102fe010e00010101015801fe01100000000bfe011000f85555555555555555", "exceeds input size", nil},
}
// TestBadData tests that various problems caused by malformed input
// are caught as errors and do not cause panics.
func TestBadData(t *testing.T) {
for i, test := range badDataTests {
data, err := hex.DecodeString(test.input)
if err != nil {
t.Fatalf("#%d: hex error: %s", i, err)
}
d := NewDecoder(bytes.NewReader(data))
err = d.Decode(test.data)
if err == nil {
t.Errorf("decode: no error")
continue
}
if !strings.Contains(err.Error(), test.error) {
t.Errorf("#%d: decode: expected %q error, got %s", i, test.error, err.Error())
}
}
}
// TestHugeWriteFails tests that enormous messages trigger an error.
func TestHugeWriteFails(t *testing.T) {
if testing.Short() {
// Requires allocating a monster, so don't do this from all.bash.
t.Skip("skipping huge allocation in short mode")
}
huge := make([]byte, tooBig)
huge[0] = 7 // Make sure it's not all zeros.
buf := new(bytes.Buffer)
err := NewEncoder(buf).Encode(huge)
if err == nil {
t.Fatalf("expected error for huge slice")
}
if !strings.Contains(err.Error(), "message too big") {
t.Fatalf("expected 'too big' error; got %s\n", err.Error())
}
}