6b03de573e
2010-11-16 Richard Guenther <rguenther@suse.de> PR tree-optimization/44545 * tree-ssa-reassoc.c (linearize_expr_tree): Possibly throwing statements are not reassociatable. (reassociate_bb): Likewise. * gcc.dg/pr44545.c: New testcase. From-SVN: r166799
2289 lines
65 KiB
C
2289 lines
65 KiB
C
/* Reassociation for trees.
|
|
Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin <dan@dberlin.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "basic-block.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-inline.h"
|
|
#include "tree-flow.h"
|
|
#include "gimple.h"
|
|
#include "tree-dump.h"
|
|
#include "timevar.h"
|
|
#include "tree-iterator.h"
|
|
#include "tree-pass.h"
|
|
#include "alloc-pool.h"
|
|
#include "vec.h"
|
|
#include "langhooks.h"
|
|
#include "pointer-set.h"
|
|
#include "cfgloop.h"
|
|
#include "flags.h"
|
|
|
|
/* This is a simple global reassociation pass. It is, in part, based
|
|
on the LLVM pass of the same name (They do some things more/less
|
|
than we do, in different orders, etc).
|
|
|
|
It consists of five steps:
|
|
|
|
1. Breaking up subtract operations into addition + negate, where
|
|
it would promote the reassociation of adds.
|
|
|
|
2. Left linearization of the expression trees, so that (A+B)+(C+D)
|
|
becomes (((A+B)+C)+D), which is easier for us to rewrite later.
|
|
During linearization, we place the operands of the binary
|
|
expressions into a vector of operand_entry_t
|
|
|
|
3. Optimization of the operand lists, eliminating things like a +
|
|
-a, a & a, etc.
|
|
|
|
4. Rewrite the expression trees we linearized and optimized so
|
|
they are in proper rank order.
|
|
|
|
5. Repropagate negates, as nothing else will clean it up ATM.
|
|
|
|
A bit of theory on #4, since nobody seems to write anything down
|
|
about why it makes sense to do it the way they do it:
|
|
|
|
We could do this much nicer theoretically, but don't (for reasons
|
|
explained after how to do it theoretically nice :P).
|
|
|
|
In order to promote the most redundancy elimination, you want
|
|
binary expressions whose operands are the same rank (or
|
|
preferably, the same value) exposed to the redundancy eliminator,
|
|
for possible elimination.
|
|
|
|
So the way to do this if we really cared, is to build the new op
|
|
tree from the leaves to the roots, merging as you go, and putting the
|
|
new op on the end of the worklist, until you are left with one
|
|
thing on the worklist.
|
|
|
|
IE if you have to rewrite the following set of operands (listed with
|
|
rank in parentheses), with opcode PLUS_EXPR:
|
|
|
|
a (1), b (1), c (1), d (2), e (2)
|
|
|
|
|
|
We start with our merge worklist empty, and the ops list with all of
|
|
those on it.
|
|
|
|
You want to first merge all leaves of the same rank, as much as
|
|
possible.
|
|
|
|
So first build a binary op of
|
|
|
|
mergetmp = a + b, and put "mergetmp" on the merge worklist.
|
|
|
|
Because there is no three operand form of PLUS_EXPR, c is not going to
|
|
be exposed to redundancy elimination as a rank 1 operand.
|
|
|
|
So you might as well throw it on the merge worklist (you could also
|
|
consider it to now be a rank two operand, and merge it with d and e,
|
|
but in this case, you then have evicted e from a binary op. So at
|
|
least in this situation, you can't win.)
|
|
|
|
Then build a binary op of d + e
|
|
mergetmp2 = d + e
|
|
|
|
and put mergetmp2 on the merge worklist.
|
|
|
|
so merge worklist = {mergetmp, c, mergetmp2}
|
|
|
|
Continue building binary ops of these operations until you have only
|
|
one operation left on the worklist.
|
|
|
|
So we have
|
|
|
|
build binary op
|
|
mergetmp3 = mergetmp + c
|
|
|
|
worklist = {mergetmp2, mergetmp3}
|
|
|
|
mergetmp4 = mergetmp2 + mergetmp3
|
|
|
|
worklist = {mergetmp4}
|
|
|
|
because we have one operation left, we can now just set the original
|
|
statement equal to the result of that operation.
|
|
|
|
This will at least expose a + b and d + e to redundancy elimination
|
|
as binary operations.
|
|
|
|
For extra points, you can reuse the old statements to build the
|
|
mergetmps, since you shouldn't run out.
|
|
|
|
So why don't we do this?
|
|
|
|
Because it's expensive, and rarely will help. Most trees we are
|
|
reassociating have 3 or less ops. If they have 2 ops, they already
|
|
will be written into a nice single binary op. If you have 3 ops, a
|
|
single simple check suffices to tell you whether the first two are of the
|
|
same rank. If so, you know to order it
|
|
|
|
mergetmp = op1 + op2
|
|
newstmt = mergetmp + op3
|
|
|
|
instead of
|
|
mergetmp = op2 + op3
|
|
newstmt = mergetmp + op1
|
|
|
|
If all three are of the same rank, you can't expose them all in a
|
|
single binary operator anyway, so the above is *still* the best you
|
|
can do.
|
|
|
|
Thus, this is what we do. When we have three ops left, we check to see
|
|
what order to put them in, and call it a day. As a nod to vector sum
|
|
reduction, we check if any of the ops are really a phi node that is a
|
|
destructive update for the associating op, and keep the destructive
|
|
update together for vector sum reduction recognition. */
|
|
|
|
|
|
/* Statistics */
|
|
static struct
|
|
{
|
|
int linearized;
|
|
int constants_eliminated;
|
|
int ops_eliminated;
|
|
int rewritten;
|
|
} reassociate_stats;
|
|
|
|
/* Operator, rank pair. */
|
|
typedef struct operand_entry
|
|
{
|
|
unsigned int rank;
|
|
int id;
|
|
tree op;
|
|
} *operand_entry_t;
|
|
|
|
static alloc_pool operand_entry_pool;
|
|
|
|
/* This is used to assign a unique ID to each struct operand_entry
|
|
so that qsort results are identical on different hosts. */
|
|
static int next_operand_entry_id;
|
|
|
|
/* Starting rank number for a given basic block, so that we can rank
|
|
operations using unmovable instructions in that BB based on the bb
|
|
depth. */
|
|
static long *bb_rank;
|
|
|
|
/* Operand->rank hashtable. */
|
|
static struct pointer_map_t *operand_rank;
|
|
|
|
|
|
/* Look up the operand rank structure for expression E. */
|
|
|
|
static inline long
|
|
find_operand_rank (tree e)
|
|
{
|
|
void **slot = pointer_map_contains (operand_rank, e);
|
|
return slot ? (long) (intptr_t) *slot : -1;
|
|
}
|
|
|
|
/* Insert {E,RANK} into the operand rank hashtable. */
|
|
|
|
static inline void
|
|
insert_operand_rank (tree e, long rank)
|
|
{
|
|
void **slot;
|
|
gcc_assert (rank > 0);
|
|
slot = pointer_map_insert (operand_rank, e);
|
|
gcc_assert (!*slot);
|
|
*slot = (void *) (intptr_t) rank;
|
|
}
|
|
|
|
/* Given an expression E, return the rank of the expression. */
|
|
|
|
static long
|
|
get_rank (tree e)
|
|
{
|
|
/* Constants have rank 0. */
|
|
if (is_gimple_min_invariant (e))
|
|
return 0;
|
|
|
|
/* SSA_NAME's have the rank of the expression they are the result
|
|
of.
|
|
For globals and uninitialized values, the rank is 0.
|
|
For function arguments, use the pre-setup rank.
|
|
For PHI nodes, stores, asm statements, etc, we use the rank of
|
|
the BB.
|
|
For simple operations, the rank is the maximum rank of any of
|
|
its operands, or the bb_rank, whichever is less.
|
|
I make no claims that this is optimal, however, it gives good
|
|
results. */
|
|
|
|
if (TREE_CODE (e) == SSA_NAME)
|
|
{
|
|
gimple stmt;
|
|
long rank, maxrank;
|
|
int i, n;
|
|
|
|
if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
|
|
&& SSA_NAME_IS_DEFAULT_DEF (e))
|
|
return find_operand_rank (e);
|
|
|
|
stmt = SSA_NAME_DEF_STMT (e);
|
|
if (gimple_bb (stmt) == NULL)
|
|
return 0;
|
|
|
|
if (!is_gimple_assign (stmt)
|
|
|| gimple_vdef (stmt))
|
|
return bb_rank[gimple_bb (stmt)->index];
|
|
|
|
/* If we already have a rank for this expression, use that. */
|
|
rank = find_operand_rank (e);
|
|
if (rank != -1)
|
|
return rank;
|
|
|
|
/* Otherwise, find the maximum rank for the operands, or the bb
|
|
rank, whichever is less. */
|
|
rank = 0;
|
|
maxrank = bb_rank[gimple_bb(stmt)->index];
|
|
if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
n = TREE_OPERAND_LENGTH (rhs);
|
|
if (n == 0)
|
|
rank = MAX (rank, get_rank (rhs));
|
|
else
|
|
{
|
|
for (i = 0;
|
|
i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
|
|
rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
n = gimple_num_ops (stmt);
|
|
for (i = 1; i < n && rank != maxrank; i++)
|
|
{
|
|
gcc_assert (gimple_op (stmt, i));
|
|
rank = MAX(rank, get_rank (gimple_op (stmt, i)));
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Rank for ");
|
|
print_generic_expr (dump_file, e, 0);
|
|
fprintf (dump_file, " is %ld\n", (rank + 1));
|
|
}
|
|
|
|
/* Note the rank in the hashtable so we don't recompute it. */
|
|
insert_operand_rank (e, (rank + 1));
|
|
return (rank + 1);
|
|
}
|
|
|
|
/* Globals, etc, are rank 0 */
|
|
return 0;
|
|
}
|
|
|
|
DEF_VEC_P(operand_entry_t);
|
|
DEF_VEC_ALLOC_P(operand_entry_t, heap);
|
|
|
|
/* We want integer ones to end up last no matter what, since they are
|
|
the ones we can do the most with. */
|
|
#define INTEGER_CONST_TYPE 1 << 3
|
|
#define FLOAT_CONST_TYPE 1 << 2
|
|
#define OTHER_CONST_TYPE 1 << 1
|
|
|
|
/* Classify an invariant tree into integer, float, or other, so that
|
|
we can sort them to be near other constants of the same type. */
|
|
static inline int
|
|
constant_type (tree t)
|
|
{
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
|
|
return INTEGER_CONST_TYPE;
|
|
else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
|
|
return FLOAT_CONST_TYPE;
|
|
else
|
|
return OTHER_CONST_TYPE;
|
|
}
|
|
|
|
/* qsort comparison function to sort operand entries PA and PB by rank
|
|
so that the sorted array is ordered by rank in decreasing order. */
|
|
static int
|
|
sort_by_operand_rank (const void *pa, const void *pb)
|
|
{
|
|
const operand_entry_t oea = *(const operand_entry_t *)pa;
|
|
const operand_entry_t oeb = *(const operand_entry_t *)pb;
|
|
|
|
/* It's nicer for optimize_expression if constants that are likely
|
|
to fold when added/multiplied//whatever are put next to each
|
|
other. Since all constants have rank 0, order them by type. */
|
|
if (oeb->rank == 0 && oea->rank == 0)
|
|
{
|
|
if (constant_type (oeb->op) != constant_type (oea->op))
|
|
return constant_type (oeb->op) - constant_type (oea->op);
|
|
else
|
|
/* To make sorting result stable, we use unique IDs to determine
|
|
order. */
|
|
return oeb->id - oea->id;
|
|
}
|
|
|
|
/* Lastly, make sure the versions that are the same go next to each
|
|
other. We use SSA_NAME_VERSION because it's stable. */
|
|
if ((oeb->rank - oea->rank == 0)
|
|
&& TREE_CODE (oea->op) == SSA_NAME
|
|
&& TREE_CODE (oeb->op) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
|
|
return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
|
|
else
|
|
return oeb->id - oea->id;
|
|
}
|
|
|
|
if (oeb->rank != oea->rank)
|
|
return oeb->rank - oea->rank;
|
|
else
|
|
return oeb->id - oea->id;
|
|
}
|
|
|
|
/* Add an operand entry to *OPS for the tree operand OP. */
|
|
|
|
static void
|
|
add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
|
|
{
|
|
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
|
|
|
|
oe->op = op;
|
|
oe->rank = get_rank (op);
|
|
oe->id = next_operand_entry_id++;
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oe);
|
|
}
|
|
|
|
/* Return true if STMT is reassociable operation containing a binary
|
|
operation with tree code CODE, and is inside LOOP. */
|
|
|
|
static bool
|
|
is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
|
|
if (gimple_bb (stmt) == NULL)
|
|
return false;
|
|
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
|
return false;
|
|
|
|
if (is_gimple_assign (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == code
|
|
&& has_single_use (gimple_assign_lhs (stmt)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
|
|
operand of the negate operation. Otherwise, return NULL. */
|
|
|
|
static tree
|
|
get_unary_op (tree name, enum tree_code opcode)
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (name);
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL_TREE;
|
|
|
|
if (gimple_assign_rhs_code (stmt) == opcode)
|
|
return gimple_assign_rhs1 (stmt);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* If CURR and LAST are a pair of ops that OPCODE allows us to
|
|
eliminate through equivalences, do so, remove them from OPS, and
|
|
return true. Otherwise, return false. */
|
|
|
|
static bool
|
|
eliminate_duplicate_pair (enum tree_code opcode,
|
|
VEC (operand_entry_t, heap) **ops,
|
|
bool *all_done,
|
|
unsigned int i,
|
|
operand_entry_t curr,
|
|
operand_entry_t last)
|
|
{
|
|
|
|
/* If we have two of the same op, and the opcode is & |, min, or max,
|
|
we can eliminate one of them.
|
|
If we have two of the same op, and the opcode is ^, we can
|
|
eliminate both of them. */
|
|
|
|
if (last && last->op == curr->op)
|
|
{
|
|
switch (opcode)
|
|
{
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_AND_EXPR:
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Equivalence: ");
|
|
print_generic_expr (dump_file, curr->op, 0);
|
|
fprintf (dump_file, " [&|minmax] ");
|
|
print_generic_expr (dump_file, last->op, 0);
|
|
fprintf (dump_file, " -> ");
|
|
print_generic_stmt (dump_file, last->op, 0);
|
|
}
|
|
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
|
reassociate_stats.ops_eliminated ++;
|
|
|
|
return true;
|
|
|
|
case BIT_XOR_EXPR:
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Equivalence: ");
|
|
print_generic_expr (dump_file, curr->op, 0);
|
|
fprintf (dump_file, " ^ ");
|
|
print_generic_expr (dump_file, last->op, 0);
|
|
fprintf (dump_file, " -> nothing\n");
|
|
}
|
|
|
|
reassociate_stats.ops_eliminated += 2;
|
|
|
|
if (VEC_length (operand_entry_t, *ops) == 2)
|
|
{
|
|
VEC_free (operand_entry_t, heap, *ops);
|
|
*ops = NULL;
|
|
add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
|
|
*all_done = true;
|
|
}
|
|
else
|
|
{
|
|
VEC_ordered_remove (operand_entry_t, *ops, i-1);
|
|
VEC_ordered_remove (operand_entry_t, *ops, i-1);
|
|
}
|
|
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static VEC(tree, heap) *plus_negates;
|
|
|
|
/* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
|
|
expression, look in OPS for a corresponding positive operation to cancel
|
|
it out. If we find one, remove the other from OPS, replace
|
|
OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
|
|
return false. */
|
|
|
|
static bool
|
|
eliminate_plus_minus_pair (enum tree_code opcode,
|
|
VEC (operand_entry_t, heap) **ops,
|
|
unsigned int currindex,
|
|
operand_entry_t curr)
|
|
{
|
|
tree negateop;
|
|
tree notop;
|
|
unsigned int i;
|
|
operand_entry_t oe;
|
|
|
|
if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
|
|
return false;
|
|
|
|
negateop = get_unary_op (curr->op, NEGATE_EXPR);
|
|
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
|
|
if (negateop == NULL_TREE && notop == NULL_TREE)
|
|
return false;
|
|
|
|
/* Any non-negated version will have a rank that is one less than
|
|
the current rank. So once we hit those ranks, if we don't find
|
|
one, we can stop. */
|
|
|
|
for (i = currindex + 1;
|
|
VEC_iterate (operand_entry_t, *ops, i, oe)
|
|
&& oe->rank >= curr->rank - 1 ;
|
|
i++)
|
|
{
|
|
if (oe->op == negateop)
|
|
{
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Equivalence: ");
|
|
print_generic_expr (dump_file, negateop, 0);
|
|
fprintf (dump_file, " + -");
|
|
print_generic_expr (dump_file, oe->op, 0);
|
|
fprintf (dump_file, " -> 0\n");
|
|
}
|
|
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
|
add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
|
reassociate_stats.ops_eliminated ++;
|
|
|
|
return true;
|
|
}
|
|
else if (oe->op == notop)
|
|
{
|
|
tree op_type = TREE_TYPE (oe->op);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Equivalence: ");
|
|
print_generic_expr (dump_file, notop, 0);
|
|
fprintf (dump_file, " + ~");
|
|
print_generic_expr (dump_file, oe->op, 0);
|
|
fprintf (dump_file, " -> -1\n");
|
|
}
|
|
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
|
add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
|
reassociate_stats.ops_eliminated ++;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* CURR->OP is a negate expr in a plus expr: save it for later
|
|
inspection in repropagate_negates(). */
|
|
if (negateop != NULL_TREE)
|
|
VEC_safe_push (tree, heap, plus_negates, curr->op);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
|
|
bitwise not expression, look in OPS for a corresponding operand to
|
|
cancel it out. If we find one, remove the other from OPS, replace
|
|
OPS[CURRINDEX] with 0, and return true. Otherwise, return
|
|
false. */
|
|
|
|
static bool
|
|
eliminate_not_pairs (enum tree_code opcode,
|
|
VEC (operand_entry_t, heap) **ops,
|
|
unsigned int currindex,
|
|
operand_entry_t curr)
|
|
{
|
|
tree notop;
|
|
unsigned int i;
|
|
operand_entry_t oe;
|
|
|
|
if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|
|
|| TREE_CODE (curr->op) != SSA_NAME)
|
|
return false;
|
|
|
|
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
|
|
if (notop == NULL_TREE)
|
|
return false;
|
|
|
|
/* Any non-not version will have a rank that is one less than
|
|
the current rank. So once we hit those ranks, if we don't find
|
|
one, we can stop. */
|
|
|
|
for (i = currindex + 1;
|
|
VEC_iterate (operand_entry_t, *ops, i, oe)
|
|
&& oe->rank >= curr->rank - 1;
|
|
i++)
|
|
{
|
|
if (oe->op == notop)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Equivalence: ");
|
|
print_generic_expr (dump_file, notop, 0);
|
|
if (opcode == BIT_AND_EXPR)
|
|
fprintf (dump_file, " & ~");
|
|
else if (opcode == BIT_IOR_EXPR)
|
|
fprintf (dump_file, " | ~");
|
|
print_generic_expr (dump_file, oe->op, 0);
|
|
if (opcode == BIT_AND_EXPR)
|
|
fprintf (dump_file, " -> 0\n");
|
|
else if (opcode == BIT_IOR_EXPR)
|
|
fprintf (dump_file, " -> -1\n");
|
|
}
|
|
|
|
if (opcode == BIT_AND_EXPR)
|
|
oe->op = build_zero_cst (TREE_TYPE (oe->op));
|
|
else if (opcode == BIT_IOR_EXPR)
|
|
oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
|
|
TYPE_PRECISION (TREE_TYPE (oe->op)));
|
|
|
|
reassociate_stats.ops_eliminated
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
|
VEC_free (operand_entry_t, heap, *ops);
|
|
*ops = NULL;
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oe);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Use constant value that may be present in OPS to try to eliminate
|
|
operands. Note that this function is only really used when we've
|
|
eliminated ops for other reasons, or merged constants. Across
|
|
single statements, fold already does all of this, plus more. There
|
|
is little point in duplicating logic, so I've only included the
|
|
identities that I could ever construct testcases to trigger. */
|
|
|
|
static void
|
|
eliminate_using_constants (enum tree_code opcode,
|
|
VEC(operand_entry_t, heap) **ops)
|
|
{
|
|
operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
|
|
tree type = TREE_TYPE (oelast->op);
|
|
|
|
if (oelast->rank == 0
|
|
&& (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
|
|
{
|
|
switch (opcode)
|
|
{
|
|
case BIT_AND_EXPR:
|
|
if (integer_zerop (oelast->op))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found & 0, removing all other ops\n");
|
|
|
|
reassociate_stats.ops_eliminated
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
|
|
|
VEC_free (operand_entry_t, heap, *ops);
|
|
*ops = NULL;
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
|
return;
|
|
}
|
|
}
|
|
else if (integer_all_onesp (oelast->op))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found & -1, removing\n");
|
|
VEC_pop (operand_entry_t, *ops);
|
|
reassociate_stats.ops_eliminated++;
|
|
}
|
|
}
|
|
break;
|
|
case BIT_IOR_EXPR:
|
|
if (integer_all_onesp (oelast->op))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found | -1, removing all other ops\n");
|
|
|
|
reassociate_stats.ops_eliminated
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
|
|
|
VEC_free (operand_entry_t, heap, *ops);
|
|
*ops = NULL;
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
|
return;
|
|
}
|
|
}
|
|
else if (integer_zerop (oelast->op))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found | 0, removing\n");
|
|
VEC_pop (operand_entry_t, *ops);
|
|
reassociate_stats.ops_eliminated++;
|
|
}
|
|
}
|
|
break;
|
|
case MULT_EXPR:
|
|
if (integer_zerop (oelast->op)
|
|
|| (FLOAT_TYPE_P (type)
|
|
&& !HONOR_NANS (TYPE_MODE (type))
|
|
&& !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
|
|
&& real_zerop (oelast->op)))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found * 0, removing all other ops\n");
|
|
|
|
reassociate_stats.ops_eliminated
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
|
VEC_free (operand_entry_t, heap, *ops);
|
|
*ops = NULL;
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
|
return;
|
|
}
|
|
}
|
|
else if (integer_onep (oelast->op)
|
|
|| (FLOAT_TYPE_P (type)
|
|
&& !HONOR_SNANS (TYPE_MODE (type))
|
|
&& real_onep (oelast->op)))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found * 1, removing\n");
|
|
VEC_pop (operand_entry_t, *ops);
|
|
reassociate_stats.ops_eliminated++;
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
case BIT_XOR_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
if (integer_zerop (oelast->op)
|
|
|| (FLOAT_TYPE_P (type)
|
|
&& (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
|
|
&& fold_real_zero_addition_p (type, oelast->op,
|
|
opcode == MINUS_EXPR)))
|
|
{
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Found [|^+] 0, removing\n");
|
|
VEC_pop (operand_entry_t, *ops);
|
|
reassociate_stats.ops_eliminated++;
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
|
|
bool, bool);
|
|
|
|
/* Structure for tracking and counting operands. */
|
|
typedef struct oecount_s {
|
|
int cnt;
|
|
int id;
|
|
enum tree_code oecode;
|
|
tree op;
|
|
} oecount;
|
|
|
|
DEF_VEC_O(oecount);
|
|
DEF_VEC_ALLOC_O(oecount,heap);
|
|
|
|
/* The heap for the oecount hashtable and the sorted list of operands. */
|
|
static VEC (oecount, heap) *cvec;
|
|
|
|
/* Hash function for oecount. */
|
|
|
|
static hashval_t
|
|
oecount_hash (const void *p)
|
|
{
|
|
const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
|
|
return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
|
|
}
|
|
|
|
/* Comparison function for oecount. */
|
|
|
|
static int
|
|
oecount_eq (const void *p1, const void *p2)
|
|
{
|
|
const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
|
|
const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
|
|
return (c1->oecode == c2->oecode
|
|
&& c1->op == c2->op);
|
|
}
|
|
|
|
/* Comparison function for qsort sorting oecount elements by count. */
|
|
|
|
static int
|
|
oecount_cmp (const void *p1, const void *p2)
|
|
{
|
|
const oecount *c1 = (const oecount *)p1;
|
|
const oecount *c2 = (const oecount *)p2;
|
|
if (c1->cnt != c2->cnt)
|
|
return c1->cnt - c2->cnt;
|
|
else
|
|
/* If counts are identical, use unique IDs to stabilize qsort. */
|
|
return c1->id - c2->id;
|
|
}
|
|
|
|
/* Walks the linear chain with result *DEF searching for an operation
|
|
with operand OP and code OPCODE removing that from the chain. *DEF
|
|
is updated if there is only one operand but no operation left. */
|
|
|
|
static void
|
|
zero_one_operation (tree *def, enum tree_code opcode, tree op)
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (*def);
|
|
|
|
do
|
|
{
|
|
tree name = gimple_assign_rhs1 (stmt);
|
|
|
|
/* If this is the operation we look for and one of the operands
|
|
is ours simply propagate the other operand into the stmts
|
|
single use. */
|
|
if (gimple_assign_rhs_code (stmt) == opcode
|
|
&& (name == op
|
|
|| gimple_assign_rhs2 (stmt) == op))
|
|
{
|
|
gimple use_stmt;
|
|
use_operand_p use;
|
|
gimple_stmt_iterator gsi;
|
|
if (name == op)
|
|
name = gimple_assign_rhs2 (stmt);
|
|
gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
|
|
single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
|
|
if (gimple_assign_lhs (stmt) == *def)
|
|
*def = name;
|
|
SET_USE (use, name);
|
|
if (TREE_CODE (name) != SSA_NAME)
|
|
update_stmt (use_stmt);
|
|
gsi = gsi_for_stmt (stmt);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
return;
|
|
}
|
|
|
|
/* Continue walking the chain. */
|
|
gcc_assert (name != op
|
|
&& TREE_CODE (name) == SSA_NAME);
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
|
}
|
|
while (1);
|
|
}
|
|
|
|
/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
|
|
the result. Places the statement after the definition of either
|
|
OP1 or OP2. Returns the new statement. */
|
|
|
|
static gimple
|
|
build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
|
|
{
|
|
gimple op1def = NULL, op2def = NULL;
|
|
gimple_stmt_iterator gsi;
|
|
tree op;
|
|
gimple sum;
|
|
|
|
/* Create the addition statement. */
|
|
sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
|
|
op = make_ssa_name (tmpvar, sum);
|
|
gimple_assign_set_lhs (sum, op);
|
|
|
|
/* Find an insertion place and insert. */
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
op1def = SSA_NAME_DEF_STMT (op1);
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
|
op2def = SSA_NAME_DEF_STMT (op2);
|
|
if ((!op1def || gimple_nop_p (op1def))
|
|
&& (!op2def || gimple_nop_p (op2def)))
|
|
{
|
|
gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
|
}
|
|
else if ((!op1def || gimple_nop_p (op1def))
|
|
|| (op2def && !gimple_nop_p (op2def)
|
|
&& stmt_dominates_stmt_p (op1def, op2def)))
|
|
{
|
|
if (gimple_code (op2def) == GIMPLE_PHI)
|
|
{
|
|
gsi = gsi_after_labels (gimple_bb (op2def));
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
{
|
|
if (!stmt_ends_bb_p (op2def))
|
|
{
|
|
gsi = gsi_for_stmt (op2def);
|
|
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
|
|
if (e->flags & EDGE_FALLTHRU)
|
|
gsi_insert_on_edge_immediate (e, sum);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (gimple_code (op1def) == GIMPLE_PHI)
|
|
{
|
|
gsi = gsi_after_labels (gimple_bb (op1def));
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
{
|
|
if (!stmt_ends_bb_p (op1def))
|
|
{
|
|
gsi = gsi_for_stmt (op1def);
|
|
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
|
|
if (e->flags & EDGE_FALLTHRU)
|
|
gsi_insert_on_edge_immediate (e, sum);
|
|
}
|
|
}
|
|
}
|
|
update_stmt (sum);
|
|
|
|
return sum;
|
|
}
|
|
|
|
/* Perform un-distribution of divisions and multiplications.
|
|
A * X + B * X is transformed into (A + B) * X and A / X + B / X
|
|
to (A + B) / X for real X.
|
|
|
|
The algorithm is organized as follows.
|
|
|
|
- First we walk the addition chain *OPS looking for summands that
|
|
are defined by a multiplication or a real division. This results
|
|
in the candidates bitmap with relevant indices into *OPS.
|
|
|
|
- Second we build the chains of multiplications or divisions for
|
|
these candidates, counting the number of occurences of (operand, code)
|
|
pairs in all of the candidates chains.
|
|
|
|
- Third we sort the (operand, code) pairs by number of occurence and
|
|
process them starting with the pair with the most uses.
|
|
|
|
* For each such pair we walk the candidates again to build a
|
|
second candidate bitmap noting all multiplication/division chains
|
|
that have at least one occurence of (operand, code).
|
|
|
|
* We build an alternate addition chain only covering these
|
|
candidates with one (operand, code) operation removed from their
|
|
multiplication/division chain.
|
|
|
|
* The first candidate gets replaced by the alternate addition chain
|
|
multiplied/divided by the operand.
|
|
|
|
* All candidate chains get disabled for further processing and
|
|
processing of (operand, code) pairs continues.
|
|
|
|
The alternate addition chains built are re-processed by the main
|
|
reassociation algorithm which allows optimizing a * x * y + b * y * x
|
|
to (a + b ) * x * y in one invocation of the reassociation pass. */
|
|
|
|
static bool
|
|
undistribute_ops_list (enum tree_code opcode,
|
|
VEC (operand_entry_t, heap) **ops, struct loop *loop)
|
|
{
|
|
unsigned int length = VEC_length (operand_entry_t, *ops);
|
|
operand_entry_t oe1;
|
|
unsigned i, j;
|
|
sbitmap candidates, candidates2;
|
|
unsigned nr_candidates, nr_candidates2;
|
|
sbitmap_iterator sbi0;
|
|
VEC (operand_entry_t, heap) **subops;
|
|
htab_t ctable;
|
|
bool changed = false;
|
|
int next_oecount_id = 0;
|
|
|
|
if (length <= 1
|
|
|| opcode != PLUS_EXPR)
|
|
return false;
|
|
|
|
/* Build a list of candidates to process. */
|
|
candidates = sbitmap_alloc (length);
|
|
sbitmap_zero (candidates);
|
|
nr_candidates = 0;
|
|
FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe1)
|
|
{
|
|
enum tree_code dcode;
|
|
gimple oe1def;
|
|
|
|
if (TREE_CODE (oe1->op) != SSA_NAME)
|
|
continue;
|
|
oe1def = SSA_NAME_DEF_STMT (oe1->op);
|
|
if (!is_gimple_assign (oe1def))
|
|
continue;
|
|
dcode = gimple_assign_rhs_code (oe1def);
|
|
if ((dcode != MULT_EXPR
|
|
&& dcode != RDIV_EXPR)
|
|
|| !is_reassociable_op (oe1def, dcode, loop))
|
|
continue;
|
|
|
|
SET_BIT (candidates, i);
|
|
nr_candidates++;
|
|
}
|
|
|
|
if (nr_candidates < 2)
|
|
{
|
|
sbitmap_free (candidates);
|
|
return false;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "searching for un-distribute opportunities ");
|
|
print_generic_expr (dump_file,
|
|
VEC_index (operand_entry_t, *ops,
|
|
sbitmap_first_set_bit (candidates))->op, 0);
|
|
fprintf (dump_file, " %d\n", nr_candidates);
|
|
}
|
|
|
|
/* Build linearized sub-operand lists and the counting table. */
|
|
cvec = NULL;
|
|
ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
|
|
subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
|
|
VEC_length (operand_entry_t, *ops));
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
|
|
{
|
|
gimple oedef;
|
|
enum tree_code oecode;
|
|
unsigned j;
|
|
|
|
oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
|
|
oecode = gimple_assign_rhs_code (oedef);
|
|
linearize_expr_tree (&subops[i], oedef,
|
|
associative_tree_code (oecode), false);
|
|
|
|
FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1)
|
|
{
|
|
oecount c;
|
|
void **slot;
|
|
size_t idx;
|
|
c.oecode = oecode;
|
|
c.cnt = 1;
|
|
c.id = next_oecount_id++;
|
|
c.op = oe1->op;
|
|
VEC_safe_push (oecount, heap, cvec, &c);
|
|
idx = VEC_length (oecount, cvec) + 41;
|
|
slot = htab_find_slot (ctable, (void *)idx, INSERT);
|
|
if (!*slot)
|
|
{
|
|
*slot = (void *)idx;
|
|
}
|
|
else
|
|
{
|
|
VEC_pop (oecount, cvec);
|
|
VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
|
|
}
|
|
}
|
|
}
|
|
htab_delete (ctable);
|
|
|
|
/* Sort the counting table. */
|
|
VEC_qsort (oecount, cvec, oecount_cmp);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
oecount *c;
|
|
fprintf (dump_file, "Candidates:\n");
|
|
FOR_EACH_VEC_ELT (oecount, cvec, j, c)
|
|
{
|
|
fprintf (dump_file, " %u %s: ", c->cnt,
|
|
c->oecode == MULT_EXPR
|
|
? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
|
|
print_generic_expr (dump_file, c->op, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Process the (operand, code) pairs in order of most occurence. */
|
|
candidates2 = sbitmap_alloc (length);
|
|
while (!VEC_empty (oecount, cvec))
|
|
{
|
|
oecount *c = VEC_last (oecount, cvec);
|
|
if (c->cnt < 2)
|
|
break;
|
|
|
|
/* Now collect the operands in the outer chain that contain
|
|
the common operand in their inner chain. */
|
|
sbitmap_zero (candidates2);
|
|
nr_candidates2 = 0;
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
|
|
{
|
|
gimple oedef;
|
|
enum tree_code oecode;
|
|
unsigned j;
|
|
tree op = VEC_index (operand_entry_t, *ops, i)->op;
|
|
|
|
/* If we undistributed in this chain already this may be
|
|
a constant. */
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
continue;
|
|
|
|
oedef = SSA_NAME_DEF_STMT (op);
|
|
oecode = gimple_assign_rhs_code (oedef);
|
|
if (oecode != c->oecode)
|
|
continue;
|
|
|
|
FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1)
|
|
{
|
|
if (oe1->op == c->op)
|
|
{
|
|
SET_BIT (candidates2, i);
|
|
++nr_candidates2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nr_candidates2 >= 2)
|
|
{
|
|
operand_entry_t oe1, oe2;
|
|
tree tmpvar;
|
|
gimple prod;
|
|
int first = sbitmap_first_set_bit (candidates2);
|
|
|
|
/* Build the new addition chain. */
|
|
oe1 = VEC_index (operand_entry_t, *ops, first);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Building (");
|
|
print_generic_expr (dump_file, oe1->op, 0);
|
|
}
|
|
tmpvar = create_tmp_reg (TREE_TYPE (oe1->op), NULL);
|
|
add_referenced_var (tmpvar);
|
|
zero_one_operation (&oe1->op, c->oecode, c->op);
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
|
|
{
|
|
gimple sum;
|
|
oe2 = VEC_index (operand_entry_t, *ops, i);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " + ");
|
|
print_generic_expr (dump_file, oe2->op, 0);
|
|
}
|
|
zero_one_operation (&oe2->op, c->oecode, c->op);
|
|
sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
|
|
oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
|
|
oe2->rank = 0;
|
|
oe1->op = gimple_get_lhs (sum);
|
|
}
|
|
|
|
/* Apply the multiplication/division. */
|
|
prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
|
|
print_generic_expr (dump_file, c->op, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Record it in the addition chain and disable further
|
|
undistribution with this op. */
|
|
oe1->op = gimple_assign_lhs (prod);
|
|
oe1->rank = get_rank (oe1->op);
|
|
VEC_free (operand_entry_t, heap, subops[first]);
|
|
|
|
changed = true;
|
|
}
|
|
|
|
VEC_pop (oecount, cvec);
|
|
}
|
|
|
|
for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
|
|
VEC_free (operand_entry_t, heap, subops[i]);
|
|
free (subops);
|
|
VEC_free (oecount, heap, cvec);
|
|
sbitmap_free (candidates);
|
|
sbitmap_free (candidates2);
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
|
|
expression, examine the other OPS to see if any of them are comparisons
|
|
of the same values, which we may be able to combine or eliminate.
|
|
For example, we can rewrite (a < b) | (a == b) as (a <= b). */
|
|
|
|
static bool
|
|
eliminate_redundant_comparison (enum tree_code opcode,
|
|
VEC (operand_entry_t, heap) **ops,
|
|
unsigned int currindex,
|
|
operand_entry_t curr)
|
|
{
|
|
tree op1, op2;
|
|
enum tree_code lcode, rcode;
|
|
gimple def1, def2;
|
|
int i;
|
|
operand_entry_t oe;
|
|
|
|
if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|
|
return false;
|
|
|
|
/* Check that CURR is a comparison. */
|
|
if (TREE_CODE (curr->op) != SSA_NAME)
|
|
return false;
|
|
def1 = SSA_NAME_DEF_STMT (curr->op);
|
|
if (!is_gimple_assign (def1))
|
|
return false;
|
|
lcode = gimple_assign_rhs_code (def1);
|
|
if (TREE_CODE_CLASS (lcode) != tcc_comparison)
|
|
return false;
|
|
op1 = gimple_assign_rhs1 (def1);
|
|
op2 = gimple_assign_rhs2 (def1);
|
|
|
|
/* Now look for a similar comparison in the remaining OPS. */
|
|
for (i = currindex + 1;
|
|
VEC_iterate (operand_entry_t, *ops, i, oe);
|
|
i++)
|
|
{
|
|
tree t;
|
|
|
|
if (TREE_CODE (oe->op) != SSA_NAME)
|
|
continue;
|
|
def2 = SSA_NAME_DEF_STMT (oe->op);
|
|
if (!is_gimple_assign (def2))
|
|
continue;
|
|
rcode = gimple_assign_rhs_code (def2);
|
|
if (TREE_CODE_CLASS (rcode) != tcc_comparison)
|
|
continue;
|
|
|
|
/* If we got here, we have a match. See if we can combine the
|
|
two comparisons. */
|
|
if (opcode == BIT_IOR_EXPR)
|
|
t = maybe_fold_or_comparisons (lcode, op1, op2,
|
|
rcode, gimple_assign_rhs1 (def2),
|
|
gimple_assign_rhs2 (def2));
|
|
else
|
|
t = maybe_fold_and_comparisons (lcode, op1, op2,
|
|
rcode, gimple_assign_rhs1 (def2),
|
|
gimple_assign_rhs2 (def2));
|
|
if (!t)
|
|
continue;
|
|
|
|
/* maybe_fold_and_comparisons and maybe_fold_or_comparisons
|
|
always give us a boolean_type_node value back. If the original
|
|
BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
|
|
we need to convert. */
|
|
if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
|
|
t = fold_convert (TREE_TYPE (curr->op), t);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Equivalence: ");
|
|
print_generic_expr (dump_file, curr->op, 0);
|
|
fprintf (dump_file, " %s ", op_symbol_code (opcode));
|
|
print_generic_expr (dump_file, oe->op, 0);
|
|
fprintf (dump_file, " -> ");
|
|
print_generic_expr (dump_file, t, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Now we can delete oe, as it has been subsumed by the new combined
|
|
expression t. */
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
|
reassociate_stats.ops_eliminated ++;
|
|
|
|
/* If t is the same as curr->op, we're done. Otherwise we must
|
|
replace curr->op with t. Special case is if we got a constant
|
|
back, in which case we add it to the end instead of in place of
|
|
the current entry. */
|
|
if (TREE_CODE (t) == INTEGER_CST)
|
|
{
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
|
add_to_ops_vec (ops, t);
|
|
}
|
|
else if (!operand_equal_p (t, curr->op, 0))
|
|
{
|
|
tree tmpvar;
|
|
gimple sum;
|
|
enum tree_code subcode;
|
|
tree newop1;
|
|
tree newop2;
|
|
gcc_assert (COMPARISON_CLASS_P (t));
|
|
tmpvar = create_tmp_var (TREE_TYPE (t), NULL);
|
|
add_referenced_var (tmpvar);
|
|
extract_ops_from_tree (t, &subcode, &newop1, &newop2);
|
|
STRIP_USELESS_TYPE_CONVERSION (newop1);
|
|
STRIP_USELESS_TYPE_CONVERSION (newop2);
|
|
gcc_checking_assert (is_gimple_val (newop1)
|
|
&& is_gimple_val (newop2));
|
|
sum = build_and_add_sum (tmpvar, newop1, newop2, subcode);
|
|
curr->op = gimple_get_lhs (sum);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Perform various identities and other optimizations on the list of
|
|
operand entries, stored in OPS. The tree code for the binary
|
|
operation between all the operands is OPCODE. */
|
|
|
|
static void
|
|
optimize_ops_list (enum tree_code opcode,
|
|
VEC (operand_entry_t, heap) **ops)
|
|
{
|
|
unsigned int length = VEC_length (operand_entry_t, *ops);
|
|
unsigned int i;
|
|
operand_entry_t oe;
|
|
operand_entry_t oelast = NULL;
|
|
bool iterate = false;
|
|
|
|
if (length == 1)
|
|
return;
|
|
|
|
oelast = VEC_last (operand_entry_t, *ops);
|
|
|
|
/* If the last two are constants, pop the constants off, merge them
|
|
and try the next two. */
|
|
if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
|
|
{
|
|
operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
|
|
|
|
if (oelm1->rank == 0
|
|
&& is_gimple_min_invariant (oelm1->op)
|
|
&& useless_type_conversion_p (TREE_TYPE (oelm1->op),
|
|
TREE_TYPE (oelast->op)))
|
|
{
|
|
tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
|
|
oelm1->op, oelast->op);
|
|
|
|
if (folded && is_gimple_min_invariant (folded))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Merging constants\n");
|
|
|
|
VEC_pop (operand_entry_t, *ops);
|
|
VEC_pop (operand_entry_t, *ops);
|
|
|
|
add_to_ops_vec (ops, folded);
|
|
reassociate_stats.constants_eliminated++;
|
|
|
|
optimize_ops_list (opcode, ops);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
eliminate_using_constants (opcode, ops);
|
|
oelast = NULL;
|
|
|
|
for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
|
|
{
|
|
bool done = false;
|
|
|
|
if (eliminate_not_pairs (opcode, ops, i, oe))
|
|
return;
|
|
if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
|
|
|| (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
|
|
|| (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
|
|
{
|
|
if (done)
|
|
return;
|
|
iterate = true;
|
|
oelast = NULL;
|
|
continue;
|
|
}
|
|
oelast = oe;
|
|
i++;
|
|
}
|
|
|
|
length = VEC_length (operand_entry_t, *ops);
|
|
oelast = VEC_last (operand_entry_t, *ops);
|
|
|
|
if (iterate)
|
|
optimize_ops_list (opcode, ops);
|
|
}
|
|
|
|
/* Return true if OPERAND is defined by a PHI node which uses the LHS
|
|
of STMT in it's operands. This is also known as a "destructive
|
|
update" operation. */
|
|
|
|
static bool
|
|
is_phi_for_stmt (gimple stmt, tree operand)
|
|
{
|
|
gimple def_stmt;
|
|
tree lhs;
|
|
use_operand_p arg_p;
|
|
ssa_op_iter i;
|
|
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
|
|
def_stmt = SSA_NAME_DEF_STMT (operand);
|
|
if (gimple_code (def_stmt) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
|
|
if (lhs == USE_FROM_PTR (arg_p))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Remove def stmt of VAR if VAR has zero uses and recurse
|
|
on rhs1 operand if so. */
|
|
|
|
static void
|
|
remove_visited_stmt_chain (tree var)
|
|
{
|
|
gimple stmt;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
while (1)
|
|
{
|
|
if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
|
|
return;
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
|
if (!is_gimple_assign (stmt)
|
|
|| !gimple_visited_p (stmt))
|
|
return;
|
|
var = gimple_assign_rhs1 (stmt);
|
|
gsi = gsi_for_stmt (stmt);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
|
|
/* Recursively rewrite our linearized statements so that the operators
|
|
match those in OPS[OPINDEX], putting the computation in rank
|
|
order. */
|
|
|
|
static void
|
|
rewrite_expr_tree (gimple stmt, unsigned int opindex,
|
|
VEC(operand_entry_t, heap) * ops, bool moved)
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
operand_entry_t oe;
|
|
|
|
/* If we have three operands left, then we want to make sure the one
|
|
that gets the double binary op are the ones with the same rank.
|
|
|
|
The alternative we try is to see if this is a destructive
|
|
update style statement, which is like:
|
|
b = phi (a, ...)
|
|
a = c + b;
|
|
In that case, we want to use the destructive update form to
|
|
expose the possible vectorizer sum reduction opportunity.
|
|
In that case, the third operand will be the phi node.
|
|
|
|
We could, of course, try to be better as noted above, and do a
|
|
lot of work to try to find these opportunities in >3 operand
|
|
cases, but it is unlikely to be worth it. */
|
|
if (opindex + 3 == VEC_length (operand_entry_t, ops))
|
|
{
|
|
operand_entry_t oe1, oe2, oe3;
|
|
|
|
oe1 = VEC_index (operand_entry_t, ops, opindex);
|
|
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
|
|
oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
|
|
|
|
if ((oe1->rank == oe2->rank
|
|
&& oe2->rank != oe3->rank)
|
|
|| (is_phi_for_stmt (stmt, oe3->op)
|
|
&& !is_phi_for_stmt (stmt, oe1->op)
|
|
&& !is_phi_for_stmt (stmt, oe2->op)))
|
|
{
|
|
struct operand_entry temp = *oe3;
|
|
oe3->op = oe1->op;
|
|
oe3->rank = oe1->rank;
|
|
oe1->op = temp.op;
|
|
oe1->rank= temp.rank;
|
|
}
|
|
else if ((oe1->rank == oe3->rank
|
|
&& oe2->rank != oe3->rank)
|
|
|| (is_phi_for_stmt (stmt, oe2->op)
|
|
&& !is_phi_for_stmt (stmt, oe1->op)
|
|
&& !is_phi_for_stmt (stmt, oe3->op)))
|
|
{
|
|
struct operand_entry temp = *oe2;
|
|
oe2->op = oe1->op;
|
|
oe2->rank = oe1->rank;
|
|
oe1->op = temp.op;
|
|
oe1->rank= temp.rank;
|
|
}
|
|
}
|
|
|
|
/* The final recursion case for this function is that you have
|
|
exactly two operations left.
|
|
If we had one exactly one op in the entire list to start with, we
|
|
would have never called this function, and the tail recursion
|
|
rewrites them one at a time. */
|
|
if (opindex + 2 == VEC_length (operand_entry_t, ops))
|
|
{
|
|
operand_entry_t oe1, oe2;
|
|
|
|
oe1 = VEC_index (operand_entry_t, ops, opindex);
|
|
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
|
|
|
|
if (rhs1 != oe1->op || rhs2 != oe2->op)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Transforming ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
gimple_assign_set_rhs1 (stmt, oe1->op);
|
|
gimple_assign_set_rhs2 (stmt, oe2->op);
|
|
update_stmt (stmt);
|
|
if (rhs1 != oe1->op && rhs1 != oe2->op)
|
|
remove_visited_stmt_chain (rhs1);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " into ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* If we hit here, we should have 3 or more ops left. */
|
|
gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
|
|
|
|
/* Rewrite the next operator. */
|
|
oe = VEC_index (operand_entry_t, ops, opindex);
|
|
|
|
if (oe->op != rhs2)
|
|
{
|
|
if (!moved)
|
|
{
|
|
gimple_stmt_iterator gsinow, gsirhs1;
|
|
gimple stmt1 = stmt, stmt2;
|
|
unsigned int count;
|
|
|
|
gsinow = gsi_for_stmt (stmt);
|
|
count = VEC_length (operand_entry_t, ops) - opindex - 2;
|
|
while (count-- != 0)
|
|
{
|
|
stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
|
|
gsirhs1 = gsi_for_stmt (stmt2);
|
|
gsi_move_before (&gsirhs1, &gsinow);
|
|
gsi_prev (&gsinow);
|
|
stmt1 = stmt2;
|
|
}
|
|
moved = true;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Transforming ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
gimple_assign_set_rhs2 (stmt, oe->op);
|
|
update_stmt (stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " into ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
}
|
|
/* Recurse on the LHS of the binary operator, which is guaranteed to
|
|
be the non-leaf side. */
|
|
rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
|
|
}
|
|
|
|
/* Transform STMT, which is really (A +B) + (C + D) into the left
|
|
linear form, ((A+B)+C)+D.
|
|
Recurse on D if necessary. */
|
|
|
|
static void
|
|
linearize_expr (gimple stmt)
|
|
{
|
|
gimple_stmt_iterator gsinow, gsirhs;
|
|
gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
|
gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
|
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
|
|
gimple newbinrhs = NULL;
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
|
|
|
gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
|
|
&& is_reassociable_op (binrhs, rhscode, loop));
|
|
|
|
gsinow = gsi_for_stmt (stmt);
|
|
gsirhs = gsi_for_stmt (binrhs);
|
|
gsi_move_before (&gsirhs, &gsinow);
|
|
|
|
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
|
|
gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
|
|
gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
|
|
|
|
if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
|
|
newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Linearized: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
reassociate_stats.linearized++;
|
|
update_stmt (binrhs);
|
|
update_stmt (binlhs);
|
|
update_stmt (stmt);
|
|
|
|
gimple_set_visited (stmt, true);
|
|
gimple_set_visited (binlhs, true);
|
|
gimple_set_visited (binrhs, true);
|
|
|
|
/* Tail recurse on the new rhs if it still needs reassociation. */
|
|
if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
|
|
/* ??? This should probably be linearize_expr (newbinrhs) but I don't
|
|
want to change the algorithm while converting to tuples. */
|
|
linearize_expr (stmt);
|
|
}
|
|
|
|
/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
|
|
it. Otherwise, return NULL. */
|
|
|
|
static gimple
|
|
get_single_immediate_use (tree lhs)
|
|
{
|
|
use_operand_p immuse;
|
|
gimple immusestmt;
|
|
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
|
&& single_imm_use (lhs, &immuse, &immusestmt)
|
|
&& is_gimple_assign (immusestmt))
|
|
return immusestmt;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Recursively negate the value of TONEGATE, and return the SSA_NAME
|
|
representing the negated value. Insertions of any necessary
|
|
instructions go before GSI.
|
|
This function is recursive in that, if you hand it "a_5" as the
|
|
value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
|
|
transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
|
|
|
|
static tree
|
|
negate_value (tree tonegate, gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple negatedefstmt= NULL;
|
|
tree resultofnegate;
|
|
|
|
/* If we are trying to negate a name, defined by an add, negate the
|
|
add operands instead. */
|
|
if (TREE_CODE (tonegate) == SSA_NAME)
|
|
negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
|
|
if (TREE_CODE (tonegate) == SSA_NAME
|
|
&& is_gimple_assign (negatedefstmt)
|
|
&& TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
|
|
&& has_single_use (gimple_assign_lhs (negatedefstmt))
|
|
&& gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
|
|
tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
|
|
|
|
gsi = gsi_for_stmt (negatedefstmt);
|
|
rhs1 = negate_value (rhs1, &gsi);
|
|
gimple_assign_set_rhs1 (negatedefstmt, rhs1);
|
|
|
|
gsi = gsi_for_stmt (negatedefstmt);
|
|
rhs2 = negate_value (rhs2, &gsi);
|
|
gimple_assign_set_rhs2 (negatedefstmt, rhs2);
|
|
|
|
update_stmt (negatedefstmt);
|
|
return gimple_assign_lhs (negatedefstmt);
|
|
}
|
|
|
|
tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
|
|
resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
|
return resultofnegate;
|
|
}
|
|
|
|
/* Return true if we should break up the subtract in STMT into an add
|
|
with negate. This is true when we the subtract operands are really
|
|
adds, or the subtract itself is used in an add expression. In
|
|
either case, breaking up the subtract into an add with negate
|
|
exposes the adds to reassociation. */
|
|
|
|
static bool
|
|
should_break_up_subtract (gimple stmt)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree binlhs = gimple_assign_rhs1 (stmt);
|
|
tree binrhs = gimple_assign_rhs2 (stmt);
|
|
gimple immusestmt;
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
|
|
|
if (TREE_CODE (binlhs) == SSA_NAME
|
|
&& is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
|
|
return true;
|
|
|
|
if (TREE_CODE (binrhs) == SSA_NAME
|
|
&& is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
|
|
return true;
|
|
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
|
&& (immusestmt = get_single_immediate_use (lhs))
|
|
&& is_gimple_assign (immusestmt)
|
|
&& (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
|
|
|| gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Transform STMT from A - B into A + -B. */
|
|
|
|
static void
|
|
break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Breaking up subtract ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
rhs2 = negate_value (rhs2, gsip);
|
|
gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
|
|
update_stmt (stmt);
|
|
}
|
|
|
|
/* Recursively linearize a binary expression that is the RHS of STMT.
|
|
Place the operands of the expression tree in the vector named OPS. */
|
|
|
|
static void
|
|
linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
|
|
bool is_associative, bool set_visited)
|
|
{
|
|
tree binlhs = gimple_assign_rhs1 (stmt);
|
|
tree binrhs = gimple_assign_rhs2 (stmt);
|
|
gimple binlhsdef, binrhsdef;
|
|
bool binlhsisreassoc = false;
|
|
bool binrhsisreassoc = false;
|
|
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
|
|
|
if (set_visited)
|
|
gimple_set_visited (stmt, true);
|
|
|
|
if (TREE_CODE (binlhs) == SSA_NAME)
|
|
{
|
|
binlhsdef = SSA_NAME_DEF_STMT (binlhs);
|
|
binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
|
|
&& !stmt_could_throw_p (binlhsdef));
|
|
}
|
|
|
|
if (TREE_CODE (binrhs) == SSA_NAME)
|
|
{
|
|
binrhsdef = SSA_NAME_DEF_STMT (binrhs);
|
|
binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
|
|
&& !stmt_could_throw_p (binrhsdef));
|
|
}
|
|
|
|
/* If the LHS is not reassociable, but the RHS is, we need to swap
|
|
them. If neither is reassociable, there is nothing we can do, so
|
|
just put them in the ops vector. If the LHS is reassociable,
|
|
linearize it. If both are reassociable, then linearize the RHS
|
|
and the LHS. */
|
|
|
|
if (!binlhsisreassoc)
|
|
{
|
|
tree temp;
|
|
|
|
/* If this is not a associative operation like division, give up. */
|
|
if (!is_associative)
|
|
{
|
|
add_to_ops_vec (ops, binrhs);
|
|
return;
|
|
}
|
|
|
|
if (!binrhsisreassoc)
|
|
{
|
|
add_to_ops_vec (ops, binrhs);
|
|
add_to_ops_vec (ops, binlhs);
|
|
return;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "swapping operands of ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
swap_tree_operands (stmt,
|
|
gimple_assign_rhs1_ptr (stmt),
|
|
gimple_assign_rhs2_ptr (stmt));
|
|
update_stmt (stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " is now ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
/* We want to make it so the lhs is always the reassociative op,
|
|
so swap. */
|
|
temp = binlhs;
|
|
binlhs = binrhs;
|
|
binrhs = temp;
|
|
}
|
|
else if (binrhsisreassoc)
|
|
{
|
|
linearize_expr (stmt);
|
|
binlhs = gimple_assign_rhs1 (stmt);
|
|
binrhs = gimple_assign_rhs2 (stmt);
|
|
}
|
|
|
|
gcc_assert (TREE_CODE (binrhs) != SSA_NAME
|
|
|| !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
|
|
rhscode, loop));
|
|
linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
|
|
is_associative, set_visited);
|
|
add_to_ops_vec (ops, binrhs);
|
|
}
|
|
|
|
/* Repropagate the negates back into subtracts, since no other pass
|
|
currently does it. */
|
|
|
|
static void
|
|
repropagate_negates (void)
|
|
{
|
|
unsigned int i = 0;
|
|
tree negate;
|
|
|
|
FOR_EACH_VEC_ELT (tree, plus_negates, i, negate)
|
|
{
|
|
gimple user = get_single_immediate_use (negate);
|
|
|
|
if (!user || !is_gimple_assign (user))
|
|
continue;
|
|
|
|
/* The negate operand can be either operand of a PLUS_EXPR
|
|
(it can be the LHS if the RHS is a constant for example).
|
|
|
|
Force the negate operand to the RHS of the PLUS_EXPR, then
|
|
transform the PLUS_EXPR into a MINUS_EXPR. */
|
|
if (gimple_assign_rhs_code (user) == PLUS_EXPR)
|
|
{
|
|
/* If the negated operand appears on the LHS of the
|
|
PLUS_EXPR, exchange the operands of the PLUS_EXPR
|
|
to force the negated operand to the RHS of the PLUS_EXPR. */
|
|
if (gimple_assign_rhs1 (user) == negate)
|
|
{
|
|
swap_tree_operands (user,
|
|
gimple_assign_rhs1_ptr (user),
|
|
gimple_assign_rhs2_ptr (user));
|
|
}
|
|
|
|
/* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
|
|
the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
|
|
if (gimple_assign_rhs2 (user) == negate)
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (user);
|
|
tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (user);
|
|
gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
|
|
update_stmt (user);
|
|
}
|
|
}
|
|
else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
|
|
{
|
|
if (gimple_assign_rhs1 (user) == negate)
|
|
{
|
|
/* We have
|
|
x = -a
|
|
y = x - b
|
|
which we transform into
|
|
x = a + b
|
|
y = -x .
|
|
This pushes down the negate which we possibly can merge
|
|
into some other operation, hence insert it into the
|
|
plus_negates vector. */
|
|
gimple feed = SSA_NAME_DEF_STMT (negate);
|
|
tree a = gimple_assign_rhs1 (feed);
|
|
tree rhs2 = gimple_assign_rhs2 (user);
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (feed), gsi2;
|
|
gimple_replace_lhs (feed, negate);
|
|
gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, a, rhs2);
|
|
update_stmt (gsi_stmt (gsi));
|
|
gsi2 = gsi_for_stmt (user);
|
|
gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, negate, NULL);
|
|
update_stmt (gsi_stmt (gsi2));
|
|
gsi_move_before (&gsi, &gsi2);
|
|
VEC_safe_push (tree, heap, plus_negates,
|
|
gimple_assign_lhs (gsi_stmt (gsi2)));
|
|
}
|
|
else
|
|
{
|
|
/* Transform "x = -a; y = b - x" into "y = b + a", getting
|
|
rid of one operation. */
|
|
gimple feed = SSA_NAME_DEF_STMT (negate);
|
|
tree a = gimple_assign_rhs1 (feed);
|
|
tree rhs1 = gimple_assign_rhs1 (user);
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (user);
|
|
gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
|
|
update_stmt (gsi_stmt (gsi));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns true if OP is of a type for which we can do reassociation.
|
|
That is for integral or non-saturating fixed-point types, and for
|
|
floating point type when associative-math is enabled. */
|
|
|
|
static bool
|
|
can_reassociate_p (tree op)
|
|
{
|
|
tree type = TREE_TYPE (op);
|
|
if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
|
|
|| NON_SAT_FIXED_POINT_TYPE_P (type)
|
|
|| (flag_associative_math && FLOAT_TYPE_P (type)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Break up subtract operations in block BB.
|
|
|
|
We do this top down because we don't know whether the subtract is
|
|
part of a possible chain of reassociation except at the top.
|
|
|
|
IE given
|
|
d = f + g
|
|
c = a + e
|
|
b = c - d
|
|
q = b - r
|
|
k = t - q
|
|
|
|
we want to break up k = t - q, but we won't until we've transformed q
|
|
= b - r, which won't be broken up until we transform b = c - d.
|
|
|
|
En passant, clear the GIMPLE visited flag on every statement. */
|
|
|
|
static void
|
|
break_up_subtract_bb (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block son;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
gimple_set_visited (stmt, false);
|
|
|
|
if (!is_gimple_assign (stmt)
|
|
|| !can_reassociate_p (gimple_assign_lhs (stmt)))
|
|
continue;
|
|
|
|
/* Look for simple gimple subtract operations. */
|
|
if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
|
|
{
|
|
if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
|
|
|| !can_reassociate_p (gimple_assign_rhs2 (stmt)))
|
|
continue;
|
|
|
|
/* Check for a subtract used only in an addition. If this
|
|
is the case, transform it into add of a negate for better
|
|
reassociation. IE transform C = A-B into C = A + -B if C
|
|
is only used in an addition. */
|
|
if (should_break_up_subtract (stmt))
|
|
break_up_subtract (stmt, &gsi);
|
|
}
|
|
else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
|
|
&& can_reassociate_p (gimple_assign_rhs1 (stmt)))
|
|
VEC_safe_push (tree, heap, plus_negates, gimple_assign_lhs (stmt));
|
|
}
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
|
son;
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
|
break_up_subtract_bb (son);
|
|
}
|
|
|
|
/* Reassociate expressions in basic block BB and its post-dominator as
|
|
children. */
|
|
|
|
static void
|
|
reassociate_bb (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block son;
|
|
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_assign (stmt)
|
|
&& !stmt_could_throw_p (stmt))
|
|
{
|
|
tree lhs, rhs1, rhs2;
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
|
|
|
/* If this is not a gimple binary expression, there is
|
|
nothing for us to do with it. */
|
|
if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
|
|
continue;
|
|
|
|
/* If this was part of an already processed statement,
|
|
we don't need to touch it again. */
|
|
if (gimple_visited_p (stmt))
|
|
{
|
|
/* This statement might have become dead because of previous
|
|
reassociations. */
|
|
if (has_zero_uses (gimple_get_lhs (stmt)))
|
|
{
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
/* We might end up removing the last stmt above which
|
|
places the iterator to the end of the sequence.
|
|
Reset it to the last stmt in this case which might
|
|
be the end of the sequence as well if we removed
|
|
the last statement of the sequence. In which case
|
|
we need to bail out. */
|
|
if (gsi_end_p (gsi))
|
|
{
|
|
gsi = gsi_last_bb (bb);
|
|
if (gsi_end_p (gsi))
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
|
rhs2 = gimple_assign_rhs2 (stmt);
|
|
|
|
/* For non-bit or min/max operations we can't associate
|
|
all types. Verify that here. */
|
|
if (rhs_code != BIT_IOR_EXPR
|
|
&& rhs_code != BIT_AND_EXPR
|
|
&& rhs_code != BIT_XOR_EXPR
|
|
&& rhs_code != MIN_EXPR
|
|
&& rhs_code != MAX_EXPR
|
|
&& (!can_reassociate_p (lhs)
|
|
|| !can_reassociate_p (rhs1)
|
|
|| !can_reassociate_p (rhs2)))
|
|
continue;
|
|
|
|
if (associative_tree_code (rhs_code))
|
|
{
|
|
VEC(operand_entry_t, heap) *ops = NULL;
|
|
|
|
/* There may be no immediate uses left by the time we
|
|
get here because we may have eliminated them all. */
|
|
if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
|
|
continue;
|
|
|
|
gimple_set_visited (stmt, true);
|
|
linearize_expr_tree (&ops, stmt, true, true);
|
|
VEC_qsort (operand_entry_t, ops, sort_by_operand_rank);
|
|
optimize_ops_list (rhs_code, &ops);
|
|
if (undistribute_ops_list (rhs_code, &ops,
|
|
loop_containing_stmt (stmt)))
|
|
{
|
|
VEC_qsort (operand_entry_t, ops, sort_by_operand_rank);
|
|
optimize_ops_list (rhs_code, &ops);
|
|
}
|
|
|
|
if (VEC_length (operand_entry_t, ops) == 1)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Transforming ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
|
gimple_assign_set_rhs_from_tree (&gsi,
|
|
VEC_last (operand_entry_t,
|
|
ops)->op);
|
|
update_stmt (stmt);
|
|
remove_visited_stmt_chain (rhs1);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " into ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
}
|
|
else
|
|
rewrite_expr_tree (stmt, 0, ops, false);
|
|
|
|
VEC_free (operand_entry_t, heap, ops);
|
|
}
|
|
}
|
|
}
|
|
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
|
|
son;
|
|
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
|
reassociate_bb (son);
|
|
}
|
|
|
|
void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
|
|
void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
|
|
|
|
/* Dump the operand entry vector OPS to FILE. */
|
|
|
|
void
|
|
dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
|
|
{
|
|
operand_entry_t oe;
|
|
unsigned int i;
|
|
|
|
FOR_EACH_VEC_ELT (operand_entry_t, ops, i, oe)
|
|
{
|
|
fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
|
|
print_generic_expr (file, oe->op, 0);
|
|
}
|
|
}
|
|
|
|
/* Dump the operand entry vector OPS to STDERR. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_ops_vector (VEC (operand_entry_t, heap) *ops)
|
|
{
|
|
dump_ops_vector (stderr, ops);
|
|
}
|
|
|
|
static void
|
|
do_reassoc (void)
|
|
{
|
|
break_up_subtract_bb (ENTRY_BLOCK_PTR);
|
|
reassociate_bb (EXIT_BLOCK_PTR);
|
|
}
|
|
|
|
/* Initialize the reassociation pass. */
|
|
|
|
static void
|
|
init_reassoc (void)
|
|
{
|
|
int i;
|
|
long rank = 2;
|
|
tree param;
|
|
int *bbs = XNEWVEC (int, last_basic_block + 1);
|
|
|
|
/* Find the loops, so that we can prevent moving calculations in
|
|
them. */
|
|
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
|
|
|
|
memset (&reassociate_stats, 0, sizeof (reassociate_stats));
|
|
|
|
operand_entry_pool = create_alloc_pool ("operand entry pool",
|
|
sizeof (struct operand_entry), 30);
|
|
next_operand_entry_id = 0;
|
|
|
|
/* Reverse RPO (Reverse Post Order) will give us something where
|
|
deeper loops come later. */
|
|
pre_and_rev_post_order_compute (NULL, bbs, false);
|
|
bb_rank = XCNEWVEC (long, last_basic_block + 1);
|
|
operand_rank = pointer_map_create ();
|
|
|
|
/* Give each argument a distinct rank. */
|
|
for (param = DECL_ARGUMENTS (current_function_decl);
|
|
param;
|
|
param = DECL_CHAIN (param))
|
|
{
|
|
if (gimple_default_def (cfun, param) != NULL)
|
|
{
|
|
tree def = gimple_default_def (cfun, param);
|
|
insert_operand_rank (def, ++rank);
|
|
}
|
|
}
|
|
|
|
/* Give the chain decl a distinct rank. */
|
|
if (cfun->static_chain_decl != NULL)
|
|
{
|
|
tree def = gimple_default_def (cfun, cfun->static_chain_decl);
|
|
if (def != NULL)
|
|
insert_operand_rank (def, ++rank);
|
|
}
|
|
|
|
/* Set up rank for each BB */
|
|
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
|
|
bb_rank[bbs[i]] = ++rank << 16;
|
|
|
|
free (bbs);
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
plus_negates = NULL;
|
|
}
|
|
|
|
/* Cleanup after the reassociation pass, and print stats if
|
|
requested. */
|
|
|
|
static void
|
|
fini_reassoc (void)
|
|
{
|
|
statistics_counter_event (cfun, "Linearized",
|
|
reassociate_stats.linearized);
|
|
statistics_counter_event (cfun, "Constants eliminated",
|
|
reassociate_stats.constants_eliminated);
|
|
statistics_counter_event (cfun, "Ops eliminated",
|
|
reassociate_stats.ops_eliminated);
|
|
statistics_counter_event (cfun, "Statements rewritten",
|
|
reassociate_stats.rewritten);
|
|
|
|
pointer_map_destroy (operand_rank);
|
|
free_alloc_pool (operand_entry_pool);
|
|
free (bb_rank);
|
|
VEC_free (tree, heap, plus_negates);
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
loop_optimizer_finalize ();
|
|
}
|
|
|
|
/* Gate and execute functions for Reassociation. */
|
|
|
|
static unsigned int
|
|
execute_reassoc (void)
|
|
{
|
|
init_reassoc ();
|
|
|
|
do_reassoc ();
|
|
repropagate_negates ();
|
|
|
|
fini_reassoc ();
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gate_tree_ssa_reassoc (void)
|
|
{
|
|
return flag_tree_reassoc != 0;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_reassoc =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"reassoc", /* name */
|
|
gate_tree_ssa_reassoc, /* gate */
|
|
execute_reassoc, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_TREE_REASSOC, /* tv_id */
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
|
}
|
|
};
|
|
|