gcc/libgfortran/generated/matmul_i8.c
Victor Leikehman 883c9d4d12 matmul.m4, [...]: Allocate space if return value has NULL in its data field.
2004-09-09  Victor Leikehman  <lei@il.ibm.com>

	* m4/matmul.m4, m4/matmull.m4, intrinsics/eoshift0.c,
	intrinsics/eoshift2.c, intrinsics/transpose_generic.c:
	Allocate space if return value has NULL in its data field.
	* generated/*.c: Regenerate.

From-SVN: r85717
2004-08-09 14:34:39 +00:00

169 lines
4.6 KiB
C

/* Implementation of the MATMUL intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
Either a or b can be rank 1. In this case x or y is 1. */
void
__matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
{
GFC_INTEGER_8 *abase;
GFC_INTEGER_8 *bbase;
GFC_INTEGER_8 *dest;
GFC_INTEGER_8 res;
index_type rxstride;
index_type rystride;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_INTEGER_8 *pa;
GFC_INTEGER_8 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[0].stride = 1;
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
}
else
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
retarray->dim[1].lbound = 0;
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[1].stride = retarray->dim[0].ubound+1;
}
retarray->data = internal_malloc (sizeof (GFC_INTEGER_8) * size0 (retarray));
retarray->base = 0;
}
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (a->dim[0].stride == 0)
a->dim[0].stride = 1;
if (b->dim[0].stride == 0)
b->dim[0].stride = 1;
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
rxstride = retarray->dim[0].stride;
rystride = rxstride;
}
else
{
rxstride = retarray->dim[0].stride;
rystride = retarray->dim[1].stride;
}
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
astride = a->dim[0].stride;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
xstride = 0;
rxstride = 0;
xcount = 1;
}
else
{
astride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
bstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
ystride = 0;
rystride = 0;
ycount = 1;
}
else
{
bstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
for (y = 0; y < ycount; y++)
{
for (x = 0; x < xcount; x++)
{
/* Do the summation for this element. For real and integer types
this is the same as DOT_PRODUCT. For complex types we use do
a*b, not conjg(a)*b. */
pa = abase;
pb = bbase;
res = 0;
for (n = 0; n < count; n++)
{
res += *pa * *pb;
pa += astride;
pb += bstride;
}
*dest = res;
dest += rxstride;
abase += xstride;
}
abase -= xstride * xcount;
bbase += ystride;
dest += rystride - (rxstride * xcount);
}
}