gcc/libgfortran/generated/minloc1_16_r16.c
Tobias Burnus 0cd0559e8c re PR fortran/33197 (Fortran 2008: math functions)
gcc/fortran/
2010-08-27  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * gcc/fortran/intrinsic.c (add_functions): Add norm2 and parity.
        * gcc/fortran/intrinsic.h (gfc_check_norm2, gfc_check_parity):
        gfc_simplify_norm2, gfc_simplify_parity, gfc_resolve_norm2,
        gfc_resolve_parity): New prototypes.
        * gcc/fortran/gfortran.h (gfc_isym_id): New enum items
        GFC_ISYM_NORM2 and GFC_ISYM_PARITY.
        * gcc/fortran/iresolve.c (gfc_resolve_norm2,
        gfc_resolve_parity): New functions.
        * gcc/fortran/check.c (gfc_check_norm2, gfc_check_parity):
        New functions.
        * gcc/fortran/trans-intrinsic.c (gfc_conv_intrinsic_arith,
        gfc_conv_intrinsic_function): Handle NORM2 and PARITY.
        * gcc/fortran/intrinsic.texi (NORM2, PARITY): Add.
        * gcc/fortran/simplify.c (simplify_transformation_to_array):
        Add post-processing opterator.
        (gfc_simplify_all, gfc_simplify_any, gfc_simplify_count,
        gfc_simplify_product, gfc_simplify_sum): Update call.
        (add_squared, do_sqrt, gfc_simplify_norm2, do_xor,
        gfc_simplify_parity): New functions.

gcc/testsuite/
2010-08-27  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * gcc/testsuite/gfortran.dg/norm2_1.f90: New.
        * gcc/testsuite/gfortran.dg/norm2_2.f90: New.
        * gcc/testsuite/gfortran.dg/norm2_3.f90: New.
        * gcc/testsuite/gfortran.dg/norm2_4.f90: New.
        * gcc/testsuite/gfortran.dg/parity_1.f90: New.
        * gcc/testsuite/gfortran.dg/parity_2.f90: New.
        * gcc/testsuite/gfortran.dg/parity_3.f90: New.

libgfortran/
2010-08-27  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * libgfortran/m4/ifunction.m4 (FINISH_ARRAY_FUNCTION,
        ARRAY_FUNCTION): Allow expression after loop.
        * libgfortran/m4/norm2.m4: New for _gfortran_norm2_r{4,8,10,16}.
        * libgfortran/m4/parity.m4: New for
        * _gfortran_parity_l{1,2,4,8,16}.
        * libgfortran/gfortran.map: Add new functions.
        * libgfortran/Makefile.am: Ditto.
        * libgfortran/m4/minloc1.m4: Add empty argument for
        * ARRAY_FUNCTION.
        * libgfortran/m4/maxloc1.m4: Ditto.
        * libgfortran/m4/all.m4: Ditto.
        * libgfortran/m4/minval.m4: Ditto.
        * libgfortran/m4/maxval.m4: Ditto.
        * libgfortran/m4/count.m4: Ditto.
        * libgfortran/m4/product.m4: Ditto.
        * libgfortran/m4/any.m4: Ditto.
        * Makefile.in: Regenerated.
        * generated/minval_r8.c: Regenerated.
        * generated/maxloc1_4_r8.c: Regenerated.
        * generated/minloc1_16_r16.c: Regenerated.
        * generated/norm2_r4.c: Regenerated.
        * generated/sum_i8.c: Regenerated.
        * generated/parity_l2.c: Regenerated.
        * generated/any_l16.c: Regenerated.
        * generated/maxval_i2.c: Regenerated.
        * generated/any_l2.c: Regenerated.
        * generated/product_r4.c: Regenerated.
        * generated/maxloc1_8_i4.c: Regenerated.
        * generated/parity_l16.c: Regenerated.
        * generated/all_l1.c: Regenerated.
        * generated/product_i2.c: Regenerated.
        * generated/minloc1_8_r16.c: Regenerated.
        * generated/maxloc1_8_r16.c: Regenerated.
        * generated/sum_r16.c: Regenerated.
        * generated/sum_i1.c: Regenerated.
        * generated/minloc1_4_r8.c: Regenerated.
        * generated/maxloc1_16_r16.c: Regenerated.
        * generated/minloc1_16_i4.c: Regenerated.
        * generated/maxloc1_16_i4.c: Regenerated.
        * generated/maxval_r16.c: Regenerated.
        * generated/product_c10.c: Regenerated.
        * generated/minloc1_8_i4.c: Regenerated.
        * generated/all_l2.c: Regenerated.
        * generated/product_c4.c: Regenerated.
        * generated/sum_r4.c: Regenerated.
        * generated/all_l16.c: Regenerated.
        * generated/minloc1_16_r10.c: Regenerated.
        * generated/sum_i2.c: Regenerated.
        * generated/maxloc1_8_r8.c: Regenerated.
        * generated/minval_i16.c: Regenerated.
        * generated/parity_l4.c: Regenerated.
        * generated/maxval_i4.c: Regenerated.
        * generated/any_l4.c: Regenerated.
        * generated/minval_i8.c: Regenerated.
        * generated/maxloc1_4_i8.c: Regenerated.
        * generated/minloc1_4_i16.c: Regenerated.
        * generated/maxloc1_4_i16.c: Regenerated.
        * generated/minloc1_8_r10.c: Regenerated.
        * generated/product_i4.c: Regenerated.
        * generated/maxloc1_8_r10.c: Regenerated.
        * generated/sum_c16.c: Regenerated.
        * generated/minloc1_16_r8.c: Regenerated.
        * generated/maxloc1_16_r8.c: Regenerated.
        * generated/count_4_l.c: Regenerated.
        * generated/sum_r10.c: Regenerated.
        * generated/count_8_l.c: Regenerated.
        * generated/sum_c4.c: Regenerated.
        * generated/maxloc1_16_r10.c: Regenerated.
        * generated/minloc1_8_r8.c: Regenerated.
        * generated/maxval_r10.c: Regenerated.
        * generated/minval_i1.c: Regenerated.
        * generated/maxloc1_4_i1.c: Regenerated.
        * generated/minloc1_4_i8.c: Regenerated.
        * generated/product_i16.c: Regenerated.
        * generated/all_l4.c: Regenerated.
        * generated/norm2_r16.c: Regenerated.
        * generated/minval_r4.c: Regenerated.
        * generated/maxloc1_4_r4.c: Regenerated.
        * generated/sum_i4.c: Regenerated.
        * generated/maxval_r8.c: Regenerated.
        * generated/norm2_r8.c: Regenerated.
        * generated/minloc1_4_i1.c: Regenerated.
        * generated/minval_r16.c: Regenerated.
        * generated/minval_i2.c: Regenerated.
        * generated/maxloc1_4_i2.c: Regenerated.
        * generated/product_r8.c: Regenerated.
        * generated/maxloc1_8_i8.c: Regenerated.
        * generated/sum_c10.c: Regenerated.
        * generated/minloc1_4_r16.c: Regenerated.
        * generated/maxloc1_4_r16.c: Regenerated.
        * generated/count_1_l.c: Regenerated.
        * generated/minloc1_4_r4.c: Regenerated.
        * generated/minloc1_16_i8.c: Regenerated.
        * generated/maxloc1_16_i8.c: Regenerated.
        * generated/minloc1_4_i2.c: Regenerated.
        * generated/maxloc1_8_i1.c: Regenerated.
        * generated/minloc1_8_i8.c: Regenerated.
        * generated/product_r16.c: Regenerated.
        * generated/product_c8.c: Regenerated.
        * generated/sum_r8.c: Regenerated.
        * generated/norm2_r10.c: Regenerated.
        * generated/minloc1_16_i16.c: Regenerated.
        * generated/maxloc1_8_r4.c: Regenerated.
        * generated/minloc1_16_i1.c: Regenerated.
        * generated/maxloc1_16_i1.c: Regenerated.
        * generated/minval_r10.c: Regenerated.
        * generated/count_16_l.c: Regenerated.
        * generated/parity_l8.c: Regenerated.
        * generated/minloc1_8_i1.c: Regenerated.
        * generated/minval_i4.c: Regenerated.
        * generated/maxloc1_4_i4.c: Regenerated.
        * generated/maxloc1_8_i2.c: Regenerated.
        * generated/maxval_i8.c: Regenerated.
        * generated/any_l8.c: Regenerated.
        * generated/minloc1_4_r10.c: Regenerated.
        * generated/minloc1_8_i16.c: Regenerated.
        * generated/maxloc1_4_r10.c: Regenerated.
        * generated/maxloc1_8_i16.c: Regenerated.
        * generated/minloc1_16_r4.c: Regenerated.
        * generated/maxloc1_16_r4.c: Regenerated.
        * generated/product_i8.c: Regenerated.
        * generated/sum_i16.c: Regenerated.
        * generated/count_2_l.c: Regenerated.
        * generated/maxloc1_16_i16.c: Regenerated.
        * generated/minloc1_8_r4.c: Regenerated.
        * generated/sum_c8.c: Regenerated.
        * generated/minloc1_16_i2.c: Regenerated.
        * generated/maxloc1_16_i2.c: Regenerated.
        * generated/parity_l1.c: Regenerated.
        * generated/maxval_i16.c: Regenerated.
        * generated/maxval_i1.c: Regenerated.
        * generated/minloc1_4_i4.c: Regenerated.
        * generated/any_l1.c: Regenerated.
        * generated/minloc1_8_i2.c: Regenerated.
        * generated/product_c16.c: Regenerated.
        * generated/product_r10.c: Regenerated.
        * generated/product_i1.c: Regenerated.
        * generated/all_l8.c: Regenerated.
        * generated/maxval_r4.c: Regenerated.

From-SVN: r163595
2010-08-27 21:17:45 +02:00

565 lines
13 KiB
C

/* Implementation of the MINLOC intrinsic
Copyright 2002, 2007, 2009, 2010 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_16)
extern void minloc1_16_r16 (gfc_array_i16 * const restrict,
gfc_array_r16 * const restrict, const index_type * const restrict);
export_proto(minloc1_16_r16);
void
minloc1_16_r16 (gfc_array_i16 * const restrict retarray,
gfc_array_r16 * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_REAL_16 * restrict base;
GFC_INTEGER_16 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int continue_loop;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_16) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MINLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "MINLOC");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
continue_loop = 1;
while (continue_loop)
{
const GFC_REAL_16 * restrict src;
GFC_INTEGER_16 result;
src = base;
{
GFC_REAL_16 minval;
#if defined (GFC_REAL_16_INFINITY)
minval = GFC_REAL_16_INFINITY;
#else
minval = GFC_REAL_16_HUGE;
#endif
result = 1;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta)
{
#if defined (GFC_REAL_16_QUIET_NAN)
if (*src <= minval)
{
minval = *src;
result = (GFC_INTEGER_16)n + 1;
break;
}
}
for (; n < len; n++, src += delta)
{
#endif
if (*src < minval)
{
minval = *src;
result = (GFC_INTEGER_16)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
extern void mminloc1_16_r16 (gfc_array_i16 * const restrict,
gfc_array_r16 * const restrict, const index_type * const restrict,
gfc_array_l1 * const restrict);
export_proto(mminloc1_16_r16);
void
mminloc1_16_r16 (gfc_array_i16 * const restrict retarray,
gfc_array_r16 * const restrict array,
const index_type * const restrict pdim,
gfc_array_l1 * const restrict mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_16 * restrict dest;
const GFC_REAL_16 * restrict base;
const GFC_LOGICAL_1 * restrict mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
int mask_kind;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len <= 0)
return;
mbase = mask->data;
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
alloc_size = sizeof (GFC_INTEGER_16) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in MINLOC intrinsic");
if (unlikely (compile_options.bounds_check))
{
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "MINLOC");
bounds_equal_extents ((array_t *) mask, (array_t *) array,
"MASK argument", "MINLOC");
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
while (base)
{
const GFC_REAL_16 * restrict src;
const GFC_LOGICAL_1 * restrict msrc;
GFC_INTEGER_16 result;
src = base;
msrc = mbase;
{
GFC_REAL_16 minval;
#if defined (GFC_REAL_16_INFINITY)
minval = GFC_REAL_16_INFINITY;
#else
minval = GFC_REAL_16_HUGE;
#endif
#if defined (GFC_REAL_16_QUIET_NAN)
GFC_INTEGER_16 result2 = 0;
#endif
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc)
{
#if defined (GFC_REAL_16_QUIET_NAN)
if (!result2)
result2 = (GFC_INTEGER_16)n + 1;
if (*src <= minval)
#endif
{
minval = *src;
result = (GFC_INTEGER_16)n + 1;
break;
}
}
}
#if defined (GFC_REAL_16_QUIET_NAN)
if (unlikely (n >= len))
result = result2;
else
#endif
for (; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc && *src < minval)
{
minval = *src;
result = (GFC_INTEGER_16)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}
extern void sminloc1_16_r16 (gfc_array_i16 * const restrict,
gfc_array_r16 * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *);
export_proto(sminloc1_16_r16);
void
sminloc1_16_r16 (gfc_array_i16 * const restrict retarray,
gfc_array_r16 * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_16 * restrict dest;
index_type rank;
index_type n;
index_type dim;
if (*mask)
{
minloc1_16_r16 (retarray, array, pdim);
return;
}
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
for (n = 0; n < dim; n++)
{
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] <= 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
extent[n] =
GFC_DESCRIPTOR_EXTENT(array,n + 1);
if (extent[n] <= 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_16) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MINLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MINLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
}
dest = retarray->data;
while(1)
{
*dest = 0;
count[0]++;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
return;
else
{
count[n]++;
dest += dstride[n];
}
}
}
}
#endif