gcc/libgfortran/runtime/in_pack_generic.c
2009-04-09 17:00:19 +02:00

207 lines
5.4 KiB
C

/* Generic helper function for repacking arrays.
Copyright 2003, 2004, 2005, 2007, 2009 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
extern void *internal_pack (gfc_array_char *);
export_proto(internal_pack);
void *
internal_pack (gfc_array_char * source)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
index_type ssize;
const char *src;
char *dest;
void *destptr;
int n;
int packed;
index_type size;
index_type type_size;
if (source->dim[0].stride == 0)
{
source->dim[0].stride = 1;
return source->data;
}
type_size = GFC_DTYPE_TYPE_SIZE(source);
size = GFC_DESCRIPTOR_SIZE (source);
switch (type_size)
{
case GFC_DTYPE_INTEGER_1:
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_DERIVED_1:
return internal_pack_1 ((gfc_array_i1 *) source);
case GFC_DTYPE_INTEGER_2:
case GFC_DTYPE_LOGICAL_2:
return internal_pack_2 ((gfc_array_i2 *) source);
case GFC_DTYPE_INTEGER_4:
case GFC_DTYPE_LOGICAL_4:
return internal_pack_4 ((gfc_array_i4 *) source);
case GFC_DTYPE_INTEGER_8:
case GFC_DTYPE_LOGICAL_8:
return internal_pack_8 ((gfc_array_i8 *) source);
#if defined(HAVE_GFC_INTEGER_16)
case GFC_DTYPE_INTEGER_16:
case GFC_DTYPE_LOGICAL_16:
return internal_pack_16 ((gfc_array_i16 *) source);
#endif
case GFC_DTYPE_REAL_4:
return internal_pack_r4 ((gfc_array_r4 *) source);
case GFC_DTYPE_REAL_8:
return internal_pack_r8 ((gfc_array_r8 *) source);
#if defined (HAVE_GFC_REAL_10)
case GFC_DTYPE_REAL_10:
return internal_pack_r10 ((gfc_array_r10 *) source);
#endif
#if defined (HAVE_GFC_REAL_16)
case GFC_DTYPE_REAL_16:
return internal_pack_r16 ((gfc_array_r16 *) source);
#endif
case GFC_DTYPE_COMPLEX_4:
return internal_pack_c4 ((gfc_array_c4 *) source);
case GFC_DTYPE_COMPLEX_8:
return internal_pack_c8 ((gfc_array_c8 *) source);
#if defined (HAVE_GFC_COMPLEX_10)
case GFC_DTYPE_COMPLEX_10:
return internal_pack_c10 ((gfc_array_c10 *) source);
#endif
#if defined (HAVE_GFC_COMPLEX_16)
case GFC_DTYPE_COMPLEX_16:
return internal_pack_c16 ((gfc_array_c16 *) source);
#endif
case GFC_DTYPE_DERIVED_2:
if (GFC_UNALIGNED_2(source->data))
break;
else
return internal_pack_2 ((gfc_array_i2 *) source);
case GFC_DTYPE_DERIVED_4:
if (GFC_UNALIGNED_4(source->data))
break;
else
return internal_pack_4 ((gfc_array_i4 *) source);
case GFC_DTYPE_DERIVED_8:
if (GFC_UNALIGNED_8(source->data))
break;
else
return internal_pack_8 ((gfc_array_i8 *) source);
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_DERIVED_16:
if (GFC_UNALIGNED_16(source->data))
break;
else
return internal_pack_16 ((gfc_array_i16 *) source);
#endif
default:
break;
}
dim = GFC_DESCRIPTOR_RANK (source);
ssize = 1;
packed = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = source->dim[n].stride;
extent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
if (extent[n] <= 0)
{
/* Do nothing. */
packed = 1;
break;
}
if (ssize != stride[n])
packed = 0;
ssize *= extent[n];
}
if (packed)
return source->data;
/* Allocate storage for the destination. */
destptr = internal_malloc_size (ssize * size);
dest = (char *)destptr;
src = source->data;
stride0 = stride[0] * size;
while (src)
{
/* Copy the data. */
memcpy(dest, src, size);
/* Advance to the next element. */
dest += size;
src += stride0;
count[0]++;
/* Advance to the next source element. */
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
src -= stride[n] * extent[n] * size;
n++;
if (n == dim)
{
src = NULL;
break;
}
else
{
count[n]++;
src += stride[n] * size;
}
}
}
return destptr;
}