gcc/libgo/go/math/big/calibrate_test.go
Ian Lance Taylor 1a2f01efa6 libgo: update to Go1.10beta1
Update the Go library to the 1.10beta1 release.
    
    Requires a few changes to the compiler for modifications to the map
    runtime code, and to handle some nowritebarrier cases in the runtime.
    
    Reviewed-on: https://go-review.googlesource.com/86455

gotools/:
	* Makefile.am (go_cmd_vet_files): New variable.
	(go_cmd_buildid_files, go_cmd_test2json_files): New variables.
	(s-zdefaultcc): Change from constants to functions.
	(noinst_PROGRAMS): Add vet, buildid, and test2json.
	(cgo$(EXEEXT)): Link against $(LIBGOTOOL).
	(vet$(EXEEXT)): New target.
	(buildid$(EXEEXT)): New target.
	(test2json$(EXEEXT)): New target.
	(install-exec-local): Install all $(noinst_PROGRAMS).
	(uninstall-local): Uninstasll all $(noinst_PROGRAMS).
	(check-go-tool): Depend on $(noinst_PROGRAMS).  Copy down
	objabi.go.
	(check-runtime): Depend on $(noinst_PROGRAMS).
	(check-cgo-test, check-carchive-test): Likewise.
	(check-vet): New target.
	(check): Depend on check-vet.  Look at cmd_vet-testlog.
	(.PHONY): Add check-vet.
	* Makefile.in: Rebuild.

From-SVN: r256365
2018-01-09 01:23:08 +00:00

165 lines
4.5 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Calibration used to determine thresholds for using
// different algorithms. Ideally, this would be converted
// to go generate to create thresholds.go
// This file prints execution times for the Mul benchmark
// given different Karatsuba thresholds. The result may be
// used to manually fine-tune the threshold constant. The
// results are somewhat fragile; use repeated runs to get
// a clear picture.
// Calculates lower and upper thresholds for when basicSqr
// is faster than standard multiplication.
// Usage: go test -run=TestCalibrate -v -calibrate
package big
import (
"flag"
"fmt"
"testing"
"time"
)
var calibrate = flag.Bool("calibrate", false, "run calibration test")
func TestCalibrate(t *testing.T) {
if *calibrate {
computeKaratsubaThresholds()
// compute basicSqrThreshold where overhead becomes negligible
minSqr := computeSqrThreshold(10, 30, 1, 3)
// compute karatsubaSqrThreshold where karatsuba is faster
maxSqr := computeSqrThreshold(300, 500, 10, 3)
if minSqr != 0 {
fmt.Printf("found basicSqrThreshold = %d\n", minSqr)
} else {
fmt.Println("no basicSqrThreshold found")
}
if maxSqr != 0 {
fmt.Printf("found karatsubaSqrThreshold = %d\n", maxSqr)
} else {
fmt.Println("no karatsubaSqrThreshold found")
}
}
}
func karatsubaLoad(b *testing.B) {
BenchmarkMul(b)
}
// measureKaratsuba returns the time to run a Karatsuba-relevant benchmark
// given Karatsuba threshold th.
func measureKaratsuba(th int) time.Duration {
th, karatsubaThreshold = karatsubaThreshold, th
res := testing.Benchmark(karatsubaLoad)
karatsubaThreshold = th
return time.Duration(res.NsPerOp())
}
func computeKaratsubaThresholds() {
fmt.Printf("Multiplication times for varying Karatsuba thresholds\n")
fmt.Printf("(run repeatedly for good results)\n")
// determine Tk, the work load execution time using basic multiplication
Tb := measureKaratsuba(1e9) // th == 1e9 => Karatsuba multiplication disabled
fmt.Printf("Tb = %10s\n", Tb)
// thresholds
th := 4
th1 := -1
th2 := -1
var deltaOld time.Duration
for count := -1; count != 0 && th < 128; count-- {
// determine Tk, the work load execution time using Karatsuba multiplication
Tk := measureKaratsuba(th)
// improvement over Tb
delta := (Tb - Tk) * 100 / Tb
fmt.Printf("th = %3d Tk = %10s %4d%%", th, Tk, delta)
// determine break-even point
if Tk < Tb && th1 < 0 {
th1 = th
fmt.Print(" break-even point")
}
// determine diminishing return
if 0 < delta && delta < deltaOld && th2 < 0 {
th2 = th
fmt.Print(" diminishing return")
}
deltaOld = delta
fmt.Println()
// trigger counter
if th1 >= 0 && th2 >= 0 && count < 0 {
count = 10 // this many extra measurements after we got both thresholds
}
th++
}
}
func measureBasicSqr(words, nruns int, enable bool) time.Duration {
// more runs for better statistics
initBasicSqr, initKaratsubaSqr := basicSqrThreshold, karatsubaSqrThreshold
if enable {
// set thresholds to use basicSqr at this number of words
basicSqrThreshold, karatsubaSqrThreshold = words-1, words+1
} else {
// set thresholds to disable basicSqr for any number of words
basicSqrThreshold, karatsubaSqrThreshold = -1, -1
}
var testval int64
for i := 0; i < nruns; i++ {
res := testing.Benchmark(func(b *testing.B) { benchmarkNatSqr(b, words) })
testval += res.NsPerOp()
}
testval /= int64(nruns)
basicSqrThreshold, karatsubaSqrThreshold = initBasicSqr, initKaratsubaSqr
return time.Duration(testval)
}
func computeSqrThreshold(from, to, step, nruns int) int {
fmt.Println("Calibrating thresholds for basicSqr via benchmarks of z.mul(x,x)")
fmt.Printf("Looking for a timing difference for x between %d - %d words by %d step\n", from, to, step)
var initPos bool
var threshold int
for i := from; i <= to; i += step {
baseline := measureBasicSqr(i, nruns, false)
testval := measureBasicSqr(i, nruns, true)
pos := baseline > testval
delta := baseline - testval
percent := delta * 100 / baseline
fmt.Printf("words = %3d deltaT = %10s (%4d%%) is basicSqr better: %v", i, delta, percent, pos)
if i == from {
initPos = pos
}
if threshold == 0 && pos != initPos {
threshold = i
fmt.Printf(" threshold found")
}
fmt.Println()
}
if threshold != 0 {
fmt.Printf("Found threshold = %d between %d - %d\n", threshold, from, to)
} else {
fmt.Printf("Found NO threshold between %d - %d\n", from, to)
}
return threshold
}