c2047754c3
Compiler changes: * Change map assignment to use mapassign and assign value directly. * Change string iteration to use decoderune, faster for ASCII strings. * Change makeslice to take int, and use makeslice64 for larger values. * Add new noverflow field to hmap struct used for maps. Unresolved problems, to be fixed later: * Commented out test in go/types/sizes_test.go that doesn't compile. * Commented out reflect.TestStructOf test for padding after zero-sized field. Reviewed-on: https://go-review.googlesource.com/35231 gotools/: Updates for Go 1.8rc1. * Makefile.am (go_cmd_go_files): Add bug.go. (s-zdefaultcc): Write defaultPkgConfig. * Makefile.in: Rebuild. From-SVN: r244456
462 lines
12 KiB
Go
462 lines
12 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This file implements Float-to-string conversion functions.
|
|
// It is closely following the corresponding implementation
|
|
// in strconv/ftoa.go, but modified and simplified for Float.
|
|
|
|
package big
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"strconv"
|
|
)
|
|
|
|
// Text converts the floating-point number x to a string according
|
|
// to the given format and precision prec. The format is one of:
|
|
//
|
|
// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
|
|
// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
|
|
// 'f' -ddddd.dddd, no exponent
|
|
// 'g' like 'e' for large exponents, like 'f' otherwise
|
|
// 'G' like 'E' for large exponents, like 'f' otherwise
|
|
// 'b' -ddddddp±dd, binary exponent
|
|
// 'p' -0x.dddp±dd, binary exponent, hexadecimal mantissa
|
|
//
|
|
// For the binary exponent formats, the mantissa is printed in normalized form:
|
|
//
|
|
// 'b' decimal integer mantissa using x.Prec() bits, or -0
|
|
// 'p' hexadecimal fraction with 0.5 <= 0.mantissa < 1.0, or -0
|
|
//
|
|
// If format is a different character, Text returns a "%" followed by the
|
|
// unrecognized format character.
|
|
//
|
|
// The precision prec controls the number of digits (excluding the exponent)
|
|
// printed by the 'e', 'E', 'f', 'g', and 'G' formats. For 'e', 'E', and 'f'
|
|
// it is the number of digits after the decimal point. For 'g' and 'G' it is
|
|
// the total number of digits. A negative precision selects the smallest
|
|
// number of decimal digits necessary to identify the value x uniquely using
|
|
// x.Prec() mantissa bits.
|
|
// The prec value is ignored for the 'b' or 'p' format.
|
|
func (x *Float) Text(format byte, prec int) string {
|
|
cap := 10 // TODO(gri) determine a good/better value here
|
|
if prec > 0 {
|
|
cap += prec
|
|
}
|
|
return string(x.Append(make([]byte, 0, cap), format, prec))
|
|
}
|
|
|
|
// String formats x like x.Text('g', 10).
|
|
// (String must be called explicitly, Float.Format does not support %s verb.)
|
|
func (x *Float) String() string {
|
|
return x.Text('g', 10)
|
|
}
|
|
|
|
// Append appends to buf the string form of the floating-point number x,
|
|
// as generated by x.Text, and returns the extended buffer.
|
|
func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
|
|
// sign
|
|
if x.neg {
|
|
buf = append(buf, '-')
|
|
}
|
|
|
|
// Inf
|
|
if x.form == inf {
|
|
if !x.neg {
|
|
buf = append(buf, '+')
|
|
}
|
|
return append(buf, "Inf"...)
|
|
}
|
|
|
|
// pick off easy formats
|
|
switch fmt {
|
|
case 'b':
|
|
return x.fmtB(buf)
|
|
case 'p':
|
|
return x.fmtP(buf)
|
|
}
|
|
|
|
// Algorithm:
|
|
// 1) convert Float to multiprecision decimal
|
|
// 2) round to desired precision
|
|
// 3) read digits out and format
|
|
|
|
// 1) convert Float to multiprecision decimal
|
|
var d decimal // == 0.0
|
|
if x.form == finite {
|
|
// x != 0
|
|
d.init(x.mant, int(x.exp)-x.mant.bitLen())
|
|
}
|
|
|
|
// 2) round to desired precision
|
|
shortest := false
|
|
if prec < 0 {
|
|
shortest = true
|
|
roundShortest(&d, x)
|
|
// Precision for shortest representation mode.
|
|
switch fmt {
|
|
case 'e', 'E':
|
|
prec = len(d.mant) - 1
|
|
case 'f':
|
|
prec = max(len(d.mant)-d.exp, 0)
|
|
case 'g', 'G':
|
|
prec = len(d.mant)
|
|
}
|
|
} else {
|
|
// round appropriately
|
|
switch fmt {
|
|
case 'e', 'E':
|
|
// one digit before and number of digits after decimal point
|
|
d.round(1 + prec)
|
|
case 'f':
|
|
// number of digits before and after decimal point
|
|
d.round(d.exp + prec)
|
|
case 'g', 'G':
|
|
if prec == 0 {
|
|
prec = 1
|
|
}
|
|
d.round(prec)
|
|
}
|
|
}
|
|
|
|
// 3) read digits out and format
|
|
switch fmt {
|
|
case 'e', 'E':
|
|
return fmtE(buf, fmt, prec, d)
|
|
case 'f':
|
|
return fmtF(buf, prec, d)
|
|
case 'g', 'G':
|
|
// trim trailing fractional zeros in %e format
|
|
eprec := prec
|
|
if eprec > len(d.mant) && len(d.mant) >= d.exp {
|
|
eprec = len(d.mant)
|
|
}
|
|
// %e is used if the exponent from the conversion
|
|
// is less than -4 or greater than or equal to the precision.
|
|
// If precision was the shortest possible, use eprec = 6 for
|
|
// this decision.
|
|
if shortest {
|
|
eprec = 6
|
|
}
|
|
exp := d.exp - 1
|
|
if exp < -4 || exp >= eprec {
|
|
if prec > len(d.mant) {
|
|
prec = len(d.mant)
|
|
}
|
|
return fmtE(buf, fmt+'e'-'g', prec-1, d)
|
|
}
|
|
if prec > d.exp {
|
|
prec = len(d.mant)
|
|
}
|
|
return fmtF(buf, max(prec-d.exp, 0), d)
|
|
}
|
|
|
|
// unknown format
|
|
if x.neg {
|
|
buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
|
|
}
|
|
return append(buf, '%', fmt)
|
|
}
|
|
|
|
func roundShortest(d *decimal, x *Float) {
|
|
// if the mantissa is zero, the number is zero - stop now
|
|
if len(d.mant) == 0 {
|
|
return
|
|
}
|
|
|
|
// Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
|
|
// (possibly exclusive) round to x for the given precision of x.
|
|
// Compute the lower and upper bound in decimal form and find the
|
|
// shortest decimal number d such that lower <= d <= upper.
|
|
|
|
// TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
|
|
// See if we can use it (in adjusted form) here as well.
|
|
|
|
// 1) Compute normalized mantissa mant and exponent exp for x such
|
|
// that the lsb of mant corresponds to 1/2 ulp for the precision of
|
|
// x (i.e., for mant we want x.prec + 1 bits).
|
|
mant := nat(nil).set(x.mant)
|
|
exp := int(x.exp) - mant.bitLen()
|
|
s := mant.bitLen() - int(x.prec+1)
|
|
switch {
|
|
case s < 0:
|
|
mant = mant.shl(mant, uint(-s))
|
|
case s > 0:
|
|
mant = mant.shr(mant, uint(+s))
|
|
}
|
|
exp += s
|
|
// x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec
|
|
|
|
// 2) Compute lower bound by subtracting 1/2 ulp.
|
|
var lower decimal
|
|
var tmp nat
|
|
lower.init(tmp.sub(mant, natOne), exp)
|
|
|
|
// 3) Compute upper bound by adding 1/2 ulp.
|
|
var upper decimal
|
|
upper.init(tmp.add(mant, natOne), exp)
|
|
|
|
// The upper and lower bounds are possible outputs only if
|
|
// the original mantissa is even, so that ToNearestEven rounding
|
|
// would round to the original mantissa and not the neighbors.
|
|
inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1
|
|
|
|
// Now we can figure out the minimum number of digits required.
|
|
// Walk along until d has distinguished itself from upper and lower.
|
|
for i, m := range d.mant {
|
|
l := lower.at(i)
|
|
u := upper.at(i)
|
|
|
|
// Okay to round down (truncate) if lower has a different digit
|
|
// or if lower is inclusive and is exactly the result of rounding
|
|
// down (i.e., and we have reached the final digit of lower).
|
|
okdown := l != m || inclusive && i+1 == len(lower.mant)
|
|
|
|
// Okay to round up if upper has a different digit and either upper
|
|
// is inclusive or upper is bigger than the result of rounding up.
|
|
okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))
|
|
|
|
// If it's okay to do either, then round to the nearest one.
|
|
// If it's okay to do only one, do it.
|
|
switch {
|
|
case okdown && okup:
|
|
d.round(i + 1)
|
|
return
|
|
case okdown:
|
|
d.roundDown(i + 1)
|
|
return
|
|
case okup:
|
|
d.roundUp(i + 1)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// %e: d.ddddde±dd
|
|
func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
|
|
// first digit
|
|
ch := byte('0')
|
|
if len(d.mant) > 0 {
|
|
ch = d.mant[0]
|
|
}
|
|
buf = append(buf, ch)
|
|
|
|
// .moredigits
|
|
if prec > 0 {
|
|
buf = append(buf, '.')
|
|
i := 1
|
|
m := min(len(d.mant), prec+1)
|
|
if i < m {
|
|
buf = append(buf, d.mant[i:m]...)
|
|
i = m
|
|
}
|
|
for ; i <= prec; i++ {
|
|
buf = append(buf, '0')
|
|
}
|
|
}
|
|
|
|
// e±
|
|
buf = append(buf, fmt)
|
|
var exp int64
|
|
if len(d.mant) > 0 {
|
|
exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
|
|
}
|
|
if exp < 0 {
|
|
ch = '-'
|
|
exp = -exp
|
|
} else {
|
|
ch = '+'
|
|
}
|
|
buf = append(buf, ch)
|
|
|
|
// dd...d
|
|
if exp < 10 {
|
|
buf = append(buf, '0') // at least 2 exponent digits
|
|
}
|
|
return strconv.AppendInt(buf, exp, 10)
|
|
}
|
|
|
|
// %f: ddddddd.ddddd
|
|
func fmtF(buf []byte, prec int, d decimal) []byte {
|
|
// integer, padded with zeros as needed
|
|
if d.exp > 0 {
|
|
m := min(len(d.mant), d.exp)
|
|
buf = append(buf, d.mant[:m]...)
|
|
for ; m < d.exp; m++ {
|
|
buf = append(buf, '0')
|
|
}
|
|
} else {
|
|
buf = append(buf, '0')
|
|
}
|
|
|
|
// fraction
|
|
if prec > 0 {
|
|
buf = append(buf, '.')
|
|
for i := 0; i < prec; i++ {
|
|
buf = append(buf, d.at(d.exp+i))
|
|
}
|
|
}
|
|
|
|
return buf
|
|
}
|
|
|
|
// fmtB appends the string of x in the format mantissa "p" exponent
|
|
// with a decimal mantissa and a binary exponent, or 0" if x is zero,
|
|
// and returns the extended buffer.
|
|
// The mantissa is normalized such that is uses x.Prec() bits in binary
|
|
// representation.
|
|
// The sign of x is ignored, and x must not be an Inf.
|
|
func (x *Float) fmtB(buf []byte) []byte {
|
|
if x.form == zero {
|
|
return append(buf, '0')
|
|
}
|
|
|
|
if debugFloat && x.form != finite {
|
|
panic("non-finite float")
|
|
}
|
|
// x != 0
|
|
|
|
// adjust mantissa to use exactly x.prec bits
|
|
m := x.mant
|
|
switch w := uint32(len(x.mant)) * _W; {
|
|
case w < x.prec:
|
|
m = nat(nil).shl(m, uint(x.prec-w))
|
|
case w > x.prec:
|
|
m = nat(nil).shr(m, uint(w-x.prec))
|
|
}
|
|
|
|
buf = append(buf, m.utoa(10)...)
|
|
buf = append(buf, 'p')
|
|
e := int64(x.exp) - int64(x.prec)
|
|
if e >= 0 {
|
|
buf = append(buf, '+')
|
|
}
|
|
return strconv.AppendInt(buf, e, 10)
|
|
}
|
|
|
|
// fmtP appends the string of x in the format "0x." mantissa "p" exponent
|
|
// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
|
|
// and returns the extended buffer.
|
|
// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
|
|
// The sign of x is ignored, and x must not be an Inf.
|
|
func (x *Float) fmtP(buf []byte) []byte {
|
|
if x.form == zero {
|
|
return append(buf, '0')
|
|
}
|
|
|
|
if debugFloat && x.form != finite {
|
|
panic("non-finite float")
|
|
}
|
|
// x != 0
|
|
|
|
// remove trailing 0 words early
|
|
// (no need to convert to hex 0's and trim later)
|
|
m := x.mant
|
|
i := 0
|
|
for i < len(m) && m[i] == 0 {
|
|
i++
|
|
}
|
|
m = m[i:]
|
|
|
|
buf = append(buf, "0x."...)
|
|
buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
|
|
buf = append(buf, 'p')
|
|
if x.exp >= 0 {
|
|
buf = append(buf, '+')
|
|
}
|
|
return strconv.AppendInt(buf, int64(x.exp), 10)
|
|
}
|
|
|
|
func min(x, y int) int {
|
|
if x < y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter
|
|
|
|
// Format implements fmt.Formatter. It accepts all the regular
|
|
// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
|
|
// 'g', 'G') as well as 'p' and 'v'. See (*Float).Text for the
|
|
// interpretation of 'p'. The 'v' format is handled like 'g'.
|
|
// Format also supports specification of the minimum precision
|
|
// in digits, the output field width, as well as the format flags
|
|
// '+' and ' ' for sign control, '0' for space or zero padding,
|
|
// and '-' for left or right justification. See the fmt package
|
|
// for details.
|
|
func (x *Float) Format(s fmt.State, format rune) {
|
|
prec, hasPrec := s.Precision()
|
|
if !hasPrec {
|
|
prec = 6 // default precision for 'e', 'f'
|
|
}
|
|
|
|
switch format {
|
|
case 'e', 'E', 'f', 'b', 'p':
|
|
// nothing to do
|
|
case 'F':
|
|
// (*Float).Text doesn't support 'F'; handle like 'f'
|
|
format = 'f'
|
|
case 'v':
|
|
// handle like 'g'
|
|
format = 'g'
|
|
fallthrough
|
|
case 'g', 'G':
|
|
if !hasPrec {
|
|
prec = -1 // default precision for 'g', 'G'
|
|
}
|
|
default:
|
|
fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
|
|
return
|
|
}
|
|
var buf []byte
|
|
buf = x.Append(buf, byte(format), prec)
|
|
if len(buf) == 0 {
|
|
buf = []byte("?") // should never happen, but don't crash
|
|
}
|
|
// len(buf) > 0
|
|
|
|
var sign string
|
|
switch {
|
|
case buf[0] == '-':
|
|
sign = "-"
|
|
buf = buf[1:]
|
|
case buf[0] == '+':
|
|
// +Inf
|
|
sign = "+"
|
|
if s.Flag(' ') {
|
|
sign = " "
|
|
}
|
|
buf = buf[1:]
|
|
case s.Flag('+'):
|
|
sign = "+"
|
|
case s.Flag(' '):
|
|
sign = " "
|
|
}
|
|
|
|
var padding int
|
|
if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
|
|
padding = width - len(sign) - len(buf)
|
|
}
|
|
|
|
switch {
|
|
case s.Flag('0') && !x.IsInf():
|
|
// 0-padding on left
|
|
writeMultiple(s, sign, 1)
|
|
writeMultiple(s, "0", padding)
|
|
s.Write(buf)
|
|
case s.Flag('-'):
|
|
// padding on right
|
|
writeMultiple(s, sign, 1)
|
|
s.Write(buf)
|
|
writeMultiple(s, " ", padding)
|
|
default:
|
|
// padding on left
|
|
writeMultiple(s, " ", padding)
|
|
writeMultiple(s, sign, 1)
|
|
s.Write(buf)
|
|
}
|
|
}
|