gcc/libgo/go/math/big/prime.go
Ian Lance Taylor 1a2f01efa6 libgo: update to Go1.10beta1
Update the Go library to the 1.10beta1 release.
    
    Requires a few changes to the compiler for modifications to the map
    runtime code, and to handle some nowritebarrier cases in the runtime.
    
    Reviewed-on: https://go-review.googlesource.com/86455

gotools/:
	* Makefile.am (go_cmd_vet_files): New variable.
	(go_cmd_buildid_files, go_cmd_test2json_files): New variables.
	(s-zdefaultcc): Change from constants to functions.
	(noinst_PROGRAMS): Add vet, buildid, and test2json.
	(cgo$(EXEEXT)): Link against $(LIBGOTOOL).
	(vet$(EXEEXT)): New target.
	(buildid$(EXEEXT)): New target.
	(test2json$(EXEEXT)): New target.
	(install-exec-local): Install all $(noinst_PROGRAMS).
	(uninstall-local): Uninstasll all $(noinst_PROGRAMS).
	(check-go-tool): Depend on $(noinst_PROGRAMS).  Copy down
	objabi.go.
	(check-runtime): Depend on $(noinst_PROGRAMS).
	(check-cgo-test, check-carchive-test): Likewise.
	(check-vet): New target.
	(check): Depend on check-vet.  Look at cmd_vet-testlog.
	(.PHONY): Add check-vet.
	* Makefile.in: Rebuild.

From-SVN: r256365
2018-01-09 01:23:08 +00:00

321 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import "math/rand"
// ProbablyPrime reports whether x is probably prime,
// applying the Miller-Rabin test with n pseudorandomly chosen bases
// as well as a Baillie-PSW test.
//
// If x is prime, ProbablyPrime returns true.
// If x is chosen randomly and not prime, ProbablyPrime probably returns false.
// The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ.
//
// ProbablyPrime is 100% accurate for inputs less than 2⁶⁴.
// See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149,
// and FIPS 186-4 Appendix F for further discussion of the error probabilities.
//
// ProbablyPrime is not suitable for judging primes that an adversary may
// have crafted to fool the test.
//
// As of Go 1.8, ProbablyPrime(0) is allowed and applies only a Baillie-PSW test.
// Before Go 1.8, ProbablyPrime applied only the Miller-Rabin tests, and ProbablyPrime(0) panicked.
func (x *Int) ProbablyPrime(n int) bool {
// Note regarding the doc comment above:
// It would be more precise to say that the Baillie-PSW test uses the
// extra strong Lucas test as its Lucas test, but since no one knows
// how to tell any of the Lucas tests apart inside a Baillie-PSW test
// (they all work equally well empirically), that detail need not be
// documented or implicitly guaranteed.
// The comment does avoid saying "the" Baillie-PSW test
// because of this general ambiguity.
if n < 0 {
panic("negative n for ProbablyPrime")
}
if x.neg || len(x.abs) == 0 {
return false
}
// primeBitMask records the primes < 64.
const primeBitMask uint64 = 1<<2 | 1<<3 | 1<<5 | 1<<7 |
1<<11 | 1<<13 | 1<<17 | 1<<19 | 1<<23 | 1<<29 | 1<<31 |
1<<37 | 1<<41 | 1<<43 | 1<<47 | 1<<53 | 1<<59 | 1<<61
w := x.abs[0]
if len(x.abs) == 1 && w < 64 {
return primeBitMask&(1<<w) != 0
}
if w&1 == 0 {
return false // n is even
}
const primesA = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37
const primesB = 29 * 31 * 41 * 43 * 47 * 53
var rA, rB uint32
switch _W {
case 32:
rA = uint32(x.abs.modW(primesA))
rB = uint32(x.abs.modW(primesB))
case 64:
r := x.abs.modW((primesA * primesB) & _M)
rA = uint32(r % primesA)
rB = uint32(r % primesB)
default:
panic("math/big: invalid word size")
}
if rA%3 == 0 || rA%5 == 0 || rA%7 == 0 || rA%11 == 0 || rA%13 == 0 || rA%17 == 0 || rA%19 == 0 || rA%23 == 0 || rA%37 == 0 ||
rB%29 == 0 || rB%31 == 0 || rB%41 == 0 || rB%43 == 0 || rB%47 == 0 || rB%53 == 0 {
return false
}
return x.abs.probablyPrimeMillerRabin(n+1, true) && x.abs.probablyPrimeLucas()
}
// probablyPrimeMillerRabin reports whether n passes reps rounds of the
// Miller-Rabin primality test, using pseudo-randomly chosen bases.
// If force2 is true, one of the rounds is forced to use base 2.
// See Handbook of Applied Cryptography, p. 139, Algorithm 4.24.
// The number n is known to be non-zero.
func (n nat) probablyPrimeMillerRabin(reps int, force2 bool) bool {
nm1 := nat(nil).sub(n, natOne)
// determine q, k such that nm1 = q << k
k := nm1.trailingZeroBits()
q := nat(nil).shr(nm1, k)
nm3 := nat(nil).sub(nm1, natTwo)
rand := rand.New(rand.NewSource(int64(n[0])))
var x, y, quotient nat
nm3Len := nm3.bitLen()
NextRandom:
for i := 0; i < reps; i++ {
if i == reps-1 && force2 {
x = x.set(natTwo)
} else {
x = x.random(rand, nm3, nm3Len)
x = x.add(x, natTwo)
}
y = y.expNN(x, q, n)
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
for j := uint(1); j < k; j++ {
y = y.sqr(y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {
continue NextRandom
}
if y.cmp(natOne) == 0 {
return false
}
}
return false
}
return true
}
// probablyPrimeLucas reports whether n passes the "almost extra strong" Lucas probable prime test,
// using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below).
// The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test.
//
// References:
//
// Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152),
// October 1980, pp. 1391-1417, especially page 1401.
// http://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
//
// Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234),
// March 2000, pp. 873-891.
// http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf
//
// Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719.
//
// Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html.
//
// Nicely, "The Baillie-PSW Primality Test", http://www.trnicely.net/misc/bpsw.html.
// (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition,
// as pointed out by Jacobsen.)
//
// Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed.
// Springer, 2005.
func (n nat) probablyPrimeLucas() bool {
// Discard 0, 1.
if len(n) == 0 || n.cmp(natOne) == 0 {
return false
}
// Two is the only even prime.
// Already checked by caller, but here to allow testing in isolation.
if n[0]&1 == 0 {
return n.cmp(natTwo) == 0
}
// Baillie-OEIS "method C" for choosing D, P, Q,
// as in https://oeis.org/A217719/a217719.txt:
// try increasing P ≥ 3 such that D = P² - 4 (so Q = 1)
// until Jacobi(D, n) = -1.
// The search is expected to succeed for non-square n after just a few trials.
// After more than expected failures, check whether n is square
// (which would cause Jacobi(D, n) = 1 for all D not dividing n).
p := Word(3)
d := nat{1}
t1 := nat(nil) // temp
intD := &Int{abs: d}
intN := &Int{abs: n}
for ; ; p++ {
if p > 10000 {
// This is widely believed to be impossible.
// If we get a report, we'll want the exact number n.
panic("math/big: internal error: cannot find (D/n) = -1 for " + intN.String())
}
d[0] = p*p - 4
j := Jacobi(intD, intN)
if j == -1 {
break
}
if j == 0 {
// d = p²-4 = (p-2)(p+2).
// If (d/n) == 0 then d shares a prime factor with n.
// Since the loop proceeds in increasing p and starts with p-2==1,
// the shared prime factor must be p+2.
// If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n.
return len(n) == 1 && n[0] == p+2
}
if p == 40 {
// We'll never find (d/n) = -1 if n is a square.
// If n is a non-square we expect to find a d in just a few attempts on average.
// After 40 attempts, take a moment to check if n is indeed a square.
t1 = t1.sqrt(n)
t1 = t1.sqr(t1)
if t1.cmp(n) == 0 {
return false
}
}
}
// Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876
// (D, P, Q above have become Δ, b, 1):
//
// Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4.
// An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n),
// where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n,
// or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1.
//
// We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above.
// We know gcd(n, 2) = 1 because n is odd.
//
// Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r.
s := nat(nil).add(n, natOne)
r := int(s.trailingZeroBits())
s = s.shr(s, uint(r))
nm2 := nat(nil).sub(n, natTwo) // n-2
// We apply the "almost extra strong" test, which checks the above conditions
// except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values.
// Jacobsen points out that maybe we should just do the full extra strong test:
// "It is also possible to recover U_n using Crandall and Pomerance equation 3.13:
// U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test
// at the cost of a single modular inversion. This computation is easy and fast in GMP,
// so we can get the full extra-strong test at essentially the same performance as the
// almost extra strong test."
// Compute Lucas sequence V_s(b, 1), where:
//
// V(0) = 2
// V(1) = P
// V(k) = P V(k-1) - Q V(k-2).
//
// (Remember that due to method C above, P = b, Q = 1.)
//
// In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q.
// Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k,
//
// V(j+k) = V(j)V(k) - V(k-j).
//
// So in particular, to quickly double the subscript:
//
// V(2k) = V(k)² - 2
// V(2k+1) = V(k) V(k+1) - P
//
// We can therefore start with k=0 and build up to k=s in log₂(s) steps.
natP := nat(nil).setWord(p)
vk := nat(nil).setWord(2)
vk1 := nat(nil).setWord(p)
t2 := nat(nil) // temp
for i := int(s.bitLen()); i >= 0; i-- {
if s.bit(uint(i)) != 0 {
// k' = 2k+1
// V(k') = V(2k+1) = V(k) V(k+1) - P.
t1 = t1.mul(vk, vk1)
t1 = t1.add(t1, n)
t1 = t1.sub(t1, natP)
t2, vk = t2.div(vk, t1, n)
// V(k'+1) = V(2k+2) = V(k+1)² - 2.
t1 = t1.sqr(vk1)
t1 = t1.add(t1, nm2)
t2, vk1 = t2.div(vk1, t1, n)
} else {
// k' = 2k
// V(k'+1) = V(2k+1) = V(k) V(k+1) - P.
t1 = t1.mul(vk, vk1)
t1 = t1.add(t1, n)
t1 = t1.sub(t1, natP)
t2, vk1 = t2.div(vk1, t1, n)
// V(k') = V(2k) = V(k)² - 2
t1 = t1.sqr(vk)
t1 = t1.add(t1, nm2)
t2, vk = t2.div(vk, t1, n)
}
}
// Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n).
if vk.cmp(natTwo) == 0 || vk.cmp(nm2) == 0 {
// Check U(s) ≡ 0.
// As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13:
//
// U(k) = D⁻¹ (2 V(k+1) - P V(k))
//
// Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n,
// or P V(k) - 2 V(k+1) == 0 mod n.
t1 := t1.mul(vk, natP)
t2 := t2.shl(vk1, 1)
if t1.cmp(t2) < 0 {
t1, t2 = t2, t1
}
t1 = t1.sub(t1, t2)
t3 := vk1 // steal vk1, no longer needed below
vk1 = nil
_ = vk1
t2, t3 = t2.div(t3, t1, n)
if len(t3) == 0 {
return true
}
}
// Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1.
for t := 0; t < r-1; t++ {
if len(vk) == 0 { // vk == 0
return true
}
// Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2,
// so if V(k) = 2, we can stop: we will never find a future V(k) == 0.
if len(vk) == 1 && vk[0] == 2 { // vk == 2
return false
}
// k' = 2k
// V(k') = V(2k) = V(k)² - 2
t1 = t1.sqr(vk)
t1 = t1.sub(t1, natTwo)
t2, vk = t2.div(vk, t1, n)
}
return false
}