gcc/libgfortran/m4/in_unpack.m4
Jakub Jelinek a554497024 Update copyright years.
From-SVN: r267494
2019-01-01 13:31:55 +01:00

108 lines
2.9 KiB
Plaintext

`/* Helper function for repacking arrays.
Copyright (C) 2003-2019 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <string.h>'
include(iparm.m4)dnl
`#if defined (HAVE_'rtype_name`)'
dnl Only the kind (ie size) is used to name the function for integers,
dnl reals and logicals. For complex, it's c4 and c8.
`void
internal_unpack_'rtype_ccode` ('rtype` * d, const 'rtype_name` * src)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
index_type dsize;
'rtype_name` * restrict dest;
dest = d->base_addr;
if (src == dest || !src)
return;
dim = GFC_DESCRIPTOR_RANK (d);
dsize = 1;
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
if (extent[n] <= 0)
return;
if (dsize == stride[n])
dsize *= extent[n];
else
dsize = 0;
}
if (dsize != 0)
{
memcpy (dest, src, dsize * sizeof ('rtype_name`));
return;
}
stride0 = stride[0];
while (dest)
{
/* Copy the data. */
*dest = *(src++);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif
'