8aa540d2f7
Imported GNU Classpath 0.90 * scripts/makemake.tcl: Set gnu/java/awt/peer/swing to ignore. * gnu/classpath/jdwp/VMFrame.java (SIZE): New constant. * java/lang/VMCompiler.java: Use gnu.java.security.hash.MD5. * java/lang/Math.java: New override file. * java/lang/Character.java: Merged from Classpath. (start, end): Now 'int's. (canonicalName): New field. (CANONICAL_NAME, NO_SPACES_NAME, CONSTANT_NAME): New constants. (UnicodeBlock): Added argument. (of): New overload. (forName): New method. Updated unicode blocks. (sets): Updated. * sources.am: Regenerated. * Makefile.in: Likewise. From-SVN: r111942
297 lines
11 KiB
Java
297 lines
11 KiB
Java
/* FIPS186.java --
|
|
Copyright 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.java.security.key.dss;
|
|
|
|
import gnu.java.security.hash.Sha160;
|
|
import gnu.java.security.util.PRNG;
|
|
import gnu.java.security.util.Prime2;
|
|
|
|
import java.math.BigInteger;
|
|
import java.security.SecureRandom;
|
|
|
|
/**
|
|
* <p>An implementation of the DSA parameters generation as described in
|
|
* FIPS-186.</p>
|
|
*
|
|
* References:<br>
|
|
* <a href="http://www.itl.nist.gov/fipspubs/fip186.htm">Digital Signature
|
|
* Standard (DSS)</a>, Federal Information Processing Standards Publication 186.
|
|
* National Institute of Standards and Technology.
|
|
*
|
|
* @version $Revision: 1.2 $
|
|
*/
|
|
public class FIPS186
|
|
{
|
|
|
|
// Constants and variables
|
|
// -------------------------------------------------------------------------
|
|
|
|
public static final int DSA_PARAMS_SEED = 0;
|
|
|
|
public static final int DSA_PARAMS_COUNTER = 1;
|
|
|
|
public static final int DSA_PARAMS_Q = 2;
|
|
|
|
public static final int DSA_PARAMS_P = 3;
|
|
|
|
public static final int DSA_PARAMS_E = 4;
|
|
|
|
public static final int DSA_PARAMS_G = 5;
|
|
|
|
/** The BigInteger constant 2. */
|
|
private static final BigInteger TWO = new BigInteger("2");
|
|
|
|
private static final BigInteger TWO_POW_160 = TWO.pow(160);
|
|
|
|
/** The SHA instance to use. */
|
|
private Sha160 sha = new Sha160();
|
|
|
|
/** The length of the modulus of DSS keys generated by this instance. */
|
|
private int L;
|
|
|
|
/** The optional {@link SecureRandom} instance to use. */
|
|
private SecureRandom rnd = null;
|
|
|
|
/** Our default source of randomness. */
|
|
private PRNG prng = null;
|
|
|
|
// Constructor(s)
|
|
// -------------------------------------------------------------------------
|
|
|
|
public FIPS186(int L, SecureRandom rnd)
|
|
{
|
|
super();
|
|
|
|
this.L = L;
|
|
this.rnd = rnd;
|
|
}
|
|
|
|
// Class methods
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Instance methods
|
|
// -------------------------------------------------------------------------
|
|
|
|
/**
|
|
* This method generates the DSS <code>p</code>, <code>q</code>, and
|
|
* <code>g</code> parameters only when <code>L</code> (the modulus length)
|
|
* is not one of the following: <code>512</code>, <code>768</code> and
|
|
* <code>1024</code>. For those values of <code>L</code>, this implementation
|
|
* uses pre-computed values of <code>p</code>, <code>q</code>, and
|
|
* <code>g</code> given in the document <i>CryptoSpec</i> included in the
|
|
* security guide documentation of the standard JDK distribution.<p>
|
|
*
|
|
* The DSS requires two primes , <code>p</code> and <code>q</code>,
|
|
* satisfying the following three conditions:
|
|
*
|
|
* <ul>
|
|
* <li><code>2<sup>159</sup> < q < 2<sup>160</sup></code></li>
|
|
* <li><code>2<sup>L-1</sup> < p < 2<sup>L</sup></code> for a
|
|
* specified <code>L</code>, where <code>L = 512 + 64j</code> for some
|
|
* <code>0 <= j <= 8</code></li>
|
|
* <li>q divides p - 1.</li>
|
|
* </ul>
|
|
*
|
|
* The algorithm used to find these primes is as described in FIPS-186,
|
|
* section 2.2: GENERATION OF PRIMES. This prime generation scheme starts by
|
|
* using the {@link Sha160} and a user supplied <i>SEED</i>
|
|
* to construct a prime, <code>q</code>, in the range 2<sup>159</sup> < q
|
|
* < 2<sup>160</sup>. Once this is accomplished, the same <i>SEED</i>
|
|
* value is used to construct an <code>X</code> in the range <code>2<sup>L-1
|
|
* </sup> < X < 2<sup>L</sup>. The prime, <code>p</code>, is then
|
|
* formed by rounding <code>X</code> to a number congruent to <code>1 mod
|
|
* 2q</code>. In this implementation we use the same <i>SEED</i> value given
|
|
* in FIPS-186, Appendix 5.
|
|
*/
|
|
public BigInteger[] generateParameters()
|
|
{
|
|
int counter, offset;
|
|
BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g;
|
|
byte[] a, u;
|
|
byte[] kb = new byte[20]; // to hold 160 bits of randomness
|
|
|
|
// Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160.
|
|
int b = (L - 1) % 160;
|
|
int n = (L - 1 - b) / 160;
|
|
BigInteger[] V = new BigInteger[n + 1];
|
|
algorithm: while (true)
|
|
{
|
|
step1: while (true)
|
|
{
|
|
// 1. Choose an arbitrary sequence of at least 160 bits and
|
|
// call it SEED.
|
|
nextRandomBytes(kb);
|
|
SEED = new BigInteger(1, kb).setBit(159).setBit(0);
|
|
// Let g be the length of SEED in bits. here always 160
|
|
// 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]
|
|
alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160);
|
|
synchronized (sha)
|
|
{
|
|
a = SEED.toByteArray();
|
|
sha.update(a, 0, a.length);
|
|
a = sha.digest();
|
|
u = alpha.toByteArray();
|
|
sha.update(u, 0, u.length);
|
|
u = sha.digest();
|
|
}
|
|
for (int i = 0; i < a.length; i++)
|
|
{
|
|
a[i] ^= u[i];
|
|
}
|
|
U = new BigInteger(1, a);
|
|
// 3. Form q from U by setting the most significant bit (the
|
|
// 2**159 bit) and the least significant bit to 1. In terms of
|
|
// boolean operations, q = U OR 2**159 OR 1. Note that
|
|
// 2**159 < q < 2**160.
|
|
q = U.setBit(159).setBit(0);
|
|
// 4. Use a robust primality testing algorithm to test whether
|
|
// q is prime(1). A robust primality test is one where the
|
|
// probability of a non-prime number passing the test is at
|
|
// most 1/2**80.
|
|
// 5. If q is not prime, go to step 1.
|
|
if (Prime2.isProbablePrime(q))
|
|
{
|
|
break step1;
|
|
}
|
|
} // step1
|
|
|
|
// 6. Let counter = 0 and offset = 2.
|
|
counter = 0;
|
|
offset = 2;
|
|
step7: while (true)
|
|
{
|
|
OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL);
|
|
SEED_PLUS_OFFSET = SEED.add(OFFSET);
|
|
// 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g].
|
|
synchronized (sha)
|
|
{
|
|
for (int k = 0; k <= n; k++)
|
|
{
|
|
a = SEED_PLUS_OFFSET.add(
|
|
BigInteger.valueOf(k & 0xFFFFFFFFL)).mod(
|
|
TWO_POW_160).toByteArray();
|
|
sha.update(a, 0, a.length);
|
|
V[k] = new BigInteger(1, sha.digest());
|
|
}
|
|
}
|
|
// 8. Let W be the integer:
|
|
// V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160)
|
|
// and let : X = W + 2**(L-1).
|
|
// Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L.
|
|
W = V[0];
|
|
for (int k = 1; k < n; k++)
|
|
{
|
|
W = W.add(V[k].multiply(TWO.pow(k * 160)));
|
|
}
|
|
W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n * 160)));
|
|
X = W.add(TWO.pow(L - 1));
|
|
// 9. Let c = X mod 2q and set p = X - (c - 1).
|
|
// Note that p is congruent to 1 mod 2q.
|
|
c = X.mod(TWO.multiply(q));
|
|
p = X.subtract(c.subtract(BigInteger.ONE));
|
|
// 10. If p < 2**(L-1), then go to step 13.
|
|
if (p.compareTo(TWO.pow(L - 1)) >= 0)
|
|
{
|
|
// 11. Perform a robust primality test on p.
|
|
// 12. If p passes the test performed in step 11, go to step 15.
|
|
if (Prime2.isProbablePrime(p))
|
|
{
|
|
break algorithm;
|
|
}
|
|
}
|
|
// 13. Let counter = counter + 1 and offset = offset + n + 1.
|
|
counter++;
|
|
offset += n + 1;
|
|
// 14. If counter >= 4096 go to step 1, otherwise go to step 7.
|
|
if (counter >= 4096)
|
|
{
|
|
continue algorithm;
|
|
}
|
|
} // step7
|
|
} // algorithm
|
|
|
|
// compute g. from FIPS-186, Appendix 4:
|
|
// 1. Generate p and q as specified in Appendix 2.
|
|
// 2. Let e = (p - 1) / q
|
|
BigInteger e = p.subtract(BigInteger.ONE).divide(q);
|
|
BigInteger h = TWO;
|
|
BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
|
|
g = TWO;
|
|
// 3. Set h = any integer, where 1 < h < p - 1 and
|
|
// h differs from any value previously tried
|
|
for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
|
|
{
|
|
// 4. Set g = h**e mod p
|
|
g = h.modPow(e, p);
|
|
// 5. If g = 1, go to step 3
|
|
if (!g.equals(BigInteger.ONE))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
|
|
}
|
|
|
|
// helper methods ----------------------------------------------------------
|
|
|
|
/**
|
|
* Fills the designated byte array with random data.
|
|
*
|
|
* @param buffer the byte array to fill with random data.
|
|
*/
|
|
private void nextRandomBytes(byte[] buffer)
|
|
{
|
|
if (rnd != null)
|
|
{
|
|
rnd.nextBytes(buffer);
|
|
}
|
|
else
|
|
getDefaultPRNG().nextBytes(buffer);
|
|
}
|
|
|
|
private PRNG getDefaultPRNG()
|
|
{
|
|
if (prng == null)
|
|
prng = PRNG.getInstance();
|
|
|
|
return prng;
|
|
}
|
|
}
|