gcc/libphobos/libdruntime/rt/minfo.d
Iain Buclaw e5d0ba591e d/dmd: Merge upstream dmd f8e38c001
Fixes bug where foreach(int) doesn't work on BigEndian targets by
deprecating the use of index types smaller than a size_t/ptrdiff_t.

Reviewed-on: https://github.com/dlang/dmd/pull/10009

From-SVN: r272350
2019-06-16 07:50:07 +00:00

1118 lines
36 KiB
D

/**
* Written in the D programming language.
* Module initialization routines.
*
* Copyright: Copyright Digital Mars 2000 - 2013.
* License: Distributed under the
* $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
* (See accompanying file LICENSE)
* Authors: Walter Bright, Sean Kelly
* Source: $(DRUNTIMESRC src/rt/_minfo.d)
*/
module rt.minfo;
import core.stdc.stdlib; // alloca
import core.stdc.string; // memcpy
import rt.sections;
enum
{
MIctorstart = 0x1, // we've started constructing it
MIctordone = 0x2, // finished construction
MIstandalone = 0x4, // module ctor does not depend on other module
// ctors being done first
MItlsctor = 8,
MItlsdtor = 0x10,
MIctor = 0x20,
MIdtor = 0x40,
MIxgetMembers = 0x80,
MIictor = 0x100,
MIunitTest = 0x200,
MIimportedModules = 0x400,
MIlocalClasses = 0x800,
MIname = 0x1000,
}
/*****
* A ModuleGroup is an unordered collection of modules.
* There is exactly one for:
* 1. all statically linked in D modules, either directely or as shared libraries
* 2. each call to rt_loadLibrary()
*/
struct ModuleGroup
{
this(immutable(ModuleInfo*)[] modules) nothrow @nogc
{
_modules = modules;
}
@property immutable(ModuleInfo*)[] modules() const nothrow @nogc
{
return _modules;
}
// this function initializes the bookeeping necessary to create the
// cycle path, and then creates it. It is a precondition that src and
// target modules are involved in a cycle.
//
// The return value is malloc'd using C, so it must be freed after use.
private size_t[] genCyclePath(size_t srcidx, size_t targetidx, int[][] edges)
{
import core.bitop : bt, btc, bts;
// set up all the arrays.
size_t[] cyclePath = (cast(size_t*)malloc(size_t.sizeof * _modules.length * 2))[0 .. _modules.length * 2];
size_t totalMods;
int[] distance = (cast(int*)malloc(int.sizeof * _modules.length))[0 .. _modules.length];
scope(exit)
.free(distance.ptr);
// determine the shortest path between two modules. Uses dijkstra
// without a priority queue. (we can be a bit slow here, in order to
// get a better printout).
void shortest(size_t start, size_t target)
{
// initial setup
distance[] = int.max;
int curdist = 0;
distance[start] = 0;
while (true)
{
bool done = true;
foreach (i, x; distance)
{
if (x == curdist)
{
if (i == target)
{
done = true;
break;
}
foreach (n; edges[i])
{
if (distance[n] == int.max)
{
distance[n] = curdist + 1;
done = false;
}
}
}
}
if (done)
break;
++curdist;
}
// it should be impossible to not get to target, this is just a
// sanity check. Not an assert, because druntime is compiled in
// release mode.
if (distance[target] != curdist)
{
throw new Error("internal error printing module cycle");
}
// determine the path. This is tricky, because we have to
// follow the edges in reverse to get back to the original. We
// don't have a reverse mapping, so it takes a bit of looping.
totalMods += curdist;
auto subpath = cyclePath[totalMods - curdist .. totalMods];
while (true)
{
--curdist;
subpath[curdist] = target;
if (curdist == 0)
break;
distloop:
// search for next (previous) module in cycle.
foreach (m, d; distance)
{
if (d == curdist)
{
// determine if m can reach target
foreach (e; edges[m])
{
if (e == target)
{
// recurse
target = m;
break distloop;
}
}
}
}
}
}
// first get to the target
shortest(srcidx, targetidx);
// now get back.
shortest(targetidx, srcidx);
return cyclePath[0 .. totalMods];
}
/******************************
* Allocate and fill in _ctors[] and _tlsctors[].
* Modules are inserted into the arrays in the order in which the constructors
* need to be run.
*
* Params:
* cycleHandling - string indicating option for cycle handling
* Throws:
* Exception if it fails.
*/
void sortCtors(string cycleHandling)
{
import core.bitop : bts, btr, bt, BitRange;
import rt.util.container.hashtab;
enum OnCycle
{
deprecate,
abort,
print,
ignore
}
auto onCycle = OnCycle.abort;
switch (cycleHandling) with(OnCycle)
{
case "deprecate":
onCycle = deprecate;
break;
case "abort":
onCycle = abort;
break;
case "print":
onCycle = print;
break;
case "ignore":
onCycle = ignore;
break;
case "":
// no option passed
break;
default:
// invalid cycle handling option.
throw new Error("DRT invalid cycle handling option: " ~ cycleHandling);
}
debug (printModuleDependencies)
{
import core.stdc.stdio : printf;
foreach (_m; _modules)
{
printf("%s%s%s:", _m.name.ptr, (_m.flags & MIstandalone)
? "+".ptr : "".ptr, (_m.flags & (MIctor | MIdtor)) ? "*".ptr : "".ptr);
foreach (_i; _m.importedModules)
printf(" %s", _i.name.ptr);
printf("\n");
}
}
immutable uint len = cast(uint) _modules.length;
if (!len)
return; // nothing to do.
// allocate some stack arrays that will be used throughout the process.
immutable nwords = (len + 8 * size_t.sizeof - 1) / (8 * size_t.sizeof);
immutable flagbytes = nwords * size_t.sizeof;
auto ctorstart = cast(size_t*) malloc(flagbytes); // ctor/dtor seen
auto ctordone = cast(size_t*) malloc(flagbytes); // ctor/dtor processed
auto relevant = cast(size_t*) malloc(flagbytes); // has ctors/dtors
scope (exit)
{
.free(ctorstart);
.free(ctordone);
.free(relevant);
}
void clearFlags(size_t* flags)
{
memset(flags, 0, flagbytes);
}
// build the edges between each module. We may need this for printing,
// and also allows avoiding keeping a hash around for module lookups.
int[][] edges = (cast(int[]*)malloc((int[]).sizeof * _modules.length))[0 .. _modules.length];
{
HashTab!(immutable(ModuleInfo)*, int) modIndexes;
foreach (i, m; _modules)
modIndexes[m] = cast(int) i;
auto reachable = cast(size_t*) malloc(flagbytes);
scope(exit)
.free(reachable);
foreach (i, m; _modules)
{
// use bit array to prevent duplicates
// https://issues.dlang.org/show_bug.cgi?id=16208
clearFlags(reachable);
// preallocate enough space to store all the indexes
int *edge = cast(int*)malloc(int.sizeof * _modules.length);
size_t nEdges = 0;
foreach (imp; m.importedModules)
{
if (imp is m) // self-import
continue;
if (auto impidx = imp in modIndexes)
{
if (!bts(reachable, *impidx))
edge[nEdges++] = *impidx;
}
}
// trim space to what is needed.
edges[i] = (cast(int*)realloc(edge, int.sizeof * nEdges))[0 .. nEdges];
}
}
// free all the edges after we are done
scope(exit)
{
foreach (e; edges)
if (e.ptr)
.free(e.ptr);
.free(edges.ptr);
}
void buildCycleMessage(size_t sourceIdx, size_t cycleIdx, scope void delegate(string) sink)
{
version (Windows)
enum EOL = "\r\n";
else
enum EOL = "\n";
sink("Cyclic dependency between module ");
sink(_modules[sourceIdx].name);
sink(" and ");
sink(_modules[cycleIdx].name);
sink(EOL);
auto cyclePath = genCyclePath(sourceIdx, cycleIdx, edges);
scope(exit) .free(cyclePath.ptr);
sink(_modules[sourceIdx].name);
sink("* ->" ~ EOL);
foreach (x; cyclePath[0 .. $ - 1])
{
sink(_modules[x].name);
sink(bt(relevant, x) ? "* ->" ~ EOL : " ->" ~ EOL);
}
sink(_modules[sourceIdx].name);
sink("*" ~ EOL);
}
// find all the non-trivial dependencies (that is, dependencies that have a
// ctor or dtor) of a given module. Doing this, we can 'skip over' the
// trivial modules to get at the non-trivial ones.
//
// If a cycle is detected, returns the index of the module that completes the cycle.
// Returns: true for success, false for a deprecated cycle error
bool findDeps(size_t idx, size_t* reachable)
{
static struct stackFrame
{
size_t curMod;
size_t curDep;
}
// initialize "stack"
auto stack = cast(stackFrame*) malloc(stackFrame.sizeof * len);
scope (exit)
.free(stack);
auto stacktop = stack + len;
auto sp = stack;
sp.curMod = cast(int) idx;
sp.curDep = 0;
// initialize reachable by flagging source module
clearFlags(reachable);
bts(reachable, idx);
for (;;)
{
auto m = _modules[sp.curMod];
if (sp.curDep >= edges[sp.curMod].length)
{
// return
if (sp == stack) // finished the algorithm
break;
--sp;
}
else
{
auto midx = edges[sp.curMod][sp.curDep];
if (!bts(reachable, midx))
{
if (bt(relevant, midx))
{
// need to process this node, don't recurse.
if (bt(ctorstart, midx))
{
// was already started, this is a cycle.
final switch (onCycle) with(OnCycle)
{
case deprecate:
// check with old algorithm
if (sortCtorsOld(edges))
{
// unwind to print deprecation message.
return false; // deprecated cycle error
}
goto case abort; // fall through
case abort:
string errmsg = "";
buildCycleMessage(idx, midx, (string x) {errmsg ~= x;});
throw new Error(errmsg, __FILE__, __LINE__);
case ignore:
break;
case print:
// print the message
buildCycleMessage(idx, midx, (string x) {
import core.stdc.stdio : fprintf, stderr;
fprintf(stderr, "%.*s", cast(int) x.length, x.ptr);
});
// continue on as if this is correct.
break;
}
}
}
else if (!bt(ctordone, midx))
{
// non-relevant, and hasn't been exhaustively processed, recurse.
if (++sp >= stacktop)
{
// stack overflow, this shouldn't happen.
import core.internal.abort : abort;
abort("stack overflow on dependency search");
}
sp.curMod = midx;
sp.curDep = 0;
continue;
}
}
}
// next dependency
++sp.curDep;
}
return true; // success
}
// The list of constructors that will be returned by the sorting.
immutable(ModuleInfo)** ctors;
// current element being inserted into ctors list.
size_t ctoridx = 0;
// This function will determine the order of construction/destruction and
// check for cycles. If a cycle is found, the cycle path is transformed
// into a string and thrown as an error.
//
// Each call into this function is given a module that has static
// ctor/dtors that must be dealt with. It recurses only when it finds
// dependencies that also have static ctor/dtors.
// Returns: true for success, false for a deprecated cycle error
bool processMod(size_t curidx)
{
immutable ModuleInfo* current = _modules[curidx];
// First, determine what modules are reachable.
auto reachable = cast(size_t*) malloc(flagbytes);
scope (exit)
.free(reachable);
if (!findDeps(curidx, reachable))
return false; // deprecated cycle error
// process the dependencies. First, we process all relevant ones
bts(ctorstart, curidx);
auto brange = BitRange(reachable, len);
foreach (i; brange)
{
// note, don't check for cycles here, because the config could have been set to ignore cycles.
// however, don't recurse if there is one, so still check for started ctor.
if (i != curidx && bt(relevant, i) && !bt(ctordone, i) && !bt(ctorstart, i))
{
if (!processMod(i))
return false; // deprecated cycle error
}
}
// now mark this node, and all nodes reachable from this module as done.
bts(ctordone, curidx);
btr(ctorstart, curidx);
foreach (i; brange)
{
// Since relevant dependencies are already marked as done
// from recursion above (or are going to be handled up the call
// stack), no reason to check for relevance, that is a wasted
// op.
bts(ctordone, i);
}
// add this module to the construction order list
ctors[ctoridx++] = current;
return true;
}
// returns `false` if deprecated cycle error otherwise set `result`.
bool doSort(size_t relevantFlags, ref immutable(ModuleInfo)*[] result)
{
clearFlags(relevant);
clearFlags(ctorstart);
clearFlags(ctordone);
// pre-allocate enough space to hold all modules.
ctors = (cast(immutable(ModuleInfo)**).malloc(len * (void*).sizeof));
ctoridx = 0;
foreach (idx, m; _modules)
{
if (m.flags & relevantFlags)
{
if (m.flags & MIstandalone)
{
// can run at any time. Just run it first.
ctors[ctoridx++] = m;
}
else
{
bts(relevant, idx);
}
}
}
// now run the algorithm in the relevant ones
foreach (idx; BitRange(relevant, len))
{
if (!bt(ctordone, idx))
{
if (!processMod(idx))
return false;
}
}
if (ctoridx == 0)
{
// no ctors in the list.
.free(ctors);
}
else
{
ctors = cast(immutable(ModuleInfo)**).realloc(ctors, ctoridx * (void*).sizeof);
if (ctors is null)
assert(0);
result = ctors[0 .. ctoridx];
}
return true;
}
// finally, do the sorting for both shared and tls ctors. If either returns false,
// print the deprecation warning.
if (!doSort(MIctor | MIdtor, _ctors) ||
!doSort(MItlsctor | MItlsdtor, _tlsctors))
{
// print a warning
import core.stdc.stdio : fprintf, stderr;
fprintf(stderr, "Deprecation 16211 warning:\n"
~ "A cycle has been detected in your program that was undetected prior to DMD\n"
~ "2.072. This program will continue, but will not operate when using DMD 2.074\n"
~ "to compile. Use runtime option --DRT-oncycle=print to see the cycle details.\n");
}
}
/// ditto
void sortCtors()
{
import rt.config : rt_configOption;
sortCtors(rt_configOption("oncycle"));
}
/******************************
* This is the old ctor sorting algorithm that does not find all cycles.
*
* It is here to allow the deprecated behavior from the original algorithm
* until people have fixed their code.
*
* If no cycles are found, the _ctors and _tlsctors are replaced with the
* ones generated by this algorithm to preserve the old incorrect ordering
* behavior.
*
* Params:
* edges - The module edges as found in the `importedModules` member of
* each ModuleInfo. Generated in sortCtors.
* Returns:
* true if no cycle is found, false if one was.
*/
bool sortCtorsOld(int[][] edges)
{
immutable len = edges.length;
assert(len == _modules.length);
static struct StackRec
{
@property int mod()
{
return _mods[_idx];
}
int[] _mods;
size_t _idx;
}
auto stack = (cast(StackRec*).calloc(len, StackRec.sizeof))[0 .. len];
// TODO: reuse GCBits by moving it to rt.util.container or core.internal
immutable nwords = (len + 8 * size_t.sizeof - 1) / (8 * size_t.sizeof);
auto ctorstart = cast(size_t*).malloc(nwords * size_t.sizeof);
auto ctordone = cast(size_t*).malloc(nwords * size_t.sizeof);
int[] initialEdges = (cast(int *)malloc(int.sizeof * len))[0 .. len];
if (!stack.ptr || ctorstart is null || ctordone is null || !initialEdges.ptr)
assert(0);
scope (exit)
{
.free(stack.ptr);
.free(ctorstart);
.free(ctordone);
.free(initialEdges.ptr);
}
// initialize the initial edges
foreach (i, ref v; initialEdges)
v = cast(int)i;
bool sort(ref immutable(ModuleInfo)*[] ctors, uint mask)
{
import core.bitop;
ctors = (cast(immutable(ModuleInfo)**).malloc(len * size_t.sizeof))[0 .. len];
if (!ctors.ptr)
assert(0);
// clean flags
memset(ctorstart, 0, nwords * size_t.sizeof);
memset(ctordone, 0, nwords * size_t.sizeof);
size_t stackidx = 0;
size_t cidx;
int[] mods = initialEdges;
size_t idx;
while (true)
{
while (idx < mods.length)
{
auto m = mods[idx];
if (bt(ctordone, m))
{
// this module has already been processed, skip
++idx;
continue;
}
else if (bt(ctorstart, m))
{
/* Trace back to the begin of the cycle.
*/
bool ctorInCycle;
size_t start = stackidx;
while (start--)
{
auto sm = stack[start].mod;
if (sm == m)
break;
assert(sm >= 0);
if (bt(ctorstart, sm))
ctorInCycle = true;
}
assert(stack[start].mod == m);
if (ctorInCycle)
{
return false;
}
else
{
/* This is also a cycle, but the import chain does not constrain
* the order of initialization, either because the imported
* modules have no ctors or the ctors are standalone.
*/
++idx;
}
}
else
{
auto curmod = _modules[m];
if (curmod.flags & mask)
{
if (curmod.flags & MIstandalone || !edges[m].length)
{ // trivial ctor => sort in
ctors[cidx++] = curmod;
bts(ctordone, m);
}
else
{ // non-trivial ctor => defer
bts(ctorstart, m);
}
}
else // no ctor => mark as visited
{
bts(ctordone, m);
}
if (edges[m].length)
{
/* Internal runtime error, recursion exceeds number of modules.
*/
(stackidx < len) || assert(0);
// recurse
stack[stackidx++] = StackRec(mods, idx);
idx = 0;
mods = edges[m];
}
}
}
if (stackidx)
{ // pop old value from stack
--stackidx;
mods = stack[stackidx]._mods;
idx = stack[stackidx]._idx;
auto m = mods[idx++];
if (bt(ctorstart, m) && !bts(ctordone, m))
ctors[cidx++] = _modules[m];
}
else // done
break;
}
// store final number and shrink array
ctors = (cast(immutable(ModuleInfo)**).realloc(ctors.ptr, cidx * size_t.sizeof))[0 .. cidx];
return true;
}
/* Do two passes: ctor/dtor, tlsctor/tlsdtor
*/
immutable(ModuleInfo)*[] _ctors2;
immutable(ModuleInfo)*[] _tlsctors2;
auto result = sort(_ctors2, MIctor | MIdtor) && sort(_tlsctors2, MItlsctor | MItlsdtor);
if (result) // no cycle
{
// fall back to original ordering as part of the deprecation.
if (_ctors.ptr)
.free(_ctors.ptr);
_ctors = _ctors2;
if (_tlsctors.ptr)
.free(_tlsctors.ptr);
_tlsctors = _tlsctors2;
}
else
{
// free any allocated memory that will be forgotten
if (_ctors2.ptr)
.free(_ctors2.ptr);
if (_tlsctors2.ptr)
.free(_tlsctors2.ptr);
}
return result;
}
void runCtors()
{
// run independent ctors
runModuleFuncs!(m => m.ictor)(_modules);
// sorted module ctors
runModuleFuncs!(m => m.ctor)(_ctors);
}
void runTlsCtors()
{
runModuleFuncs!(m => m.tlsctor)(_tlsctors);
}
void runTlsDtors()
{
runModuleFuncsRev!(m => m.tlsdtor)(_tlsctors);
}
void runDtors()
{
runModuleFuncsRev!(m => m.dtor)(_ctors);
}
void free()
{
if (_ctors.ptr)
.free(_ctors.ptr);
_ctors = null;
if (_tlsctors.ptr)
.free(_tlsctors.ptr);
_tlsctors = null;
// _modules = null; // let the owner free it
}
private:
immutable(ModuleInfo*)[] _modules;
immutable(ModuleInfo)*[] _ctors;
immutable(ModuleInfo)*[] _tlsctors;
}
/********************************************
* Iterate over all module infos.
*/
int moduleinfos_apply(scope int delegate(immutable(ModuleInfo*)) dg)
{
foreach (ref sg; SectionGroup)
{
foreach (m; sg.modules)
{
// TODO: Should null ModuleInfo be allowed?
if (m !is null)
{
if (auto res = dg(m))
return res;
}
}
}
return 0;
}
/********************************************
* Module constructor and destructor routines.
*/
extern (C)
{
void rt_moduleCtor()
{
foreach (ref sg; SectionGroup)
{
sg.moduleGroup.sortCtors();
sg.moduleGroup.runCtors();
}
}
void rt_moduleTlsCtor()
{
foreach (ref sg; SectionGroup)
{
sg.moduleGroup.runTlsCtors();
}
}
void rt_moduleTlsDtor()
{
foreach_reverse (ref sg; SectionGroup)
{
sg.moduleGroup.runTlsDtors();
}
}
void rt_moduleDtor()
{
foreach_reverse (ref sg; SectionGroup)
{
sg.moduleGroup.runDtors();
sg.moduleGroup.free();
}
}
version (Win32)
{
// Alternate names for backwards compatibility with older DLL code
void _moduleCtor()
{
rt_moduleCtor();
}
void _moduleDtor()
{
rt_moduleDtor();
}
void _moduleTlsCtor()
{
rt_moduleTlsCtor();
}
void _moduleTlsDtor()
{
rt_moduleTlsDtor();
}
}
}
/********************************************
*/
void runModuleFuncs(alias getfp)(const(immutable(ModuleInfo)*)[] modules)
{
foreach (m; modules)
{
if (auto fp = getfp(m))
(*fp)();
}
}
void runModuleFuncsRev(alias getfp)(const(immutable(ModuleInfo)*)[] modules)
{
foreach_reverse (m; modules)
{
if (auto fp = getfp(m))
(*fp)();
}
}
unittest
{
static void assertThrown(T : Throwable, E)(lazy E expr, string msg)
{
try
expr;
catch (T)
return;
assert(0, msg);
}
static void stub()
{
}
static struct UTModuleInfo
{
this(uint flags)
{
mi._flags = flags;
}
void setImports(immutable(ModuleInfo)*[] imports...)
{
import core.bitop;
assert(flags & MIimportedModules);
immutable nfuncs = popcnt(flags & (MItlsctor|MItlsdtor|MIctor|MIdtor|MIictor));
immutable size = nfuncs * (void function()).sizeof +
size_t.sizeof + imports.length * (ModuleInfo*).sizeof;
assert(size <= pad.sizeof);
pad[nfuncs] = imports.length;
.memcpy(&pad[nfuncs+1], imports.ptr, imports.length * imports[0].sizeof);
}
immutable ModuleInfo mi;
size_t[8] pad;
alias mi this;
}
static UTModuleInfo mockMI(uint flags)
{
auto mi = UTModuleInfo(flags | MIimportedModules);
auto p = cast(void function()*)&mi.pad;
if (flags & MItlsctor) *p++ = &stub;
if (flags & MItlsdtor) *p++ = &stub;
if (flags & MIctor) *p++ = &stub;
if (flags & MIdtor) *p++ = &stub;
if (flags & MIictor) *p++ = &stub;
*cast(size_t*)p++ = 0; // number of imported modules
assert(cast(void*)p <= &mi + 1);
return mi;
}
static void checkExp2(string testname, bool shouldThrow, string oncycle,
immutable(ModuleInfo*)[] modules,
immutable(ModuleInfo*)[] dtors=null,
immutable(ModuleInfo*)[] tlsdtors=null)
{
auto mgroup = ModuleGroup(modules);
mgroup.sortCtors(oncycle);
// if we are expecting sort to throw, don't throw because of unexpected
// success!
if (!shouldThrow)
{
foreach (m; mgroup._modules)
assert(!(m.flags & (MIctorstart | MIctordone)), testname);
assert(mgroup._ctors == dtors, testname);
assert(mgroup._tlsctors == tlsdtors, testname);
}
}
static void checkExp(string testname, bool shouldThrow,
immutable(ModuleInfo*)[] modules,
immutable(ModuleInfo*)[] dtors=null,
immutable(ModuleInfo*)[] tlsdtors=null)
{
checkExp2(testname, shouldThrow, "abort", modules, dtors, tlsdtors);
}
{
auto m0 = mockMI(0);
auto m1 = mockMI(0);
auto m2 = mockMI(0);
checkExp("no ctors", false, [&m0.mi, &m1.mi, &m2.mi]);
}
{
auto m0 = mockMI(MIictor);
auto m1 = mockMI(0);
auto m2 = mockMI(MIictor);
auto mgroup = ModuleGroup([&m0.mi, &m1.mi, &m2.mi]);
checkExp("independent ctors", false, [&m0.mi, &m1.mi, &m2.mi]);
}
{
auto m0 = mockMI(MIstandalone | MIctor);
auto m1 = mockMI(0);
auto m2 = mockMI(0);
auto mgroup = ModuleGroup([&m0.mi, &m1.mi, &m2.mi]);
checkExp("standalone ctor", false, [&m0.mi, &m1.mi, &m2.mi], [&m0.mi]);
}
{
auto m0 = mockMI(MIstandalone | MIctor);
auto m1 = mockMI(MIstandalone | MIctor);
auto m2 = mockMI(0);
m1.setImports(&m0.mi);
checkExp("imported standalone => no dependency", false,
[&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi]);
}
{
auto m0 = mockMI(MIstandalone | MIctor);
auto m1 = mockMI(MIstandalone | MIctor);
auto m2 = mockMI(0);
m0.setImports(&m1.mi);
checkExp("imported standalone => no dependency (2)", false,
[&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi]);
}
{
auto m0 = mockMI(MIstandalone | MIctor);
auto m1 = mockMI(MIstandalone | MIctor);
auto m2 = mockMI(0);
m0.setImports(&m1.mi);
m1.setImports(&m0.mi);
checkExp("standalone may have cycle", false,
[&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi]);
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(0);
m1.setImports(&m0.mi);
checkExp("imported ctor => ordered ctors", false,
[&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi], []);
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(0);
m0.setImports(&m1.mi);
checkExp("imported ctor => ordered ctors (2)", false,
[&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], []);
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(0);
m0.setImports(&m1.mi);
m1.setImports(&m0.mi);
assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
"detects ctors cycles");
assertThrown!Throwable(checkExp2("", true, "deprecate",
[&m0.mi, &m1.mi, &m2.mi]),
"detects ctors cycles (dep)");
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(0);
m0.setImports(&m2.mi);
m1.setImports(&m2.mi);
m2.setImports(&m0.mi, &m1.mi);
assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
"detects cycle with repeats");
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(MItlsctor);
m0.setImports(&m1.mi, &m2.mi);
checkExp("imported ctor/tlsctor => ordered ctors/tlsctors", false,
[&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], [&m2.mi]);
}
{
auto m0 = mockMI(MIctor | MItlsctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(MItlsctor);
m0.setImports(&m1.mi, &m2.mi);
checkExp("imported ctor/tlsctor => ordered ctors/tlsctors (2)", false,
[&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], [&m2.mi, &m0.mi]);
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(MItlsctor);
m0.setImports(&m1.mi, &m2.mi);
m2.setImports(&m0.mi);
checkExp("no cycle between ctors/tlsctors", false,
[&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], [&m2.mi]);
}
{
auto m0 = mockMI(MItlsctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(MItlsctor);
m0.setImports(&m2.mi);
m2.setImports(&m0.mi);
assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
"detects tlsctors cycle");
assertThrown!Throwable(checkExp2("", true, "deprecate",
[&m0.mi, &m1.mi, &m2.mi]),
"detects tlsctors cycle (dep)");
}
{
auto m0 = mockMI(MItlsctor);
auto m1 = mockMI(MIctor);
auto m2 = mockMI(MItlsctor);
m0.setImports(&m1.mi);
m1.setImports(&m0.mi, &m2.mi);
m2.setImports(&m1.mi);
assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
"detects tlsctors cycle with repeats");
}
{
auto m0 = mockMI(MIctor);
auto m1 = mockMI(MIstandalone | MIctor);
auto m2 = mockMI(MIstandalone | MIctor);
m0.setImports(&m1.mi);
m1.setImports(&m2.mi);
m2.setImports(&m0.mi);
// NOTE: this is implementation dependent, sorted order shouldn't be tested.
checkExp("closed ctors cycle", false, [&m0.mi, &m1.mi, &m2.mi],
[&m1.mi, &m2.mi, &m0.mi]);
//checkExp("closed ctors cycle", false, [&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi, &m2.mi]);
}
}
version (CRuntime_Microsoft)
{
// Dummy so Win32 code can still call it
extern(C) void _minit() { }
}