gcc/libgo/runtime/malloc.goc
Ian Lance Taylor 9ff56c9570 Update to current version of Go library.
From-SVN: r173931
2011-05-20 00:18:15 +00:00

468 lines
13 KiB
Plaintext

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See malloc.h for overview.
//
// TODO(rsc): double-check stats.
package runtime
#include <stddef.h>
#include <errno.h>
#include <stdlib.h>
#include "go-alloc.h"
#include "runtime.h"
#include "malloc.h"
#include "go-string.h"
#include "interface.h"
#include "go-type.h"
typedef struct __go_empty_interface Eface;
typedef struct __go_type_descriptor Type;
typedef struct __go_func_type FuncType;
MHeap runtime_mheap;
extern MStats mstats; // defined in extern.go
extern volatile int32 runtime_MemProfileRate
__asm__ ("libgo_runtime.runtime.MemProfileRate");
// Same algorithm from chan.c, but a different
// instance of the static uint32 x.
// Not protected by a lock - let the threads use
// the same random number if they like.
static uint32
fastrand1(void)
{
static uint32 x = 0x49f6428aUL;
x += x;
if(x & 0x80000000L)
x ^= 0x88888eefUL;
return x;
}
// Allocate an object of at least size bytes.
// Small objects are allocated from the per-thread cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
void*
runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed)
{
int32 sizeclass, rate;
MCache *c;
uintptr npages;
MSpan *s;
void *v;
if(!__sync_bool_compare_and_swap(&m->mallocing, 0, 1))
runtime_throw("malloc/free - deadlock");
if(size == 0)
size = 1;
mstats.nmalloc++;
if(size <= MaxSmallSize) {
// Allocate from mcache free lists.
sizeclass = runtime_SizeToClass(size);
size = runtime_class_to_size[sizeclass];
c = m->mcache;
v = runtime_MCache_Alloc(c, sizeclass, size, zeroed);
if(v == nil)
runtime_throw("out of memory");
mstats.alloc += size;
mstats.total_alloc += size;
mstats.by_size[sizeclass].nmalloc++;
} else {
// TODO(rsc): Report tracebacks for very large allocations.
// Allocate directly from heap.
npages = size >> PageShift;
if((size & PageMask) != 0)
npages++;
s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, 1);
if(s == nil)
runtime_throw("out of memory");
size = npages<<PageShift;
mstats.alloc += size;
mstats.total_alloc += size;
v = (void*)(s->start << PageShift);
// setup for mark sweep
runtime_markspan(v, 0, 0, true);
}
if(!(flag & FlagNoGC))
runtime_markallocated(v, size, (flag&FlagNoPointers) != 0);
__sync_bool_compare_and_swap(&m->mallocing, 1, 0);
if(__sync_bool_compare_and_swap(&m->gcing, 1, 0)) {
if(!(flag & FlagNoProfiling))
__go_run_goroutine_gc(0);
else {
// We are being called from the profiler. Tell it
// to invoke the garbage collector when it is
// done. No need to use a sync function here.
m->gcing_for_prof = 1;
}
}
if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) {
if(size >= (uint32) rate)
goto profile;
if((uint32) m->mcache->next_sample > size)
m->mcache->next_sample -= size;
else {
// pick next profile time
if(rate > 0x3fffffff) // make 2*rate not overflow
rate = 0x3fffffff;
m->mcache->next_sample = fastrand1() % (2*rate);
profile:
runtime_setblockspecial(v);
runtime_MProf_Malloc(v, size);
}
}
if(dogc && mstats.heap_alloc >= mstats.next_gc)
runtime_gc(0);
return v;
}
void*
__go_alloc(uintptr size)
{
return runtime_mallocgc(size, 0, 0, 1);
}
// Free the object whose base pointer is v.
void
__go_free(void *v)
{
int32 sizeclass;
MSpan *s;
MCache *c;
uint32 prof;
uintptr size;
if(v == nil)
return;
// If you change this also change mgc0.c:/^sweepspan,
// which has a copy of the guts of free.
if(!__sync_bool_compare_and_swap(&m->mallocing, 0, 1))
runtime_throw("malloc/free - deadlock");
if(!runtime_mlookup(v, nil, nil, &s)) {
// runtime_printf("free %p: not an allocated block\n", v);
runtime_throw("free runtime_mlookup");
}
prof = runtime_blockspecial(v);
// Find size class for v.
sizeclass = s->sizeclass;
if(sizeclass == 0) {
// Large object.
size = s->npages<<PageShift;
*(uintptr*)(s->start<<PageShift) = 1; // mark as "needs to be zeroed"
// Must mark v freed before calling unmarkspan and MHeap_Free:
// they might coalesce v into other spans and change the bitmap further.
runtime_markfreed(v, size);
runtime_unmarkspan(v, 1<<PageShift);
runtime_MHeap_Free(&runtime_mheap, s, 1);
} else {
// Small object.
c = m->mcache;
size = runtime_class_to_size[sizeclass];
if(size > (int32)sizeof(uintptr))
((uintptr*)v)[1] = 1; // mark as "needs to be zeroed"
// Must mark v freed before calling MCache_Free:
// it might coalesce v and other blocks into a bigger span
// and change the bitmap further.
runtime_markfreed(v, size);
mstats.by_size[sizeclass].nfree++;
runtime_MCache_Free(c, v, sizeclass, size);
}
mstats.alloc -= size;
if(prof)
runtime_MProf_Free(v, size);
__sync_bool_compare_and_swap(&m->mallocing, 1, 0);
if(__sync_bool_compare_and_swap(&m->gcing, 1, 0))
__go_run_goroutine_gc(1);
}
int32
runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
uintptr n, i;
byte *p;
MSpan *s;
mstats.nlookup++;
s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
if(sp)
*sp = s;
if(s == nil) {
runtime_checkfreed(v, 1);
if(base)
*base = nil;
if(size)
*size = 0;
return 0;
}
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
// Large object.
if(base)
*base = p;
if(size)
*size = s->npages<<PageShift;
return 1;
}
if((byte*)v >= (byte*)s->limit) {
// pointers past the last block do not count as pointers.
return 0;
}
n = runtime_class_to_size[s->sizeclass];
i = ((byte*)v - p)/n;
if(base)
*base = p + i*n;
if(size)
*size = n;
return 1;
}
MCache*
runtime_allocmcache(void)
{
MCache *c;
if(!__sync_bool_compare_and_swap(&m->mallocing, 0, 1))
runtime_throw("allocmcache - deadlock");
runtime_lock(&runtime_mheap);
c = runtime_FixAlloc_Alloc(&runtime_mheap.cachealloc);
// Clear the free list used by FixAlloc; assume the rest is zeroed.
c->list[0].list = nil;
mstats.mcache_inuse = runtime_mheap.cachealloc.inuse;
mstats.mcache_sys = runtime_mheap.cachealloc.sys;
runtime_unlock(&runtime_mheap);
__sync_bool_compare_and_swap(&m->mallocing, 1, 0);
if(__sync_bool_compare_and_swap(&m->gcing, 1, 0))
__go_run_goroutine_gc(2);
return c;
}
extern int32 runtime_sizeof_C_MStats
__asm__ ("libgo_runtime.runtime.Sizeof_C_MStats");
#define MaxArena32 (2U<<30)
void
runtime_mallocinit(void)
{
byte *p;
uintptr arena_size, bitmap_size;
extern byte end[];
runtime_sizeof_C_MStats = sizeof(MStats);
runtime_InitSizes();
// Set up the allocation arena, a contiguous area of memory where
// allocated data will be found. The arena begins with a bitmap large
// enough to hold 4 bits per allocated word.
if(sizeof(void*) == 8) {
// On a 64-bit machine, allocate from a single contiguous reservation.
// 16 GB should be big enough for now.
//
// The code will work with the reservation at any address, but ask
// SysReserve to use 0x000000f800000000 if possible.
// Allocating a 16 GB region takes away 36 bits, and the amd64
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
// in the middle of 0x00f8 for us to choose. Choosing 0x00f8 means
// that the valid memory addresses will begin 0x00f8, 0x00f9, 0x00fa, 0x00fb.
// None of the bytes f8 f9 fa fb can appear in valid UTF-8, and
// they are otherwise as far from ff (likely a common byte) as possible.
// Choosing 0x00 for the leading 6 bits was more arbitrary, but it
// is not a common ASCII code point either. Using 0x11f8 instead
// caused out of memory errors on OS X during thread allocations.
// These choices are both for debuggability and to reduce the
// odds of the conservative garbage collector not collecting memory
// because some non-pointer block of memory had a bit pattern
// that matched a memory address.
//
// Actually we reserve 17 GB (because the bitmap ends up being 1 GB)
// but it hardly matters: fc is not valid UTF-8 either, and we have to
// allocate 15 GB before we get that far.
arena_size = (uintptr)(16LL<<30);
bitmap_size = arena_size / (sizeof(void*)*8/4);
p = runtime_SysReserve((void*)(0x00f8ULL<<32), bitmap_size + arena_size);
if(p == nil)
runtime_throw("runtime: cannot reserve arena virtual address space");
} else {
// On a 32-bit machine, we can't typically get away
// with a giant virtual address space reservation.
// Instead we map the memory information bitmap
// immediately after the data segment, large enough
// to handle another 2GB of mappings (256 MB),
// along with a reservation for another 512 MB of memory.
// When that gets used up, we'll start asking the kernel
// for any memory anywhere and hope it's in the 2GB
// following the bitmap (presumably the executable begins
// near the bottom of memory, so we'll have to use up
// most of memory before the kernel resorts to giving out
// memory before the beginning of the text segment).
//
// Alternatively we could reserve 512 MB bitmap, enough
// for 4GB of mappings, and then accept any memory the
// kernel threw at us, but normally that's a waste of 512 MB
// of address space, which is probably too much in a 32-bit world.
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
arena_size = 512<<20;
// SysReserve treats the address we ask for, end, as a hint,
// not as an absolute requirement. If we ask for the end
// of the data segment but the operating system requires
// a little more space before we can start allocating, it will
// give out a slightly higher pointer. That's fine.
// Run with what we get back.
p = runtime_SysReserve(end, bitmap_size + arena_size);
if(p == nil)
runtime_throw("runtime: cannot reserve arena virtual address space");
}
if((uintptr)p & (((uintptr)1<<PageShift)-1))
runtime_throw("runtime: SysReserve returned unaligned address");
runtime_mheap.bitmap = p;
runtime_mheap.arena_start = p + bitmap_size;
runtime_mheap.arena_used = runtime_mheap.arena_start;
runtime_mheap.arena_end = runtime_mheap.arena_start + arena_size;
// Initialize the rest of the allocator.
runtime_MHeap_Init(&runtime_mheap, runtime_SysAlloc);
m->mcache = runtime_allocmcache();
// Initialize malloc profiling.
runtime_Mprof_Init();
// Initialize finalizer.
runtime_initfintab();
// See if it works.
runtime_free(runtime_malloc(1));
}
void*
runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
{
byte *p;
if(n <= (uintptr)(h->arena_end - h->arena_used)) {
// Keep taking from our reservation.
p = h->arena_used;
runtime_SysMap(p, n);
h->arena_used += n;
runtime_MHeap_MapBits(h);
return p;
}
// On 64-bit, our reservation is all we have.
if(sizeof(void*) == 8)
return nil;
// On 32-bit, once the reservation is gone we can
// try to get memory at a location chosen by the OS
// and hope that it is in the range we allocated bitmap for.
p = runtime_SysAlloc(n);
if(p == nil)
return nil;
if(p < h->arena_start || (uintptr)(p+n - h->arena_start) >= MaxArena32) {
runtime_printf("runtime: memory allocated by OS not in usable range\n");
runtime_SysFree(p, n);
return nil;
}
if(p+n > h->arena_used) {
h->arena_used = p+n;
if(h->arena_used > h->arena_end)
h->arena_end = h->arena_used;
runtime_MHeap_MapBits(h);
}
return p;
}
// Runtime stubs.
void*
runtime_mal(uintptr n)
{
return runtime_mallocgc(n, 0, 1, 1);
}
func new(n uint32) (ret *uint8) {
ret = runtime_mal(n);
}
func Alloc(n uintptr) (p *byte) {
p = runtime_malloc(n);
}
func Free(p *byte) {
runtime_free(p);
}
func Lookup(p *byte) (base *byte, size uintptr) {
runtime_mlookup(p, &base, &size, nil);
}
func GC() {
runtime_gc(1);
}
func SetFinalizer(obj Eface, finalizer Eface) {
byte *base;
uintptr size;
const FuncType *ft;
if(obj.__type_descriptor == nil) {
// runtime_printf("runtime.SetFinalizer: first argument is nil interface\n");
throw:
runtime_throw("runtime.SetFinalizer");
}
if(obj.__type_descriptor->__code != GO_PTR) {
// runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string);
goto throw;
}
if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) {
// runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n");
goto throw;
}
ft = nil;
if(finalizer.__type_descriptor != nil) {
if(finalizer.__type_descriptor->__code != GO_FUNC) {
badfunc:
// runtime_printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.type->string, *obj.type->string);
goto throw;
}
ft = (const FuncType*)finalizer.__type_descriptor;
if(ft->__dotdotdot || ft->__in.__count != 1 || !__go_type_descriptors_equal(*(Type**)ft->__in.__values, obj.__type_descriptor))
goto badfunc;
if(runtime_getfinalizer(obj.__object, 0)) {
// runtime_printf("runtime.SetFinalizer: finalizer already set");
goto throw;
}
}
runtime_addfinalizer(obj.__object, finalizer.__type_descriptor != nil ? *(void**)finalizer.__object : nil, ft);
}