8368551493
2014-10-16 Andrew MacLeod <amacleod@redhat.com> * function.h: Flatten file. Remove includes, adjust prototypes to reflect only what is in function.h. (enum direction, struct args_size, struct locate_and_pad_arg_data, ADD_PARM_SIZE, SUB_PARM_SIZE, ARGS_SIZE_TREE, ARGS_SIZE_RTX): Relocate from expr.h. (ASLK_REDUCE_ALIGN, ASLK_RECORD_PAD): Relocate from rtl.h. (optimize_function_for_size_p, optimize_function_for_speed_p): Move prototypes to predict.h. (init_varasm_status): Move prototype to varasm.h. * expr.h: Adjust include files. (enum direction, struct args_size, struct locate_and_pad_arg_data, ADD_PARM_SIZE, SUB_PARM_SIZE, ARGS_SIZE_TREE, ARGS_SIZE_RTX): Move to function.h. (locate_and_pad_parm): Move prototype to function.h. * rtl.h: (assign_stack_local, ASLK_REDUCE_ALIGN, ASLK_RECORD_PAD, assign_stack_local_1, assign_stack_temp, assign_stack_temp_for_type, assign_temp, reposition_prologue_and_epilogue_notes, prologue_epilogue_contains, sibcall_epilogue_contains, update_temp_slot_address, maybe_copy_prologue_epilogue_insn, set_return_jump_label): Move prototypes to function.h. * predict.h (optimize_function_for_size_p, optimize_function_for_speed_p): Relocate prototypes from function.h. * shrink-wrap.h (emit_return_into_block, active_insn_between, convert_jumps_to_returns, emit_return_for_exit): Move prototypes to function.h. * varasm.h (init_varasm_status): Relocate prototype from function.h. * genattrtab.c (write_header): Add predict.h to include list. * genconditions.c (write_header): Add predict.h to include list. * genemit.c (main): Adjust header file includes. * gengtype.c (ifiles): Add flattened function.h header files. * genoutput.c (output_prologue): Add predict.h to include list. * genpreds.c (write_insn_preds_c): Adjust header file includes. * genrecog.c (write_header): Add flattened function.h header files. * alias.c: Adjust include files. * auto-inc-dec.c: Likewise. * basic-block.h: Likewise. * bb-reorder.c: Likewise. * bt-load.c: Likewise. * builtins.c: Likewise. * caller-save.c: Likewise. * calls.c: Likewise. * cfgbuild.c: Likewise. * cfgcleanup.c: Likewise. * cfgexpand.c: Likewise. * cfgloop.c: Likewise. * cfgloop.h: Likewise. * cfgrtl.c: Likewise. * cgraph.h: Likewise. * cgraphclones.c: Likewise. * cgraphunit.c: Likewise. * combine-stack-adj.c: Likewise. * combine.c: Likewise. * coverage.c: Likewise. * cprop.c: Likewise. * cse.c: Likewise. * cselib.c: Likewise. * dbxout.c: Likewise. * ddg.c: Likewise. * df-core.c: Likewise. * df-problems.c: Likewise. * df-scan.c: Likewise. * dojump.c: Likewise. * dwarf2cfi.c: Likewise. * dwarf2out.c: Likewise. * emit-rtl.c: Likewise. * except.c: Likewise. * explow.c: Likewise. * expr.c: Likewise. * final.c: Likewise. * function.c: Likewise. * gcse.c: Likewise. * gimple-fold.c: Likewise. * gimple-low.c: Likewise. * gimple-streamer.h: Likewise. * haifa-sched.c: Likewise. * ifcvt.c: Likewise. * ira.c: Likewise. * jump.c: Likewise. * lcm.c: Likewise. * loop-invariant.c: Likewise. * lra-assigns.c: Likewise. * lra-coalesce.c: Likewise. * lra-constraints.c: Likewise. * lra-eliminations.c: Likewise. * lra-lives.c: Likewise. * lra-spills.c: Likewise. * lra.c: Likewise. * lto-cgraph.c: Likewise. * lto-section-in.c: Likewise. * lto-section-out.c: Likewise. * lto-streamer-in.c: Likewise. * lto-streamer-out.c: Likewise. * mode-switching.c: Likewise. * modulo-sched.c: Likewise. * omp-low.c: Likewise. * optabs.c: Likewise. * passes.c: Likewise. * postreload-gcse.c: Likewise. * postreload.c: Likewise. * predict.c: Likewise. * profile.c: Likewise. * recog.c: Likewise. * ree.c: Likewise. * reg-stack.c: Likewise. * regcprop.c: Likewise. * reginfo.c: Likewise. * regrename.c: Likewise. * reload.c: Likewise. * reload1.c: Likewise. * reorg.c: Likewise. * resource.c: Likewise. * rtlanal.c: Likewise. * sched-deps.c: Likewise. * sched-ebb.c: Likewise. * sched-rgn.c: Likewise. * sel-sched-dump.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched.c: Likewise. * shrink-wrap.c: Likewise. * simplify-rtx.c: Likewise. * statistics.c: Likewise. * stmt.c: Likewise. * stor-layout.c: Likewise. * store-motion.c: Likewise. * symtab.c: Likewise. * targhooks.c: Likewise. * toplev.c: Likewise. * trans-mem.c: Likewise. * tree-cfg.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-dfa.c: Likewise. * tree-eh.c: Likewise. * tree-inline.c: Likewise. * tree-into-ssa.c: Likewise. * tree-nested.c: Likewise. * tree-nrv.c: Likewise. * tree-profile.c: Likewise. * tree-ssa-alias.c: Likewise. * tree-ssa-ccp.c: Likewise. * tree-ssa-copy.c: Likewise. * tree-ssa-copyrename.c: Likewise. * tree-ssa-dom.c: Likewise. * tree-ssa-operands.c: Likewise. * tree-ssa-propagate.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa-tail-merge.c: Likewise. * tree-ssa-threadedge.c: Likewise. * tree-ssa-threadupdate.c: Likewise. * tree-ssa-uncprop.c: Likewise. * tree-ssa-uninit.c: Likewise. * tree-ssa.c: Likewise. * tree-stdarg.c: Likewise. * tree-tailcall.c: Likewise. * tree.c: Likewise. * tsan.c: Likewise. * valtrack.c: Likewise. * varasm.c: Likewise. * vmsdbgout.c: Likewise. * web.c: Likewise. * testsuite/g++.dg/plugin/pragma_plugin.c: Adjust include files. * config/aarch64/aarch64.c: Add flattened includes from function.h. * config/alpha/alpha.c: Likewise. * config/arc/arc.c: Likewise. * config/arm/arm.c: Likewise. * config/avr/avr-log.c: Likewise. * config/avr/avr.c: Likewise. * config/bfin/bfin.c: Likewise. * config/c6x/c6x.c: Likewise. * config/cr16/cr16.c: Likewise. * config/cris/cris.c: Likewise. * config/darwin.c: Likewise. * config/epiphany/epiphany.c: Likewise. * config/epiphany/mode-switch-use.c: Likewise. * config/epiphany/resolve-sw-modes.c: Likewise. * config/fr30/fr30.c: Likewise. * config/frv/frv.c: Likewise. * config/h8300/h8300.c: Likewise. * config/i386/i386.c: Likewise. * config/ia64/ia64.c: Likewise. * config/iq2000/iq2000.c: Likewise. * config/lm32/lm32.c: Likewise. * config/m32c/m32c.c: Likewise. * config/m32r/m32r.c: Likewise. * config/m68k/m68k.c: Likewise. * config/mcore/mcore.c: Likewise. * config/mep/mep-pragma.c: Likewise. * config/mep/mep.c: Likewise. * config/microblaze/microblaze.c: Likewise. * config/mips/mips.c: Likewise. * config/mmix/mmix.c: Likewise. * config/mn10300/mn10300.c: Likewise. * config/moxie/moxie.c: Likewise. * config/msp430/msp430.c: Likewise. * config/nds32/nds32-cost.c: Likewise. * config/nds32/nds32-fp-as-gp.c: Likewise. * config/nds32/nds32-intrinsic.c: Likewise. * config/nds32/nds32-isr.c: Likewise. * config/nds32/nds32-md-auxiliary.c: Likewise. * config/nds32/nds32-memory-manipulation.c: Likewise. * config/nds32/nds32-pipelines-auxiliary.c: Likewise. * config/nds32/nds32-predicates.c: Likewise. * config/nds32/nds32.c: Likewise. * config/nios2/nios2.c: Likewise. * config/pa/pa.c: Likewise. * config/pdp11/pdp11.c: Likewise. * config/rl78/rl78.c: Likewise. * config/rs6000/rs6000.c: Likewise. * config/rx/rx.c: Likewise. * config/s390/s390.c: Likewise. * config/score/score.c: Likewise. * config/sh/sh.c: Likewise. * config/sparc/sparc.c: Likewise. * config/spu/spu.c: Likewise. * config/stormy16/stormy16.c: Likewise. * config/tilegx/tilegx.c: Likewise. * config/tilepro/tilepro.c: Likewise. * config/v850/v850.c: Likewise. * config/vax/vax.c: Likewise. * config/xtensa/xtensa.c: Likewise. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * ada/gcc-interface/misc.c: Adjust include files. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * c/c-decl.c: Adjust include files. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * c-family/c-pragma.c: Adjust include files. * c-family/c-semantics.c: Likewise. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * cp/cp-tree.h: Adjust include files. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * fortran/f95-lang.c: Adjust include files. * fortran/trans-decl.c: Likewise. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * java/class.c: Adjust include files. * java/resource.c: Likewise. 2014-10-16 Andrew MacLeod <amacleod@redhat.com> * objc/objc-act.c: Adjust include files. From-SVN: r216337
1325 lines
40 KiB
C
1325 lines
40 KiB
C
/* Definitions for computing resource usage of specific insns.
|
||
Copyright (C) 1999-2014 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "diagnostic-core.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "hard-reg-set.h"
|
||
#include "hashtab.h"
|
||
#include "hash-set.h"
|
||
#include "vec.h"
|
||
#include "machmode.h"
|
||
#include "input.h"
|
||
#include "function.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "resource.h"
|
||
#include "except.h"
|
||
#include "insn-attr.h"
|
||
#include "params.h"
|
||
#include "df.h"
|
||
|
||
/* This structure is used to record liveness information at the targets or
|
||
fallthrough insns of branches. We will most likely need the information
|
||
at targets again, so save them in a hash table rather than recomputing them
|
||
each time. */
|
||
|
||
struct target_info
|
||
{
|
||
int uid; /* INSN_UID of target. */
|
||
struct target_info *next; /* Next info for same hash bucket. */
|
||
HARD_REG_SET live_regs; /* Registers live at target. */
|
||
int block; /* Basic block number containing target. */
|
||
int bb_tick; /* Generation count of basic block info. */
|
||
};
|
||
|
||
#define TARGET_HASH_PRIME 257
|
||
|
||
/* Indicates what resources are required at the beginning of the epilogue. */
|
||
static struct resources start_of_epilogue_needs;
|
||
|
||
/* Indicates what resources are required at function end. */
|
||
static struct resources end_of_function_needs;
|
||
|
||
/* Define the hash table itself. */
|
||
static struct target_info **target_hash_table = NULL;
|
||
|
||
/* For each basic block, we maintain a generation number of its basic
|
||
block info, which is updated each time we move an insn from the
|
||
target of a jump. This is the generation number indexed by block
|
||
number. */
|
||
|
||
static int *bb_ticks;
|
||
|
||
/* Marks registers possibly live at the current place being scanned by
|
||
mark_target_live_regs. Also used by update_live_status. */
|
||
|
||
static HARD_REG_SET current_live_regs;
|
||
|
||
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
|
||
Also only used by the next two functions. */
|
||
|
||
static HARD_REG_SET pending_dead_regs;
|
||
|
||
static void update_live_status (rtx, const_rtx, void *);
|
||
static int find_basic_block (rtx_insn *, int);
|
||
static rtx_insn *next_insn_no_annul (rtx_insn *);
|
||
static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
|
||
rtx *, int, struct resources,
|
||
struct resources);
|
||
|
||
/* Utility function called from mark_target_live_regs via note_stores.
|
||
It deadens any CLOBBERed registers and livens any SET registers. */
|
||
|
||
static void
|
||
update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int first_regno, last_regno;
|
||
int i;
|
||
|
||
if (!REG_P (dest)
|
||
&& (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
|
||
return;
|
||
|
||
if (GET_CODE (dest) == SUBREG)
|
||
{
|
||
first_regno = subreg_regno (dest);
|
||
last_regno = first_regno + subreg_nregs (dest);
|
||
|
||
}
|
||
else
|
||
{
|
||
first_regno = REGNO (dest);
|
||
last_regno = END_HARD_REGNO (dest);
|
||
}
|
||
|
||
if (GET_CODE (x) == CLOBBER)
|
||
for (i = first_regno; i < last_regno; i++)
|
||
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
||
else
|
||
for (i = first_regno; i < last_regno; i++)
|
||
{
|
||
SET_HARD_REG_BIT (current_live_regs, i);
|
||
CLEAR_HARD_REG_BIT (pending_dead_regs, i);
|
||
}
|
||
}
|
||
|
||
/* Find the number of the basic block with correct live register
|
||
information that starts closest to INSN. Return -1 if we couldn't
|
||
find such a basic block or the beginning is more than
|
||
SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
|
||
an unlimited search.
|
||
|
||
The delay slot filling code destroys the control-flow graph so,
|
||
instead of finding the basic block containing INSN, we search
|
||
backwards toward a BARRIER where the live register information is
|
||
correct. */
|
||
|
||
static int
|
||
find_basic_block (rtx_insn *insn, int search_limit)
|
||
{
|
||
/* Scan backwards to the previous BARRIER. Then see if we can find a
|
||
label that starts a basic block. Return the basic block number. */
|
||
for (insn = prev_nonnote_insn (insn);
|
||
insn && !BARRIER_P (insn) && search_limit != 0;
|
||
insn = prev_nonnote_insn (insn), --search_limit)
|
||
;
|
||
|
||
/* The closest BARRIER is too far away. */
|
||
if (search_limit == 0)
|
||
return -1;
|
||
|
||
/* The start of the function. */
|
||
else if (insn == 0)
|
||
return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
|
||
|
||
/* See if any of the upcoming CODE_LABELs start a basic block. If we reach
|
||
anything other than a CODE_LABEL or note, we can't find this code. */
|
||
for (insn = next_nonnote_insn (insn);
|
||
insn && LABEL_P (insn);
|
||
insn = next_nonnote_insn (insn))
|
||
if (BLOCK_FOR_INSN (insn))
|
||
return BLOCK_FOR_INSN (insn)->index;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Similar to next_insn, but ignores insns in the delay slots of
|
||
an annulled branch. */
|
||
|
||
static rtx_insn *
|
||
next_insn_no_annul (rtx_insn *insn)
|
||
{
|
||
if (insn)
|
||
{
|
||
/* If INSN is an annulled branch, skip any insns from the target
|
||
of the branch. */
|
||
if (JUMP_P (insn)
|
||
&& INSN_ANNULLED_BRANCH_P (insn)
|
||
&& NEXT_INSN (PREV_INSN (insn)) != insn)
|
||
{
|
||
rtx_insn *next = NEXT_INSN (insn);
|
||
|
||
while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
|
||
&& INSN_FROM_TARGET_P (next))
|
||
{
|
||
insn = next;
|
||
next = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
insn = NEXT_INSN (insn);
|
||
if (insn && NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
|
||
which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
|
||
is TRUE, resources used by the called routine will be included for
|
||
CALL_INSNs. */
|
||
|
||
void
|
||
mark_referenced_resources (rtx x, struct resources *res,
|
||
bool include_delayed_effects)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int i, j;
|
||
unsigned int r;
|
||
const char *format_ptr;
|
||
|
||
/* Handle leaf items for which we set resource flags. Also, special-case
|
||
CALL, SET and CLOBBER operators. */
|
||
switch (code)
|
||
{
|
||
case CONST:
|
||
CASE_CONST_ANY:
|
||
case PC:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (!REG_P (SUBREG_REG (x)))
|
||
mark_referenced_resources (SUBREG_REG (x), res, false);
|
||
else
|
||
{
|
||
unsigned int regno = subreg_regno (x);
|
||
unsigned int last_regno = regno + subreg_nregs (x);
|
||
|
||
gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
|
||
for (r = regno; r < last_regno; r++)
|
||
SET_HARD_REG_BIT (res->regs, r);
|
||
}
|
||
return;
|
||
|
||
case REG:
|
||
gcc_assert (HARD_REGISTER_P (x));
|
||
add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
|
||
return;
|
||
|
||
case MEM:
|
||
/* If this memory shouldn't change, it really isn't referencing
|
||
memory. */
|
||
if (! MEM_READONLY_P (x))
|
||
res->memory = 1;
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
|
||
/* Mark registers used to access memory. */
|
||
mark_referenced_resources (XEXP (x, 0), res, false);
|
||
return;
|
||
|
||
case CC0:
|
||
res->cc = 1;
|
||
return;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
case TRAP_IF:
|
||
case ASM_INPUT:
|
||
/* Traditional asm's are always volatile. */
|
||
res->volatil = 1;
|
||
break;
|
||
|
||
case ASM_OPERANDS:
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
|
||
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
||
We can not just fall through here since then we would be confused
|
||
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
||
traditional asms unlike their normal usage. */
|
||
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
|
||
return;
|
||
|
||
case CALL:
|
||
/* The first operand will be a (MEM (xxx)) but doesn't really reference
|
||
memory. The second operand may be referenced, though. */
|
||
mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
|
||
mark_referenced_resources (XEXP (x, 1), res, false);
|
||
return;
|
||
|
||
case SET:
|
||
/* Usually, the first operand of SET is set, not referenced. But
|
||
registers used to access memory are referenced. SET_DEST is
|
||
also referenced if it is a ZERO_EXTRACT. */
|
||
|
||
mark_referenced_resources (SET_SRC (x), res, false);
|
||
|
||
x = SET_DEST (x);
|
||
if (GET_CODE (x) == ZERO_EXTRACT
|
||
|| GET_CODE (x) == STRICT_LOW_PART)
|
||
mark_referenced_resources (x, res, false);
|
||
else if (GET_CODE (x) == SUBREG)
|
||
x = SUBREG_REG (x);
|
||
if (MEM_P (x))
|
||
mark_referenced_resources (XEXP (x, 0), res, false);
|
||
return;
|
||
|
||
case CLOBBER:
|
||
return;
|
||
|
||
case CALL_INSN:
|
||
if (include_delayed_effects)
|
||
{
|
||
/* A CALL references memory, the frame pointer if it exists, the
|
||
stack pointer, any global registers and any registers given in
|
||
USE insns immediately in front of the CALL.
|
||
|
||
However, we may have moved some of the parameter loading insns
|
||
into the delay slot of this CALL. If so, the USE's for them
|
||
don't count and should be skipped. */
|
||
rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
|
||
rtx_sequence *sequence = 0;
|
||
int seq_size = 0;
|
||
int i;
|
||
|
||
/* If we are part of a delay slot sequence, point at the SEQUENCE. */
|
||
if (NEXT_INSN (insn) != x)
|
||
{
|
||
sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
|
||
seq_size = sequence->len ();
|
||
gcc_assert (GET_CODE (sequence) == SEQUENCE);
|
||
}
|
||
|
||
res->memory = 1;
|
||
SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
|
||
if (frame_pointer_needed)
|
||
{
|
||
SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
|
||
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i])
|
||
SET_HARD_REG_BIT (res->regs, i);
|
||
|
||
/* Check for a REG_SETJMP. If it exists, then we must
|
||
assume that this call can need any register.
|
||
|
||
This is done to be more conservative about how we handle setjmp.
|
||
We assume that they both use and set all registers. Using all
|
||
registers ensures that a register will not be considered dead
|
||
just because it crosses a setjmp call. A register should be
|
||
considered dead only if the setjmp call returns nonzero. */
|
||
if (find_reg_note (x, REG_SETJMP, NULL))
|
||
SET_HARD_REG_SET (res->regs);
|
||
|
||
{
|
||
rtx link;
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
||
link;
|
||
link = XEXP (link, 1))
|
||
if (GET_CODE (XEXP (link, 0)) == USE)
|
||
{
|
||
for (i = 1; i < seq_size; i++)
|
||
{
|
||
rtx slot_pat = PATTERN (sequence->element (i));
|
||
if (GET_CODE (slot_pat) == SET
|
||
&& rtx_equal_p (SET_DEST (slot_pat),
|
||
XEXP (XEXP (link, 0), 0)))
|
||
break;
|
||
}
|
||
if (i >= seq_size)
|
||
mark_referenced_resources (XEXP (XEXP (link, 0), 0),
|
||
res, false);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* ... fall through to other INSN processing ... */
|
||
|
||
case INSN:
|
||
case JUMP_INSN:
|
||
|
||
if (GET_CODE (PATTERN (x)) == COND_EXEC)
|
||
/* In addition to the usual references, also consider all outputs
|
||
as referenced, to compensate for mark_set_resources treating
|
||
them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
|
||
handling, execpt that we got a partial incidence instead of a partial
|
||
width. */
|
||
mark_set_resources (x, res, 0,
|
||
include_delayed_effects
|
||
? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
|
||
|
||
#ifdef INSN_REFERENCES_ARE_DELAYED
|
||
if (! include_delayed_effects
|
||
&& INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
|
||
return;
|
||
#endif
|
||
|
||
/* No special processing, just speed up. */
|
||
mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Process each sub-expression and flag what it needs. */
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_referenced_resources (XVECEXP (x, i, j), res,
|
||
include_delayed_effects);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* A subroutine of mark_target_live_regs. Search forward from TARGET
|
||
looking for registers that are set before they are used. These are dead.
|
||
Stop after passing a few conditional jumps, and/or a small
|
||
number of unconditional branches. */
|
||
|
||
static rtx_insn *
|
||
find_dead_or_set_registers (rtx_insn *target, struct resources *res,
|
||
rtx *jump_target, int jump_count,
|
||
struct resources set, struct resources needed)
|
||
{
|
||
HARD_REG_SET scratch;
|
||
rtx_insn *insn;
|
||
rtx_insn *next_insn;
|
||
rtx_insn *jump_insn = 0;
|
||
int i;
|
||
|
||
for (insn = target; insn; insn = next_insn)
|
||
{
|
||
rtx_insn *this_jump_insn = insn;
|
||
|
||
next_insn = NEXT_INSN (insn);
|
||
|
||
/* If this instruction can throw an exception, then we don't
|
||
know where we might end up next. That means that we have to
|
||
assume that whatever we have already marked as live really is
|
||
live. */
|
||
if (can_throw_internal (insn))
|
||
break;
|
||
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case CODE_LABEL:
|
||
/* After a label, any pending dead registers that weren't yet
|
||
used can be made dead. */
|
||
AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
|
||
CLEAR_HARD_REG_SET (pending_dead_regs);
|
||
|
||
continue;
|
||
|
||
case BARRIER:
|
||
case NOTE:
|
||
continue;
|
||
|
||
case INSN:
|
||
if (GET_CODE (PATTERN (insn)) == USE)
|
||
{
|
||
/* If INSN is a USE made by update_block, we care about the
|
||
underlying insn. Any registers set by the underlying insn
|
||
are live since the insn is being done somewhere else. */
|
||
if (INSN_P (XEXP (PATTERN (insn), 0)))
|
||
mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
|
||
MARK_SRC_DEST_CALL);
|
||
|
||
/* All other USE insns are to be ignored. */
|
||
continue;
|
||
}
|
||
else if (GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
continue;
|
||
else if (rtx_sequence *seq =
|
||
dyn_cast <rtx_sequence *> (PATTERN (insn)))
|
||
{
|
||
/* An unconditional jump can be used to fill the delay slot
|
||
of a call, so search for a JUMP_INSN in any position. */
|
||
for (i = 0; i < seq->len (); i++)
|
||
{
|
||
this_jump_insn = seq->insn (i);
|
||
if (JUMP_P (this_jump_insn))
|
||
break;
|
||
}
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (JUMP_P (this_jump_insn))
|
||
{
|
||
if (jump_count++ < 10)
|
||
{
|
||
if (any_uncondjump_p (this_jump_insn)
|
||
|| ANY_RETURN_P (PATTERN (this_jump_insn)))
|
||
{
|
||
rtx lab_or_return = JUMP_LABEL (this_jump_insn);
|
||
if (ANY_RETURN_P (lab_or_return))
|
||
next_insn = NULL;
|
||
else
|
||
next_insn = as_a <rtx_insn *> (lab_or_return);
|
||
if (jump_insn == 0)
|
||
{
|
||
jump_insn = insn;
|
||
if (jump_target)
|
||
*jump_target = JUMP_LABEL (this_jump_insn);
|
||
}
|
||
}
|
||
else if (any_condjump_p (this_jump_insn))
|
||
{
|
||
struct resources target_set, target_res;
|
||
struct resources fallthrough_res;
|
||
|
||
/* We can handle conditional branches here by following
|
||
both paths, and then IOR the results of the two paths
|
||
together, which will give us registers that are dead
|
||
on both paths. Since this is expensive, we give it
|
||
a much higher cost than unconditional branches. The
|
||
cost was chosen so that we will follow at most 1
|
||
conditional branch. */
|
||
|
||
jump_count += 4;
|
||
if (jump_count >= 10)
|
||
break;
|
||
|
||
mark_referenced_resources (insn, &needed, true);
|
||
|
||
/* For an annulled branch, mark_set_resources ignores slots
|
||
filled by instructions from the target. This is correct
|
||
if the branch is not taken. Since we are following both
|
||
paths from the branch, we must also compute correct info
|
||
if the branch is taken. We do this by inverting all of
|
||
the INSN_FROM_TARGET_P bits, calling mark_set_resources,
|
||
and then inverting the INSN_FROM_TARGET_P bits again. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
&& INSN_ANNULLED_BRANCH_P (this_jump_insn))
|
||
{
|
||
rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
|
||
for (i = 1; i < seq->len (); i++)
|
||
INSN_FROM_TARGET_P (seq->element (i))
|
||
= ! INSN_FROM_TARGET_P (seq->element (i));
|
||
|
||
target_set = set;
|
||
mark_set_resources (insn, &target_set, 0,
|
||
MARK_SRC_DEST_CALL);
|
||
|
||
for (i = 1; i < seq->len (); i++)
|
||
INSN_FROM_TARGET_P (seq->element (i))
|
||
= ! INSN_FROM_TARGET_P (seq->element (i));
|
||
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
}
|
||
else
|
||
{
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
target_set = set;
|
||
}
|
||
|
||
target_res = *res;
|
||
COPY_HARD_REG_SET (scratch, target_set.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
|
||
|
||
fallthrough_res = *res;
|
||
COPY_HARD_REG_SET (scratch, set.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
|
||
|
||
if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
|
||
find_dead_or_set_registers (JUMP_LABEL_AS_INSN (this_jump_insn),
|
||
&target_res, 0, jump_count,
|
||
target_set, needed);
|
||
find_dead_or_set_registers (next_insn,
|
||
&fallthrough_res, 0, jump_count,
|
||
set, needed);
|
||
IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
|
||
AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Don't try this optimization if we expired our jump count
|
||
above, since that would mean there may be an infinite loop
|
||
in the function being compiled. */
|
||
jump_insn = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
mark_referenced_resources (insn, &needed, true);
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
|
||
COPY_HARD_REG_SET (scratch, set.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (res->regs, scratch);
|
||
}
|
||
|
||
return jump_insn;
|
||
}
|
||
|
||
/* Given X, a part of an insn, and a pointer to a `struct resource',
|
||
RES, indicate which resources are modified by the insn. If
|
||
MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
|
||
set by the called routine.
|
||
|
||
If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
|
||
objects are being referenced instead of set.
|
||
|
||
We never mark the insn as modifying the condition code unless it explicitly
|
||
SETs CC0 even though this is not totally correct. The reason for this is
|
||
that we require a SET of CC0 to immediately precede the reference to CC0.
|
||
So if some other insn sets CC0 as a side-effect, we know it cannot affect
|
||
our computation and thus may be placed in a delay slot. */
|
||
|
||
void
|
||
mark_set_resources (rtx x, struct resources *res, int in_dest,
|
||
enum mark_resource_type mark_type)
|
||
{
|
||
enum rtx_code code;
|
||
int i, j;
|
||
unsigned int r;
|
||
const char *format_ptr;
|
||
|
||
restart:
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case NOTE:
|
||
case BARRIER:
|
||
case CODE_LABEL:
|
||
case USE:
|
||
CASE_CONST_ANY:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case PC:
|
||
/* These don't set any resources. */
|
||
return;
|
||
|
||
case CC0:
|
||
if (in_dest)
|
||
res->cc = 1;
|
||
return;
|
||
|
||
case CALL_INSN:
|
||
/* Called routine modifies the condition code, memory, any registers
|
||
that aren't saved across calls, global registers and anything
|
||
explicitly CLOBBERed immediately after the CALL_INSN. */
|
||
|
||
if (mark_type == MARK_SRC_DEST_CALL)
|
||
{
|
||
rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
|
||
rtx link;
|
||
HARD_REG_SET regs;
|
||
|
||
res->cc = res->memory = 1;
|
||
|
||
get_call_reg_set_usage (call_insn, ®s, regs_invalidated_by_call);
|
||
IOR_HARD_REG_SET (res->regs, regs);
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
|
||
link; link = XEXP (link, 1))
|
||
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
||
mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
|
||
MARK_SRC_DEST);
|
||
|
||
/* Check for a REG_SETJMP. If it exists, then we must
|
||
assume that this call can clobber any register. */
|
||
if (find_reg_note (call_insn, REG_SETJMP, NULL))
|
||
SET_HARD_REG_SET (res->regs);
|
||
}
|
||
|
||
/* ... and also what its RTL says it modifies, if anything. */
|
||
|
||
case JUMP_INSN:
|
||
case INSN:
|
||
|
||
/* An insn consisting of just a CLOBBER (or USE) is just for flow
|
||
and doesn't actually do anything, so we ignore it. */
|
||
|
||
#ifdef INSN_SETS_ARE_DELAYED
|
||
if (mark_type != MARK_SRC_DEST_CALL
|
||
&& INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
|
||
return;
|
||
#endif
|
||
|
||
x = PATTERN (x);
|
||
if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
|
||
goto restart;
|
||
return;
|
||
|
||
case SET:
|
||
/* If the source of a SET is a CALL, this is actually done by
|
||
the called routine. So only include it if we are to include the
|
||
effects of the calling routine. */
|
||
|
||
mark_set_resources (SET_DEST (x), res,
|
||
(mark_type == MARK_SRC_DEST_CALL
|
||
|| GET_CODE (SET_SRC (x)) != CALL),
|
||
mark_type);
|
||
|
||
mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
|
||
return;
|
||
|
||
case CLOBBER:
|
||
mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
|
||
return;
|
||
|
||
case SEQUENCE:
|
||
{
|
||
rtx_sequence *seq = as_a <rtx_sequence *> (x);
|
||
rtx control = seq->element (0);
|
||
bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
|
||
|
||
mark_set_resources (control, res, 0, mark_type);
|
||
for (i = seq->len () - 1; i >= 0; --i)
|
||
{
|
||
rtx elt = seq->element (i);
|
||
if (!annul_p && INSN_FROM_TARGET_P (elt))
|
||
mark_set_resources (elt, res, 0, mark_type);
|
||
}
|
||
}
|
||
return;
|
||
|
||
case POST_INC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case PRE_DEC:
|
||
mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
|
||
return;
|
||
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
|
||
mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
|
||
mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
|
||
return;
|
||
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
|
||
mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
|
||
mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
|
||
return;
|
||
|
||
case MEM:
|
||
if (in_dest)
|
||
{
|
||
res->memory = 1;
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
}
|
||
|
||
mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (in_dest)
|
||
{
|
||
if (!REG_P (SUBREG_REG (x)))
|
||
mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
|
||
else
|
||
{
|
||
unsigned int regno = subreg_regno (x);
|
||
unsigned int last_regno = regno + subreg_nregs (x);
|
||
|
||
gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
|
||
for (r = regno; r < last_regno; r++)
|
||
SET_HARD_REG_BIT (res->regs, r);
|
||
}
|
||
}
|
||
return;
|
||
|
||
case REG:
|
||
if (in_dest)
|
||
{
|
||
gcc_assert (HARD_REGISTER_P (x));
|
||
add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
|
||
}
|
||
return;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
case ASM_INPUT:
|
||
/* Traditional asm's are always volatile. */
|
||
res->volatil = 1;
|
||
return;
|
||
|
||
case TRAP_IF:
|
||
res->volatil = 1;
|
||
break;
|
||
|
||
case ASM_OPERANDS:
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
|
||
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
||
We can not just fall through here since then we would be confused
|
||
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
||
traditional asms unlike their normal usage. */
|
||
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
|
||
MARK_SRC_DEST);
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Process each sub-expression and flag what it needs. */
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if INSN is a return, possibly with a filled delay slot. */
|
||
|
||
static bool
|
||
return_insn_p (const_rtx insn)
|
||
{
|
||
if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
|
||
return true;
|
||
|
||
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Set the resources that are live at TARGET.
|
||
|
||
If TARGET is zero, we refer to the end of the current function and can
|
||
return our precomputed value.
|
||
|
||
Otherwise, we try to find out what is live by consulting the basic block
|
||
information. This is tricky, because we must consider the actions of
|
||
reload and jump optimization, which occur after the basic block information
|
||
has been computed.
|
||
|
||
Accordingly, we proceed as follows::
|
||
|
||
We find the previous BARRIER and look at all immediately following labels
|
||
(with no intervening active insns) to see if any of them start a basic
|
||
block. If we hit the start of the function first, we use block 0.
|
||
|
||
Once we have found a basic block and a corresponding first insn, we can
|
||
accurately compute the live status (by starting at a label following a
|
||
BARRIER, we are immune to actions taken by reload and jump.) Then we
|
||
scan all insns between that point and our target. For each CLOBBER (or
|
||
for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
|
||
registers are dead. For a SET, mark them as live.
|
||
|
||
We have to be careful when using REG_DEAD notes because they are not
|
||
updated by such things as find_equiv_reg. So keep track of registers
|
||
marked as dead that haven't been assigned to, and mark them dead at the
|
||
next CODE_LABEL since reload and jump won't propagate values across labels.
|
||
|
||
If we cannot find the start of a basic block (should be a very rare
|
||
case, if it can happen at all), mark everything as potentially live.
|
||
|
||
Next, scan forward from TARGET looking for things set or clobbered
|
||
before they are used. These are not live.
|
||
|
||
Because we can be called many times on the same target, save our results
|
||
in a hash table indexed by INSN_UID. This is only done if the function
|
||
init_resource_info () was invoked before we are called. */
|
||
|
||
void
|
||
mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
|
||
{
|
||
int b = -1;
|
||
unsigned int i;
|
||
struct target_info *tinfo = NULL;
|
||
rtx_insn *insn;
|
||
rtx jump_insn = 0;
|
||
rtx jump_target;
|
||
HARD_REG_SET scratch;
|
||
struct resources set, needed;
|
||
|
||
/* Handle end of function. */
|
||
if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
|
||
{
|
||
*res = end_of_function_needs;
|
||
return;
|
||
}
|
||
|
||
/* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
|
||
instruction. */
|
||
rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
|
||
|
||
/* Handle return insn. */
|
||
if (return_insn_p (target))
|
||
{
|
||
*res = end_of_function_needs;
|
||
mark_referenced_resources (target, res, false);
|
||
return;
|
||
}
|
||
|
||
/* We have to assume memory is needed, but the CC isn't. */
|
||
res->memory = 1;
|
||
res->volatil = 0;
|
||
res->cc = 0;
|
||
|
||
/* See if we have computed this value already. */
|
||
if (target_hash_table != NULL)
|
||
{
|
||
for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
||
tinfo; tinfo = tinfo->next)
|
||
if (tinfo->uid == INSN_UID (target))
|
||
break;
|
||
|
||
/* Start by getting the basic block number. If we have saved
|
||
information, we can get it from there unless the insn at the
|
||
start of the basic block has been deleted. */
|
||
if (tinfo && tinfo->block != -1
|
||
&& ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
|
||
b = tinfo->block;
|
||
}
|
||
|
||
if (b == -1)
|
||
b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
|
||
|
||
if (target_hash_table != NULL)
|
||
{
|
||
if (tinfo)
|
||
{
|
||
/* If the information is up-to-date, use it. Otherwise, we will
|
||
update it below. */
|
||
if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
|
||
{
|
||
COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Allocate a place to put our results and chain it into the
|
||
hash table. */
|
||
tinfo = XNEW (struct target_info);
|
||
tinfo->uid = INSN_UID (target);
|
||
tinfo->block = b;
|
||
tinfo->next
|
||
= target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
||
target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
|
||
}
|
||
}
|
||
|
||
CLEAR_HARD_REG_SET (pending_dead_regs);
|
||
|
||
/* If we found a basic block, get the live registers from it and update
|
||
them with anything set or killed between its start and the insn before
|
||
TARGET; this custom life analysis is really about registers so we need
|
||
to use the LR problem. Otherwise, we must assume everything is live. */
|
||
if (b != -1)
|
||
{
|
||
regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
|
||
rtx_insn *start_insn, *stop_insn;
|
||
|
||
/* Compute hard regs live at start of block. */
|
||
REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
|
||
|
||
/* Get starting and ending insn, handling the case where each might
|
||
be a SEQUENCE. */
|
||
start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
|
||
insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
|
||
stop_insn = target;
|
||
|
||
if (NONJUMP_INSN_P (start_insn)
|
||
&& GET_CODE (PATTERN (start_insn)) == SEQUENCE)
|
||
start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
|
||
|
||
if (NONJUMP_INSN_P (stop_insn)
|
||
&& GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
|
||
stop_insn = next_insn (PREV_INSN (stop_insn));
|
||
|
||
for (insn = start_insn; insn != stop_insn;
|
||
insn = next_insn_no_annul (insn))
|
||
{
|
||
rtx link;
|
||
rtx_insn *real_insn = insn;
|
||
enum rtx_code code = GET_CODE (insn);
|
||
|
||
if (DEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
/* If this insn is from the target of a branch, it isn't going to
|
||
be used in the sequel. If it is used in both cases, this
|
||
test will not be true. */
|
||
if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
|
||
&& INSN_FROM_TARGET_P (insn))
|
||
continue;
|
||
|
||
/* If this insn is a USE made by update_block, we care about the
|
||
underlying insn. */
|
||
if (code == INSN
|
||
&& GET_CODE (PATTERN (insn)) == USE
|
||
&& INSN_P (XEXP (PATTERN (insn), 0)))
|
||
real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
|
||
|
||
if (CALL_P (real_insn))
|
||
{
|
||
/* Values in call-clobbered registers survive a COND_EXEC CALL
|
||
if that is not executed; this matters for resoure use because
|
||
they may be used by a complementarily (or more strictly)
|
||
predicated instruction, or if the CALL is NORETURN. */
|
||
if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
|
||
{
|
||
HARD_REG_SET regs_invalidated_by_this_call;
|
||
get_call_reg_set_usage (real_insn,
|
||
®s_invalidated_by_this_call,
|
||
regs_invalidated_by_call);
|
||
/* CALL clobbers all call-used regs that aren't fixed except
|
||
sp, ap, and fp. Do this before setting the result of the
|
||
call live. */
|
||
AND_COMPL_HARD_REG_SET (current_live_regs,
|
||
regs_invalidated_by_this_call);
|
||
}
|
||
|
||
/* A CALL_INSN sets any global register live, since it may
|
||
have been modified by the call. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i])
|
||
SET_HARD_REG_BIT (current_live_regs, i);
|
||
}
|
||
|
||
/* Mark anything killed in an insn to be deadened at the next
|
||
label. Ignore USE insns; the only REG_DEAD notes will be for
|
||
parameters. But they might be early. A CALL_INSN will usually
|
||
clobber registers used for parameters. It isn't worth bothering
|
||
with the unlikely case when it won't. */
|
||
if ((NONJUMP_INSN_P (real_insn)
|
||
&& GET_CODE (PATTERN (real_insn)) != USE
|
||
&& GET_CODE (PATTERN (real_insn)) != CLOBBER)
|
||
|| JUMP_P (real_insn)
|
||
|| CALL_P (real_insn))
|
||
{
|
||
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& REG_P (XEXP (link, 0))
|
||
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
||
add_to_hard_reg_set (&pending_dead_regs,
|
||
GET_MODE (XEXP (link, 0)),
|
||
REGNO (XEXP (link, 0)));
|
||
|
||
note_stores (PATTERN (real_insn), update_live_status, NULL);
|
||
|
||
/* If any registers were unused after this insn, kill them.
|
||
These notes will always be accurate. */
|
||
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_UNUSED
|
||
&& REG_P (XEXP (link, 0))
|
||
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
||
remove_from_hard_reg_set (¤t_live_regs,
|
||
GET_MODE (XEXP (link, 0)),
|
||
REGNO (XEXP (link, 0)));
|
||
}
|
||
|
||
else if (LABEL_P (real_insn))
|
||
{
|
||
basic_block bb;
|
||
|
||
/* A label clobbers the pending dead registers since neither
|
||
reload nor jump will propagate a value across a label. */
|
||
AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
|
||
CLEAR_HARD_REG_SET (pending_dead_regs);
|
||
|
||
/* We must conservatively assume that all registers that used
|
||
to be live here still are. The fallthrough edge may have
|
||
left a live register uninitialized. */
|
||
bb = BLOCK_FOR_INSN (real_insn);
|
||
if (bb)
|
||
{
|
||
HARD_REG_SET extra_live;
|
||
|
||
REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
|
||
IOR_HARD_REG_SET (current_live_regs, extra_live);
|
||
}
|
||
}
|
||
|
||
/* The beginning of the epilogue corresponds to the end of the
|
||
RTL chain when there are no epilogue insns. Certain resources
|
||
are implicitly required at that point. */
|
||
else if (NOTE_P (real_insn)
|
||
&& NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
|
||
IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
|
||
}
|
||
|
||
COPY_HARD_REG_SET (res->regs, current_live_regs);
|
||
if (tinfo != NULL)
|
||
{
|
||
tinfo->block = b;
|
||
tinfo->bb_tick = bb_ticks[b];
|
||
}
|
||
}
|
||
else
|
||
/* We didn't find the start of a basic block. Assume everything
|
||
in use. This should happen only extremely rarely. */
|
||
SET_HARD_REG_SET (res->regs);
|
||
|
||
CLEAR_RESOURCE (&set);
|
||
CLEAR_RESOURCE (&needed);
|
||
|
||
jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
|
||
set, needed);
|
||
|
||
/* If we hit an unconditional branch, we have another way of finding out
|
||
what is live: we can see what is live at the branch target and include
|
||
anything used but not set before the branch. We add the live
|
||
resources found using the test below to those found until now. */
|
||
|
||
if (jump_insn)
|
||
{
|
||
struct resources new_resources;
|
||
rtx_insn *stop_insn = next_active_insn (jump_insn);
|
||
|
||
if (!ANY_RETURN_P (jump_target))
|
||
jump_target = next_active_insn (jump_target);
|
||
mark_target_live_regs (insns, jump_target, &new_resources);
|
||
CLEAR_RESOURCE (&set);
|
||
CLEAR_RESOURCE (&needed);
|
||
|
||
/* Include JUMP_INSN in the needed registers. */
|
||
for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
|
||
{
|
||
mark_referenced_resources (insn, &needed, true);
|
||
|
||
COPY_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, set.regs);
|
||
IOR_HARD_REG_SET (new_resources.regs, scratch);
|
||
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
}
|
||
|
||
IOR_HARD_REG_SET (res->regs, new_resources.regs);
|
||
}
|
||
|
||
if (tinfo != NULL)
|
||
{
|
||
COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
|
||
}
|
||
}
|
||
|
||
/* Initialize the resources required by mark_target_live_regs ().
|
||
This should be invoked before the first call to mark_target_live_regs. */
|
||
|
||
void
|
||
init_resource_info (rtx_insn *epilogue_insn)
|
||
{
|
||
int i;
|
||
basic_block bb;
|
||
|
||
/* Indicate what resources are required to be valid at the end of the current
|
||
function. The condition code never is and memory always is.
|
||
The stack pointer is needed unless EXIT_IGNORE_STACK is true
|
||
and there is an epilogue that restores the original stack pointer
|
||
from the frame pointer. Registers used to return the function value
|
||
are needed. Registers holding global variables are needed. */
|
||
|
||
end_of_function_needs.cc = 0;
|
||
end_of_function_needs.memory = 1;
|
||
CLEAR_HARD_REG_SET (end_of_function_needs.regs);
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
|
||
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
if (!(frame_pointer_needed
|
||
&& EXIT_IGNORE_STACK
|
||
&& epilogue_insn
|
||
&& !crtl->sp_is_unchanging))
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
||
|
||
if (crtl->return_rtx != 0)
|
||
mark_referenced_resources (crtl->return_rtx,
|
||
&end_of_function_needs, true);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i]
|
||
#ifdef EPILOGUE_USES
|
||
|| EPILOGUE_USES (i)
|
||
#endif
|
||
)
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, i);
|
||
|
||
/* The registers required to be live at the end of the function are
|
||
represented in the flow information as being dead just prior to
|
||
reaching the end of the function. For example, the return of a value
|
||
might be represented by a USE of the return register immediately
|
||
followed by an unconditional jump to the return label where the
|
||
return label is the end of the RTL chain. The end of the RTL chain
|
||
is then taken to mean that the return register is live.
|
||
|
||
This sequence is no longer maintained when epilogue instructions are
|
||
added to the RTL chain. To reconstruct the original meaning, the
|
||
start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
|
||
point where these registers become live (start_of_epilogue_needs).
|
||
If epilogue instructions are present, the registers set by those
|
||
instructions won't have been processed by flow. Thus, those
|
||
registers are additionally required at the end of the RTL chain
|
||
(end_of_function_needs). */
|
||
|
||
start_of_epilogue_needs = end_of_function_needs;
|
||
|
||
while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
|
||
{
|
||
mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
|
||
MARK_SRC_DEST_CALL);
|
||
if (return_insn_p (epilogue_insn))
|
||
break;
|
||
}
|
||
|
||
/* Allocate and initialize the tables used by mark_target_live_regs. */
|
||
target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
|
||
bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
|
||
/* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (LABEL_P (BB_HEAD (bb)))
|
||
BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
|
||
}
|
||
|
||
/* Free up the resources allocated to mark_target_live_regs (). This
|
||
should be invoked after the last call to mark_target_live_regs (). */
|
||
|
||
void
|
||
free_resource_info (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (target_hash_table != NULL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TARGET_HASH_PRIME; ++i)
|
||
{
|
||
struct target_info *ti = target_hash_table[i];
|
||
|
||
while (ti)
|
||
{
|
||
struct target_info *next = ti->next;
|
||
free (ti);
|
||
ti = next;
|
||
}
|
||
}
|
||
|
||
free (target_hash_table);
|
||
target_hash_table = NULL;
|
||
}
|
||
|
||
if (bb_ticks != NULL)
|
||
{
|
||
free (bb_ticks);
|
||
bb_ticks = NULL;
|
||
}
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (LABEL_P (BB_HEAD (bb)))
|
||
BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
|
||
}
|
||
|
||
/* Clear any hashed information that we have stored for INSN. */
|
||
|
||
void
|
||
clear_hashed_info_for_insn (rtx_insn *insn)
|
||
{
|
||
struct target_info *tinfo;
|
||
|
||
if (target_hash_table != NULL)
|
||
{
|
||
for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
|
||
tinfo; tinfo = tinfo->next)
|
||
if (tinfo->uid == INSN_UID (insn))
|
||
break;
|
||
|
||
if (tinfo)
|
||
tinfo->block = -1;
|
||
}
|
||
}
|
||
|
||
/* Increment the tick count for the basic block that contains INSN. */
|
||
|
||
void
|
||
incr_ticks_for_insn (rtx_insn *insn)
|
||
{
|
||
int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
|
||
|
||
if (b != -1)
|
||
bb_ticks[b]++;
|
||
}
|
||
|
||
/* Add TRIAL to the set of resources used at the end of the current
|
||
function. */
|
||
void
|
||
mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
|
||
{
|
||
mark_referenced_resources (trial, &end_of_function_needs,
|
||
include_delayed_effects);
|
||
}
|