gcc/libgfortran/intrinsics/unpack_generic.c
Richard Sandiford 7823229bc3 re PR fortran/19269 (transpose(reshape(...)) of character array segfaults.)
gcc/fortran/
	PR target/19269
	* iresolve.c (gfc_resolve_cshift, gfc_resolve_eoshift)
	(gfc_resolve_pack, gfc_resolve_reshape, gfc_resolve_spread)
	(gfc_resolve_transpose, gfc_resolve_unpack): Add "_char" to the name
	for character-based operations.
	(gfc_resolve_pack): Remove ATTRIBUTE_UNUSED from array argument.
	(gfc_resolve_unpack): Copy the whole typespec from the vector.
	* trans-array.c (gfc_conv_expr_descriptor): In the EXPR_FUNCTION
	case, get the string length from the scalarization state.

libgfortran/
	PR target/19269
	* intrinsics/cshift0.c (cshift0): Add an extra size argument.
	(cshift0_1, cshift0_2, cshift0_4, cshift0_8): Replace explicit
	implementations with...
	(DEFINE_CSHIFT): ...this new macro.  Define character versions too.
	* intrinsics/eoshift0.c (zeros): Delete.
	(eoshift0): Add extra size and filler arguments.  Use memset if no
	bound is provided.
	(eoshift0_1, eoshift0_2, eoshift0_4, eoshift0_8): Replace explicit
	implementations with...
	(DEFINE_EOSHIFT): ...this new macro.  Define character versions too.
	* intrinsics/eoshift2.c (zeros): Delete.
	(eoshift2): Add extra size and filler arguments.  Use memset if no
	bound is provided.
	(eoshift2_1, eoshift2_2, eoshift2_4, eoshift2_8): Replace explicit
	implementations with...
	(DEFINE_EOSHIFT): ...this new macro.  Define character versions too.
	* intrinsics/pack.c (pack_internal): New static function, reusing
	the contents of pack and adding an extra size argument.  Change
	"mptr" rather than "m" when calculating the array size.
	(pack): Redefine as a forwarder to pack_internal.
	(pack_s_internal): New static function, reusing the contents of
	pack_s and adding an extra size argument.
	(pack_s): Redefine as a forwarder to pack_s_internal.
	(pack_char, pack_s_char): New functions.
	* intrinsics/reshape.c (reshape_internal): New static function,
	reusing the contents of reshape and adding an extra size argument.
	(reshape): Redefine as a forwarder to reshape_internal.
	(reshape_char): New function.
	* intrinsics/spread.c (spread_internal): New static function,
	reusing the contents of spread and adding an extra size argument.
	(spread): Redefine as a forwarder to spread_internal.
	(spread_char): New function.
	* intrinsics/transpose.c (transpose_internal): New static function,
	reusing the contents of transpose and adding an extra size argument.
	(transpose): Redefine as a forwarder to transpose_internal.
	(transpose_char): New function.
	* intrinsics/unpack.c (unpack_internal): New static function, reusing
	the contents of unpack1 and adding extra size and fsize arguments.
	(unpack1): Redefine as a forwarder to unpack_internal.
	(unpack0): Call unpack_internal instead of unpack1.
	(unpack1_char, unpack0_char): New functions.
	* m4/cshift1.m4 (cshift1): New static function, reusing the contents
	of cshift1_<kind> and adding an extra size argument.
	(cshift1_<kind>): Redefine as a forwarder to cshift1.
	(cshift1_<kind>_char): New function.
	* m4/eoshift1.m4 (zeros): Delete.
	(eoshift1): New static function, reusing the contents of
	eoshift1_<kind> and adding extra size and filler arguments.
	Fix calculation of hstride.  Use memset if no bound is provided.
	(eoshift1_<kind>): Redefine as a forwarder to eoshift1.
	(eoshift1_<kind>_char): New function.
	* m4/eoshift3.m4 (zeros): Delete.
	(eoshift3): New static function, reusing the contents of
	eoshift3_<kind> and adding extra size and filler arguments.
	Use memset if no bound is provided.
	(eoshift3_<kind>): Redefine as a forwarder to eoshift3.
	(eoshift3_<kind>_char): New function.
	* generated/cshift1_4.c, generated/cshift1_8.c,
	* generated/eoshift1_4.c, generated/eoshift1_8.c,
	* generated/eoshift3_4.c, generated/eoshift3_8.c: Regenerate.

From-SVN: r104217
2005-09-13 07:15:01 +00:00

235 lines
6.8 KiB
C

/* Generic implementation of the UNPACK intrinsic
Copyright 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "libgfortran.h"
static void
unpack_internal (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l4 *mask, const gfc_array_char *field,
index_type size, index_type fsize)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
char *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
char *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const char *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_4 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
rstride[n] = ret->dim[n].stride * size;
fstride[n] = field->dim[n].stride * fsize;
mstride[n] = mask->dim[n].stride;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * size);
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
rstride[n] = ret->dim[n].stride * size;
fstride[n] = field->dim[n].stride * fsize;
mstride[n] = mask->dim[n].stride;
}
if (rstride[0] == 0)
rstride[0] = size;
}
if (fstride[0] == 0)
fstride[0] = fsize;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride * size;
if (vstride0 == 0)
vstride0 = size;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
mptr = mask->data;
vptr = vector->data;
/* Use the same loop for both logical types. */
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
{
if (GFC_DESCRIPTOR_SIZE (mask) != 8)
runtime_error ("Funny sized logical array");
for (n = 0; n < dim; n++)
mstride[n] <<= 1;
mstride0 <<= 1;
mptr = GFOR_POINTER_L8_TO_L4 (mptr);
}
while (rptr)
{
if (*mptr)
{
/* From vector. */
memcpy (rptr, vptr, size);
vptr += vstride0;
}
else
{
/* From field. */
memcpy (rptr, fptr, size);
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
extern void unpack1 (gfc_array_char *, const gfc_array_char *,
const gfc_array_l4 *, const gfc_array_char *);
export_proto(unpack1);
void
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l4 *mask, const gfc_array_char *field)
{
unpack_internal (ret, vector, mask, field,
GFC_DESCRIPTOR_SIZE (vector),
GFC_DESCRIPTOR_SIZE (field));
}
extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const gfc_array_l4 *,
const gfc_array_char *, GFC_INTEGER_4,
GFC_INTEGER_4);
export_proto(unpack1_char);
void
unpack1_char (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *vector, const gfc_array_l4 *mask,
const gfc_array_char *field, GFC_INTEGER_4 vector_length,
GFC_INTEGER_4 field_length)
{
unpack_internal (ret, vector, mask, field, vector_length, field_length);
}
extern void unpack0 (gfc_array_char *, const gfc_array_char *,
const gfc_array_l4 *, char *);
export_proto(unpack0);
void
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l4 *mask, char *field)
{
gfc_array_char tmp;
tmp.dtype = 0;
tmp.data = field;
unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector), 0);
}
extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const gfc_array_l4 *,
char *, GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(unpack0_char);
void
unpack0_char (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *vector, const gfc_array_l4 *mask,
char *field, GFC_INTEGER_4 vector_length,
GFC_INTEGER_4 field_length __attribute__((unused)))
{
gfc_array_char tmp;
tmp.dtype = 0;
tmp.data = field;
unpack_internal (ret, vector, mask, &tmp, vector_length, 0);
}