gcc/libsanitizer/tsan/tsan_platform_linux.cc
Kostya Serebryany 866e32ad33 [libsanitizer merge from upstream r218156]
From-SVN: r215527
2014-09-23 17:59:53 +00:00

430 lines
13 KiB
C++

//===-- tsan_platform_linux.cc --------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Linux-specific code.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_LINUX || SANITIZER_FREEBSD
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_flags.h"
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <sched.h>
#include <dlfcn.h>
#if SANITIZER_LINUX
#define __need_res_state
#include <resolv.h>
#endif
#ifdef sa_handler
# undef sa_handler
#endif
#ifdef sa_sigaction
# undef sa_sigaction
#endif
#if SANITIZER_FREEBSD
extern "C" void *__libc_stack_end;
void *__libc_stack_end = 0;
#endif
namespace __tsan {
const uptr kPageSize = 4096;
enum {
MemTotal = 0,
MemShadow = 1,
MemMeta = 2,
MemFile = 3,
MemMmap = 4,
MemTrace = 5,
MemHeap = 6,
MemOther = 7,
MemCount = 8,
};
void FillProfileCallback(uptr start, uptr rss, bool file,
uptr *mem, uptr stats_size) {
mem[MemTotal] += rss;
start >>= 40;
if (start < 0x10)
mem[MemShadow] += rss;
else if (start >= 0x20 && start < 0x30)
mem[file ? MemFile : MemMmap] += rss;
else if (start >= 0x30 && start < 0x40)
mem[MemMeta] += rss;
else if (start >= 0x7e)
mem[file ? MemFile : MemMmap] += rss;
else if (start >= 0x60 && start < 0x62)
mem[MemTrace] += rss;
else if (start >= 0x7d && start < 0x7e)
mem[MemHeap] += rss;
else
mem[MemOther] += rss;
}
void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
uptr mem[MemCount] = {};
__sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
internal_snprintf(buf, buf_size,
"RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
" trace:%zd heap:%zd other:%zd nthr=%zd/%zd\n",
mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
mem[MemHeap] >> 20, mem[MemOther] >> 20,
nlive, nthread);
}
uptr GetRSS() {
uptr fd = OpenFile("/proc/self/statm", false);
if ((sptr)fd < 0)
return 0;
char buf[64];
uptr len = internal_read(fd, buf, sizeof(buf) - 1);
internal_close(fd);
if ((sptr)len <= 0)
return 0;
buf[len] = 0;
// The format of the file is:
// 1084 89 69 11 0 79 0
// We need the second number which is RSS in 4K units.
char *pos = buf;
// Skip the first number.
while (*pos >= '0' && *pos <= '9')
pos++;
// Skip whitespaces.
while (!(*pos >= '0' && *pos <= '9') && *pos != 0)
pos++;
// Read the number.
uptr rss = 0;
while (*pos >= '0' && *pos <= '9')
rss = rss * 10 + *pos++ - '0';
return rss * 4096;
}
#if SANITIZER_LINUX
void FlushShadowMemoryCallback(
const SuspendedThreadsList &suspended_threads_list,
void *argument) {
FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg);
}
#endif
void FlushShadowMemory() {
#if SANITIZER_LINUX
StopTheWorld(FlushShadowMemoryCallback, 0);
#endif
}
#ifndef TSAN_GO
static void ProtectRange(uptr beg, uptr end) {
CHECK_LE(beg, end);
if (beg == end)
return;
if (beg != (uptr)Mprotect(beg, end - beg)) {
Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end);
Printf("FATAL: Make sure you are not using unlimited stack\n");
Die();
}
}
// Mark shadow for .rodata sections with the special kShadowRodata marker.
// Accesses to .rodata can't race, so this saves time, memory and trace space.
static void MapRodata() {
// First create temp file.
const char *tmpdir = GetEnv("TMPDIR");
if (tmpdir == 0)
tmpdir = GetEnv("TEST_TMPDIR");
#ifdef P_tmpdir
if (tmpdir == 0)
tmpdir = P_tmpdir;
#endif
if (tmpdir == 0)
return;
char name[256];
internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
tmpdir, (int)internal_getpid());
uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
if (internal_iserror(openrv))
return;
internal_unlink(name); // Unlink it now, so that we can reuse the buffer.
fd_t fd = openrv;
// Fill the file with kShadowRodata.
const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
InternalScopedBuffer<u64> marker(kMarkerSize);
// volatile to prevent insertion of memset
for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
*p = kShadowRodata;
internal_write(fd, marker.data(), marker.size());
// Map the file into memory.
uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
if (internal_iserror(page)) {
internal_close(fd);
return;
}
// Map the file into shadow of .rodata sections.
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
uptr start, end, offset, prot;
// Reusing the buffer 'name'.
while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
if (name[0] != 0 && name[0] != '['
&& (prot & MemoryMappingLayout::kProtectionRead)
&& (prot & MemoryMappingLayout::kProtectionExecute)
&& !(prot & MemoryMappingLayout::kProtectionWrite)
&& IsAppMem(start)) {
// Assume it's .rodata
char *shadow_start = (char*)MemToShadow(start);
char *shadow_end = (char*)MemToShadow(end);
for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
}
}
}
internal_close(fd);
}
void InitializeShadowMemory() {
// Map memory shadow.
uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg,
kLinuxShadowEnd - kLinuxShadowBeg);
if (shadow != kLinuxShadowBeg) {
Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
Printf("FATAL: Make sure to compile with -fPIE and "
"to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg);
Die();
}
// This memory range is used for thread stacks and large user mmaps.
// Frequently a thread uses only a small part of stack and similarly
// a program uses a small part of large mmap. On some programs
// we see 20% memory usage reduction without huge pages for this range.
#ifdef MADV_NOHUGEPAGE
madvise((void*)MemToShadow(0x7f0000000000ULL),
0x10000000000ULL * kShadowMultiplier, MADV_NOHUGEPAGE);
#endif
DPrintf("memory shadow: %zx-%zx (%zuGB)\n",
kLinuxShadowBeg, kLinuxShadowEnd,
(kLinuxShadowEnd - kLinuxShadowBeg) >> 30);
// Map meta shadow.
if (MemToMeta(kLinuxAppMemBeg) < (u32*)kMetaShadow) {
Printf("ThreadSanitizer: bad meta shadow (%p -> %p < %p)\n",
kLinuxAppMemBeg, MemToMeta(kLinuxAppMemBeg), kMetaShadow);
Die();
}
if (MemToMeta(kLinuxAppMemEnd) >= (u32*)(kMetaShadow + kMetaSize)) {
Printf("ThreadSanitizer: bad meta shadow (%p -> %p >= %p)\n",
kLinuxAppMemEnd, MemToMeta(kLinuxAppMemEnd), kMetaShadow + kMetaSize);
Die();
}
uptr meta = (uptr)MmapFixedNoReserve(kMetaShadow, kMetaSize);
if (meta != kMetaShadow) {
Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
Printf("FATAL: Make sure to compile with -fPIE and "
"to link with -pie (%p, %p).\n", meta, kMetaShadow);
Die();
}
DPrintf("meta shadow: %zx-%zx (%zuGB)\n",
kMetaShadow, kMetaShadow + kMetaSize, kMetaSize >> 30);
// Protect gaps.
const uptr kClosedLowBeg = 0x200000;
const uptr kClosedLowEnd = kLinuxShadowBeg - 1;
const uptr kClosedMidBeg = kLinuxShadowEnd + 1;
const uptr kClosedMidEnd = min(min(kLinuxAppMemBeg, kTraceMemBegin),
kMetaShadow);
ProtectRange(kClosedLowBeg, kClosedLowEnd);
ProtectRange(kClosedMidBeg, kClosedMidEnd);
VPrintf(2, "kClosedLow %zx-%zx (%zuGB)\n",
kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30);
VPrintf(2, "kClosedMid %zx-%zx (%zuGB)\n",
kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30);
VPrintf(2, "app mem: %zx-%zx (%zuGB)\n",
kLinuxAppMemBeg, kLinuxAppMemEnd,
(kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30);
VPrintf(2, "stack: %zx\n", (uptr)&shadow);
MapRodata();
}
#endif
static uptr g_data_start;
static uptr g_data_end;
#ifndef TSAN_GO
static void CheckPIE() {
// Ensure that the binary is indeed compiled with -pie.
MemoryMappingLayout proc_maps(true);
uptr start, end;
if (proc_maps.Next(&start, &end,
/*offset*/0, /*filename*/0, /*filename_size*/0,
/*protection*/0)) {
if ((u64)start < kLinuxAppMemBeg) {
Printf("FATAL: ThreadSanitizer can not mmap the shadow memory ("
"something is mapped at 0x%zx < 0x%zx)\n",
start, kLinuxAppMemBeg);
Printf("FATAL: Make sure to compile with -fPIE"
" and to link with -pie.\n");
Die();
}
}
}
static void InitDataSeg() {
MemoryMappingLayout proc_maps(true);
uptr start, end, offset;
char name[128];
bool prev_is_data = false;
while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
/*protection*/ 0)) {
DPrintf("%p-%p %p %s\n", start, end, offset, name);
bool is_data = offset != 0 && name[0] != 0;
// BSS may get merged with [heap] in /proc/self/maps. This is not very
// reliable.
bool is_bss = offset == 0 &&
(name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
if (g_data_start == 0 && is_data)
g_data_start = start;
if (is_bss)
g_data_end = end;
prev_is_data = is_data;
}
DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end);
CHECK_LT(g_data_start, g_data_end);
CHECK_GE((uptr)&g_data_start, g_data_start);
CHECK_LT((uptr)&g_data_start, g_data_end);
}
#endif // #ifndef TSAN_GO
void InitializePlatform() {
DisableCoreDumperIfNecessary();
// Go maps shadow memory lazily and works fine with limited address space.
// Unlimited stack is not a problem as well, because the executable
// is not compiled with -pie.
if (kCppMode) {
bool reexec = false;
// TSan doesn't play well with unlimited stack size (as stack
// overlaps with shadow memory). If we detect unlimited stack size,
// we re-exec the program with limited stack size as a best effort.
if (StackSizeIsUnlimited()) {
const uptr kMaxStackSize = 32 * 1024 * 1024;
VReport(1, "Program is run with unlimited stack size, which wouldn't "
"work with ThreadSanitizer.\n"
"Re-execing with stack size limited to %zd bytes.\n",
kMaxStackSize);
SetStackSizeLimitInBytes(kMaxStackSize);
reexec = true;
}
if (!AddressSpaceIsUnlimited()) {
Report("WARNING: Program is run with limited virtual address space,"
" which wouldn't work with ThreadSanitizer.\n");
Report("Re-execing with unlimited virtual address space.\n");
SetAddressSpaceUnlimited();
reexec = true;
}
if (reexec)
ReExec();
}
#ifndef TSAN_GO
CheckPIE();
InitTlsSize();
InitDataSeg();
#endif
}
bool IsGlobalVar(uptr addr) {
return g_data_start && addr >= g_data_start && addr < g_data_end;
}
#ifndef TSAN_GO
// Extract file descriptors passed to glibc internal __res_iclose function.
// This is required to properly "close" the fds, because we do not see internal
// closes within glibc. The code is a pure hack.
int ExtractResolvFDs(void *state, int *fds, int nfd) {
#if SANITIZER_LINUX
int cnt = 0;
__res_state *statp = (__res_state*)state;
for (int i = 0; i < MAXNS && cnt < nfd; i++) {
if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
fds[cnt++] = statp->_u._ext.nssocks[i];
}
return cnt;
#else
return 0;
#endif
}
// Extract file descriptors passed via UNIX domain sockets.
// This is requried to properly handle "open" of these fds.
// see 'man recvmsg' and 'man 3 cmsg'.
int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
int res = 0;
msghdr *msg = (msghdr*)msgp;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
continue;
int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
for (int i = 0; i < n; i++) {
fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
if (res == nfd)
return res;
}
}
return res;
}
int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
void *abstime), void *c, void *m, void *abstime,
void(*cleanup)(void *arg), void *arg) {
// pthread_cleanup_push/pop are hardcore macros mess.
// We can't intercept nor call them w/o including pthread.h.
int res;
pthread_cleanup_push(cleanup, arg);
res = fn(c, m, abstime);
pthread_cleanup_pop(0);
return res;
}
#endif
} // namespace __tsan
#endif // SANITIZER_LINUX