652c4c71a1
2012-04-12 Richard Guenther <rguenther@suse.de> * cfgloop.h (estimated_loop_iterations_int): Ditch 'conservative' parameter. (max_stmt_executions_int): Likewise. (estimated_loop_iterations): Likewise. (max_stmt_executions): Likewise. (max_loop_iterations): Declare. (max_loop_iterations_int): Likewise. (estimated_stmt_executions): Likewise. (estimated_stmt_executions_int): Likewise. * tree-ssa-loop-niter.c (estimated_loop_iterations): Split parts to ... (max_loop_iterations): ... this. (estimated_loop_iterations_int): Split parts to ... (max_loop_iterations_int): ... this. (max_stmt_executions_int): Split parts to ... (estimated_stmt_executions_int): ... this. (max_stmt_executions): Split parts to ... (estimated_stmt_executions): ... this. * graphite-sese-to-poly.c (build_loop_iteration_domains): Adjust. * predict.c (predict_loops): Likewise. * tree-data-ref.c (max_stmt_executions_tree): Likewise. (analyze_siv_subscript_cst_affine): Likewise. (compute_overlap_steps_for_affine_1_2): Likewise. (analyze_subscript_affine_affine): Likewise. (init_omega_for_ddr_1): Likewise. * tree-parloops.c (parallelize_loops): Likewise. * tree-ssa-loop-ivopts.c (avg_loop_niter): Likewise. (may_eliminate_iv): Likewise. * tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Likewise. (loop_prefetch_arrays): Likewise. * tree-vrp.c (adjust_range_with_scev): Likewise. From-SVN: r186372
3305 lines
86 KiB
C
3305 lines
86 KiB
C
/* Conversion of SESE regions to Polyhedra.
|
|
Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-dump.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-chrec.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "domwalk.h"
|
|
#include "sese.h"
|
|
|
|
#ifdef HAVE_cloog
|
|
#include "ppl_c.h"
|
|
#include "graphite-ppl.h"
|
|
#include "graphite-poly.h"
|
|
#include "graphite-sese-to-poly.h"
|
|
|
|
/* Returns the index of the PHI argument defined in the outermost
|
|
loop. */
|
|
|
|
static size_t
|
|
phi_arg_in_outermost_loop (gimple phi)
|
|
{
|
|
loop_p loop = gimple_bb (phi)->loop_father;
|
|
size_t i, res = 0;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
|
|
{
|
|
loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
|
|
res = i;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
|
|
PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
|
|
|
|
static void
|
|
remove_simple_copy_phi (gimple_stmt_iterator *psi)
|
|
{
|
|
gimple phi = gsi_stmt (*psi);
|
|
tree res = gimple_phi_result (phi);
|
|
size_t entry = phi_arg_in_outermost_loop (phi);
|
|
tree init = gimple_phi_arg_def (phi, entry);
|
|
gimple stmt = gimple_build_assign (res, init);
|
|
edge e = gimple_phi_arg_edge (phi, entry);
|
|
|
|
remove_phi_node (psi, false);
|
|
gsi_insert_on_edge_immediate (e, stmt);
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
|
}
|
|
|
|
/* Removes an invariant phi node at position PSI by inserting on the
|
|
loop ENTRY edge the assignment RES = INIT. */
|
|
|
|
static void
|
|
remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
|
|
{
|
|
gimple phi = gsi_stmt (*psi);
|
|
loop_p loop = loop_containing_stmt (phi);
|
|
tree res = gimple_phi_result (phi);
|
|
tree scev = scalar_evolution_in_region (region, loop, res);
|
|
size_t entry = phi_arg_in_outermost_loop (phi);
|
|
edge e = gimple_phi_arg_edge (phi, entry);
|
|
tree var;
|
|
gimple stmt;
|
|
gimple_seq stmts;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
if (tree_contains_chrecs (scev, NULL))
|
|
scev = gimple_phi_arg_def (phi, entry);
|
|
|
|
var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
|
|
stmt = gimple_build_assign (res, var);
|
|
remove_phi_node (psi, false);
|
|
|
|
if (!stmts)
|
|
stmts = gimple_seq_alloc ();
|
|
|
|
gsi = gsi_last (stmts);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
gsi_insert_seq_on_edge (e, stmts);
|
|
gsi_commit_edge_inserts ();
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
|
}
|
|
|
|
/* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
|
|
|
|
static inline bool
|
|
simple_copy_phi_p (gimple phi)
|
|
{
|
|
tree res;
|
|
|
|
if (gimple_phi_num_args (phi) != 2)
|
|
return false;
|
|
|
|
res = gimple_phi_result (phi);
|
|
return (res == gimple_phi_arg_def (phi, 0)
|
|
|| res == gimple_phi_arg_def (phi, 1));
|
|
}
|
|
|
|
/* Returns true when the phi node at position PSI is a reduction phi
|
|
node in REGION. Otherwise moves the pointer PSI to the next phi to
|
|
be considered. */
|
|
|
|
static bool
|
|
reduction_phi_p (sese region, gimple_stmt_iterator *psi)
|
|
{
|
|
loop_p loop;
|
|
gimple phi = gsi_stmt (*psi);
|
|
tree res = gimple_phi_result (phi);
|
|
|
|
loop = loop_containing_stmt (phi);
|
|
|
|
if (simple_copy_phi_p (phi))
|
|
{
|
|
/* PRE introduces phi nodes like these, for an example,
|
|
see id-5.f in the fortran graphite testsuite:
|
|
|
|
# prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
|
|
*/
|
|
remove_simple_copy_phi (psi);
|
|
return false;
|
|
}
|
|
|
|
if (scev_analyzable_p (res, region))
|
|
{
|
|
tree scev = scalar_evolution_in_region (region, loop, res);
|
|
|
|
if (evolution_function_is_invariant_p (scev, loop->num))
|
|
remove_invariant_phi (region, psi);
|
|
else
|
|
gsi_next (psi);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* All the other cases are considered reductions. */
|
|
return true;
|
|
}
|
|
|
|
/* Store the GRAPHITE representation of BB. */
|
|
|
|
static gimple_bb_p
|
|
new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
|
|
{
|
|
struct gimple_bb *gbb;
|
|
|
|
gbb = XNEW (struct gimple_bb);
|
|
bb->aux = gbb;
|
|
GBB_BB (gbb) = bb;
|
|
GBB_DATA_REFS (gbb) = drs;
|
|
GBB_CONDITIONS (gbb) = NULL;
|
|
GBB_CONDITION_CASES (gbb) = NULL;
|
|
|
|
return gbb;
|
|
}
|
|
|
|
static void
|
|
free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
|
|
{
|
|
unsigned int i;
|
|
struct data_reference *dr;
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
|
if (dr->aux)
|
|
{
|
|
base_alias_pair *bap = (base_alias_pair *)(dr->aux);
|
|
|
|
free (bap->alias_set);
|
|
|
|
free (bap);
|
|
dr->aux = NULL;
|
|
}
|
|
}
|
|
/* Frees GBB. */
|
|
|
|
static void
|
|
free_gimple_bb (struct gimple_bb *gbb)
|
|
{
|
|
free_data_refs_aux (GBB_DATA_REFS (gbb));
|
|
free_data_refs (GBB_DATA_REFS (gbb));
|
|
|
|
VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
|
|
VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
|
|
GBB_BB (gbb)->aux = 0;
|
|
XDELETE (gbb);
|
|
}
|
|
|
|
/* Deletes all gimple bbs in SCOP. */
|
|
|
|
static void
|
|
remove_gbbs_in_scop (scop_p scop)
|
|
{
|
|
int i;
|
|
poly_bb_p pbb;
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
free_gimple_bb (PBB_BLACK_BOX (pbb));
|
|
}
|
|
|
|
/* Deletes all scops in SCOPS. */
|
|
|
|
void
|
|
free_scops (VEC (scop_p, heap) *scops)
|
|
{
|
|
int i;
|
|
scop_p scop;
|
|
|
|
FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
|
|
{
|
|
remove_gbbs_in_scop (scop);
|
|
free_sese (SCOP_REGION (scop));
|
|
free_scop (scop);
|
|
}
|
|
|
|
VEC_free (scop_p, heap, scops);
|
|
}
|
|
|
|
/* Same as outermost_loop_in_sese, returns the outermost loop
|
|
containing BB in REGION, but makes sure that the returned loop
|
|
belongs to the REGION, and so this returns the first loop in the
|
|
REGION when the loop containing BB does not belong to REGION. */
|
|
|
|
static loop_p
|
|
outermost_loop_in_sese_1 (sese region, basic_block bb)
|
|
{
|
|
loop_p nest = outermost_loop_in_sese (region, bb);
|
|
|
|
if (loop_in_sese_p (nest, region))
|
|
return nest;
|
|
|
|
/* When the basic block BB does not belong to a loop in the region,
|
|
return the first loop in the region. */
|
|
nest = nest->inner;
|
|
while (nest)
|
|
if (loop_in_sese_p (nest, region))
|
|
break;
|
|
else
|
|
nest = nest->next;
|
|
|
|
gcc_assert (nest);
|
|
return nest;
|
|
}
|
|
|
|
/* Generates a polyhedral black box only if the bb contains interesting
|
|
information. */
|
|
|
|
static gimple_bb_p
|
|
try_generate_gimple_bb (scop_p scop, basic_block bb)
|
|
{
|
|
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
|
|
sese region = SCOP_REGION (scop);
|
|
loop_p nest = outermost_loop_in_sese_1 (region, bb);
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
loop_p loop;
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
loop = loop_containing_stmt (stmt);
|
|
if (!loop_in_sese_p (loop, region))
|
|
loop = nest;
|
|
|
|
graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
|
|
}
|
|
|
|
return new_gimple_bb (bb, drs);
|
|
}
|
|
|
|
/* Returns true if all predecessors of BB, that are not dominated by BB, are
|
|
marked in MAP. The predecessors dominated by BB are loop latches and will
|
|
be handled after BB. */
|
|
|
|
static bool
|
|
all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (!TEST_BIT (map, e->src->index)
|
|
&& !dominated_by_p (CDI_DOMINATORS, e->src, bb))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Compare the depth of two basic_block's P1 and P2. */
|
|
|
|
static int
|
|
compare_bb_depths (const void *p1, const void *p2)
|
|
{
|
|
const_basic_block const bb1 = *(const_basic_block const*)p1;
|
|
const_basic_block const bb2 = *(const_basic_block const*)p2;
|
|
int d1 = loop_depth (bb1->loop_father);
|
|
int d2 = loop_depth (bb2->loop_father);
|
|
|
|
if (d1 < d2)
|
|
return 1;
|
|
|
|
if (d1 > d2)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Sort the basic blocks from DOM such that the first are the ones at
|
|
a deepest loop level. */
|
|
|
|
static void
|
|
graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
|
|
{
|
|
VEC_qsort (basic_block, dom, compare_bb_depths);
|
|
}
|
|
|
|
/* Recursive helper function for build_scops_bbs. */
|
|
|
|
static void
|
|
build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
|
|
{
|
|
sese region = SCOP_REGION (scop);
|
|
VEC (basic_block, heap) *dom;
|
|
poly_bb_p pbb;
|
|
|
|
if (TEST_BIT (visited, bb->index)
|
|
|| !bb_in_sese_p (bb, region))
|
|
return;
|
|
|
|
pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
|
|
VEC_safe_push (poly_bb_p, heap, SCOP_BBS (scop), pbb);
|
|
SET_BIT (visited, bb->index);
|
|
|
|
dom = get_dominated_by (CDI_DOMINATORS, bb);
|
|
|
|
if (dom == NULL)
|
|
return;
|
|
|
|
graphite_sort_dominated_info (dom);
|
|
|
|
while (!VEC_empty (basic_block, dom))
|
|
{
|
|
int i;
|
|
basic_block dom_bb;
|
|
|
|
FOR_EACH_VEC_ELT (basic_block, dom, i, dom_bb)
|
|
if (all_non_dominated_preds_marked_p (dom_bb, visited))
|
|
{
|
|
build_scop_bbs_1 (scop, visited, dom_bb);
|
|
VEC_unordered_remove (basic_block, dom, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
VEC_free (basic_block, heap, dom);
|
|
}
|
|
|
|
/* Gather the basic blocks belonging to the SCOP. */
|
|
|
|
static void
|
|
build_scop_bbs (scop_p scop)
|
|
{
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
sbitmap_zero (visited);
|
|
build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
|
|
sbitmap_free (visited);
|
|
}
|
|
|
|
/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
|
|
We generate SCATTERING_DIMENSIONS scattering dimensions.
|
|
|
|
CLooG 0.15.0 and previous versions require, that all
|
|
scattering functions of one CloogProgram have the same number of
|
|
scattering dimensions, therefore we allow to specify it. This
|
|
should be removed in future versions of CLooG.
|
|
|
|
The scattering polyhedron consists of these dimensions: scattering,
|
|
loop_iterators, parameters.
|
|
|
|
Example:
|
|
|
|
| scattering_dimensions = 5
|
|
| used_scattering_dimensions = 3
|
|
| nb_iterators = 1
|
|
| scop_nb_params = 2
|
|
|
|
|
| Schedule:
|
|
| i
|
|
| 4 5
|
|
|
|
|
| Scattering polyhedron:
|
|
|
|
|
| scattering: {s1, s2, s3, s4, s5}
|
|
| loop_iterators: {i}
|
|
| parameters: {p1, p2}
|
|
|
|
|
| s1 s2 s3 s4 s5 i p1 p2 1
|
|
| 1 0 0 0 0 0 0 0 -4 = 0
|
|
| 0 1 0 0 0 -1 0 0 0 = 0
|
|
| 0 0 1 0 0 0 0 0 -5 = 0 */
|
|
|
|
static void
|
|
build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
|
|
poly_bb_p pbb, int scattering_dimensions)
|
|
{
|
|
int i;
|
|
scop_p scop = PBB_SCOP (pbb);
|
|
int nb_iterators = pbb_dim_iter_domain (pbb);
|
|
int used_scattering_dimensions = nb_iterators * 2 + 1;
|
|
int nb_params = scop_nb_params (scop);
|
|
ppl_Coefficient_t c;
|
|
ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
|
|
mpz_t v;
|
|
|
|
gcc_assert (scattering_dimensions >= used_scattering_dimensions);
|
|
|
|
mpz_init (v);
|
|
ppl_new_Coefficient (&c);
|
|
PBB_TRANSFORMED (pbb) = poly_scattering_new ();
|
|
ppl_new_C_Polyhedron_from_space_dimension
|
|
(&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
|
|
|
|
PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
|
|
|
|
for (i = 0; i < scattering_dimensions; i++)
|
|
{
|
|
ppl_Constraint_t cstr;
|
|
ppl_Linear_Expression_t expr;
|
|
|
|
ppl_new_Linear_Expression_with_dimension (&expr, dim);
|
|
mpz_set_si (v, 1);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_coefficient (expr, i, c);
|
|
|
|
/* Textual order inside this loop. */
|
|
if ((i % 2) == 0)
|
|
{
|
|
ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
|
|
ppl_Coefficient_to_mpz_t (c, v);
|
|
mpz_neg (v, v);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
|
|
}
|
|
|
|
/* Iterations of this loop. */
|
|
else /* if ((i % 2) == 1) */
|
|
{
|
|
int loop = (i - 1) / 2;
|
|
|
|
mpz_set_si (v, -1);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_coefficient
|
|
(expr, scattering_dimensions + loop, c);
|
|
}
|
|
|
|
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
|
|
ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
|
|
ppl_delete_Linear_Expression (expr);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
|
|
mpz_clear (v);
|
|
ppl_delete_Coefficient (c);
|
|
|
|
PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
|
|
}
|
|
|
|
/* Build for BB the static schedule.
|
|
|
|
The static schedule is a Dewey numbering of the abstract syntax
|
|
tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
|
|
|
|
The following example informally defines the static schedule:
|
|
|
|
A
|
|
for (i: ...)
|
|
{
|
|
for (j: ...)
|
|
{
|
|
B
|
|
C
|
|
}
|
|
|
|
for (k: ...)
|
|
{
|
|
D
|
|
E
|
|
}
|
|
}
|
|
F
|
|
|
|
Static schedules for A to F:
|
|
|
|
DEPTH
|
|
0 1 2
|
|
A 0
|
|
B 1 0 0
|
|
C 1 0 1
|
|
D 1 1 0
|
|
E 1 1 1
|
|
F 2
|
|
*/
|
|
|
|
static void
|
|
build_scop_scattering (scop_p scop)
|
|
{
|
|
int i;
|
|
poly_bb_p pbb;
|
|
gimple_bb_p previous_gbb = NULL;
|
|
ppl_Linear_Expression_t static_schedule;
|
|
ppl_Coefficient_t c;
|
|
mpz_t v;
|
|
|
|
mpz_init (v);
|
|
ppl_new_Coefficient (&c);
|
|
ppl_new_Linear_Expression (&static_schedule);
|
|
|
|
/* We have to start schedules at 0 on the first component and
|
|
because we cannot compare_prefix_loops against a previous loop,
|
|
prefix will be equal to zero, and that index will be
|
|
incremented before copying. */
|
|
mpz_set_si (v, -1);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
{
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
|
ppl_Linear_Expression_t common;
|
|
int prefix;
|
|
int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
|
|
|
|
if (previous_gbb)
|
|
prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
|
|
else
|
|
prefix = 0;
|
|
|
|
previous_gbb = gbb;
|
|
ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
|
|
ppl_assign_Linear_Expression_from_Linear_Expression (common,
|
|
static_schedule);
|
|
|
|
mpz_set_si (v, 1);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
|
|
ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
|
|
common);
|
|
|
|
build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
|
|
|
|
ppl_delete_Linear_Expression (common);
|
|
}
|
|
|
|
mpz_clear (v);
|
|
ppl_delete_Coefficient (c);
|
|
ppl_delete_Linear_Expression (static_schedule);
|
|
}
|
|
|
|
/* Add the value K to the dimension D of the linear expression EXPR. */
|
|
|
|
static void
|
|
add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
|
|
mpz_t k)
|
|
{
|
|
mpz_t val;
|
|
ppl_Coefficient_t coef;
|
|
|
|
ppl_new_Coefficient (&coef);
|
|
ppl_Linear_Expression_coefficient (expr, d, coef);
|
|
mpz_init (val);
|
|
ppl_Coefficient_to_mpz_t (coef, val);
|
|
|
|
mpz_add (val, val, k);
|
|
|
|
ppl_assign_Coefficient_from_mpz_t (coef, val);
|
|
ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
|
|
mpz_clear (val);
|
|
ppl_delete_Coefficient (coef);
|
|
}
|
|
|
|
/* In the context of scop S, scan E, the right hand side of a scalar
|
|
evolution function in loop VAR, and translate it to a linear
|
|
expression EXPR. */
|
|
|
|
static void
|
|
scan_tree_for_params_right_scev (sese s, tree e, int var,
|
|
ppl_Linear_Expression_t expr)
|
|
{
|
|
if (expr)
|
|
{
|
|
loop_p loop = get_loop (var);
|
|
ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
|
|
mpz_t val;
|
|
|
|
/* Scalar evolutions should happen in the sese region. */
|
|
gcc_assert (sese_loop_depth (s, loop) > 0);
|
|
|
|
/* We can not deal with parametric strides like:
|
|
|
|
| p = parameter;
|
|
|
|
|
| for i:
|
|
| a [i * p] = ... */
|
|
gcc_assert (TREE_CODE (e) == INTEGER_CST);
|
|
|
|
mpz_init (val);
|
|
tree_int_to_gmp (e, val);
|
|
add_value_to_dim (l, expr, val);
|
|
mpz_clear (val);
|
|
}
|
|
}
|
|
|
|
/* Scan the integer constant CST, and add it to the inhomogeneous part of the
|
|
linear expression EXPR. K is the multiplier of the constant. */
|
|
|
|
static void
|
|
scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, mpz_t k)
|
|
{
|
|
mpz_t val;
|
|
ppl_Coefficient_t coef;
|
|
tree type = TREE_TYPE (cst);
|
|
|
|
mpz_init (val);
|
|
|
|
/* Necessary to not get "-1 = 2^n - 1". */
|
|
mpz_set_double_int (val, double_int_sext (tree_to_double_int (cst),
|
|
TYPE_PRECISION (type)), false);
|
|
|
|
mpz_mul (val, val, k);
|
|
ppl_new_Coefficient (&coef);
|
|
ppl_assign_Coefficient_from_mpz_t (coef, val);
|
|
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
|
|
mpz_clear (val);
|
|
ppl_delete_Coefficient (coef);
|
|
}
|
|
|
|
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
|
|
Otherwise returns -1. */
|
|
|
|
static inline int
|
|
parameter_index_in_region_1 (tree name, sese region)
|
|
{
|
|
int i;
|
|
tree p;
|
|
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
|
|
|
FOR_EACH_VEC_ELT (tree, SESE_PARAMS (region), i, p)
|
|
if (p == name)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* When the parameter NAME is in REGION, returns its index in
|
|
SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
|
|
and returns the index of NAME. */
|
|
|
|
static int
|
|
parameter_index_in_region (tree name, sese region)
|
|
{
|
|
int i;
|
|
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
|
|
|
i = parameter_index_in_region_1 (name, region);
|
|
if (i != -1)
|
|
return i;
|
|
|
|
gcc_assert (SESE_ADD_PARAMS (region));
|
|
|
|
i = VEC_length (tree, SESE_PARAMS (region));
|
|
VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
|
|
return i;
|
|
}
|
|
|
|
/* In the context of sese S, scan the expression E and translate it to
|
|
a linear expression C. When parsing a symbolic multiplication, K
|
|
represents the constant multiplier of an expression containing
|
|
parameters. */
|
|
|
|
static void
|
|
scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
|
|
mpz_t k)
|
|
{
|
|
if (e == chrec_dont_know)
|
|
return;
|
|
|
|
switch (TREE_CODE (e))
|
|
{
|
|
case POLYNOMIAL_CHREC:
|
|
scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
|
|
CHREC_VARIABLE (e), c);
|
|
scan_tree_for_params (s, CHREC_LEFT (e), c, k);
|
|
break;
|
|
|
|
case MULT_EXPR:
|
|
if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
|
|
{
|
|
if (c)
|
|
{
|
|
mpz_t val;
|
|
gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
|
|
mpz_init (val);
|
|
tree_int_to_gmp (TREE_OPERAND (e, 1), val);
|
|
mpz_mul (val, val, k);
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
|
|
mpz_clear (val);
|
|
}
|
|
else
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
|
}
|
|
else
|
|
{
|
|
if (c)
|
|
{
|
|
mpz_t val;
|
|
gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
|
|
mpz_init (val);
|
|
tree_int_to_gmp (TREE_OPERAND (e, 0), val);
|
|
mpz_mul (val, val, k);
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
|
|
mpz_clear (val);
|
|
}
|
|
else
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
|
|
}
|
|
break;
|
|
|
|
case PLUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
|
|
break;
|
|
|
|
case MINUS_EXPR:
|
|
{
|
|
ppl_Linear_Expression_t tmp_expr = NULL;
|
|
|
|
if (c)
|
|
{
|
|
ppl_dimension_type dim;
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
|
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
|
|
}
|
|
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
|
|
|
|
if (c)
|
|
{
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
|
|
tmp_expr);
|
|
ppl_delete_Linear_Expression (tmp_expr);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case NEGATE_EXPR:
|
|
{
|
|
ppl_Linear_Expression_t tmp_expr = NULL;
|
|
|
|
if (c)
|
|
{
|
|
ppl_dimension_type dim;
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
|
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
|
|
}
|
|
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
|
|
|
|
if (c)
|
|
{
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
|
|
tmp_expr);
|
|
ppl_delete_Linear_Expression (tmp_expr);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case BIT_NOT_EXPR:
|
|
{
|
|
ppl_Linear_Expression_t tmp_expr = NULL;
|
|
|
|
if (c)
|
|
{
|
|
ppl_dimension_type dim;
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
|
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
|
|
}
|
|
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
|
|
|
|
if (c)
|
|
{
|
|
ppl_Coefficient_t coef;
|
|
mpz_t minus_one;
|
|
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
|
|
tmp_expr);
|
|
ppl_delete_Linear_Expression (tmp_expr);
|
|
mpz_init (minus_one);
|
|
mpz_set_si (minus_one, -1);
|
|
ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
|
|
ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
|
|
mpz_clear (minus_one);
|
|
ppl_delete_Coefficient (coef);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case SSA_NAME:
|
|
{
|
|
ppl_dimension_type p = parameter_index_in_region (e, s);
|
|
|
|
if (c)
|
|
{
|
|
ppl_dimension_type dim;
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
|
p += dim - sese_nb_params (s);
|
|
add_value_to_dim (p, c, k);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case INTEGER_CST:
|
|
if (c)
|
|
scan_tree_for_params_int (e, c, k);
|
|
break;
|
|
|
|
CASE_CONVERT:
|
|
case NON_LVALUE_EXPR:
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
|
break;
|
|
|
|
case ADDR_EXPR:
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Find parameters with respect to REGION in BB. We are looking in memory
|
|
access functions, conditions and loop bounds. */
|
|
|
|
static void
|
|
find_params_in_bb (sese region, gimple_bb_p gbb)
|
|
{
|
|
int i;
|
|
unsigned j;
|
|
data_reference_p dr;
|
|
gimple stmt;
|
|
loop_p loop = GBB_BB (gbb)->loop_father;
|
|
mpz_t one;
|
|
|
|
mpz_init (one);
|
|
mpz_set_si (one, 1);
|
|
|
|
/* Find parameters in the access functions of data references. */
|
|
FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
|
|
for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
|
|
scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
|
|
|
|
/* Find parameters in conditional statements. */
|
|
FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
|
|
{
|
|
tree lhs = scalar_evolution_in_region (region, loop,
|
|
gimple_cond_lhs (stmt));
|
|
tree rhs = scalar_evolution_in_region (region, loop,
|
|
gimple_cond_rhs (stmt));
|
|
|
|
scan_tree_for_params (region, lhs, NULL, one);
|
|
scan_tree_for_params (region, rhs, NULL, one);
|
|
}
|
|
|
|
mpz_clear (one);
|
|
}
|
|
|
|
/* Record the parameters used in the SCOP. A variable is a parameter
|
|
in a scop if it does not vary during the execution of that scop. */
|
|
|
|
static void
|
|
find_scop_parameters (scop_p scop)
|
|
{
|
|
poly_bb_p pbb;
|
|
unsigned i;
|
|
sese region = SCOP_REGION (scop);
|
|
struct loop *loop;
|
|
mpz_t one;
|
|
|
|
mpz_init (one);
|
|
mpz_set_si (one, 1);
|
|
|
|
/* Find the parameters used in the loop bounds. */
|
|
FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
|
|
{
|
|
tree nb_iters = number_of_latch_executions (loop);
|
|
|
|
if (!chrec_contains_symbols (nb_iters))
|
|
continue;
|
|
|
|
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
|
|
scan_tree_for_params (region, nb_iters, NULL, one);
|
|
}
|
|
|
|
mpz_clear (one);
|
|
|
|
/* Find the parameters used in data accesses. */
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
find_params_in_bb (region, PBB_BLACK_BOX (pbb));
|
|
|
|
scop_set_nb_params (scop, sese_nb_params (region));
|
|
SESE_ADD_PARAMS (region) = false;
|
|
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
|
|
(&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
|
|
}
|
|
|
|
/* Insert in the SCOP context constraints from the estimation of the
|
|
number of iterations. UB_EXPR is a linear expression describing
|
|
the number of iterations in a loop. This expression is bounded by
|
|
the estimation NIT. */
|
|
|
|
static void
|
|
add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
|
|
ppl_dimension_type dim,
|
|
ppl_Linear_Expression_t ub_expr)
|
|
{
|
|
mpz_t val;
|
|
ppl_Linear_Expression_t nb_iters_le;
|
|
ppl_Polyhedron_t pol;
|
|
ppl_Coefficient_t coef;
|
|
ppl_Constraint_t ub;
|
|
|
|
ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
|
|
ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
|
|
ub_expr);
|
|
|
|
/* Construct the negated number of last iteration in VAL. */
|
|
mpz_init (val);
|
|
mpz_set_double_int (val, nit, false);
|
|
mpz_sub_ui (val, val, 1);
|
|
mpz_neg (val, val);
|
|
|
|
/* NB_ITERS_LE holds the number of last iteration in
|
|
parametrical form. Subtract estimated number of last
|
|
iteration and assert that result is not positive. */
|
|
ppl_new_Coefficient_from_mpz_t (&coef, val);
|
|
ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
|
|
ppl_delete_Coefficient (coef);
|
|
ppl_new_Constraint (&ub, nb_iters_le,
|
|
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (pol, ub);
|
|
|
|
/* Remove all but last GDIM dimensions from POL to obtain
|
|
only the constraints on the parameters. */
|
|
{
|
|
graphite_dim_t gdim = scop_nb_params (scop);
|
|
ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
|
|
graphite_dim_t i;
|
|
|
|
for (i = 0; i < dim - gdim; i++)
|
|
dims[i] = i;
|
|
|
|
ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
|
|
XDELETEVEC (dims);
|
|
}
|
|
|
|
/* Add the constraints on the parameters to the SCoP context. */
|
|
{
|
|
ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
|
|
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
|
(&constraints_ps, pol);
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
|
|
(SCOP_CONTEXT (scop), constraints_ps);
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
|
|
}
|
|
|
|
ppl_delete_Polyhedron (pol);
|
|
ppl_delete_Linear_Expression (nb_iters_le);
|
|
ppl_delete_Constraint (ub);
|
|
mpz_clear (val);
|
|
}
|
|
|
|
/* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
|
|
the constraints for the surrounding loops. */
|
|
|
|
static void
|
|
build_loop_iteration_domains (scop_p scop, struct loop *loop,
|
|
ppl_Polyhedron_t outer_ph, int nb,
|
|
ppl_Pointset_Powerset_C_Polyhedron_t *domains)
|
|
{
|
|
int i;
|
|
ppl_Polyhedron_t ph;
|
|
tree nb_iters = number_of_latch_executions (loop);
|
|
ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
{
|
|
ppl_const_Constraint_System_t pcs;
|
|
ppl_dimension_type *map
|
|
= (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
|
|
|
|
ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
|
|
ppl_Polyhedron_get_constraints (outer_ph, &pcs);
|
|
ppl_Polyhedron_add_constraints (ph, pcs);
|
|
|
|
for (i = 0; i < (int) nb; i++)
|
|
map[i] = i;
|
|
for (i = (int) nb; i < (int) dim - 1; i++)
|
|
map[i] = i + 1;
|
|
map[dim - 1] = nb;
|
|
|
|
ppl_Polyhedron_map_space_dimensions (ph, map, dim);
|
|
free (map);
|
|
}
|
|
|
|
/* 0 <= loop_i */
|
|
{
|
|
ppl_Constraint_t lb;
|
|
ppl_Linear_Expression_t lb_expr;
|
|
|
|
ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
|
|
ppl_set_coef (lb_expr, nb, 1);
|
|
ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
|
ppl_delete_Linear_Expression (lb_expr);
|
|
ppl_Polyhedron_add_constraint (ph, lb);
|
|
ppl_delete_Constraint (lb);
|
|
}
|
|
|
|
if (TREE_CODE (nb_iters) == INTEGER_CST)
|
|
{
|
|
ppl_Constraint_t ub;
|
|
ppl_Linear_Expression_t ub_expr;
|
|
|
|
ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
|
|
|
|
/* loop_i <= cst_nb_iters */
|
|
ppl_set_coef (ub_expr, nb, -1);
|
|
ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
|
|
ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (ph, ub);
|
|
ppl_delete_Linear_Expression (ub_expr);
|
|
ppl_delete_Constraint (ub);
|
|
}
|
|
else if (!chrec_contains_undetermined (nb_iters))
|
|
{
|
|
mpz_t one;
|
|
ppl_Constraint_t ub;
|
|
ppl_Linear_Expression_t ub_expr;
|
|
double_int nit;
|
|
|
|
mpz_init (one);
|
|
mpz_set_si (one, 1);
|
|
ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
|
|
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
|
|
scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
|
|
mpz_clear (one);
|
|
|
|
if (max_stmt_executions (loop, &nit))
|
|
add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
|
|
|
|
/* loop_i <= expr_nb_iters */
|
|
ppl_set_coef (ub_expr, nb, -1);
|
|
ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (ph, ub);
|
|
ppl_delete_Linear_Expression (ub_expr);
|
|
ppl_delete_Constraint (ub);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
if (loop->inner && loop_in_sese_p (loop->inner, region))
|
|
build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
|
|
|
|
if (nb != 0
|
|
&& loop->next
|
|
&& loop_in_sese_p (loop->next, region))
|
|
build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
|
|
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
|
(&domains[loop->num], ph);
|
|
|
|
ppl_delete_Polyhedron (ph);
|
|
}
|
|
|
|
/* Returns a linear expression for tree T evaluated in PBB. */
|
|
|
|
static ppl_Linear_Expression_t
|
|
create_linear_expr_from_tree (poly_bb_p pbb, tree t)
|
|
{
|
|
mpz_t one;
|
|
ppl_Linear_Expression_t res;
|
|
ppl_dimension_type dim;
|
|
sese region = SCOP_REGION (PBB_SCOP (pbb));
|
|
loop_p loop = pbb_loop (pbb);
|
|
|
|
dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
|
|
ppl_new_Linear_Expression_with_dimension (&res, dim);
|
|
|
|
t = scalar_evolution_in_region (region, loop, t);
|
|
gcc_assert (!automatically_generated_chrec_p (t));
|
|
|
|
mpz_init (one);
|
|
mpz_set_si (one, 1);
|
|
scan_tree_for_params (region, t, res, one);
|
|
mpz_clear (one);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Returns the ppl constraint type from the gimple tree code CODE. */
|
|
|
|
static enum ppl_enum_Constraint_Type
|
|
ppl_constraint_type_from_tree_code (enum tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
/* We do not support LT and GT to be able to work with C_Polyhedron.
|
|
As we work on integer polyhedron "a < b" can be expressed by
|
|
"a + 1 <= b". */
|
|
case LT_EXPR:
|
|
case GT_EXPR:
|
|
gcc_unreachable ();
|
|
|
|
case LE_EXPR:
|
|
return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
|
|
|
|
case GE_EXPR:
|
|
return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
|
|
|
|
case EQ_EXPR:
|
|
return PPL_CONSTRAINT_TYPE_EQUAL;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Add conditional statement STMT to PS. It is evaluated in PBB and
|
|
CODE is used as the comparison operator. This allows us to invert the
|
|
condition or to handle inequalities. */
|
|
|
|
static void
|
|
add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
|
|
poly_bb_p pbb, enum tree_code code)
|
|
{
|
|
mpz_t v;
|
|
ppl_Coefficient_t c;
|
|
ppl_Linear_Expression_t left, right;
|
|
ppl_Constraint_t cstr;
|
|
enum ppl_enum_Constraint_Type type;
|
|
|
|
left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
|
|
right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
|
|
|
|
/* If we have < or > expressions convert them to <= or >= by adding 1 to
|
|
the left or the right side of the expression. */
|
|
if (code == LT_EXPR)
|
|
{
|
|
mpz_init (v);
|
|
mpz_set_si (v, 1);
|
|
ppl_new_Coefficient (&c);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_inhomogeneous (left, c);
|
|
ppl_delete_Coefficient (c);
|
|
mpz_clear (v);
|
|
|
|
code = LE_EXPR;
|
|
}
|
|
else if (code == GT_EXPR)
|
|
{
|
|
mpz_init (v);
|
|
mpz_set_si (v, 1);
|
|
ppl_new_Coefficient (&c);
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
|
ppl_Linear_Expression_add_to_inhomogeneous (right, c);
|
|
ppl_delete_Coefficient (c);
|
|
mpz_clear (v);
|
|
|
|
code = GE_EXPR;
|
|
}
|
|
|
|
type = ppl_constraint_type_from_tree_code (code);
|
|
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
|
|
|
|
ppl_new_Constraint (&cstr, left, type);
|
|
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
|
|
|
|
ppl_delete_Constraint (cstr);
|
|
ppl_delete_Linear_Expression (left);
|
|
ppl_delete_Linear_Expression (right);
|
|
}
|
|
|
|
/* Add conditional statement STMT to pbb. CODE is used as the comparision
|
|
operator. This allows us to invert the condition or to handle
|
|
inequalities. */
|
|
|
|
static void
|
|
add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
|
|
{
|
|
if (code == NE_EXPR)
|
|
{
|
|
ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
|
|
ppl_Pointset_Powerset_C_Polyhedron_t right;
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
|
(&right, left);
|
|
add_condition_to_domain (left, stmt, pbb, LT_EXPR);
|
|
add_condition_to_domain (right, stmt, pbb, GT_EXPR);
|
|
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left, right);
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (right);
|
|
}
|
|
else
|
|
add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
|
|
}
|
|
|
|
/* Add conditions to the domain of PBB. */
|
|
|
|
static void
|
|
add_conditions_to_domain (poly_bb_p pbb)
|
|
{
|
|
unsigned int i;
|
|
gimple stmt;
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
|
|
|
if (VEC_empty (gimple, GBB_CONDITIONS (gbb)))
|
|
return;
|
|
|
|
FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_COND:
|
|
{
|
|
enum tree_code code = gimple_cond_code (stmt);
|
|
|
|
/* The conditions for ELSE-branches are inverted. */
|
|
if (!VEC_index (gimple, GBB_CONDITION_CASES (gbb), i))
|
|
code = invert_tree_comparison (code, false);
|
|
|
|
add_condition_to_pbb (pbb, stmt, code);
|
|
break;
|
|
}
|
|
|
|
case GIMPLE_SWITCH:
|
|
/* Switch statements are not supported right now - fall throught. */
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Traverses all the GBBs of the SCOP and add their constraints to the
|
|
iteration domains. */
|
|
|
|
static void
|
|
add_conditions_to_constraints (scop_p scop)
|
|
{
|
|
int i;
|
|
poly_bb_p pbb;
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
add_conditions_to_domain (pbb);
|
|
}
|
|
|
|
/* Structure used to pass data to dom_walk. */
|
|
|
|
struct bsc
|
|
{
|
|
VEC (gimple, heap) **conditions, **cases;
|
|
sese region;
|
|
};
|
|
|
|
/* Returns a COND_EXPR statement when BB has a single predecessor, the
|
|
edge between BB and its predecessor is not a loop exit edge, and
|
|
the last statement of the single predecessor is a COND_EXPR. */
|
|
|
|
static gimple
|
|
single_pred_cond_non_loop_exit (basic_block bb)
|
|
{
|
|
if (single_pred_p (bb))
|
|
{
|
|
edge e = single_pred_edge (bb);
|
|
basic_block pred = e->src;
|
|
gimple stmt;
|
|
|
|
if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
|
|
return NULL;
|
|
|
|
stmt = last_stmt (pred);
|
|
|
|
if (stmt && gimple_code (stmt) == GIMPLE_COND)
|
|
return stmt;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Call-back for dom_walk executed before visiting the dominated
|
|
blocks. */
|
|
|
|
static void
|
|
build_sese_conditions_before (struct dom_walk_data *dw_data,
|
|
basic_block bb)
|
|
{
|
|
struct bsc *data = (struct bsc *) dw_data->global_data;
|
|
VEC (gimple, heap) **conditions = data->conditions;
|
|
VEC (gimple, heap) **cases = data->cases;
|
|
gimple_bb_p gbb;
|
|
gimple stmt;
|
|
|
|
if (!bb_in_sese_p (bb, data->region))
|
|
return;
|
|
|
|
stmt = single_pred_cond_non_loop_exit (bb);
|
|
|
|
if (stmt)
|
|
{
|
|
edge e = single_pred_edge (bb);
|
|
|
|
VEC_safe_push (gimple, heap, *conditions, stmt);
|
|
|
|
if (e->flags & EDGE_TRUE_VALUE)
|
|
VEC_safe_push (gimple, heap, *cases, stmt);
|
|
else
|
|
VEC_safe_push (gimple, heap, *cases, NULL);
|
|
}
|
|
|
|
gbb = gbb_from_bb (bb);
|
|
|
|
if (gbb)
|
|
{
|
|
GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
|
|
GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
|
|
}
|
|
}
|
|
|
|
/* Call-back for dom_walk executed after visiting the dominated
|
|
blocks. */
|
|
|
|
static void
|
|
build_sese_conditions_after (struct dom_walk_data *dw_data,
|
|
basic_block bb)
|
|
{
|
|
struct bsc *data = (struct bsc *) dw_data->global_data;
|
|
VEC (gimple, heap) **conditions = data->conditions;
|
|
VEC (gimple, heap) **cases = data->cases;
|
|
|
|
if (!bb_in_sese_p (bb, data->region))
|
|
return;
|
|
|
|
if (single_pred_cond_non_loop_exit (bb))
|
|
{
|
|
VEC_pop (gimple, *conditions);
|
|
VEC_pop (gimple, *cases);
|
|
}
|
|
}
|
|
|
|
/* Record all conditions in REGION. */
|
|
|
|
static void
|
|
build_sese_conditions (sese region)
|
|
{
|
|
struct dom_walk_data walk_data;
|
|
VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
|
|
VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
|
|
struct bsc data;
|
|
|
|
data.conditions = &conditions;
|
|
data.cases = &cases;
|
|
data.region = region;
|
|
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
|
walk_data.initialize_block_local_data = NULL;
|
|
walk_data.before_dom_children = build_sese_conditions_before;
|
|
walk_data.after_dom_children = build_sese_conditions_after;
|
|
walk_data.global_data = &data;
|
|
walk_data.block_local_data_size = 0;
|
|
|
|
init_walk_dominator_tree (&walk_data);
|
|
walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
|
|
fini_walk_dominator_tree (&walk_data);
|
|
|
|
VEC_free (gimple, heap, conditions);
|
|
VEC_free (gimple, heap, cases);
|
|
}
|
|
|
|
/* Add constraints on the possible values of parameter P from the type
|
|
of P. */
|
|
|
|
static void
|
|
add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
|
|
{
|
|
ppl_Constraint_t cstr;
|
|
ppl_Linear_Expression_t le;
|
|
tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
|
|
tree type = TREE_TYPE (parameter);
|
|
tree lb = NULL_TREE;
|
|
tree ub = NULL_TREE;
|
|
|
|
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
|
|
lb = lower_bound_in_type (type, type);
|
|
else
|
|
lb = TYPE_MIN_VALUE (type);
|
|
|
|
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
|
|
ub = upper_bound_in_type (type, type);
|
|
else
|
|
ub = TYPE_MAX_VALUE (type);
|
|
|
|
if (lb)
|
|
{
|
|
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
|
|
ppl_set_coef (le, p, -1);
|
|
ppl_set_inhomogeneous_tree (le, lb);
|
|
ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (context, cstr);
|
|
ppl_delete_Linear_Expression (le);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
|
|
if (ub)
|
|
{
|
|
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
|
|
ppl_set_coef (le, p, -1);
|
|
ppl_set_inhomogeneous_tree (le, ub);
|
|
ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (context, cstr);
|
|
ppl_delete_Linear_Expression (le);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
}
|
|
|
|
/* Build the context of the SCOP. The context usually contains extra
|
|
constraints that are added to the iteration domains that constrain
|
|
some parameters. */
|
|
|
|
static void
|
|
build_scop_context (scop_p scop)
|
|
{
|
|
ppl_Polyhedron_t context;
|
|
ppl_Pointset_Powerset_C_Polyhedron_t ps;
|
|
graphite_dim_t p, n = scop_nb_params (scop);
|
|
|
|
ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
|
|
|
|
for (p = 0; p < n; p++)
|
|
add_param_constraints (scop, context, p);
|
|
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
|
(&ps, context);
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
|
|
(SCOP_CONTEXT (scop), ps);
|
|
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
|
|
ppl_delete_Polyhedron (context);
|
|
}
|
|
|
|
/* Build the iteration domains: the loops belonging to the current
|
|
SCOP, and that vary for the execution of the current basic block.
|
|
Returns false if there is no loop in SCOP. */
|
|
|
|
static void
|
|
build_scop_iteration_domain (scop_p scop)
|
|
{
|
|
struct loop *loop;
|
|
sese region = SCOP_REGION (scop);
|
|
int i;
|
|
ppl_Polyhedron_t ph;
|
|
poly_bb_p pbb;
|
|
int nb_loops = number_of_loops ();
|
|
ppl_Pointset_Powerset_C_Polyhedron_t *domains
|
|
= XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
|
|
|
|
for (i = 0; i < nb_loops; i++)
|
|
domains[i] = NULL;
|
|
|
|
ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
|
|
|
|
FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
|
|
if (!loop_in_sese_p (loop_outer (loop), region))
|
|
build_loop_iteration_domains (scop, loop, ph, 0, domains);
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
|
(&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
|
|
domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
|
|
else
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
|
(&PBB_DOMAIN (pbb), ph);
|
|
|
|
for (i = 0; i < nb_loops; i++)
|
|
if (domains[i])
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
|
|
|
|
ppl_delete_Polyhedron (ph);
|
|
free (domains);
|
|
}
|
|
|
|
/* Add a constrain to the ACCESSES polyhedron for the alias set of
|
|
data reference DR. ACCESSP_NB_DIMS is the dimension of the
|
|
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
|
|
domain. */
|
|
|
|
static void
|
|
pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
|
|
ppl_dimension_type accessp_nb_dims,
|
|
ppl_dimension_type dom_nb_dims)
|
|
{
|
|
ppl_Linear_Expression_t alias;
|
|
ppl_Constraint_t cstr;
|
|
int alias_set_num = 0;
|
|
base_alias_pair *bap = (base_alias_pair *)(dr->aux);
|
|
|
|
if (bap && bap->alias_set)
|
|
alias_set_num = *(bap->alias_set);
|
|
|
|
ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
|
|
|
|
ppl_set_coef (alias, dom_nb_dims, 1);
|
|
ppl_set_inhomogeneous (alias, -alias_set_num);
|
|
ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
|
|
|
ppl_delete_Linear_Expression (alias);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
|
|
/* Add to ACCESSES polyhedron equalities defining the access functions
|
|
to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
|
|
polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
|
|
PBB is the poly_bb_p that contains the data reference DR. */
|
|
|
|
static void
|
|
pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
|
|
ppl_dimension_type accessp_nb_dims,
|
|
ppl_dimension_type dom_nb_dims,
|
|
poly_bb_p pbb)
|
|
{
|
|
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
|
|
mpz_t v;
|
|
scop_p scop = PBB_SCOP (pbb);
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
mpz_init (v);
|
|
|
|
for (i = 0; i < nb_subscripts; i++)
|
|
{
|
|
ppl_Linear_Expression_t fn, access;
|
|
ppl_Constraint_t cstr;
|
|
ppl_dimension_type subscript = dom_nb_dims + 1 + i;
|
|
tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
|
|
|
|
ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
|
|
ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
|
|
|
|
mpz_set_si (v, 1);
|
|
scan_tree_for_params (region, afn, fn, v);
|
|
ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
|
|
|
|
ppl_set_coef (access, subscript, -1);
|
|
ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
|
|
|
ppl_delete_Linear_Expression (fn);
|
|
ppl_delete_Linear_Expression (access);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
|
|
mpz_clear (v);
|
|
}
|
|
|
|
/* Add constrains representing the size of the accessed data to the
|
|
ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
|
|
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
|
|
domain. */
|
|
|
|
static void
|
|
pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
|
|
ppl_dimension_type accessp_nb_dims,
|
|
ppl_dimension_type dom_nb_dims)
|
|
{
|
|
tree ref = DR_REF (dr);
|
|
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
|
|
|
|
for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
|
|
{
|
|
ppl_Linear_Expression_t expr;
|
|
ppl_Constraint_t cstr;
|
|
ppl_dimension_type subscript = dom_nb_dims + 1 + i;
|
|
tree low, high;
|
|
|
|
if (TREE_CODE (ref) != ARRAY_REF)
|
|
break;
|
|
|
|
low = array_ref_low_bound (ref);
|
|
|
|
/* subscript - low >= 0 */
|
|
if (host_integerp (low, 0))
|
|
{
|
|
tree minus_low;
|
|
|
|
ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
|
|
ppl_set_coef (expr, subscript, 1);
|
|
|
|
minus_low = fold_build1 (NEGATE_EXPR, TREE_TYPE (low), low);
|
|
ppl_set_inhomogeneous_tree (expr, minus_low);
|
|
|
|
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
|
ppl_delete_Linear_Expression (expr);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
|
|
high = array_ref_up_bound (ref);
|
|
|
|
/* high - subscript >= 0 */
|
|
if (high && host_integerp (high, 0)
|
|
/* 1-element arrays at end of structures may extend over
|
|
their declared size. */
|
|
&& !(array_at_struct_end_p (ref)
|
|
&& operand_equal_p (low, high, 0)))
|
|
{
|
|
ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
|
|
ppl_set_coef (expr, subscript, -1);
|
|
|
|
ppl_set_inhomogeneous_tree (expr, high);
|
|
|
|
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
|
ppl_delete_Linear_Expression (expr);
|
|
ppl_delete_Constraint (cstr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Build data accesses for DR in PBB. */
|
|
|
|
static void
|
|
build_poly_dr (data_reference_p dr, poly_bb_p pbb)
|
|
{
|
|
ppl_Polyhedron_t accesses;
|
|
ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
|
|
ppl_dimension_type dom_nb_dims;
|
|
ppl_dimension_type accessp_nb_dims;
|
|
int dr_base_object_set;
|
|
|
|
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
|
|
&dom_nb_dims);
|
|
accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
|
|
|
|
ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
|
|
|
|
pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
|
|
pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
|
|
pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
|
|
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
|
|
accesses);
|
|
ppl_delete_Polyhedron (accesses);
|
|
|
|
gcc_assert (dr->aux);
|
|
dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
|
|
|
|
new_poly_dr (pbb, dr_base_object_set, accesses_ps,
|
|
DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
|
|
dr, DR_NUM_DIMENSIONS (dr));
|
|
}
|
|
|
|
/* Write to FILE the alias graph of data references in DIMACS format. */
|
|
|
|
static inline bool
|
|
write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
|
|
VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
|
int edge_num = 0;
|
|
data_reference_p dr1, dr2;
|
|
int i, j;
|
|
|
|
if (num_vertex == 0)
|
|
return true;
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
|
edge_num++;
|
|
|
|
fprintf (file, "$\n");
|
|
|
|
if (comment)
|
|
fprintf (file, "c %s\n", comment);
|
|
|
|
fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
|
fprintf (file, "e %d %d\n", i + 1, j + 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Write to FILE the alias graph of data references in DOT format. */
|
|
|
|
static inline bool
|
|
write_alias_graph_to_ascii_dot (FILE *file, char *comment,
|
|
VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
|
data_reference_p dr1, dr2;
|
|
int i, j;
|
|
|
|
if (num_vertex == 0)
|
|
return true;
|
|
|
|
fprintf (file, "$\n");
|
|
|
|
if (comment)
|
|
fprintf (file, "c %s\n", comment);
|
|
|
|
/* First print all the vertices. */
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
fprintf (file, "n%d;\n", i);
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
|
fprintf (file, "n%d n%d\n", i, j);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Write to FILE the alias graph of data references in ECC format. */
|
|
|
|
static inline bool
|
|
write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
|
|
VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
|
data_reference_p dr1, dr2;
|
|
int i, j;
|
|
|
|
if (num_vertex == 0)
|
|
return true;
|
|
|
|
fprintf (file, "$\n");
|
|
|
|
if (comment)
|
|
fprintf (file, "c %s\n", comment);
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
|
fprintf (file, "%d %d\n", i, j);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Check if DR1 and DR2 are in the same object set. */
|
|
|
|
static bool
|
|
dr_same_base_object_p (const struct data_reference *dr1,
|
|
const struct data_reference *dr2)
|
|
{
|
|
return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
|
|
}
|
|
|
|
/* Uses DFS component number as representative of alias-sets. Also tests for
|
|
optimality by verifying if every connected component is a clique. Returns
|
|
true (1) if the above test is true, and false (0) otherwise. */
|
|
|
|
static int
|
|
build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int num_vertices = VEC_length (data_reference_p, drs);
|
|
struct graph *g = new_graph (num_vertices);
|
|
data_reference_p dr1, dr2;
|
|
int i, j;
|
|
int num_connected_components;
|
|
int v_indx1, v_indx2, num_vertices_in_component;
|
|
int *all_vertices;
|
|
int *vertices;
|
|
struct graph_edge *e;
|
|
int this_component_is_clique;
|
|
int all_components_are_cliques = 1;
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
|
{
|
|
add_edge (g, i, j);
|
|
add_edge (g, j, i);
|
|
}
|
|
|
|
all_vertices = XNEWVEC (int, num_vertices);
|
|
vertices = XNEWVEC (int, num_vertices);
|
|
for (i = 0; i < num_vertices; i++)
|
|
all_vertices[i] = i;
|
|
|
|
num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
|
|
NULL, true, NULL);
|
|
for (i = 0; i < g->n_vertices; i++)
|
|
{
|
|
data_reference_p dr = VEC_index (data_reference_p, drs, i);
|
|
base_alias_pair *bap;
|
|
|
|
gcc_assert (dr->aux);
|
|
bap = (base_alias_pair *)(dr->aux);
|
|
|
|
bap->alias_set = XNEW (int);
|
|
*(bap->alias_set) = g->vertices[i].component + 1;
|
|
}
|
|
|
|
/* Verify if the DFS numbering results in optimal solution. */
|
|
for (i = 0; i < num_connected_components; i++)
|
|
{
|
|
num_vertices_in_component = 0;
|
|
/* Get all vertices whose DFS component number is the same as i. */
|
|
for (j = 0; j < num_vertices; j++)
|
|
if (g->vertices[j].component == i)
|
|
vertices[num_vertices_in_component++] = j;
|
|
|
|
/* Now test if the vertices in 'vertices' form a clique, by testing
|
|
for edges among each pair. */
|
|
this_component_is_clique = 1;
|
|
for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
|
|
{
|
|
for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
|
|
{
|
|
/* Check if the two vertices are connected by iterating
|
|
through all the edges which have one of these are source. */
|
|
e = g->vertices[vertices[v_indx2]].pred;
|
|
while (e)
|
|
{
|
|
if (e->src == vertices[v_indx1])
|
|
break;
|
|
e = e->pred_next;
|
|
}
|
|
if (!e)
|
|
{
|
|
this_component_is_clique = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (!this_component_is_clique)
|
|
all_components_are_cliques = 0;
|
|
}
|
|
}
|
|
|
|
free (all_vertices);
|
|
free (vertices);
|
|
free_graph (g);
|
|
return all_components_are_cliques;
|
|
}
|
|
|
|
/* Group each data reference in DRS with its base object set num. */
|
|
|
|
static void
|
|
build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
|
struct graph *g = new_graph (num_vertex);
|
|
data_reference_p dr1, dr2;
|
|
int i, j;
|
|
int *queue;
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
|
if (dr_same_base_object_p (dr1, dr2))
|
|
{
|
|
add_edge (g, i, j);
|
|
add_edge (g, j, i);
|
|
}
|
|
|
|
queue = XNEWVEC (int, num_vertex);
|
|
for (i = 0; i < num_vertex; i++)
|
|
queue[i] = i;
|
|
|
|
graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
|
|
|
|
for (i = 0; i < g->n_vertices; i++)
|
|
{
|
|
data_reference_p dr = VEC_index (data_reference_p, drs, i);
|
|
base_alias_pair *bap;
|
|
|
|
gcc_assert (dr->aux);
|
|
bap = (base_alias_pair *)(dr->aux);
|
|
|
|
bap->base_obj_set = g->vertices[i].component + 1;
|
|
}
|
|
|
|
free (queue);
|
|
free_graph (g);
|
|
}
|
|
|
|
/* Build the data references for PBB. */
|
|
|
|
static void
|
|
build_pbb_drs (poly_bb_p pbb)
|
|
{
|
|
int j;
|
|
data_reference_p dr;
|
|
VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, gbb_drs, j, dr)
|
|
build_poly_dr (dr, pbb);
|
|
}
|
|
|
|
/* Dump to file the alias graphs for the data references in DRS. */
|
|
|
|
static void
|
|
dump_alias_graphs (VEC (data_reference_p, heap) *drs)
|
|
{
|
|
char comment[100];
|
|
FILE *file_dimacs, *file_ecc, *file_dot;
|
|
|
|
file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
|
|
if (file_dimacs)
|
|
{
|
|
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
|
|
current_function_name ());
|
|
write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
|
|
fclose (file_dimacs);
|
|
}
|
|
|
|
file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
|
|
if (file_ecc)
|
|
{
|
|
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
|
|
current_function_name ());
|
|
write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
|
|
fclose (file_ecc);
|
|
}
|
|
|
|
file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
|
|
if (file_dot)
|
|
{
|
|
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
|
|
current_function_name ());
|
|
write_alias_graph_to_ascii_dot (file_dot, comment, drs);
|
|
fclose (file_dot);
|
|
}
|
|
}
|
|
|
|
/* Build data references in SCOP. */
|
|
|
|
static void
|
|
build_scop_drs (scop_p scop)
|
|
{
|
|
int i, j;
|
|
poly_bb_p pbb;
|
|
data_reference_p dr;
|
|
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
|
|
|
|
/* Remove all the PBBs that do not have data references: these basic
|
|
blocks are not handled in the polyhedral representation. */
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
|
|
if (VEC_empty (data_reference_p, GBB_DATA_REFS (PBB_BLACK_BOX (pbb))))
|
|
{
|
|
free_gimple_bb (PBB_BLACK_BOX (pbb));
|
|
VEC_ordered_remove (poly_bb_p, SCOP_BBS (scop), i);
|
|
i--;
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
for (j = 0; VEC_iterate (data_reference_p,
|
|
GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
|
|
VEC_safe_push (data_reference_p, heap, drs, dr);
|
|
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr)
|
|
dr->aux = XNEW (base_alias_pair);
|
|
|
|
if (!build_alias_set_optimal_p (drs))
|
|
{
|
|
/* TODO: Add support when building alias set is not optimal. */
|
|
;
|
|
}
|
|
|
|
build_base_obj_set_for_drs (drs);
|
|
|
|
/* When debugging, enable the following code. This cannot be used
|
|
in production compilers. */
|
|
if (0)
|
|
dump_alias_graphs (drs);
|
|
|
|
VEC_free (data_reference_p, heap, drs);
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
build_pbb_drs (pbb);
|
|
}
|
|
|
|
/* Return a gsi at the position of the phi node STMT. */
|
|
|
|
static gimple_stmt_iterator
|
|
gsi_for_phi_node (gimple stmt)
|
|
{
|
|
gimple_stmt_iterator psi;
|
|
basic_block bb = gimple_bb (stmt);
|
|
|
|
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
|
|
if (stmt == gsi_stmt (psi))
|
|
return psi;
|
|
|
|
gcc_unreachable ();
|
|
return psi;
|
|
}
|
|
|
|
/* Analyze all the data references of STMTS and add them to the
|
|
GBB_DATA_REFS vector of BB. */
|
|
|
|
static void
|
|
analyze_drs_in_stmts (scop_p scop, basic_block bb, VEC (gimple, heap) *stmts)
|
|
{
|
|
loop_p nest;
|
|
gimple_bb_p gbb;
|
|
gimple stmt;
|
|
int i;
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
if (!bb_in_sese_p (bb, region))
|
|
return;
|
|
|
|
nest = outermost_loop_in_sese_1 (region, bb);
|
|
gbb = gbb_from_bb (bb);
|
|
|
|
FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
|
|
{
|
|
loop_p loop;
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
loop = loop_containing_stmt (stmt);
|
|
if (!loop_in_sese_p (loop, region))
|
|
loop = nest;
|
|
|
|
graphite_find_data_references_in_stmt (nest, loop, stmt,
|
|
&GBB_DATA_REFS (gbb));
|
|
}
|
|
}
|
|
|
|
/* Insert STMT at the end of the STMTS sequence and then insert the
|
|
statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
|
|
on STMTS. */
|
|
|
|
static void
|
|
insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
|
|
gimple_stmt_iterator insert_gsi)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
|
|
|
|
if (!stmts)
|
|
stmts = gimple_seq_alloc ();
|
|
|
|
gsi = gsi_last (stmts);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
|
|
|
|
gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
|
|
analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
|
|
VEC_free (gimple, heap, x);
|
|
}
|
|
|
|
/* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
|
|
|
|
static void
|
|
insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
|
|
{
|
|
gimple_seq stmts;
|
|
gimple_stmt_iterator si;
|
|
gimple_stmt_iterator gsi;
|
|
tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
|
|
gimple stmt = gimple_build_assign (res, var);
|
|
VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
|
|
|
|
if (!stmts)
|
|
stmts = gimple_seq_alloc ();
|
|
si = gsi_last (stmts);
|
|
gsi_insert_after (&si, stmt, GSI_NEW_STMT);
|
|
for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
|
|
|
|
if (gimple_code (after_stmt) == GIMPLE_PHI)
|
|
{
|
|
gsi = gsi_after_labels (gimple_bb (after_stmt));
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
{
|
|
gsi = gsi_for_stmt (after_stmt);
|
|
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
|
|
}
|
|
|
|
analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
|
|
VEC_free (gimple, heap, x);
|
|
}
|
|
|
|
/* Creates a poly_bb_p for basic_block BB from the existing PBB. */
|
|
|
|
static void
|
|
new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
|
|
{
|
|
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
|
gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
|
|
poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
|
|
int index, n = VEC_length (poly_bb_p, SCOP_BBS (scop));
|
|
|
|
/* The INDEX of PBB in SCOP_BBS. */
|
|
for (index = 0; index < n; index++)
|
|
if (VEC_index (poly_bb_p, SCOP_BBS (scop), index) == pbb)
|
|
break;
|
|
|
|
if (PBB_DOMAIN (pbb))
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
|
(&PBB_DOMAIN (pbb1), PBB_DOMAIN (pbb));
|
|
|
|
GBB_PBB (gbb1) = pbb1;
|
|
GBB_CONDITIONS (gbb1) = VEC_copy (gimple, heap, GBB_CONDITIONS (gbb));
|
|
GBB_CONDITION_CASES (gbb1) = VEC_copy (gimple, heap, GBB_CONDITION_CASES (gbb));
|
|
VEC_safe_insert (poly_bb_p, heap, SCOP_BBS (scop), index + 1, pbb1);
|
|
}
|
|
|
|
/* Insert on edge E the assignment "RES := EXPR". */
|
|
|
|
static void
|
|
insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
gimple_seq stmts;
|
|
tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
|
|
gimple stmt = gimple_build_assign (res, var);
|
|
basic_block bb;
|
|
VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
|
|
|
|
if (!stmts)
|
|
stmts = gimple_seq_alloc ();
|
|
|
|
gsi = gsi_last (stmts);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
|
|
|
|
gsi_insert_seq_on_edge (e, stmts);
|
|
gsi_commit_edge_inserts ();
|
|
bb = gimple_bb (stmt);
|
|
|
|
if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
|
|
return;
|
|
|
|
if (!gbb_from_bb (bb))
|
|
new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
|
|
|
|
analyze_drs_in_stmts (scop, bb, x);
|
|
VEC_free (gimple, heap, x);
|
|
}
|
|
|
|
/* Creates a zero dimension array of the same type as VAR. */
|
|
|
|
static tree
|
|
create_zero_dim_array (tree var, const char *base_name)
|
|
{
|
|
tree index_type = build_index_type (integer_zero_node);
|
|
tree elt_type = TREE_TYPE (var);
|
|
tree array_type = build_array_type (elt_type, index_type);
|
|
tree base = create_tmp_var (array_type, base_name);
|
|
|
|
add_referenced_var (base);
|
|
|
|
return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
|
|
NULL_TREE);
|
|
}
|
|
|
|
/* Returns true when PHI is a loop close phi node. */
|
|
|
|
static bool
|
|
scalar_close_phi_node_p (gimple phi)
|
|
{
|
|
if (gimple_code (phi) != GIMPLE_PHI
|
|
|| !is_gimple_reg (gimple_phi_result (phi)))
|
|
return false;
|
|
|
|
/* Note that loop close phi nodes should have a single argument
|
|
because we translated the representation into a canonical form
|
|
before Graphite: see canonicalize_loop_closed_ssa_form. */
|
|
return (gimple_phi_num_args (phi) == 1);
|
|
}
|
|
|
|
/* For a definition DEF in REGION, propagates the expression EXPR in
|
|
all the uses of DEF outside REGION. */
|
|
|
|
static void
|
|
propagate_expr_outside_region (tree def, tree expr, sese region)
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
gimple use_stmt;
|
|
gimple_seq stmts;
|
|
bool replaced_once = false;
|
|
|
|
gcc_assert (TREE_CODE (def) == SSA_NAME);
|
|
|
|
expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
|
|
NULL_TREE);
|
|
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
|
if (!is_gimple_debug (use_stmt)
|
|
&& !bb_in_sese_p (gimple_bb (use_stmt), region))
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
|
|
if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
|
|
&& (replaced_once = true))
|
|
replace_exp (use_p, expr);
|
|
|
|
update_stmt (use_stmt);
|
|
}
|
|
|
|
if (replaced_once)
|
|
{
|
|
gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
|
|
gsi_commit_edge_inserts ();
|
|
}
|
|
}
|
|
|
|
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
|
|
dimension array for it. */
|
|
|
|
static void
|
|
rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
|
|
{
|
|
sese region = SCOP_REGION (scop);
|
|
gimple phi = gsi_stmt (*psi);
|
|
tree res = gimple_phi_result (phi);
|
|
tree var = SSA_NAME_VAR (res);
|
|
basic_block bb = gimple_bb (phi);
|
|
gimple_stmt_iterator gsi = gsi_after_labels (bb);
|
|
tree arg = gimple_phi_arg_def (phi, 0);
|
|
gimple stmt;
|
|
|
|
/* Note that loop close phi nodes should have a single argument
|
|
because we translated the representation into a canonical form
|
|
before Graphite: see canonicalize_loop_closed_ssa_form. */
|
|
gcc_assert (gimple_phi_num_args (phi) == 1);
|
|
|
|
/* The phi node can be a non close phi node, when its argument is
|
|
invariant, or a default definition. */
|
|
if (is_gimple_min_invariant (arg)
|
|
|| SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
propagate_expr_outside_region (res, arg, region);
|
|
gsi_next (psi);
|
|
return;
|
|
}
|
|
|
|
else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
|
|
{
|
|
propagate_expr_outside_region (res, arg, region);
|
|
stmt = gimple_build_assign (res, arg);
|
|
remove_phi_node (psi, false);
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
|
return;
|
|
}
|
|
|
|
/* If res is scev analyzable and is not a scalar value, it is safe
|
|
to ignore the close phi node: it will be code generated in the
|
|
out of Graphite pass. */
|
|
else if (scev_analyzable_p (res, region))
|
|
{
|
|
loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
|
|
tree scev;
|
|
|
|
if (!loop_in_sese_p (loop, region))
|
|
{
|
|
loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
|
|
scev = scalar_evolution_in_region (region, loop, arg);
|
|
scev = compute_overall_effect_of_inner_loop (loop, scev);
|
|
}
|
|
else
|
|
scev = scalar_evolution_in_region (region, loop, res);
|
|
|
|
if (tree_does_not_contain_chrecs (scev))
|
|
propagate_expr_outside_region (res, scev, region);
|
|
|
|
gsi_next (psi);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
|
|
|
|
stmt = gimple_build_assign (res, zero_dim_array);
|
|
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
insert_out_of_ssa_copy (scop, zero_dim_array, arg,
|
|
SSA_NAME_DEF_STMT (arg));
|
|
else
|
|
insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
|
|
zero_dim_array, arg);
|
|
}
|
|
|
|
remove_phi_node (psi, false);
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
|
|
|
insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
|
|
}
|
|
|
|
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
|
|
dimension array for it. */
|
|
|
|
static void
|
|
rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
|
|
{
|
|
size_t i;
|
|
gimple phi = gsi_stmt (*psi);
|
|
basic_block bb = gimple_bb (phi);
|
|
tree res = gimple_phi_result (phi);
|
|
tree var = SSA_NAME_VAR (res);
|
|
tree zero_dim_array = create_zero_dim_array (var, "phi_out_of_ssa");
|
|
gimple stmt;
|
|
gimple_seq stmts;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
/* Avoid the insertion of code in the loop latch to please the
|
|
pattern matching of the vectorizer. */
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& e->src == bb->loop_father->latch)
|
|
insert_out_of_ssa_copy (scop, zero_dim_array, arg,
|
|
SSA_NAME_DEF_STMT (arg));
|
|
else
|
|
insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
|
|
}
|
|
|
|
var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
|
|
|
|
stmt = gimple_build_assign (res, var);
|
|
remove_phi_node (psi, false);
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
|
|
|
insert_stmts (scop, stmt, stmts, gsi_after_labels (bb));
|
|
}
|
|
|
|
/* Rewrite the degenerate phi node at position PSI from the degenerate
|
|
form "x = phi (y, y, ..., y)" to "x = y". */
|
|
|
|
static void
|
|
rewrite_degenerate_phi (gimple_stmt_iterator *psi)
|
|
{
|
|
tree rhs;
|
|
gimple stmt;
|
|
gimple_stmt_iterator gsi;
|
|
gimple phi = gsi_stmt (*psi);
|
|
tree res = gimple_phi_result (phi);
|
|
basic_block bb;
|
|
|
|
bb = gimple_bb (phi);
|
|
rhs = degenerate_phi_result (phi);
|
|
gcc_assert (rhs);
|
|
|
|
stmt = gimple_build_assign (res, rhs);
|
|
remove_phi_node (psi, false);
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
|
|
|
gsi = gsi_after_labels (bb);
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
|
}
|
|
|
|
/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
|
|
|
|
static void
|
|
rewrite_reductions_out_of_ssa (scop_p scop)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator psi;
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
FOR_EACH_BB (bb)
|
|
if (bb_in_sese_p (bb, region))
|
|
for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
|
|
{
|
|
gimple phi = gsi_stmt (psi);
|
|
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
|
{
|
|
gsi_next (&psi);
|
|
continue;
|
|
}
|
|
|
|
if (gimple_phi_num_args (phi) > 1
|
|
&& degenerate_phi_result (phi))
|
|
rewrite_degenerate_phi (&psi);
|
|
|
|
else if (scalar_close_phi_node_p (phi))
|
|
rewrite_close_phi_out_of_ssa (scop, &psi);
|
|
|
|
else if (reduction_phi_p (region, &psi))
|
|
rewrite_phi_out_of_ssa (scop, &psi);
|
|
}
|
|
|
|
update_ssa (TODO_update_ssa);
|
|
#ifdef ENABLE_CHECKING
|
|
verify_loop_closed_ssa (true);
|
|
#endif
|
|
}
|
|
|
|
/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
|
|
read from ZERO_DIM_ARRAY. */
|
|
|
|
static void
|
|
rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
|
|
tree def, gimple use_stmt)
|
|
{
|
|
tree var = SSA_NAME_VAR (def);
|
|
gimple name_stmt = gimple_build_assign (var, zero_dim_array);
|
|
tree name = make_ssa_name (var, name_stmt);
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
|
|
gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
|
|
|
|
gimple_assign_set_lhs (name_stmt, name);
|
|
insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
|
|
if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
|
|
replace_exp (use_p, name);
|
|
|
|
update_stmt (use_stmt);
|
|
}
|
|
|
|
/* For every definition DEF in the SCOP that is used outside the scop,
|
|
insert a closing-scop definition in the basic block just after this
|
|
SCOP. */
|
|
|
|
static void
|
|
handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
|
|
{
|
|
tree var = create_tmp_reg (TREE_TYPE (def), NULL);
|
|
tree new_name = make_ssa_name (var, stmt);
|
|
bool needs_copy = false;
|
|
use_operand_p use_p;
|
|
imm_use_iterator imm_iter;
|
|
gimple use_stmt;
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
|
{
|
|
if (!bb_in_sese_p (gimple_bb (use_stmt), region))
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
{
|
|
SET_USE (use_p, new_name);
|
|
}
|
|
update_stmt (use_stmt);
|
|
needs_copy = true;
|
|
}
|
|
}
|
|
|
|
/* Insert in the empty BB just after the scop a use of DEF such
|
|
that the rewrite of cross_bb_scalar_dependences won't insert
|
|
arrays everywhere else. */
|
|
if (needs_copy)
|
|
{
|
|
gimple assign = gimple_build_assign (new_name, def);
|
|
gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
|
|
|
|
add_referenced_var (var);
|
|
SSA_NAME_DEF_STMT (new_name) = assign;
|
|
update_stmt (assign);
|
|
gsi_insert_before (&psi, assign, GSI_SAME_STMT);
|
|
}
|
|
}
|
|
|
|
/* Rewrite the scalar dependences crossing the boundary of the BB
|
|
containing STMT with an array. Return true when something has been
|
|
changed. */
|
|
|
|
static bool
|
|
rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
|
|
{
|
|
sese region = SCOP_REGION (scop);
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
imm_use_iterator imm_iter;
|
|
tree def;
|
|
basic_block def_bb;
|
|
tree zero_dim_array = NULL_TREE;
|
|
gimple use_stmt;
|
|
bool res = false;
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
def = gimple_assign_lhs (stmt);
|
|
break;
|
|
|
|
case GIMPLE_CALL:
|
|
def = gimple_call_lhs (stmt);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!def
|
|
|| !is_gimple_reg (def))
|
|
return false;
|
|
|
|
if (scev_analyzable_p (def, region))
|
|
{
|
|
loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
|
|
tree scev = scalar_evolution_in_region (region, loop, def);
|
|
|
|
if (tree_contains_chrecs (scev, NULL))
|
|
return false;
|
|
|
|
propagate_expr_outside_region (def, scev, region);
|
|
return true;
|
|
}
|
|
|
|
def_bb = gimple_bb (stmt);
|
|
|
|
handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
|
|
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
|
&& (res = true))
|
|
{
|
|
gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
|
|
|
|
if (scalar_close_phi_node_p (gsi_stmt (psi)))
|
|
rewrite_close_phi_out_of_ssa (scop, &psi);
|
|
else
|
|
rewrite_phi_out_of_ssa (scop, &psi);
|
|
}
|
|
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI
|
|
&& def_bb != gimple_bb (use_stmt)
|
|
&& !is_gimple_debug (use_stmt)
|
|
&& (res = true))
|
|
{
|
|
if (!zero_dim_array)
|
|
{
|
|
zero_dim_array = create_zero_dim_array
|
|
(SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
|
|
insert_out_of_ssa_copy (scop, zero_dim_array, def,
|
|
SSA_NAME_DEF_STMT (def));
|
|
gsi_next (gsi);
|
|
}
|
|
|
|
rewrite_cross_bb_scalar_dependence (scop, zero_dim_array,
|
|
def, use_stmt);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
|
|
|
|
static void
|
|
rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator psi;
|
|
sese region = SCOP_REGION (scop);
|
|
bool changed = false;
|
|
|
|
/* Create an extra empty BB after the scop. */
|
|
split_edge (SESE_EXIT (region));
|
|
|
|
FOR_EACH_BB (bb)
|
|
if (bb_in_sese_p (bb, region))
|
|
for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
|
|
changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
|
|
|
|
if (changed)
|
|
{
|
|
scev_reset_htab ();
|
|
update_ssa (TODO_update_ssa);
|
|
#ifdef ENABLE_CHECKING
|
|
verify_loop_closed_ssa (true);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Returns the number of pbbs that are in loops contained in SCOP. */
|
|
|
|
static int
|
|
nb_pbbs_in_loops (scop_p scop)
|
|
{
|
|
int i;
|
|
poly_bb_p pbb;
|
|
int res = 0;
|
|
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
|
if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
|
|
res++;
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Return the number of data references in BB that write in
|
|
memory. */
|
|
|
|
static int
|
|
nb_data_writes_in_bb (basic_block bb)
|
|
{
|
|
int res = 0;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (gimple_vdef (gsi_stmt (gsi)))
|
|
res++;
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Splits at STMT the basic block BB represented as PBB in the
|
|
polyhedral form. */
|
|
|
|
static edge
|
|
split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
|
|
{
|
|
edge e1 = split_block (bb, stmt);
|
|
new_pbb_from_pbb (scop, pbb, e1->dest);
|
|
return e1;
|
|
}
|
|
|
|
/* Splits STMT out of its current BB. This is done for reduction
|
|
statements for which we want to ignore data dependences. */
|
|
|
|
static basic_block
|
|
split_reduction_stmt (scop_p scop, gimple stmt)
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
poly_bb_p pbb = pbb_from_bb (bb);
|
|
gimple_bb_p gbb = gbb_from_bb (bb);
|
|
edge e1;
|
|
int i;
|
|
data_reference_p dr;
|
|
|
|
/* Do not split basic blocks with no writes to memory: the reduction
|
|
will be the only write to memory. */
|
|
if (nb_data_writes_in_bb (bb) == 0
|
|
/* Or if we have already marked BB as a reduction. */
|
|
|| PBB_IS_REDUCTION (pbb_from_bb (bb)))
|
|
return bb;
|
|
|
|
e1 = split_pbb (scop, pbb, bb, stmt);
|
|
|
|
/* Split once more only when the reduction stmt is not the only one
|
|
left in the original BB. */
|
|
if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
|
gsi_prev (&gsi);
|
|
e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
|
|
}
|
|
|
|
/* A part of the data references will end in a different basic block
|
|
after the split: move the DRs from the original GBB to the newly
|
|
created GBB1. */
|
|
FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
|
|
{
|
|
basic_block bb1 = gimple_bb (DR_STMT (dr));
|
|
|
|
if (bb1 != bb)
|
|
{
|
|
gimple_bb_p gbb1 = gbb_from_bb (bb1);
|
|
VEC_safe_push (data_reference_p, heap, GBB_DATA_REFS (gbb1), dr);
|
|
VEC_ordered_remove (data_reference_p, GBB_DATA_REFS (gbb), i);
|
|
i--;
|
|
}
|
|
}
|
|
|
|
return e1->dest;
|
|
}
|
|
|
|
/* Return true when stmt is a reduction operation. */
|
|
|
|
static inline bool
|
|
is_reduction_operation_p (gimple stmt)
|
|
{
|
|
enum tree_code code;
|
|
|
|
gcc_assert (is_gimple_assign (stmt));
|
|
code = gimple_assign_rhs_code (stmt);
|
|
|
|
return flag_associative_math
|
|
&& commutative_tree_code (code)
|
|
&& associative_tree_code (code);
|
|
}
|
|
|
|
/* Returns true when PHI contains an argument ARG. */
|
|
|
|
static bool
|
|
phi_contains_arg (gimple phi, tree arg)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return a loop phi node that corresponds to a reduction containing LHS. */
|
|
|
|
static gimple
|
|
follow_ssa_with_commutative_ops (tree arg, tree lhs)
|
|
{
|
|
gimple stmt;
|
|
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
|
return NULL;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (arg);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_NOP
|
|
|| gimple_code (stmt) == GIMPLE_CALL)
|
|
return NULL;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
if (phi_contains_arg (stmt, lhs))
|
|
return stmt;
|
|
return NULL;
|
|
}
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL;
|
|
|
|
if (gimple_num_ops (stmt) == 2)
|
|
return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
|
|
|
|
if (is_reduction_operation_p (stmt))
|
|
{
|
|
gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
|
|
|
|
return res ? res :
|
|
follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Detect commutative and associative scalar reductions starting at
|
|
the STMT. Return the phi node of the reduction cycle, or NULL. */
|
|
|
|
static gimple
|
|
detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
|
|
VEC (gimple, heap) **in,
|
|
VEC (gimple, heap) **out)
|
|
{
|
|
gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
|
|
|
|
if (!phi)
|
|
return NULL;
|
|
|
|
VEC_safe_push (gimple, heap, *in, stmt);
|
|
VEC_safe_push (gimple, heap, *out, stmt);
|
|
return phi;
|
|
}
|
|
|
|
/* Detect commutative and associative scalar reductions starting at
|
|
STMT. Return the phi node of the reduction cycle, or NULL. */
|
|
|
|
static gimple
|
|
detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
|
|
VEC (gimple, heap) **out)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
|
|
if (gimple_num_ops (stmt) == 2)
|
|
return detect_commutative_reduction_arg (lhs, stmt,
|
|
gimple_assign_rhs1 (stmt),
|
|
in, out);
|
|
|
|
if (is_reduction_operation_p (stmt))
|
|
{
|
|
gimple res = detect_commutative_reduction_arg (lhs, stmt,
|
|
gimple_assign_rhs1 (stmt),
|
|
in, out);
|
|
return res ? res
|
|
: detect_commutative_reduction_arg (lhs, stmt,
|
|
gimple_assign_rhs2 (stmt),
|
|
in, out);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a loop phi node that corresponds to a reduction containing LHS. */
|
|
|
|
static gimple
|
|
follow_inital_value_to_phi (tree arg, tree lhs)
|
|
{
|
|
gimple stmt;
|
|
|
|
if (!arg || TREE_CODE (arg) != SSA_NAME)
|
|
return NULL;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (arg);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
&& phi_contains_arg (stmt, lhs))
|
|
return stmt;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Return the argument of the loop PHI that is the inital value coming
|
|
from outside the loop. */
|
|
|
|
static edge
|
|
edge_initial_value_for_loop_phi (gimple phi)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (loop_depth (e->src->loop_father)
|
|
< loop_depth (e->dest->loop_father))
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the argument of the loop PHI that is the inital value coming
|
|
from outside the loop. */
|
|
|
|
static tree
|
|
initial_value_for_loop_phi (gimple phi)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (loop_depth (e->src->loop_father)
|
|
< loop_depth (e->dest->loop_father))
|
|
return gimple_phi_arg_def (phi, i);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Returns true when DEF is used outside the reduction cycle of
|
|
LOOP_PHI. */
|
|
|
|
static bool
|
|
used_outside_reduction (tree def, gimple loop_phi)
|
|
{
|
|
use_operand_p use_p;
|
|
imm_use_iterator imm_iter;
|
|
loop_p loop = loop_containing_stmt (loop_phi);
|
|
|
|
/* In LOOP, DEF should be used only in LOOP_PHI. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
|
{
|
|
gimple stmt = USE_STMT (use_p);
|
|
|
|
if (stmt != loop_phi
|
|
&& !is_gimple_debug (stmt)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Detect commutative and associative scalar reductions belonging to
|
|
the SCOP starting at the loop closed phi node STMT. Return the phi
|
|
node of the reduction cycle, or NULL. */
|
|
|
|
static gimple
|
|
detect_commutative_reduction (scop_p scop, gimple stmt, VEC (gimple, heap) **in,
|
|
VEC (gimple, heap) **out)
|
|
{
|
|
if (scalar_close_phi_node_p (stmt))
|
|
{
|
|
gimple def, loop_phi, phi, close_phi = stmt;
|
|
tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
|
|
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
|
return NULL;
|
|
|
|
/* Note that loop close phi nodes should have a single argument
|
|
because we translated the representation into a canonical form
|
|
before Graphite: see canonicalize_loop_closed_ssa_form. */
|
|
gcc_assert (gimple_phi_num_args (close_phi) == 1);
|
|
|
|
def = SSA_NAME_DEF_STMT (arg);
|
|
if (!stmt_in_sese_p (def, SCOP_REGION (scop))
|
|
|| !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
|
|
return NULL;
|
|
|
|
lhs = gimple_phi_result (close_phi);
|
|
init = initial_value_for_loop_phi (loop_phi);
|
|
phi = follow_inital_value_to_phi (init, lhs);
|
|
|
|
if (phi && (used_outside_reduction (lhs, phi)
|
|
|| !has_single_use (gimple_phi_result (phi))))
|
|
return NULL;
|
|
|
|
VEC_safe_push (gimple, heap, *in, loop_phi);
|
|
VEC_safe_push (gimple, heap, *out, close_phi);
|
|
return phi;
|
|
}
|
|
|
|
if (gimple_code (stmt) == GIMPLE_ASSIGN)
|
|
return detect_commutative_reduction_assign (stmt, in, out);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Translate the scalar reduction statement STMT to an array RED
|
|
knowing that its recursive phi node is LOOP_PHI. */
|
|
|
|
static void
|
|
translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
|
|
gimple stmt, gimple loop_phi)
|
|
{
|
|
tree res = gimple_phi_result (loop_phi);
|
|
gimple assign = gimple_build_assign (res, unshare_expr (red));
|
|
gimple_stmt_iterator gsi;
|
|
|
|
insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
|
|
|
|
assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
|
|
gsi = gsi_for_stmt (stmt);
|
|
gsi_next (&gsi);
|
|
insert_stmts (scop, assign, NULL, gsi);
|
|
}
|
|
|
|
/* Removes the PHI node and resets all the debug stmts that are using
|
|
the PHI_RESULT. */
|
|
|
|
static void
|
|
remove_phi (gimple phi)
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
tree def;
|
|
use_operand_p use_p;
|
|
gimple_stmt_iterator gsi;
|
|
VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
|
|
unsigned int i;
|
|
gimple stmt;
|
|
|
|
def = PHI_RESULT (phi);
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
|
{
|
|
stmt = USE_STMT (use_p);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
{
|
|
gimple_debug_bind_reset_value (stmt);
|
|
VEC_safe_push (gimple, heap, update, stmt);
|
|
}
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (gimple, update, i, stmt)
|
|
update_stmt (stmt);
|
|
|
|
VEC_free (gimple, heap, update);
|
|
|
|
gsi = gsi_for_phi_node (phi);
|
|
remove_phi_node (&gsi, false);
|
|
}
|
|
|
|
/* Helper function for for_each_index. For each INDEX of the data
|
|
reference REF, returns true when its indices are valid in the loop
|
|
nest LOOP passed in as DATA. */
|
|
|
|
static bool
|
|
dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
|
|
{
|
|
loop_p loop;
|
|
basic_block header, def_bb;
|
|
gimple stmt;
|
|
|
|
if (TREE_CODE (*index) != SSA_NAME)
|
|
return true;
|
|
|
|
loop = *((loop_p *) data);
|
|
header = loop->header;
|
|
stmt = SSA_NAME_DEF_STMT (*index);
|
|
|
|
if (!stmt)
|
|
return true;
|
|
|
|
def_bb = gimple_bb (stmt);
|
|
|
|
if (!def_bb)
|
|
return true;
|
|
|
|
return dominated_by_p (CDI_DOMINATORS, header, def_bb);
|
|
}
|
|
|
|
/* When the result of a CLOSE_PHI is written to a memory location,
|
|
return a pointer to that memory reference, otherwise return
|
|
NULL_TREE. */
|
|
|
|
static tree
|
|
close_phi_written_to_memory (gimple close_phi)
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple stmt;
|
|
tree res, def = gimple_phi_result (close_phi);
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
|
if ((stmt = USE_STMT (use_p))
|
|
&& gimple_code (stmt) == GIMPLE_ASSIGN
|
|
&& (res = gimple_assign_lhs (stmt)))
|
|
{
|
|
switch (TREE_CODE (res))
|
|
{
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case RESULT_DECL:
|
|
return res;
|
|
|
|
case ARRAY_REF:
|
|
case MEM_REF:
|
|
{
|
|
tree arg = gimple_phi_arg_def (close_phi, 0);
|
|
loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
|
|
|
|
/* FIXME: this restriction is for id-{24,25}.f and
|
|
could be handled by duplicating the computation of
|
|
array indices before the loop of the close_phi. */
|
|
if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
|
|
return res;
|
|
}
|
|
/* Fallthru. */
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Rewrite out of SSA the reduction described by the loop phi nodes
|
|
IN, and the close phi nodes OUT. IN and OUT are structured by loop
|
|
levels like this:
|
|
|
|
IN: stmt, loop_n, ..., loop_0
|
|
OUT: stmt, close_n, ..., close_0
|
|
|
|
the first element is the reduction statement, and the next elements
|
|
are the loop and close phi nodes of each of the outer loops. */
|
|
|
|
static void
|
|
translate_scalar_reduction_to_array (scop_p scop,
|
|
VEC (gimple, heap) *in,
|
|
VEC (gimple, heap) *out)
|
|
{
|
|
gimple loop_phi;
|
|
unsigned int i = VEC_length (gimple, out) - 1;
|
|
tree red = close_phi_written_to_memory (VEC_index (gimple, out, i));
|
|
|
|
FOR_EACH_VEC_ELT (gimple, in, i, loop_phi)
|
|
{
|
|
gimple close_phi = VEC_index (gimple, out, i);
|
|
|
|
if (i == 0)
|
|
{
|
|
gimple stmt = loop_phi;
|
|
basic_block bb = split_reduction_stmt (scop, stmt);
|
|
poly_bb_p pbb = pbb_from_bb (bb);
|
|
PBB_IS_REDUCTION (pbb) = true;
|
|
gcc_assert (close_phi == loop_phi);
|
|
|
|
if (!red)
|
|
red = create_zero_dim_array
|
|
(gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
|
|
|
|
translate_scalar_reduction_to_array_for_stmt
|
|
(scop, red, stmt, VEC_index (gimple, in, 1));
|
|
continue;
|
|
}
|
|
|
|
if (i == VEC_length (gimple, in) - 1)
|
|
{
|
|
insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
|
|
unshare_expr (red), close_phi);
|
|
insert_out_of_ssa_copy_on_edge
|
|
(scop, edge_initial_value_for_loop_phi (loop_phi),
|
|
unshare_expr (red), initial_value_for_loop_phi (loop_phi));
|
|
}
|
|
|
|
remove_phi (loop_phi);
|
|
remove_phi (close_phi);
|
|
}
|
|
}
|
|
|
|
/* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
|
|
true when something has been changed. */
|
|
|
|
static bool
|
|
rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
|
|
gimple close_phi)
|
|
{
|
|
bool res;
|
|
VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
|
|
VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
|
|
|
|
detect_commutative_reduction (scop, close_phi, &in, &out);
|
|
res = VEC_length (gimple, in) > 1;
|
|
if (res)
|
|
translate_scalar_reduction_to_array (scop, in, out);
|
|
|
|
VEC_free (gimple, heap, in);
|
|
VEC_free (gimple, heap, out);
|
|
return res;
|
|
}
|
|
|
|
/* Rewrites all the commutative reductions from LOOP out of SSA.
|
|
Returns true when something has been changed. */
|
|
|
|
static bool
|
|
rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
|
|
loop_p loop)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
edge exit = single_exit (loop);
|
|
tree res;
|
|
bool changed = false;
|
|
|
|
if (!exit)
|
|
return false;
|
|
|
|
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if ((res = gimple_phi_result (gsi_stmt (gsi)))
|
|
&& is_gimple_reg (res)
|
|
&& !scev_analyzable_p (res, SCOP_REGION (scop)))
|
|
changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
|
|
(scop, gsi_stmt (gsi));
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Rewrites all the commutative reductions from SCOP out of SSA. */
|
|
|
|
static void
|
|
rewrite_commutative_reductions_out_of_ssa (scop_p scop)
|
|
{
|
|
loop_iterator li;
|
|
loop_p loop;
|
|
bool changed = false;
|
|
sese region = SCOP_REGION (scop);
|
|
|
|
FOR_EACH_LOOP (li, loop, 0)
|
|
if (loop_in_sese_p (loop, region))
|
|
changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
|
|
|
|
if (changed)
|
|
{
|
|
scev_reset_htab ();
|
|
gsi_commit_edge_inserts ();
|
|
update_ssa (TODO_update_ssa);
|
|
#ifdef ENABLE_CHECKING
|
|
verify_loop_closed_ssa (true);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Can all ivs be represented by a signed integer?
|
|
As CLooG might generate negative values in its expressions, signed loop ivs
|
|
are required in the backend. */
|
|
|
|
static bool
|
|
scop_ivs_can_be_represented (scop_p scop)
|
|
{
|
|
loop_iterator li;
|
|
loop_p loop;
|
|
gimple_stmt_iterator psi;
|
|
|
|
FOR_EACH_LOOP (li, loop, 0)
|
|
{
|
|
if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
|
|
continue;
|
|
|
|
for (psi = gsi_start_phis (loop->header);
|
|
!gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
gimple phi = gsi_stmt (psi);
|
|
tree res = PHI_RESULT (phi);
|
|
tree type = TREE_TYPE (res);
|
|
|
|
if (TYPE_UNSIGNED (type)
|
|
&& TYPE_PRECISION (type) >= TYPE_PRECISION (long_long_integer_type_node))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Builds the polyhedral representation for a SESE region. */
|
|
|
|
void
|
|
build_poly_scop (scop_p scop)
|
|
{
|
|
sese region = SCOP_REGION (scop);
|
|
graphite_dim_t max_dim;
|
|
|
|
build_scop_bbs (scop);
|
|
|
|
/* FIXME: This restriction is needed to avoid a problem in CLooG.
|
|
Once CLooG is fixed, remove this guard. Anyways, it makes no
|
|
sense to optimize a scop containing only PBBs that do not belong
|
|
to any loops. */
|
|
if (nb_pbbs_in_loops (scop) == 0)
|
|
return;
|
|
|
|
if (!scop_ivs_can_be_represented (scop))
|
|
return;
|
|
|
|
if (flag_associative_math)
|
|
rewrite_commutative_reductions_out_of_ssa (scop);
|
|
|
|
build_sese_loop_nests (region);
|
|
build_sese_conditions (region);
|
|
find_scop_parameters (scop);
|
|
|
|
max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
|
|
if (scop_nb_params (scop) > max_dim)
|
|
return;
|
|
|
|
build_scop_iteration_domain (scop);
|
|
build_scop_context (scop);
|
|
add_conditions_to_constraints (scop);
|
|
|
|
/* Rewrite out of SSA only after having translated the
|
|
representation to the polyhedral representation to avoid scev
|
|
analysis failures. That means that these functions will insert
|
|
new data references that they create in the right place. */
|
|
rewrite_reductions_out_of_ssa (scop);
|
|
rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
|
|
|
|
build_scop_drs (scop);
|
|
scop_to_lst (scop);
|
|
build_scop_scattering (scop);
|
|
|
|
/* This SCoP has been translated to the polyhedral
|
|
representation. */
|
|
POLY_SCOP_P (scop) = true;
|
|
}
|
|
#endif
|