4f4a855d82
Reviewed-on: https://go-review.googlesource.com/c/158019 gotools/: * Makefile.am (go_cmd_vet_files): Update for Go1.12beta2 release. (GOTOOLS_TEST_TIMEOUT): Increase to 600. (check-runtime): Export LD_LIBRARY_PATH before computing GOARCH and GOOS. (check-vet): Copy golang.org/x/tools into check-vet-dir. * Makefile.in: Regenerate. gcc/testsuite/: * go.go-torture/execute/names-1.go: Stop using debug/xcoff, which is no longer externally visible. From-SVN: r268084
1039 lines
28 KiB
Go
1039 lines
28 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package image implements a basic 2-D image library.
|
|
//
|
|
// The fundamental interface is called Image. An Image contains colors, which
|
|
// are described in the image/color package.
|
|
//
|
|
// Values of the Image interface are created either by calling functions such
|
|
// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing
|
|
// image data in a format such as GIF, JPEG or PNG. Decoding any particular
|
|
// image format requires the prior registration of a decoder function.
|
|
// Registration is typically automatic as a side effect of initializing that
|
|
// format's package so that, to decode a PNG image, it suffices to have
|
|
// import _ "image/png"
|
|
// in a program's main package. The _ means to import a package purely for its
|
|
// initialization side effects.
|
|
//
|
|
// See "The Go image package" for more details:
|
|
// https://golang.org/doc/articles/image_package.html
|
|
package image
|
|
|
|
import (
|
|
"image/color"
|
|
)
|
|
|
|
// Config holds an image's color model and dimensions.
|
|
type Config struct {
|
|
ColorModel color.Model
|
|
Width, Height int
|
|
}
|
|
|
|
// Image is a finite rectangular grid of color.Color values taken from a color
|
|
// model.
|
|
type Image interface {
|
|
// ColorModel returns the Image's color model.
|
|
ColorModel() color.Model
|
|
// Bounds returns the domain for which At can return non-zero color.
|
|
// The bounds do not necessarily contain the point (0, 0).
|
|
Bounds() Rectangle
|
|
// At returns the color of the pixel at (x, y).
|
|
// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
|
|
// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
|
|
At(x, y int) color.Color
|
|
}
|
|
|
|
// PalettedImage is an image whose colors may come from a limited palette.
|
|
// If m is a PalettedImage and m.ColorModel() returns a color.Palette p,
|
|
// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's
|
|
// color model is not a color.Palette, then ColorIndexAt's behavior is
|
|
// undefined.
|
|
type PalettedImage interface {
|
|
// ColorIndexAt returns the palette index of the pixel at (x, y).
|
|
ColorIndexAt(x, y int) uint8
|
|
Image
|
|
}
|
|
|
|
// RGBA is an in-memory image whose At method returns color.RGBA values.
|
|
type RGBA struct {
|
|
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }
|
|
|
|
func (p *RGBA) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *RGBA) At(x, y int) color.Color {
|
|
return p.RGBAAt(x, y)
|
|
}
|
|
|
|
func (p *RGBA) RGBAAt(x, y int) color.RGBA {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.RGBA{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
return color.RGBA{s[0], s[1], s[2], s[3]}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *RGBA) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
|
}
|
|
|
|
func (p *RGBA) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.RGBAModel.Convert(c).(color.RGBA)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = c1.R
|
|
s[1] = c1.G
|
|
s[2] = c1.B
|
|
s[3] = c1.A
|
|
}
|
|
|
|
func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = c.R
|
|
s[1] = c.G
|
|
s[2] = c.B
|
|
s[3] = c.A
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *RGBA) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &RGBA{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &RGBA{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *RGBA) Opaque() bool {
|
|
if p.Rect.Empty() {
|
|
return true
|
|
}
|
|
i0, i1 := 3, p.Rect.Dx()*4
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for i := i0; i < i1; i += 4 {
|
|
if p.Pix[i] != 0xff {
|
|
return false
|
|
}
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewRGBA returns a new RGBA image with the given bounds.
|
|
func NewRGBA(r Rectangle) *RGBA {
|
|
w, h := r.Dx(), r.Dy()
|
|
buf := make([]uint8, 4*w*h)
|
|
return &RGBA{buf, 4 * w, r}
|
|
}
|
|
|
|
// RGBA64 is an in-memory image whose At method returns color.RGBA64 values.
|
|
type RGBA64 struct {
|
|
// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }
|
|
|
|
func (p *RGBA64) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *RGBA64) At(x, y int) color.Color {
|
|
return p.RGBA64At(x, y)
|
|
}
|
|
|
|
func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.RGBA64{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
|
|
return color.RGBA64{
|
|
uint16(s[0])<<8 | uint16(s[1]),
|
|
uint16(s[2])<<8 | uint16(s[3]),
|
|
uint16(s[4])<<8 | uint16(s[5]),
|
|
uint16(s[6])<<8 | uint16(s[7]),
|
|
}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *RGBA64) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
|
|
}
|
|
|
|
func (p *RGBA64) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
|
|
s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = uint8(c1.R >> 8)
|
|
s[1] = uint8(c1.R)
|
|
s[2] = uint8(c1.G >> 8)
|
|
s[3] = uint8(c1.G)
|
|
s[4] = uint8(c1.B >> 8)
|
|
s[5] = uint8(c1.B)
|
|
s[6] = uint8(c1.A >> 8)
|
|
s[7] = uint8(c1.A)
|
|
}
|
|
|
|
func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = uint8(c.R >> 8)
|
|
s[1] = uint8(c.R)
|
|
s[2] = uint8(c.G >> 8)
|
|
s[3] = uint8(c.G)
|
|
s[4] = uint8(c.B >> 8)
|
|
s[5] = uint8(c.B)
|
|
s[6] = uint8(c.A >> 8)
|
|
s[7] = uint8(c.A)
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *RGBA64) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &RGBA64{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &RGBA64{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *RGBA64) Opaque() bool {
|
|
if p.Rect.Empty() {
|
|
return true
|
|
}
|
|
i0, i1 := 6, p.Rect.Dx()*8
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for i := i0; i < i1; i += 8 {
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
|
return false
|
|
}
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewRGBA64 returns a new RGBA64 image with the given bounds.
|
|
func NewRGBA64(r Rectangle) *RGBA64 {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 8*w*h)
|
|
return &RGBA64{pix, 8 * w, r}
|
|
}
|
|
|
|
// NRGBA is an in-memory image whose At method returns color.NRGBA values.
|
|
type NRGBA struct {
|
|
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }
|
|
|
|
func (p *NRGBA) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *NRGBA) At(x, y int) color.Color {
|
|
return p.NRGBAAt(x, y)
|
|
}
|
|
|
|
func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.NRGBA{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
return color.NRGBA{s[0], s[1], s[2], s[3]}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *NRGBA) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
|
}
|
|
|
|
func (p *NRGBA) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = c1.R
|
|
s[1] = c1.G
|
|
s[2] = c1.B
|
|
s[3] = c1.A
|
|
}
|
|
|
|
func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = c.R
|
|
s[1] = c.G
|
|
s[2] = c.B
|
|
s[3] = c.A
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *NRGBA) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &NRGBA{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &NRGBA{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *NRGBA) Opaque() bool {
|
|
if p.Rect.Empty() {
|
|
return true
|
|
}
|
|
i0, i1 := 3, p.Rect.Dx()*4
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for i := i0; i < i1; i += 4 {
|
|
if p.Pix[i] != 0xff {
|
|
return false
|
|
}
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewNRGBA returns a new NRGBA image with the given bounds.
|
|
func NewNRGBA(r Rectangle) *NRGBA {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 4*w*h)
|
|
return &NRGBA{pix, 4 * w, r}
|
|
}
|
|
|
|
// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values.
|
|
type NRGBA64 struct {
|
|
// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }
|
|
|
|
func (p *NRGBA64) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *NRGBA64) At(x, y int) color.Color {
|
|
return p.NRGBA64At(x, y)
|
|
}
|
|
|
|
func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.NRGBA64{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
|
|
return color.NRGBA64{
|
|
uint16(s[0])<<8 | uint16(s[1]),
|
|
uint16(s[2])<<8 | uint16(s[3]),
|
|
uint16(s[4])<<8 | uint16(s[5]),
|
|
uint16(s[6])<<8 | uint16(s[7]),
|
|
}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *NRGBA64) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
|
|
}
|
|
|
|
func (p *NRGBA64) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)
|
|
s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = uint8(c1.R >> 8)
|
|
s[1] = uint8(c1.R)
|
|
s[2] = uint8(c1.G >> 8)
|
|
s[3] = uint8(c1.G)
|
|
s[4] = uint8(c1.B >> 8)
|
|
s[5] = uint8(c1.B)
|
|
s[6] = uint8(c1.A >> 8)
|
|
s[7] = uint8(c1.A)
|
|
}
|
|
|
|
func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = uint8(c.R >> 8)
|
|
s[1] = uint8(c.R)
|
|
s[2] = uint8(c.G >> 8)
|
|
s[3] = uint8(c.G)
|
|
s[4] = uint8(c.B >> 8)
|
|
s[5] = uint8(c.B)
|
|
s[6] = uint8(c.A >> 8)
|
|
s[7] = uint8(c.A)
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *NRGBA64) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &NRGBA64{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &NRGBA64{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *NRGBA64) Opaque() bool {
|
|
if p.Rect.Empty() {
|
|
return true
|
|
}
|
|
i0, i1 := 6, p.Rect.Dx()*8
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for i := i0; i < i1; i += 8 {
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
|
return false
|
|
}
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewNRGBA64 returns a new NRGBA64 image with the given bounds.
|
|
func NewNRGBA64(r Rectangle) *NRGBA64 {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 8*w*h)
|
|
return &NRGBA64{pix, 8 * w, r}
|
|
}
|
|
|
|
// Alpha is an in-memory image whose At method returns color.Alpha values.
|
|
type Alpha struct {
|
|
// Pix holds the image's pixels, as alpha values. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }
|
|
|
|
func (p *Alpha) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *Alpha) At(x, y int) color.Color {
|
|
return p.AlphaAt(x, y)
|
|
}
|
|
|
|
func (p *Alpha) AlphaAt(x, y int) color.Alpha {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.Alpha{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
return color.Alpha{p.Pix[i]}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *Alpha) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
|
}
|
|
|
|
func (p *Alpha) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A
|
|
}
|
|
|
|
func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i] = c.A
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *Alpha) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &Alpha{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &Alpha{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *Alpha) Opaque() bool {
|
|
if p.Rect.Empty() {
|
|
return true
|
|
}
|
|
i0, i1 := 0, p.Rect.Dx()
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for i := i0; i < i1; i++ {
|
|
if p.Pix[i] != 0xff {
|
|
return false
|
|
}
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewAlpha returns a new Alpha image with the given bounds.
|
|
func NewAlpha(r Rectangle) *Alpha {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 1*w*h)
|
|
return &Alpha{pix, 1 * w, r}
|
|
}
|
|
|
|
// Alpha16 is an in-memory image whose At method returns color.Alpha16 values.
|
|
type Alpha16 struct {
|
|
// Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }
|
|
|
|
func (p *Alpha16) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *Alpha16) At(x, y int) color.Color {
|
|
return p.Alpha16At(x, y)
|
|
}
|
|
|
|
func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.Alpha16{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *Alpha16) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
|
|
}
|
|
|
|
func (p *Alpha16) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.Alpha16Model.Convert(c).(color.Alpha16)
|
|
p.Pix[i+0] = uint8(c1.A >> 8)
|
|
p.Pix[i+1] = uint8(c1.A)
|
|
}
|
|
|
|
func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i+0] = uint8(c.A >> 8)
|
|
p.Pix[i+1] = uint8(c.A)
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *Alpha16) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &Alpha16{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &Alpha16{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *Alpha16) Opaque() bool {
|
|
if p.Rect.Empty() {
|
|
return true
|
|
}
|
|
i0, i1 := 0, p.Rect.Dx()*2
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for i := i0; i < i1; i += 2 {
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
|
return false
|
|
}
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewAlpha16 returns a new Alpha16 image with the given bounds.
|
|
func NewAlpha16(r Rectangle) *Alpha16 {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 2*w*h)
|
|
return &Alpha16{pix, 2 * w, r}
|
|
}
|
|
|
|
// Gray is an in-memory image whose At method returns color.Gray values.
|
|
type Gray struct {
|
|
// Pix holds the image's pixels, as gray values. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *Gray) ColorModel() color.Model { return color.GrayModel }
|
|
|
|
func (p *Gray) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *Gray) At(x, y int) color.Color {
|
|
return p.GrayAt(x, y)
|
|
}
|
|
|
|
func (p *Gray) GrayAt(x, y int) color.Gray {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.Gray{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
return color.Gray{p.Pix[i]}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *Gray) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
|
}
|
|
|
|
func (p *Gray) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
|
|
}
|
|
|
|
func (p *Gray) SetGray(x, y int, c color.Gray) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i] = c.Y
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *Gray) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &Gray{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &Gray{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *Gray) Opaque() bool {
|
|
return true
|
|
}
|
|
|
|
// NewGray returns a new Gray image with the given bounds.
|
|
func NewGray(r Rectangle) *Gray {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 1*w*h)
|
|
return &Gray{pix, 1 * w, r}
|
|
}
|
|
|
|
// Gray16 is an in-memory image whose At method returns color.Gray16 values.
|
|
type Gray16 struct {
|
|
// Pix holds the image's pixels, as gray values in big-endian format. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }
|
|
|
|
func (p *Gray16) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *Gray16) At(x, y int) color.Color {
|
|
return p.Gray16At(x, y)
|
|
}
|
|
|
|
func (p *Gray16) Gray16At(x, y int) color.Gray16 {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.Gray16{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *Gray16) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
|
|
}
|
|
|
|
func (p *Gray16) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.Gray16Model.Convert(c).(color.Gray16)
|
|
p.Pix[i+0] = uint8(c1.Y >> 8)
|
|
p.Pix[i+1] = uint8(c1.Y)
|
|
}
|
|
|
|
func (p *Gray16) SetGray16(x, y int, c color.Gray16) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i+0] = uint8(c.Y >> 8)
|
|
p.Pix[i+1] = uint8(c.Y)
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *Gray16) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &Gray16{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &Gray16{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *Gray16) Opaque() bool {
|
|
return true
|
|
}
|
|
|
|
// NewGray16 returns a new Gray16 image with the given bounds.
|
|
func NewGray16(r Rectangle) *Gray16 {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 2*w*h)
|
|
return &Gray16{pix, 2 * w, r}
|
|
}
|
|
|
|
// CMYK is an in-memory image whose At method returns color.CMYK values.
|
|
type CMYK struct {
|
|
// Pix holds the image's pixels, in C, M, Y, K order. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
}
|
|
|
|
func (p *CMYK) ColorModel() color.Model { return color.CMYKModel }
|
|
|
|
func (p *CMYK) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *CMYK) At(x, y int) color.Color {
|
|
return p.CMYKAt(x, y)
|
|
}
|
|
|
|
func (p *CMYK) CMYKAt(x, y int) color.CMYK {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return color.CMYK{}
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
return color.CMYK{s[0], s[1], s[2], s[3]}
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *CMYK) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
|
}
|
|
|
|
func (p *CMYK) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
c1 := color.CMYKModel.Convert(c).(color.CMYK)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = c1.C
|
|
s[1] = c1.M
|
|
s[2] = c1.Y
|
|
s[3] = c1.K
|
|
}
|
|
|
|
func (p *CMYK) SetCMYK(x, y int, c color.CMYK) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
|
|
s[0] = c.C
|
|
s[1] = c.M
|
|
s[2] = c.Y
|
|
s[3] = c.K
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *CMYK) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &CMYK{}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &CMYK{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: r,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *CMYK) Opaque() bool {
|
|
return true
|
|
}
|
|
|
|
// NewCMYK returns a new CMYK image with the given bounds.
|
|
func NewCMYK(r Rectangle) *CMYK {
|
|
w, h := r.Dx(), r.Dy()
|
|
buf := make([]uint8, 4*w*h)
|
|
return &CMYK{buf, 4 * w, r}
|
|
}
|
|
|
|
// Paletted is an in-memory image of uint8 indices into a given palette.
|
|
type Paletted struct {
|
|
// Pix holds the image's pixels, as palette indices. The pixel at
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
|
Pix []uint8
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
|
Stride int
|
|
// Rect is the image's bounds.
|
|
Rect Rectangle
|
|
// Palette is the image's palette.
|
|
Palette color.Palette
|
|
}
|
|
|
|
func (p *Paletted) ColorModel() color.Model { return p.Palette }
|
|
|
|
func (p *Paletted) Bounds() Rectangle { return p.Rect }
|
|
|
|
func (p *Paletted) At(x, y int) color.Color {
|
|
if len(p.Palette) == 0 {
|
|
return nil
|
|
}
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return p.Palette[0]
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
return p.Palette[p.Pix[i]]
|
|
}
|
|
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
|
// the pixel at (x, y).
|
|
func (p *Paletted) PixOffset(x, y int) int {
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
|
}
|
|
|
|
func (p *Paletted) Set(x, y int, c color.Color) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i] = uint8(p.Palette.Index(c))
|
|
}
|
|
|
|
func (p *Paletted) ColorIndexAt(x, y int) uint8 {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return 0
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
return p.Pix[i]
|
|
}
|
|
|
|
func (p *Paletted) SetColorIndex(x, y int, index uint8) {
|
|
if !(Point{x, y}.In(p.Rect)) {
|
|
return
|
|
}
|
|
i := p.PixOffset(x, y)
|
|
p.Pix[i] = index
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible
|
|
// through r. The returned value shares pixels with the original image.
|
|
func (p *Paletted) SubImage(r Rectangle) Image {
|
|
r = r.Intersect(p.Rect)
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
|
// this, the Pix[i:] expression below can panic.
|
|
if r.Empty() {
|
|
return &Paletted{
|
|
Palette: p.Palette,
|
|
}
|
|
}
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
|
return &Paletted{
|
|
Pix: p.Pix[i:],
|
|
Stride: p.Stride,
|
|
Rect: p.Rect.Intersect(r),
|
|
Palette: p.Palette,
|
|
}
|
|
}
|
|
|
|
// Opaque scans the entire image and reports whether it is fully opaque.
|
|
func (p *Paletted) Opaque() bool {
|
|
var present [256]bool
|
|
i0, i1 := 0, p.Rect.Dx()
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
|
for _, c := range p.Pix[i0:i1] {
|
|
present[c] = true
|
|
}
|
|
i0 += p.Stride
|
|
i1 += p.Stride
|
|
}
|
|
for i, c := range p.Palette {
|
|
if !present[i] {
|
|
continue
|
|
}
|
|
_, _, _, a := c.RGBA()
|
|
if a != 0xffff {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// NewPaletted returns a new Paletted image with the given width, height and
|
|
// palette.
|
|
func NewPaletted(r Rectangle, p color.Palette) *Paletted {
|
|
w, h := r.Dx(), r.Dy()
|
|
pix := make([]uint8, 1*w*h)
|
|
return &Paletted{pix, 1 * w, r, p}
|
|
}
|