f98dd1a338
Reviewed-on: https://go-review.googlesource.com/19200 From-SVN: r233110
68 lines
1.7 KiB
Go
68 lines
1.7 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build ignore
|
|
|
|
package big_test
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
)
|
|
|
|
// Use the classic continued fraction for e
|
|
// e = [1; 0, 1, 1, 2, 1, 1, ... 2n, 1, 1, ...]
|
|
// i.e., for the nth term, use
|
|
// 1 if n mod 3 != 1
|
|
// (n-1)/3 * 2 if n mod 3 == 1
|
|
func recur(n, lim int64) *big.Rat {
|
|
term := new(big.Rat)
|
|
if n%3 != 1 {
|
|
term.SetInt64(1)
|
|
} else {
|
|
term.SetInt64((n - 1) / 3 * 2)
|
|
}
|
|
|
|
if n > lim {
|
|
return term
|
|
}
|
|
|
|
// Directly initialize frac as the fractional
|
|
// inverse of the result of recur.
|
|
frac := new(big.Rat).Inv(recur(n+1, lim))
|
|
|
|
return term.Add(term, frac)
|
|
}
|
|
|
|
// This example demonstrates how to use big.Rat to compute the
|
|
// first 15 terms in the sequence of rational convergents for
|
|
// the constant e (base of natural logarithm).
|
|
func Example_eConvergents() {
|
|
for i := 1; i <= 15; i++ {
|
|
r := recur(0, int64(i))
|
|
|
|
// Print r both as a fraction and as a floating-point number.
|
|
// Since big.Rat implements fmt.Formatter, we can use %-13s to
|
|
// get a left-aligned string representation of the fraction.
|
|
fmt.Printf("%-13s = %s\n", r, r.FloatString(8))
|
|
}
|
|
|
|
// Output:
|
|
// 2/1 = 2.00000000
|
|
// 3/1 = 3.00000000
|
|
// 8/3 = 2.66666667
|
|
// 11/4 = 2.75000000
|
|
// 19/7 = 2.71428571
|
|
// 87/32 = 2.71875000
|
|
// 106/39 = 2.71794872
|
|
// 193/71 = 2.71830986
|
|
// 1264/465 = 2.71827957
|
|
// 1457/536 = 2.71828358
|
|
// 2721/1001 = 2.71828172
|
|
// 23225/8544 = 2.71828184
|
|
// 25946/9545 = 2.71828182
|
|
// 49171/18089 = 2.71828183
|
|
// 517656/190435 = 2.71828183
|
|
}
|