gcc/gcc/graphite-poly.h

732 lines
19 KiB
C

/* Graphite polyhedral representation.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Tobias Grosser <grosser@fim.uni-passau.de>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GRAPHITE_POLY_H
#define GCC_GRAPHITE_POLY_H
typedef struct poly_dr *poly_dr_p;
DEF_VEC_P(poly_dr_p);
DEF_VEC_ALLOC_P (poly_dr_p, heap);
typedef struct poly_bb *poly_bb_p;
DEF_VEC_P(poly_bb_p);
DEF_VEC_ALLOC_P (poly_bb_p, heap);
typedef struct scop *scop_p;
DEF_VEC_P(scop_p);
DEF_VEC_ALLOC_P (scop_p, heap);
typedef ppl_dimension_type graphite_dim_t;
static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
static inline graphite_dim_t scop_nb_params (scop_p);
/* A data reference can write or read some memory or we
just know it may write some memory. */
enum poly_dr_type
{
PDR_READ,
/* PDR_MAY_READs are represented using PDR_READS. This does not
limit the expressiveness. */
PDR_WRITE,
PDR_MAY_WRITE
};
struct poly_dr
{
/* An identifier for this PDR. */
int id;
/* The number of data refs identical to this one in the PBB. */
int nb_refs;
/* A pointer to compiler's data reference description. */
void *compiler_dr;
/* A pointer to the PBB that contains this data reference. */
poly_bb_p pbb;
enum poly_dr_type type;
/* The access polyhedron contains the polyhedral space this data
reference will access.
The polyhedron contains these dimensions:
- The alias set (a):
Every memory access is classified in at least one alias set.
- The subscripts (s_0, ..., s_n):
The memory is accessed using zero or more subscript dimensions.
- The iteration domain (variables and parameters)
Do not hardcode the dimensions. Use the following accessor functions:
- pdr_alias_set_dim
- pdr_subscript_dim
- pdr_iterator_dim
- pdr_parameter_dim
Example:
| int A[1335][123];
| int *p = malloc ();
|
| k = ...
| for i
| {
| if (unknown_function ())
| p = A;
| ... = p[?][?];
| for j
| A[i][j+k] = m;
| }
The data access A[i][j+k] in alias set "5" is described like this:
| i j k a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
|-1 0 0 0 1 0 0 = 0
| 0 -1 -1 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
| 0 0 0 0 0 1 0 >= 0 # array size.
| 0 0 0 0 -1 0 1335 >= 0
| 0 0 0 0 0 -1 123 >= 0
The pointer "*p" in alias set "5" and "7" is described as a union of
polyhedron:
| i k a s0 1
| 0 0 1 0 -5 = 0
| 0 0 0 1 0 >= 0
"or"
| i k a s0 1
| 0 0 1 0 -7 = 0
| 0 0 0 1 0 >= 0
"*p" accesses all of the object allocated with 'malloc'.
The scalar data access "m" is represented as an array with zero subscript
dimensions.
| i j k a 1
| 0 0 0 -1 15 = 0 */
ppl_Pointset_Powerset_C_Polyhedron_t accesses;
/* The number of subscripts. */
graphite_dim_t nb_subscripts;
};
#define PDR_ID(PDR) (PDR->id)
#define PDR_NB_REFS(PDR) (PDR->nb_refs)
#define PDR_CDR(PDR) (PDR->compiler_dr)
#define PDR_PBB(PDR) (PDR->pbb)
#define PDR_TYPE(PDR) (PDR->type)
#define PDR_ACCESSES(PDR) (PDR->accesses)
#define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
void new_poly_dr (poly_bb_p, ppl_Pointset_Powerset_C_Polyhedron_t,
enum poly_dr_type, void *, graphite_dim_t);
void free_poly_dr (poly_dr_p);
void debug_pdr (poly_dr_p);
void print_pdr (FILE *, poly_dr_p);
static inline scop_p pdr_scop (poly_dr_p pdr);
/* The dimension of the PDR_ACCESSES polyhedron of PDR. */
static inline ppl_dimension_type
pdr_dim (poly_dr_p pdr)
{
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr),
&dim);
return dim;
}
/* The dimension of the iteration domain of the scop of PDR. */
static inline ppl_dimension_type
pdr_dim_iter_domain (poly_dr_p pdr)
{
return pbb_dim_iter_domain (PDR_PBB (pdr));
}
/* The number of parameters of the scop of PDR. */
static inline ppl_dimension_type
pdr_nb_params (poly_dr_p pdr)
{
return scop_nb_params (pdr_scop (pdr));
}
/* The dimension of the alias set in PDR. */
static inline ppl_dimension_type
pdr_alias_set_dim (poly_dr_p pdr)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
}
/* The dimension in PDR containing subscript S. */
static inline ppl_dimension_type
pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
}
/* The dimension in PDR containing the loop iterator ITER. */
static inline ppl_dimension_type
pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
{
return iter;
}
/* The dimension in PDR containing parameter PARAM. */
static inline ppl_dimension_type
pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + param;
}
/* Returns true when PDR is a "read". */
static inline bool
pdr_read_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_READ;
}
/* Returns true when PDR is a "write". */
static inline bool
pdr_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_WRITE;
}
/* Returns true when PDR is a "may write". */
static inline bool
pdr_may_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_MAY_WRITE;
}
typedef struct poly_scattering *poly_scattering_p;
struct poly_scattering
{
/* The scattering function containing the transformations. */
ppl_Polyhedron_t scattering;
/* The number of local variables. */
int nb_local_variables;
/* The number of scattering dimensions. */
int nb_scattering;
};
/* POLY_BB represents a blackbox in the polyhedral model. */
struct poly_bb
{
void *black_box;
scop_p scop;
/* The iteration domain of this bb.
Example:
for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
for (j = 2; j <= 2*i + 5; j++)
for (k = 0; k <= 5; k++)
S (i,j,k)
Loop iterators: i, j, k
Parameters: a, b
| i >= a - 7b + 8
| i <= 3a + 13b + 20
| j >= 2
| j <= 2i + 5
| k >= 0
| k <= 5
The number of variables in the DOMAIN may change and is not
related to the number of loops in the original code. */
ppl_Pointset_Powerset_C_Polyhedron_t domain;
/* The data references we access. */
VEC (poly_dr_p, heap) *drs;
/* The original scattering. */
poly_scattering_p original;
/* The transformed scattering. */
poly_scattering_p transformed;
/* A copy of the transformed scattering. */
poly_scattering_p saved;
/* True when the PDR duplicates have already been removed. */
bool pdr_duplicates_removed;
};
#define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
#define PBB_SCOP(PBB) (PBB->scop)
#define PBB_DOMAIN(PBB) (PBB->domain)
#define PBB_DRS(PBB) (PBB->drs)
#define PBB_ORIGINAL(PBB) (PBB->original)
#define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering)
#define PBB_TRANSFORMED(PBB) (PBB->transformed)
#define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering)
#define PBB_SAVED(PBB) (PBB->saved)
#define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables)
#define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering)
#define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed)
extern void new_poly_bb (scop_p, void *);
extern void free_poly_bb (poly_bb_p);
extern void debug_loop_vec (poly_bb_p);
extern void schedule_to_scattering (poly_bb_p, int);
extern void print_pbb_domain (FILE *, poly_bb_p);
extern void print_pbb (FILE *, poly_bb_p);
extern void print_scop_context (FILE *, scop_p);
extern void print_scop (FILE *, scop_p);
extern void debug_pbb_domain (poly_bb_p);
extern void debug_pbb (poly_bb_p);
extern void print_pdrs (FILE *, poly_bb_p);
extern void debug_pdrs (poly_bb_p);
extern void debug_scop_context (scop_p);
extern void debug_scop (scop_p);
extern void print_scop_params (FILE *, scop_p);
extern void debug_scop_params (scop_p);
extern void print_iteration_domain (FILE *, poly_bb_p);
extern void print_iteration_domains (FILE *, scop_p);
extern void debug_iteration_domain (poly_bb_p);
extern void debug_iteration_domains (scop_p);
extern bool scop_do_interchange (scop_p);
extern bool scop_do_strip_mine (scop_p);
extern void pbb_number_of_iterations (poly_bb_p, graphite_dim_t, Value);
extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, Value);
extern void pbb_remove_duplicate_pdrs (poly_bb_p);
/* The index of the PBB. */
static inline int
pbb_index (poly_bb_p pbb)
{
return GBB_BB (PBB_BLACK_BOX (pbb))->index;
}
/* The scop that contains the PDR. */
static inline scop_p
pdr_scop (poly_dr_p pdr)
{
return PBB_SCOP (PDR_PBB (pdr));
}
/* Set black box of PBB to BLACKBOX. */
static inline void
pbb_set_black_box (poly_bb_p pbb, void *black_box)
{
pbb->black_box = black_box;
}
/* The number of loops around PBB: the dimension of the iteration
domain. */
static inline graphite_dim_t
pbb_dim_iter_domain (const struct poly_bb *pbb)
{
scop_p scop = PBB_SCOP (pbb);
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
return dim - scop_nb_params (scop);
}
/* The number of params defined in PBB. */
static inline graphite_dim_t
pbb_nb_params (const struct poly_bb *pbb)
{
scop_p scop = PBB_SCOP (pbb);
return scop_nb_params (scop);
}
/* The number of scattering dimensions in the SCATTERING polyhedron
of a PBB for a given SCOP. */
static inline graphite_dim_t
pbb_nb_scattering_orig (const struct poly_bb *pbb)
{
return 2 * pbb_dim_iter_domain (pbb) + 1;
}
/* The number of scattering dimensions in PBB. */
static inline graphite_dim_t
pbb_nb_scattering_transform (const struct poly_bb *pbb)
{
return PBB_NB_SCATTERING_TRANSFORM (pbb);
}
/* The number of dynamic scattering dimensions in PBB. */
static inline graphite_dim_t
pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
{
/* This function requires the 2d + 1 scattering format to be
invariant during all transformations. */
gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
}
/* Returns the number of local variables used in the transformed
scattering polyhedron of PBB. */
static inline graphite_dim_t
pbb_nb_local_vars (const struct poly_bb *pbb)
{
/* For now we do not have any local variables, as we do not do strip
mining for example. */
return PBB_NB_LOCAL_VARIABLES (pbb);
}
/* The dimension in the domain of PBB containing the iterator ITER. */
static inline ppl_dimension_type
pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
{
return iter;
}
/* The dimension in the domain of PBB containing the iterator ITER. */
static inline ppl_dimension_type
pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
return param
+ pbb_dim_iter_domain (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing the scattering iterator SCATTER. */
static inline ppl_dimension_type
psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
{
gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
return scatter;
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the scattering iterator SCATTER. */
static inline ppl_dimension_type
psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
{
gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
return scatter;
}
ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p,
graphite_dim_t);
/* The dimension in the transformed scattering polyhedron of PBB of
the local variable LV. */
static inline ppl_dimension_type
psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
{
gcc_assert (lv <= pbb_nb_local_vars (pbb));
return lv + pbb_nb_scattering_transform (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing the loop iterator ITER. */
static inline ppl_dimension_type
psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
{
gcc_assert (iter < pbb_dim_iter_domain (pbb));
return iter + pbb_nb_scattering_orig (pbb);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the loop iterator ITER. */
static inline ppl_dimension_type
psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
{
gcc_assert (iter < pbb_dim_iter_domain (pbb));
return iter
+ pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing parameter PARAM. */
static inline ppl_dimension_type
psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
gcc_assert (param < pbb_nb_params (pbb));
return param
+ pbb_nb_scattering_orig (pbb)
+ pbb_dim_iter_domain (pbb);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing parameter PARAM. */
static inline ppl_dimension_type
psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
gcc_assert (param < pbb_nb_params (pbb));
return param
+ pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb)
+ pbb_dim_iter_domain (pbb);
}
/* The scattering dimension of PBB corresponding to the dynamic level
LEVEL. */
static inline ppl_dimension_type
psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
{
graphite_dim_t result;
result = 1 + 2 * level;
gcc_assert (result < pbb_nb_scattering_transform (pbb));
return result;
}
/* Adds to the transformed scattering polyhedron of PBB a new local
variable and returns its index. */
static inline graphite_dim_t
psct_add_local_variable (poly_bb_p pbb)
{
graphite_dim_t nlv = pbb_nb_local_vars (pbb);
ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv);
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1);
PBB_NB_LOCAL_VARIABLES (pbb) += 1;
return nlv;
}
/* Adds a dimension to the transformed scattering polyhedron of PBB at
INDEX. */
static inline void
psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index)
{
gcc_assert (index < pbb_nb_scattering_transform (pbb));
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1);
PBB_NB_SCATTERING_TRANSFORM (pbb) += 1;
}
/* A SCOP is a Static Control Part of the program, simple enough to be
represented in polyhedral form. */
struct scop
{
/* A SCOP is defined as a SESE region. */
void *region;
/* Number of parameters in SCoP. */
graphite_dim_t nb_params;
/* All the basic blocks in this scop that contain memory references
and that will be represented as statements in the polyhedral
representation. */
VEC (poly_bb_p, heap) *bbs;
/* Data dependence graph for this SCoP. */
struct graph *dep_graph;
/* The context describes known restrictions concerning the parameters
and relations in between the parameters.
void f (int8_t a, uint_16_t b) {
c = 2 a + b;
...
}
Here we can add these restrictions to the context:
-128 >= a >= 127
0 >= b >= 65,535
c = 2a + b */
ppl_Pointset_Powerset_C_Polyhedron_t context;
/* A hashtable of the data dependence relations for the original
scattering. */
htab_t original_pddrs;
};
#define SCOP_BBS(S) (S->bbs)
#define SCOP_REGION(S) ((sese) S->region)
#define SCOP_DEP_GRAPH(S) (S->dep_graph)
#define SCOP_CONTEXT(S) (S->context)
#define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs)
extern scop_p new_scop (void *);
extern void free_scop (scop_p);
extern void free_scops (VEC (scop_p, heap) *);
extern void print_generated_program (FILE *, scop_p);
extern void debug_generated_program (scop_p);
extern void print_scattering_function (FILE *, poly_bb_p);
extern void print_scattering_functions (FILE *, scop_p);
extern void debug_scattering_function (poly_bb_p);
extern void debug_scattering_functions (scop_p);
extern int scop_max_loop_depth (scop_p);
extern int unify_scattering_dimensions (scop_p);
extern bool apply_poly_transforms (scop_p);
extern bool graphite_legal_transform (scop_p);
/* Set the region of SCOP to REGION. */
static inline void
scop_set_region (scop_p scop, void *region)
{
scop->region = region;
}
/* Returns the number of parameters for SCOP. */
static inline graphite_dim_t
scop_nb_params (scop_p scop)
{
return scop->nb_params;
}
/* Set the number of params of SCOP to NB_PARAMS. */
static inline void
scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
{
scop->nb_params = nb_params;
}
/* Allocates a new empty poly_scattering structure. */
static inline poly_scattering_p
poly_scattering_new (void)
{
poly_scattering_p res = XNEW (struct poly_scattering);
res->scattering = NULL;
res->nb_local_variables = 0;
res->nb_scattering = 0;
return res;
}
/* Free a poly_scattering structure. */
static inline void
poly_scattering_free (poly_scattering_p s)
{
ppl_delete_Polyhedron (s->scattering);
free (s);
}
/* Copies S and return a new scattering. */
static inline poly_scattering_p
poly_scattering_copy (poly_scattering_p s)
{
poly_scattering_p res = poly_scattering_new ();
ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering);
res->nb_local_variables = s->nb_local_variables;
res->nb_scattering = s->nb_scattering;
return res;
}
/* Saves the transformed scattering of PBB. */
static inline void
store_scattering_pbb (poly_bb_p pbb)
{
gcc_assert (PBB_TRANSFORMED (pbb));
if (PBB_SAVED (pbb))
poly_scattering_free (PBB_SAVED (pbb));
PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
}
/* Saves the scattering for all the pbbs in the SCOP. */
static inline void
store_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
store_scattering_pbb (pbb);
}
/* Restores the scattering of PBB. */
static inline void
restore_scattering_pbb (poly_bb_p pbb)
{
gcc_assert (PBB_SAVED (pbb));
poly_scattering_free (PBB_TRANSFORMED (pbb));
PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb));
}
/* Restores the scattering for all the pbbs in the SCOP. */
static inline void
restore_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
restore_scattering_pbb (pbb);
}
#endif