af16bc762a
2012-09-20 Martin Jambor <mjambor@suse.cz> * function.c (push_cfun): Check old current_function_decl matches old cfun, set new current_function_decl to the decl of the new cfun. (push_struct_function): Likewise. (pop_cfun): Likewise. (allocate_struct_function): Move call to invoke_set_current_function_hook to the end of the function. * cfgexpand.c (estimated_stack_frame_size): Do not set and restore current_function_decl. * cgraph.c (cgraph_release_function_body): Likewise. * cgraphunit.c (cgraph_process_new_functions): Likewise. (cgraph_add_new_function): Likewise. (cgraph_analyze_function): Likewise. (assemble_thunk): Set cfun to NULL at the end. (expand_function): Move call to set_cfun downwards. * gimple-low.c (record_vars_into): Only check current_function_decl before possibly doing push_cfun. * gimplify.c (gimplify_function_tree): Do not set and restore current_function_decl. * ipa-inline-analysis.c (compute_inline_parameters): Likewise. (inline_analyze_function): Likewise. * ipa-prop.c (ipa_analyze_node): Likewise. * ipa-pure-const.c (analyze_function): Likewise. * lto-streamer-in.c (lto_input_function_body): Do not set current_function_decl. * lto-streamer-out.c (output_function): Do not set and restore current_function_decl. * omp-low.c (finalize_task_copyfn): Likewise. (expand_omp_taskreg): Likewise. (create_task_copyfn): Likewise, move push_cfun up quite a bit. * passes.c (dump_passes): Do not set and restore current_function_decl. (do_per_function): Likewise. (do_per_function_toporder): Likewise. * trans-mem.c (ipa_tm_scan_irr_function): Likewise. (ipa_tm_transform_transaction): Likewise. (ipa_tm_transform_clone): Likewise. (ipa_tm_execute): Likewise. * tree-emutls.c (lower_emutls_function_body): Likewise. * tree-inline.c (initialize_cfun): Do not call pop_cfun. (tree_function_versioning): Do not call push_cfun, do not set and restore current_function_decl. Remove assert checking consistency of cfun and current_function_decl. * tree-profile.c (tree_profiling): Do not set and restore current_function_decl. * tree-sra.c (convert_callers_for_node): Do not set current_function_decl. (convert_callers): Do not restore current_function_decl. (modify_function): Do not set current_function_decl. * tree-ssa-structalias.c (ipa_pta_execute): Do not set and restore current_function_decl. fortran/ * trans-decl.c (gfc_get_extern_function_decl): Push NULL cfun. Do not set and restore current_function_decl. (gfc_init_coarray_decl): Do not set and restore current_function_decl. lto/ * lto.c (lto_materialize_function): Call push_struct_function and pop_cfun. From-SVN: r191577
7208 lines
210 KiB
C
7208 lines
210 KiB
C
/* Lowering pass for OpenMP directives. Converts OpenMP directives
|
||
into explicit calls to the runtime library (libgomp) and data
|
||
marshalling to implement data sharing and copying clauses.
|
||
Contributed by Diego Novillo <dnovillo@redhat.com>
|
||
|
||
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "gimple.h"
|
||
#include "tree-iterator.h"
|
||
#include "tree-inline.h"
|
||
#include "langhooks.h"
|
||
#include "diagnostic-core.h"
|
||
#include "tree-flow.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "tree-pass.h"
|
||
#include "ggc.h"
|
||
#include "except.h"
|
||
#include "splay-tree.h"
|
||
#include "optabs.h"
|
||
#include "cfgloop.h"
|
||
|
||
|
||
/* Lowering of OpenMP parallel and workshare constructs proceeds in two
|
||
phases. The first phase scans the function looking for OMP statements
|
||
and then for variables that must be replaced to satisfy data sharing
|
||
clauses. The second phase expands code for the constructs, as well as
|
||
re-gimplifying things when variables have been replaced with complex
|
||
expressions.
|
||
|
||
Final code generation is done by pass_expand_omp. The flowgraph is
|
||
scanned for parallel regions which are then moved to a new
|
||
function, to be invoked by the thread library. */
|
||
|
||
/* Context structure. Used to store information about each parallel
|
||
directive in the code. */
|
||
|
||
typedef struct omp_context
|
||
{
|
||
/* This field must be at the beginning, as we do "inheritance": Some
|
||
callback functions for tree-inline.c (e.g., omp_copy_decl)
|
||
receive a copy_body_data pointer that is up-casted to an
|
||
omp_context pointer. */
|
||
copy_body_data cb;
|
||
|
||
/* The tree of contexts corresponding to the encountered constructs. */
|
||
struct omp_context *outer;
|
||
gimple stmt;
|
||
|
||
/* Map variables to fields in a structure that allows communication
|
||
between sending and receiving threads. */
|
||
splay_tree field_map;
|
||
tree record_type;
|
||
tree sender_decl;
|
||
tree receiver_decl;
|
||
|
||
/* These are used just by task contexts, if task firstprivate fn is
|
||
needed. srecord_type is used to communicate from the thread
|
||
that encountered the task construct to task firstprivate fn,
|
||
record_type is allocated by GOMP_task, initialized by task firstprivate
|
||
fn and passed to the task body fn. */
|
||
splay_tree sfield_map;
|
||
tree srecord_type;
|
||
|
||
/* A chain of variables to add to the top-level block surrounding the
|
||
construct. In the case of a parallel, this is in the child function. */
|
||
tree block_vars;
|
||
|
||
/* What to do with variables with implicitly determined sharing
|
||
attributes. */
|
||
enum omp_clause_default_kind default_kind;
|
||
|
||
/* Nesting depth of this context. Used to beautify error messages re
|
||
invalid gotos. The outermost ctx is depth 1, with depth 0 being
|
||
reserved for the main body of the function. */
|
||
int depth;
|
||
|
||
/* True if this parallel directive is nested within another. */
|
||
bool is_nested;
|
||
} omp_context;
|
||
|
||
|
||
struct omp_for_data_loop
|
||
{
|
||
tree v, n1, n2, step;
|
||
enum tree_code cond_code;
|
||
};
|
||
|
||
/* A structure describing the main elements of a parallel loop. */
|
||
|
||
struct omp_for_data
|
||
{
|
||
struct omp_for_data_loop loop;
|
||
tree chunk_size;
|
||
gimple for_stmt;
|
||
tree pre, iter_type;
|
||
int collapse;
|
||
bool have_nowait, have_ordered;
|
||
enum omp_clause_schedule_kind sched_kind;
|
||
struct omp_for_data_loop *loops;
|
||
};
|
||
|
||
|
||
static splay_tree all_contexts;
|
||
static int taskreg_nesting_level;
|
||
struct omp_region *root_omp_region;
|
||
static bitmap task_shared_vars;
|
||
|
||
static void scan_omp (gimple_seq *, omp_context *);
|
||
static tree scan_omp_1_op (tree *, int *, void *);
|
||
|
||
#define WALK_SUBSTMTS \
|
||
case GIMPLE_BIND: \
|
||
case GIMPLE_TRY: \
|
||
case GIMPLE_CATCH: \
|
||
case GIMPLE_EH_FILTER: \
|
||
case GIMPLE_TRANSACTION: \
|
||
/* The sub-statements for these should be walked. */ \
|
||
*handled_ops_p = false; \
|
||
break;
|
||
|
||
/* Convenience function for calling scan_omp_1_op on tree operands. */
|
||
|
||
static inline tree
|
||
scan_omp_op (tree *tp, omp_context *ctx)
|
||
{
|
||
struct walk_stmt_info wi;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.info = ctx;
|
||
wi.want_locations = true;
|
||
|
||
return walk_tree (tp, scan_omp_1_op, &wi, NULL);
|
||
}
|
||
|
||
static void lower_omp (gimple_seq *, omp_context *);
|
||
static tree lookup_decl_in_outer_ctx (tree, omp_context *);
|
||
static tree maybe_lookup_decl_in_outer_ctx (tree, omp_context *);
|
||
|
||
/* Find an OpenMP clause of type KIND within CLAUSES. */
|
||
|
||
tree
|
||
find_omp_clause (tree clauses, enum omp_clause_code kind)
|
||
{
|
||
for (; clauses ; clauses = OMP_CLAUSE_CHAIN (clauses))
|
||
if (OMP_CLAUSE_CODE (clauses) == kind)
|
||
return clauses;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return true if CTX is for an omp parallel. */
|
||
|
||
static inline bool
|
||
is_parallel_ctx (omp_context *ctx)
|
||
{
|
||
return gimple_code (ctx->stmt) == GIMPLE_OMP_PARALLEL;
|
||
}
|
||
|
||
|
||
/* Return true if CTX is for an omp task. */
|
||
|
||
static inline bool
|
||
is_task_ctx (omp_context *ctx)
|
||
{
|
||
return gimple_code (ctx->stmt) == GIMPLE_OMP_TASK;
|
||
}
|
||
|
||
|
||
/* Return true if CTX is for an omp parallel or omp task. */
|
||
|
||
static inline bool
|
||
is_taskreg_ctx (omp_context *ctx)
|
||
{
|
||
return gimple_code (ctx->stmt) == GIMPLE_OMP_PARALLEL
|
||
|| gimple_code (ctx->stmt) == GIMPLE_OMP_TASK;
|
||
}
|
||
|
||
|
||
/* Return true if REGION is a combined parallel+workshare region. */
|
||
|
||
static inline bool
|
||
is_combined_parallel (struct omp_region *region)
|
||
{
|
||
return region->is_combined_parallel;
|
||
}
|
||
|
||
|
||
/* Extract the header elements of parallel loop FOR_STMT and store
|
||
them into *FD. */
|
||
|
||
static void
|
||
extract_omp_for_data (gimple for_stmt, struct omp_for_data *fd,
|
||
struct omp_for_data_loop *loops)
|
||
{
|
||
tree t, var, *collapse_iter, *collapse_count;
|
||
tree count = NULL_TREE, iter_type = long_integer_type_node;
|
||
struct omp_for_data_loop *loop;
|
||
int i;
|
||
struct omp_for_data_loop dummy_loop;
|
||
location_t loc = gimple_location (for_stmt);
|
||
|
||
fd->for_stmt = for_stmt;
|
||
fd->pre = NULL;
|
||
fd->collapse = gimple_omp_for_collapse (for_stmt);
|
||
if (fd->collapse > 1)
|
||
fd->loops = loops;
|
||
else
|
||
fd->loops = &fd->loop;
|
||
|
||
fd->have_nowait = fd->have_ordered = false;
|
||
fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC;
|
||
fd->chunk_size = NULL_TREE;
|
||
collapse_iter = NULL;
|
||
collapse_count = NULL;
|
||
|
||
for (t = gimple_omp_for_clauses (for_stmt); t ; t = OMP_CLAUSE_CHAIN (t))
|
||
switch (OMP_CLAUSE_CODE (t))
|
||
{
|
||
case OMP_CLAUSE_NOWAIT:
|
||
fd->have_nowait = true;
|
||
break;
|
||
case OMP_CLAUSE_ORDERED:
|
||
fd->have_ordered = true;
|
||
break;
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
fd->sched_kind = OMP_CLAUSE_SCHEDULE_KIND (t);
|
||
fd->chunk_size = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t);
|
||
break;
|
||
case OMP_CLAUSE_COLLAPSE:
|
||
if (fd->collapse > 1)
|
||
{
|
||
collapse_iter = &OMP_CLAUSE_COLLAPSE_ITERVAR (t);
|
||
collapse_count = &OMP_CLAUSE_COLLAPSE_COUNT (t);
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* FIXME: for now map schedule(auto) to schedule(static).
|
||
There should be analysis to determine whether all iterations
|
||
are approximately the same amount of work (then schedule(static)
|
||
is best) or if it varies (then schedule(dynamic,N) is better). */
|
||
if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_AUTO)
|
||
{
|
||
fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC;
|
||
gcc_assert (fd->chunk_size == NULL);
|
||
}
|
||
gcc_assert (fd->collapse == 1 || collapse_iter != NULL);
|
||
if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME)
|
||
gcc_assert (fd->chunk_size == NULL);
|
||
else if (fd->chunk_size == NULL)
|
||
{
|
||
/* We only need to compute a default chunk size for ordered
|
||
static loops and dynamic loops. */
|
||
if (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC
|
||
|| fd->have_ordered
|
||
|| fd->collapse > 1)
|
||
fd->chunk_size = (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC)
|
||
? integer_zero_node : integer_one_node;
|
||
}
|
||
|
||
for (i = 0; i < fd->collapse; i++)
|
||
{
|
||
if (fd->collapse == 1)
|
||
loop = &fd->loop;
|
||
else if (loops != NULL)
|
||
loop = loops + i;
|
||
else
|
||
loop = &dummy_loop;
|
||
|
||
|
||
loop->v = gimple_omp_for_index (for_stmt, i);
|
||
gcc_assert (SSA_VAR_P (loop->v));
|
||
gcc_assert (TREE_CODE (TREE_TYPE (loop->v)) == INTEGER_TYPE
|
||
|| TREE_CODE (TREE_TYPE (loop->v)) == POINTER_TYPE);
|
||
var = TREE_CODE (loop->v) == SSA_NAME ? SSA_NAME_VAR (loop->v) : loop->v;
|
||
loop->n1 = gimple_omp_for_initial (for_stmt, i);
|
||
|
||
loop->cond_code = gimple_omp_for_cond (for_stmt, i);
|
||
loop->n2 = gimple_omp_for_final (for_stmt, i);
|
||
switch (loop->cond_code)
|
||
{
|
||
case LT_EXPR:
|
||
case GT_EXPR:
|
||
break;
|
||
case LE_EXPR:
|
||
if (POINTER_TYPE_P (TREE_TYPE (loop->n2)))
|
||
loop->n2 = fold_build_pointer_plus_hwi_loc (loc, loop->n2, 1);
|
||
else
|
||
loop->n2 = fold_build2_loc (loc,
|
||
PLUS_EXPR, TREE_TYPE (loop->n2), loop->n2,
|
||
build_int_cst (TREE_TYPE (loop->n2), 1));
|
||
loop->cond_code = LT_EXPR;
|
||
break;
|
||
case GE_EXPR:
|
||
if (POINTER_TYPE_P (TREE_TYPE (loop->n2)))
|
||
loop->n2 = fold_build_pointer_plus_hwi_loc (loc, loop->n2, -1);
|
||
else
|
||
loop->n2 = fold_build2_loc (loc,
|
||
MINUS_EXPR, TREE_TYPE (loop->n2), loop->n2,
|
||
build_int_cst (TREE_TYPE (loop->n2), 1));
|
||
loop->cond_code = GT_EXPR;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
t = gimple_omp_for_incr (for_stmt, i);
|
||
gcc_assert (TREE_OPERAND (t, 0) == var);
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case PLUS_EXPR:
|
||
loop->step = TREE_OPERAND (t, 1);
|
||
break;
|
||
case POINTER_PLUS_EXPR:
|
||
loop->step = fold_convert (ssizetype, TREE_OPERAND (t, 1));
|
||
break;
|
||
case MINUS_EXPR:
|
||
loop->step = TREE_OPERAND (t, 1);
|
||
loop->step = fold_build1_loc (loc,
|
||
NEGATE_EXPR, TREE_TYPE (loop->step),
|
||
loop->step);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (iter_type != long_long_unsigned_type_node)
|
||
{
|
||
if (POINTER_TYPE_P (TREE_TYPE (loop->v)))
|
||
iter_type = long_long_unsigned_type_node;
|
||
else if (TYPE_UNSIGNED (TREE_TYPE (loop->v))
|
||
&& TYPE_PRECISION (TREE_TYPE (loop->v))
|
||
>= TYPE_PRECISION (iter_type))
|
||
{
|
||
tree n;
|
||
|
||
if (loop->cond_code == LT_EXPR)
|
||
n = fold_build2_loc (loc,
|
||
PLUS_EXPR, TREE_TYPE (loop->v),
|
||
loop->n2, loop->step);
|
||
else
|
||
n = loop->n1;
|
||
if (TREE_CODE (n) != INTEGER_CST
|
||
|| tree_int_cst_lt (TYPE_MAX_VALUE (iter_type), n))
|
||
iter_type = long_long_unsigned_type_node;
|
||
}
|
||
else if (TYPE_PRECISION (TREE_TYPE (loop->v))
|
||
> TYPE_PRECISION (iter_type))
|
||
{
|
||
tree n1, n2;
|
||
|
||
if (loop->cond_code == LT_EXPR)
|
||
{
|
||
n1 = loop->n1;
|
||
n2 = fold_build2_loc (loc,
|
||
PLUS_EXPR, TREE_TYPE (loop->v),
|
||
loop->n2, loop->step);
|
||
}
|
||
else
|
||
{
|
||
n1 = fold_build2_loc (loc,
|
||
MINUS_EXPR, TREE_TYPE (loop->v),
|
||
loop->n2, loop->step);
|
||
n2 = loop->n1;
|
||
}
|
||
if (TREE_CODE (n1) != INTEGER_CST
|
||
|| TREE_CODE (n2) != INTEGER_CST
|
||
|| !tree_int_cst_lt (TYPE_MIN_VALUE (iter_type), n1)
|
||
|| !tree_int_cst_lt (n2, TYPE_MAX_VALUE (iter_type)))
|
||
iter_type = long_long_unsigned_type_node;
|
||
}
|
||
}
|
||
|
||
if (collapse_count && *collapse_count == NULL)
|
||
{
|
||
if ((i == 0 || count != NULL_TREE)
|
||
&& TREE_CODE (TREE_TYPE (loop->v)) == INTEGER_TYPE
|
||
&& TREE_CONSTANT (loop->n1)
|
||
&& TREE_CONSTANT (loop->n2)
|
||
&& TREE_CODE (loop->step) == INTEGER_CST)
|
||
{
|
||
tree itype = TREE_TYPE (loop->v);
|
||
|
||
if (POINTER_TYPE_P (itype))
|
||
itype = signed_type_for (itype);
|
||
t = build_int_cst (itype, (loop->cond_code == LT_EXPR ? -1 : 1));
|
||
t = fold_build2_loc (loc,
|
||
PLUS_EXPR, itype,
|
||
fold_convert_loc (loc, itype, loop->step), t);
|
||
t = fold_build2_loc (loc, PLUS_EXPR, itype, t,
|
||
fold_convert_loc (loc, itype, loop->n2));
|
||
t = fold_build2_loc (loc, MINUS_EXPR, itype, t,
|
||
fold_convert_loc (loc, itype, loop->n1));
|
||
if (TYPE_UNSIGNED (itype) && loop->cond_code == GT_EXPR)
|
||
t = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype,
|
||
fold_build1_loc (loc, NEGATE_EXPR, itype, t),
|
||
fold_build1_loc (loc, NEGATE_EXPR, itype,
|
||
fold_convert_loc (loc, itype,
|
||
loop->step)));
|
||
else
|
||
t = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype, t,
|
||
fold_convert_loc (loc, itype, loop->step));
|
||
t = fold_convert_loc (loc, long_long_unsigned_type_node, t);
|
||
if (count != NULL_TREE)
|
||
count = fold_build2_loc (loc,
|
||
MULT_EXPR, long_long_unsigned_type_node,
|
||
count, t);
|
||
else
|
||
count = t;
|
||
if (TREE_CODE (count) != INTEGER_CST)
|
||
count = NULL_TREE;
|
||
}
|
||
else
|
||
count = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
if (!tree_int_cst_lt (count, TYPE_MAX_VALUE (long_integer_type_node)))
|
||
iter_type = long_long_unsigned_type_node;
|
||
else
|
||
iter_type = long_integer_type_node;
|
||
}
|
||
else if (collapse_iter && *collapse_iter != NULL)
|
||
iter_type = TREE_TYPE (*collapse_iter);
|
||
fd->iter_type = iter_type;
|
||
if (collapse_iter && *collapse_iter == NULL)
|
||
*collapse_iter = create_tmp_var (iter_type, ".iter");
|
||
if (collapse_count && *collapse_count == NULL)
|
||
{
|
||
if (count)
|
||
*collapse_count = fold_convert_loc (loc, iter_type, count);
|
||
else
|
||
*collapse_count = create_tmp_var (iter_type, ".count");
|
||
}
|
||
|
||
if (fd->collapse > 1)
|
||
{
|
||
fd->loop.v = *collapse_iter;
|
||
fd->loop.n1 = build_int_cst (TREE_TYPE (fd->loop.v), 0);
|
||
fd->loop.n2 = *collapse_count;
|
||
fd->loop.step = build_int_cst (TREE_TYPE (fd->loop.v), 1);
|
||
fd->loop.cond_code = LT_EXPR;
|
||
}
|
||
}
|
||
|
||
|
||
/* Given two blocks PAR_ENTRY_BB and WS_ENTRY_BB such that WS_ENTRY_BB
|
||
is the immediate dominator of PAR_ENTRY_BB, return true if there
|
||
are no data dependencies that would prevent expanding the parallel
|
||
directive at PAR_ENTRY_BB as a combined parallel+workshare region.
|
||
|
||
When expanding a combined parallel+workshare region, the call to
|
||
the child function may need additional arguments in the case of
|
||
GIMPLE_OMP_FOR regions. In some cases, these arguments are
|
||
computed out of variables passed in from the parent to the child
|
||
via 'struct .omp_data_s'. For instance:
|
||
|
||
#pragma omp parallel for schedule (guided, i * 4)
|
||
for (j ...)
|
||
|
||
Is lowered into:
|
||
|
||
# BLOCK 2 (PAR_ENTRY_BB)
|
||
.omp_data_o.i = i;
|
||
#pragma omp parallel [child fn: bar.omp_fn.0 ( ..., D.1598)
|
||
|
||
# BLOCK 3 (WS_ENTRY_BB)
|
||
.omp_data_i = &.omp_data_o;
|
||
D.1667 = .omp_data_i->i;
|
||
D.1598 = D.1667 * 4;
|
||
#pragma omp for schedule (guided, D.1598)
|
||
|
||
When we outline the parallel region, the call to the child function
|
||
'bar.omp_fn.0' will need the value D.1598 in its argument list, but
|
||
that value is computed *after* the call site. So, in principle we
|
||
cannot do the transformation.
|
||
|
||
To see whether the code in WS_ENTRY_BB blocks the combined
|
||
parallel+workshare call, we collect all the variables used in the
|
||
GIMPLE_OMP_FOR header check whether they appear on the LHS of any
|
||
statement in WS_ENTRY_BB. If so, then we cannot emit the combined
|
||
call.
|
||
|
||
FIXME. If we had the SSA form built at this point, we could merely
|
||
hoist the code in block 3 into block 2 and be done with it. But at
|
||
this point we don't have dataflow information and though we could
|
||
hack something up here, it is really not worth the aggravation. */
|
||
|
||
static bool
|
||
workshare_safe_to_combine_p (basic_block ws_entry_bb)
|
||
{
|
||
struct omp_for_data fd;
|
||
gimple ws_stmt = last_stmt (ws_entry_bb);
|
||
|
||
if (gimple_code (ws_stmt) == GIMPLE_OMP_SECTIONS)
|
||
return true;
|
||
|
||
gcc_assert (gimple_code (ws_stmt) == GIMPLE_OMP_FOR);
|
||
|
||
extract_omp_for_data (ws_stmt, &fd, NULL);
|
||
|
||
if (fd.collapse > 1 && TREE_CODE (fd.loop.n2) != INTEGER_CST)
|
||
return false;
|
||
if (fd.iter_type != long_integer_type_node)
|
||
return false;
|
||
|
||
/* FIXME. We give up too easily here. If any of these arguments
|
||
are not constants, they will likely involve variables that have
|
||
been mapped into fields of .omp_data_s for sharing with the child
|
||
function. With appropriate data flow, it would be possible to
|
||
see through this. */
|
||
if (!is_gimple_min_invariant (fd.loop.n1)
|
||
|| !is_gimple_min_invariant (fd.loop.n2)
|
||
|| !is_gimple_min_invariant (fd.loop.step)
|
||
|| (fd.chunk_size && !is_gimple_min_invariant (fd.chunk_size)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Collect additional arguments needed to emit a combined
|
||
parallel+workshare call. WS_STMT is the workshare directive being
|
||
expanded. */
|
||
|
||
static VEC(tree,gc) *
|
||
get_ws_args_for (gimple ws_stmt)
|
||
{
|
||
tree t;
|
||
location_t loc = gimple_location (ws_stmt);
|
||
VEC(tree,gc) *ws_args;
|
||
|
||
if (gimple_code (ws_stmt) == GIMPLE_OMP_FOR)
|
||
{
|
||
struct omp_for_data fd;
|
||
|
||
extract_omp_for_data (ws_stmt, &fd, NULL);
|
||
|
||
ws_args = VEC_alloc (tree, gc, 3 + (fd.chunk_size != 0));
|
||
|
||
t = fold_convert_loc (loc, long_integer_type_node, fd.loop.n1);
|
||
VEC_quick_push (tree, ws_args, t);
|
||
|
||
t = fold_convert_loc (loc, long_integer_type_node, fd.loop.n2);
|
||
VEC_quick_push (tree, ws_args, t);
|
||
|
||
t = fold_convert_loc (loc, long_integer_type_node, fd.loop.step);
|
||
VEC_quick_push (tree, ws_args, t);
|
||
|
||
if (fd.chunk_size)
|
||
{
|
||
t = fold_convert_loc (loc, long_integer_type_node, fd.chunk_size);
|
||
VEC_quick_push (tree, ws_args, t);
|
||
}
|
||
|
||
return ws_args;
|
||
}
|
||
else if (gimple_code (ws_stmt) == GIMPLE_OMP_SECTIONS)
|
||
{
|
||
/* Number of sections is equal to the number of edges from the
|
||
GIMPLE_OMP_SECTIONS_SWITCH statement, except for the one to
|
||
the exit of the sections region. */
|
||
basic_block bb = single_succ (gimple_bb (ws_stmt));
|
||
t = build_int_cst (unsigned_type_node, EDGE_COUNT (bb->succs) - 1);
|
||
ws_args = VEC_alloc (tree, gc, 1);
|
||
VEC_quick_push (tree, ws_args, t);
|
||
return ws_args;
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
/* Discover whether REGION is a combined parallel+workshare region. */
|
||
|
||
static void
|
||
determine_parallel_type (struct omp_region *region)
|
||
{
|
||
basic_block par_entry_bb, par_exit_bb;
|
||
basic_block ws_entry_bb, ws_exit_bb;
|
||
|
||
if (region == NULL || region->inner == NULL
|
||
|| region->exit == NULL || region->inner->exit == NULL
|
||
|| region->inner->cont == NULL)
|
||
return;
|
||
|
||
/* We only support parallel+for and parallel+sections. */
|
||
if (region->type != GIMPLE_OMP_PARALLEL
|
||
|| (region->inner->type != GIMPLE_OMP_FOR
|
||
&& region->inner->type != GIMPLE_OMP_SECTIONS))
|
||
return;
|
||
|
||
/* Check for perfect nesting PAR_ENTRY_BB -> WS_ENTRY_BB and
|
||
WS_EXIT_BB -> PAR_EXIT_BB. */
|
||
par_entry_bb = region->entry;
|
||
par_exit_bb = region->exit;
|
||
ws_entry_bb = region->inner->entry;
|
||
ws_exit_bb = region->inner->exit;
|
||
|
||
if (single_succ (par_entry_bb) == ws_entry_bb
|
||
&& single_succ (ws_exit_bb) == par_exit_bb
|
||
&& workshare_safe_to_combine_p (ws_entry_bb)
|
||
&& (gimple_omp_parallel_combined_p (last_stmt (par_entry_bb))
|
||
|| (last_and_only_stmt (ws_entry_bb)
|
||
&& last_and_only_stmt (par_exit_bb))))
|
||
{
|
||
gimple ws_stmt = last_stmt (ws_entry_bb);
|
||
|
||
if (region->inner->type == GIMPLE_OMP_FOR)
|
||
{
|
||
/* If this is a combined parallel loop, we need to determine
|
||
whether or not to use the combined library calls. There
|
||
are two cases where we do not apply the transformation:
|
||
static loops and any kind of ordered loop. In the first
|
||
case, we already open code the loop so there is no need
|
||
to do anything else. In the latter case, the combined
|
||
parallel loop call would still need extra synchronization
|
||
to implement ordered semantics, so there would not be any
|
||
gain in using the combined call. */
|
||
tree clauses = gimple_omp_for_clauses (ws_stmt);
|
||
tree c = find_omp_clause (clauses, OMP_CLAUSE_SCHEDULE);
|
||
if (c == NULL
|
||
|| OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_STATIC
|
||
|| find_omp_clause (clauses, OMP_CLAUSE_ORDERED))
|
||
{
|
||
region->is_combined_parallel = false;
|
||
region->inner->is_combined_parallel = false;
|
||
return;
|
||
}
|
||
}
|
||
|
||
region->is_combined_parallel = true;
|
||
region->inner->is_combined_parallel = true;
|
||
region->ws_args = get_ws_args_for (ws_stmt);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if EXPR is variable sized. */
|
||
|
||
static inline bool
|
||
is_variable_sized (const_tree expr)
|
||
{
|
||
return !TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
|
||
}
|
||
|
||
/* Return true if DECL is a reference type. */
|
||
|
||
static inline bool
|
||
is_reference (tree decl)
|
||
{
|
||
return lang_hooks.decls.omp_privatize_by_reference (decl);
|
||
}
|
||
|
||
/* Lookup variables in the decl or field splay trees. The "maybe" form
|
||
allows for the variable form to not have been entered, otherwise we
|
||
assert that the variable must have been entered. */
|
||
|
||
static inline tree
|
||
lookup_decl (tree var, omp_context *ctx)
|
||
{
|
||
tree *n;
|
||
n = (tree *) pointer_map_contains (ctx->cb.decl_map, var);
|
||
return *n;
|
||
}
|
||
|
||
static inline tree
|
||
maybe_lookup_decl (const_tree var, omp_context *ctx)
|
||
{
|
||
tree *n;
|
||
n = (tree *) pointer_map_contains (ctx->cb.decl_map, var);
|
||
return n ? *n : NULL_TREE;
|
||
}
|
||
|
||
static inline tree
|
||
lookup_field (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var);
|
||
return (tree) n->value;
|
||
}
|
||
|
||
static inline tree
|
||
lookup_sfield (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->sfield_map
|
||
? ctx->sfield_map : ctx->field_map,
|
||
(splay_tree_key) var);
|
||
return (tree) n->value;
|
||
}
|
||
|
||
static inline tree
|
||
maybe_lookup_field (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var);
|
||
return n ? (tree) n->value : NULL_TREE;
|
||
}
|
||
|
||
/* Return true if DECL should be copied by pointer. SHARED_CTX is
|
||
the parallel context if DECL is to be shared. */
|
||
|
||
static bool
|
||
use_pointer_for_field (tree decl, omp_context *shared_ctx)
|
||
{
|
||
if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
|
||
return true;
|
||
|
||
/* We can only use copy-in/copy-out semantics for shared variables
|
||
when we know the value is not accessible from an outer scope. */
|
||
if (shared_ctx)
|
||
{
|
||
/* ??? Trivially accessible from anywhere. But why would we even
|
||
be passing an address in this case? Should we simply assert
|
||
this to be false, or should we have a cleanup pass that removes
|
||
these from the list of mappings? */
|
||
if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
|
||
return true;
|
||
|
||
/* For variables with DECL_HAS_VALUE_EXPR_P set, we cannot tell
|
||
without analyzing the expression whether or not its location
|
||
is accessible to anyone else. In the case of nested parallel
|
||
regions it certainly may be. */
|
||
if (TREE_CODE (decl) != RESULT_DECL && DECL_HAS_VALUE_EXPR_P (decl))
|
||
return true;
|
||
|
||
/* Do not use copy-in/copy-out for variables that have their
|
||
address taken. */
|
||
if (TREE_ADDRESSABLE (decl))
|
||
return true;
|
||
|
||
/* Disallow copy-in/out in nested parallel if
|
||
decl is shared in outer parallel, otherwise
|
||
each thread could store the shared variable
|
||
in its own copy-in location, making the
|
||
variable no longer really shared. */
|
||
if (!TREE_READONLY (decl) && shared_ctx->is_nested)
|
||
{
|
||
omp_context *up;
|
||
|
||
for (up = shared_ctx->outer; up; up = up->outer)
|
||
if (is_taskreg_ctx (up) && maybe_lookup_decl (decl, up))
|
||
break;
|
||
|
||
if (up)
|
||
{
|
||
tree c;
|
||
|
||
for (c = gimple_omp_taskreg_clauses (up->stmt);
|
||
c; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SHARED
|
||
&& OMP_CLAUSE_DECL (c) == decl)
|
||
break;
|
||
|
||
if (c)
|
||
goto maybe_mark_addressable_and_ret;
|
||
}
|
||
}
|
||
|
||
/* For tasks avoid using copy-in/out, unless they are readonly
|
||
(in which case just copy-in is used). As tasks can be
|
||
deferred or executed in different thread, when GOMP_task
|
||
returns, the task hasn't necessarily terminated. */
|
||
if (!TREE_READONLY (decl) && is_task_ctx (shared_ctx))
|
||
{
|
||
tree outer;
|
||
maybe_mark_addressable_and_ret:
|
||
outer = maybe_lookup_decl_in_outer_ctx (decl, shared_ctx);
|
||
if (is_gimple_reg (outer))
|
||
{
|
||
/* Taking address of OUTER in lower_send_shared_vars
|
||
might need regimplification of everything that uses the
|
||
variable. */
|
||
if (!task_shared_vars)
|
||
task_shared_vars = BITMAP_ALLOC (NULL);
|
||
bitmap_set_bit (task_shared_vars, DECL_UID (outer));
|
||
TREE_ADDRESSABLE (outer) = 1;
|
||
}
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Create a new VAR_DECL and copy information from VAR to it. */
|
||
|
||
tree
|
||
copy_var_decl (tree var, tree name, tree type)
|
||
{
|
||
tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
|
||
|
||
TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
|
||
TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
|
||
DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
|
||
DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
|
||
DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
|
||
DECL_CONTEXT (copy) = DECL_CONTEXT (var);
|
||
TREE_USED (copy) = 1;
|
||
DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
|
||
|
||
return copy;
|
||
}
|
||
|
||
/* Construct a new automatic decl similar to VAR. */
|
||
|
||
static tree
|
||
omp_copy_decl_2 (tree var, tree name, tree type, omp_context *ctx)
|
||
{
|
||
tree copy = copy_var_decl (var, name, type);
|
||
|
||
DECL_CONTEXT (copy) = current_function_decl;
|
||
DECL_CHAIN (copy) = ctx->block_vars;
|
||
ctx->block_vars = copy;
|
||
|
||
return copy;
|
||
}
|
||
|
||
static tree
|
||
omp_copy_decl_1 (tree var, omp_context *ctx)
|
||
{
|
||
return omp_copy_decl_2 (var, DECL_NAME (var), TREE_TYPE (var), ctx);
|
||
}
|
||
|
||
/* Build COMPONENT_REF and set TREE_THIS_VOLATILE and TREE_READONLY on it
|
||
as appropriate. */
|
||
static tree
|
||
omp_build_component_ref (tree obj, tree field)
|
||
{
|
||
tree ret = build3 (COMPONENT_REF, TREE_TYPE (field), obj, field, NULL);
|
||
if (TREE_THIS_VOLATILE (field))
|
||
TREE_THIS_VOLATILE (ret) |= 1;
|
||
if (TREE_READONLY (field))
|
||
TREE_READONLY (ret) |= 1;
|
||
return ret;
|
||
}
|
||
|
||
/* Build tree nodes to access the field for VAR on the receiver side. */
|
||
|
||
static tree
|
||
build_receiver_ref (tree var, bool by_ref, omp_context *ctx)
|
||
{
|
||
tree x, field = lookup_field (var, ctx);
|
||
|
||
/* If the receiver record type was remapped in the child function,
|
||
remap the field into the new record type. */
|
||
x = maybe_lookup_field (field, ctx);
|
||
if (x != NULL)
|
||
field = x;
|
||
|
||
x = build_simple_mem_ref (ctx->receiver_decl);
|
||
x = omp_build_component_ref (x, field);
|
||
if (by_ref)
|
||
x = build_simple_mem_ref (x);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Build tree nodes to access VAR in the scope outer to CTX. In the case
|
||
of a parallel, this is a component reference; for workshare constructs
|
||
this is some variable. */
|
||
|
||
static tree
|
||
build_outer_var_ref (tree var, omp_context *ctx)
|
||
{
|
||
tree x;
|
||
|
||
if (is_global_var (maybe_lookup_decl_in_outer_ctx (var, ctx)))
|
||
x = var;
|
||
else if (is_variable_sized (var))
|
||
{
|
||
x = TREE_OPERAND (DECL_VALUE_EXPR (var), 0);
|
||
x = build_outer_var_ref (x, ctx);
|
||
x = build_simple_mem_ref (x);
|
||
}
|
||
else if (is_taskreg_ctx (ctx))
|
||
{
|
||
bool by_ref = use_pointer_for_field (var, NULL);
|
||
x = build_receiver_ref (var, by_ref, ctx);
|
||
}
|
||
else if (ctx->outer)
|
||
x = lookup_decl (var, ctx->outer);
|
||
else if (is_reference (var))
|
||
/* This can happen with orphaned constructs. If var is reference, it is
|
||
possible it is shared and as such valid. */
|
||
x = var;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
if (is_reference (var))
|
||
x = build_simple_mem_ref (x);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Build tree nodes to access the field for VAR on the sender side. */
|
||
|
||
static tree
|
||
build_sender_ref (tree var, omp_context *ctx)
|
||
{
|
||
tree field = lookup_sfield (var, ctx);
|
||
return omp_build_component_ref (ctx->sender_decl, field);
|
||
}
|
||
|
||
/* Add a new field for VAR inside the structure CTX->SENDER_DECL. */
|
||
|
||
static void
|
||
install_var_field (tree var, bool by_ref, int mask, omp_context *ctx)
|
||
{
|
||
tree field, type, sfield = NULL_TREE;
|
||
|
||
gcc_assert ((mask & 1) == 0
|
||
|| !splay_tree_lookup (ctx->field_map, (splay_tree_key) var));
|
||
gcc_assert ((mask & 2) == 0 || !ctx->sfield_map
|
||
|| !splay_tree_lookup (ctx->sfield_map, (splay_tree_key) var));
|
||
|
||
type = TREE_TYPE (var);
|
||
if (by_ref)
|
||
type = build_pointer_type (type);
|
||
else if ((mask & 3) == 1 && is_reference (var))
|
||
type = TREE_TYPE (type);
|
||
|
||
field = build_decl (DECL_SOURCE_LOCATION (var),
|
||
FIELD_DECL, DECL_NAME (var), type);
|
||
|
||
/* Remember what variable this field was created for. This does have a
|
||
side effect of making dwarf2out ignore this member, so for helpful
|
||
debugging we clear it later in delete_omp_context. */
|
||
DECL_ABSTRACT_ORIGIN (field) = var;
|
||
if (type == TREE_TYPE (var))
|
||
{
|
||
DECL_ALIGN (field) = DECL_ALIGN (var);
|
||
DECL_USER_ALIGN (field) = DECL_USER_ALIGN (var);
|
||
TREE_THIS_VOLATILE (field) = TREE_THIS_VOLATILE (var);
|
||
}
|
||
else
|
||
DECL_ALIGN (field) = TYPE_ALIGN (type);
|
||
|
||
if ((mask & 3) == 3)
|
||
{
|
||
insert_field_into_struct (ctx->record_type, field);
|
||
if (ctx->srecord_type)
|
||
{
|
||
sfield = build_decl (DECL_SOURCE_LOCATION (var),
|
||
FIELD_DECL, DECL_NAME (var), type);
|
||
DECL_ABSTRACT_ORIGIN (sfield) = var;
|
||
DECL_ALIGN (sfield) = DECL_ALIGN (field);
|
||
DECL_USER_ALIGN (sfield) = DECL_USER_ALIGN (field);
|
||
TREE_THIS_VOLATILE (sfield) = TREE_THIS_VOLATILE (field);
|
||
insert_field_into_struct (ctx->srecord_type, sfield);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (ctx->srecord_type == NULL_TREE)
|
||
{
|
||
tree t;
|
||
|
||
ctx->srecord_type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
ctx->sfield_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
for (t = TYPE_FIELDS (ctx->record_type); t ; t = TREE_CHAIN (t))
|
||
{
|
||
sfield = build_decl (DECL_SOURCE_LOCATION (var),
|
||
FIELD_DECL, DECL_NAME (t), TREE_TYPE (t));
|
||
DECL_ABSTRACT_ORIGIN (sfield) = DECL_ABSTRACT_ORIGIN (t);
|
||
insert_field_into_struct (ctx->srecord_type, sfield);
|
||
splay_tree_insert (ctx->sfield_map,
|
||
(splay_tree_key) DECL_ABSTRACT_ORIGIN (t),
|
||
(splay_tree_value) sfield);
|
||
}
|
||
}
|
||
sfield = field;
|
||
insert_field_into_struct ((mask & 1) ? ctx->record_type
|
||
: ctx->srecord_type, field);
|
||
}
|
||
|
||
if (mask & 1)
|
||
splay_tree_insert (ctx->field_map, (splay_tree_key) var,
|
||
(splay_tree_value) field);
|
||
if ((mask & 2) && ctx->sfield_map)
|
||
splay_tree_insert (ctx->sfield_map, (splay_tree_key) var,
|
||
(splay_tree_value) sfield);
|
||
}
|
||
|
||
static tree
|
||
install_var_local (tree var, omp_context *ctx)
|
||
{
|
||
tree new_var = omp_copy_decl_1 (var, ctx);
|
||
insert_decl_map (&ctx->cb, var, new_var);
|
||
return new_var;
|
||
}
|
||
|
||
/* Adjust the replacement for DECL in CTX for the new context. This means
|
||
copying the DECL_VALUE_EXPR, and fixing up the type. */
|
||
|
||
static void
|
||
fixup_remapped_decl (tree decl, omp_context *ctx, bool private_debug)
|
||
{
|
||
tree new_decl, size;
|
||
|
||
new_decl = lookup_decl (decl, ctx);
|
||
|
||
TREE_TYPE (new_decl) = remap_type (TREE_TYPE (decl), &ctx->cb);
|
||
|
||
if ((!TREE_CONSTANT (DECL_SIZE (new_decl)) || private_debug)
|
||
&& DECL_HAS_VALUE_EXPR_P (decl))
|
||
{
|
||
tree ve = DECL_VALUE_EXPR (decl);
|
||
walk_tree (&ve, copy_tree_body_r, &ctx->cb, NULL);
|
||
SET_DECL_VALUE_EXPR (new_decl, ve);
|
||
DECL_HAS_VALUE_EXPR_P (new_decl) = 1;
|
||
}
|
||
|
||
if (!TREE_CONSTANT (DECL_SIZE (new_decl)))
|
||
{
|
||
size = remap_decl (DECL_SIZE (decl), &ctx->cb);
|
||
if (size == error_mark_node)
|
||
size = TYPE_SIZE (TREE_TYPE (new_decl));
|
||
DECL_SIZE (new_decl) = size;
|
||
|
||
size = remap_decl (DECL_SIZE_UNIT (decl), &ctx->cb);
|
||
if (size == error_mark_node)
|
||
size = TYPE_SIZE_UNIT (TREE_TYPE (new_decl));
|
||
DECL_SIZE_UNIT (new_decl) = size;
|
||
}
|
||
}
|
||
|
||
/* The callback for remap_decl. Search all containing contexts for a
|
||
mapping of the variable; this avoids having to duplicate the splay
|
||
tree ahead of time. We know a mapping doesn't already exist in the
|
||
given context. Create new mappings to implement default semantics. */
|
||
|
||
static tree
|
||
omp_copy_decl (tree var, copy_body_data *cb)
|
||
{
|
||
omp_context *ctx = (omp_context *) cb;
|
||
tree new_var;
|
||
|
||
if (TREE_CODE (var) == LABEL_DECL)
|
||
{
|
||
new_var = create_artificial_label (DECL_SOURCE_LOCATION (var));
|
||
DECL_CONTEXT (new_var) = current_function_decl;
|
||
insert_decl_map (&ctx->cb, var, new_var);
|
||
return new_var;
|
||
}
|
||
|
||
while (!is_taskreg_ctx (ctx))
|
||
{
|
||
ctx = ctx->outer;
|
||
if (ctx == NULL)
|
||
return var;
|
||
new_var = maybe_lookup_decl (var, ctx);
|
||
if (new_var)
|
||
return new_var;
|
||
}
|
||
|
||
if (is_global_var (var) || decl_function_context (var) != ctx->cb.src_fn)
|
||
return var;
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
|
||
/* Return the parallel region associated with STMT. */
|
||
|
||
/* Debugging dumps for parallel regions. */
|
||
void dump_omp_region (FILE *, struct omp_region *, int);
|
||
void debug_omp_region (struct omp_region *);
|
||
void debug_all_omp_regions (void);
|
||
|
||
/* Dump the parallel region tree rooted at REGION. */
|
||
|
||
void
|
||
dump_omp_region (FILE *file, struct omp_region *region, int indent)
|
||
{
|
||
fprintf (file, "%*sbb %d: %s\n", indent, "", region->entry->index,
|
||
gimple_code_name[region->type]);
|
||
|
||
if (region->inner)
|
||
dump_omp_region (file, region->inner, indent + 4);
|
||
|
||
if (region->cont)
|
||
{
|
||
fprintf (file, "%*sbb %d: GIMPLE_OMP_CONTINUE\n", indent, "",
|
||
region->cont->index);
|
||
}
|
||
|
||
if (region->exit)
|
||
fprintf (file, "%*sbb %d: GIMPLE_OMP_RETURN\n", indent, "",
|
||
region->exit->index);
|
||
else
|
||
fprintf (file, "%*s[no exit marker]\n", indent, "");
|
||
|
||
if (region->next)
|
||
dump_omp_region (file, region->next, indent);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_omp_region (struct omp_region *region)
|
||
{
|
||
dump_omp_region (stderr, region, 0);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_all_omp_regions (void)
|
||
{
|
||
dump_omp_region (stderr, root_omp_region, 0);
|
||
}
|
||
|
||
|
||
/* Create a new parallel region starting at STMT inside region PARENT. */
|
||
|
||
struct omp_region *
|
||
new_omp_region (basic_block bb, enum gimple_code type,
|
||
struct omp_region *parent)
|
||
{
|
||
struct omp_region *region = XCNEW (struct omp_region);
|
||
|
||
region->outer = parent;
|
||
region->entry = bb;
|
||
region->type = type;
|
||
|
||
if (parent)
|
||
{
|
||
/* This is a nested region. Add it to the list of inner
|
||
regions in PARENT. */
|
||
region->next = parent->inner;
|
||
parent->inner = region;
|
||
}
|
||
else
|
||
{
|
||
/* This is a toplevel region. Add it to the list of toplevel
|
||
regions in ROOT_OMP_REGION. */
|
||
region->next = root_omp_region;
|
||
root_omp_region = region;
|
||
}
|
||
|
||
return region;
|
||
}
|
||
|
||
/* Release the memory associated with the region tree rooted at REGION. */
|
||
|
||
static void
|
||
free_omp_region_1 (struct omp_region *region)
|
||
{
|
||
struct omp_region *i, *n;
|
||
|
||
for (i = region->inner; i ; i = n)
|
||
{
|
||
n = i->next;
|
||
free_omp_region_1 (i);
|
||
}
|
||
|
||
free (region);
|
||
}
|
||
|
||
/* Release the memory for the entire omp region tree. */
|
||
|
||
void
|
||
free_omp_regions (void)
|
||
{
|
||
struct omp_region *r, *n;
|
||
for (r = root_omp_region; r ; r = n)
|
||
{
|
||
n = r->next;
|
||
free_omp_region_1 (r);
|
||
}
|
||
root_omp_region = NULL;
|
||
}
|
||
|
||
|
||
/* Create a new context, with OUTER_CTX being the surrounding context. */
|
||
|
||
static omp_context *
|
||
new_omp_context (gimple stmt, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx = XCNEW (omp_context);
|
||
|
||
splay_tree_insert (all_contexts, (splay_tree_key) stmt,
|
||
(splay_tree_value) ctx);
|
||
ctx->stmt = stmt;
|
||
|
||
if (outer_ctx)
|
||
{
|
||
ctx->outer = outer_ctx;
|
||
ctx->cb = outer_ctx->cb;
|
||
ctx->cb.block = NULL;
|
||
ctx->depth = outer_ctx->depth + 1;
|
||
}
|
||
else
|
||
{
|
||
ctx->cb.src_fn = current_function_decl;
|
||
ctx->cb.dst_fn = current_function_decl;
|
||
ctx->cb.src_node = cgraph_get_node (current_function_decl);
|
||
gcc_checking_assert (ctx->cb.src_node);
|
||
ctx->cb.dst_node = ctx->cb.src_node;
|
||
ctx->cb.src_cfun = cfun;
|
||
ctx->cb.copy_decl = omp_copy_decl;
|
||
ctx->cb.eh_lp_nr = 0;
|
||
ctx->cb.transform_call_graph_edges = CB_CGE_MOVE;
|
||
ctx->depth = 1;
|
||
}
|
||
|
||
ctx->cb.decl_map = pointer_map_create ();
|
||
|
||
return ctx;
|
||
}
|
||
|
||
static gimple_seq maybe_catch_exception (gimple_seq);
|
||
|
||
/* Finalize task copyfn. */
|
||
|
||
static void
|
||
finalize_task_copyfn (gimple task_stmt)
|
||
{
|
||
struct function *child_cfun;
|
||
tree child_fn;
|
||
gimple_seq seq = NULL, new_seq;
|
||
gimple bind;
|
||
|
||
child_fn = gimple_omp_task_copy_fn (task_stmt);
|
||
if (child_fn == NULL_TREE)
|
||
return;
|
||
|
||
child_cfun = DECL_STRUCT_FUNCTION (child_fn);
|
||
|
||
/* Inform the callgraph about the new function. */
|
||
DECL_STRUCT_FUNCTION (child_fn)->curr_properties
|
||
= cfun->curr_properties & ~PROP_loops;
|
||
|
||
push_cfun (child_cfun);
|
||
bind = gimplify_body (child_fn, false);
|
||
gimple_seq_add_stmt (&seq, bind);
|
||
new_seq = maybe_catch_exception (seq);
|
||
if (new_seq != seq)
|
||
{
|
||
bind = gimple_build_bind (NULL, new_seq, NULL);
|
||
seq = NULL;
|
||
gimple_seq_add_stmt (&seq, bind);
|
||
}
|
||
gimple_set_body (child_fn, seq);
|
||
pop_cfun ();
|
||
|
||
cgraph_add_new_function (child_fn, false);
|
||
}
|
||
|
||
/* Destroy a omp_context data structures. Called through the splay tree
|
||
value delete callback. */
|
||
|
||
static void
|
||
delete_omp_context (splay_tree_value value)
|
||
{
|
||
omp_context *ctx = (omp_context *) value;
|
||
|
||
pointer_map_destroy (ctx->cb.decl_map);
|
||
|
||
if (ctx->field_map)
|
||
splay_tree_delete (ctx->field_map);
|
||
if (ctx->sfield_map)
|
||
splay_tree_delete (ctx->sfield_map);
|
||
|
||
/* We hijacked DECL_ABSTRACT_ORIGIN earlier. We need to clear it before
|
||
it produces corrupt debug information. */
|
||
if (ctx->record_type)
|
||
{
|
||
tree t;
|
||
for (t = TYPE_FIELDS (ctx->record_type); t ; t = DECL_CHAIN (t))
|
||
DECL_ABSTRACT_ORIGIN (t) = NULL;
|
||
}
|
||
if (ctx->srecord_type)
|
||
{
|
||
tree t;
|
||
for (t = TYPE_FIELDS (ctx->srecord_type); t ; t = DECL_CHAIN (t))
|
||
DECL_ABSTRACT_ORIGIN (t) = NULL;
|
||
}
|
||
|
||
if (is_task_ctx (ctx))
|
||
finalize_task_copyfn (ctx->stmt);
|
||
|
||
XDELETE (ctx);
|
||
}
|
||
|
||
/* Fix up RECEIVER_DECL with a type that has been remapped to the child
|
||
context. */
|
||
|
||
static void
|
||
fixup_child_record_type (omp_context *ctx)
|
||
{
|
||
tree f, type = ctx->record_type;
|
||
|
||
/* ??? It isn't sufficient to just call remap_type here, because
|
||
variably_modified_type_p doesn't work the way we expect for
|
||
record types. Testing each field for whether it needs remapping
|
||
and creating a new record by hand works, however. */
|
||
for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
|
||
if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn))
|
||
break;
|
||
if (f)
|
||
{
|
||
tree name, new_fields = NULL;
|
||
|
||
type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = DECL_NAME (TYPE_NAME (ctx->record_type));
|
||
name = build_decl (DECL_SOURCE_LOCATION (ctx->receiver_decl),
|
||
TYPE_DECL, name, type);
|
||
TYPE_NAME (type) = name;
|
||
|
||
for (f = TYPE_FIELDS (ctx->record_type); f ; f = DECL_CHAIN (f))
|
||
{
|
||
tree new_f = copy_node (f);
|
||
DECL_CONTEXT (new_f) = type;
|
||
TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &ctx->cb);
|
||
DECL_CHAIN (new_f) = new_fields;
|
||
walk_tree (&DECL_SIZE (new_f), copy_tree_body_r, &ctx->cb, NULL);
|
||
walk_tree (&DECL_SIZE_UNIT (new_f), copy_tree_body_r,
|
||
&ctx->cb, NULL);
|
||
walk_tree (&DECL_FIELD_OFFSET (new_f), copy_tree_body_r,
|
||
&ctx->cb, NULL);
|
||
new_fields = new_f;
|
||
|
||
/* Arrange to be able to look up the receiver field
|
||
given the sender field. */
|
||
splay_tree_insert (ctx->field_map, (splay_tree_key) f,
|
||
(splay_tree_value) new_f);
|
||
}
|
||
TYPE_FIELDS (type) = nreverse (new_fields);
|
||
layout_type (type);
|
||
}
|
||
|
||
TREE_TYPE (ctx->receiver_decl) = build_pointer_type (type);
|
||
}
|
||
|
||
/* Instantiate decls as necessary in CTX to satisfy the data sharing
|
||
specified by CLAUSES. */
|
||
|
||
static void
|
||
scan_sharing_clauses (tree clauses, omp_context *ctx)
|
||
{
|
||
tree c, decl;
|
||
bool scan_array_reductions = false;
|
||
|
||
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
bool by_ref;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (OMP_CLAUSE_PRIVATE_OUTER_REF (c))
|
||
goto do_private;
|
||
else if (!is_variable_sized (decl))
|
||
install_var_local (decl, ctx);
|
||
break;
|
||
|
||
case OMP_CLAUSE_SHARED:
|
||
gcc_assert (is_taskreg_ctx (ctx));
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
gcc_assert (!COMPLETE_TYPE_P (TREE_TYPE (decl))
|
||
|| !is_variable_sized (decl));
|
||
/* Global variables don't need to be copied,
|
||
the receiver side will use them directly. */
|
||
if (is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx)))
|
||
break;
|
||
by_ref = use_pointer_for_field (decl, ctx);
|
||
if (! TREE_READONLY (decl)
|
||
|| TREE_ADDRESSABLE (decl)
|
||
|| by_ref
|
||
|| is_reference (decl))
|
||
{
|
||
install_var_field (decl, by_ref, 3, ctx);
|
||
install_var_local (decl, ctx);
|
||
break;
|
||
}
|
||
/* We don't need to copy const scalar vars back. */
|
||
OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_FIRSTPRIVATE);
|
||
goto do_private;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
/* Let the corresponding firstprivate clause create
|
||
the variable. */
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
do_private:
|
||
if (is_variable_sized (decl))
|
||
{
|
||
if (is_task_ctx (ctx))
|
||
install_var_field (decl, false, 1, ctx);
|
||
break;
|
||
}
|
||
else if (is_taskreg_ctx (ctx))
|
||
{
|
||
bool global
|
||
= is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx));
|
||
by_ref = use_pointer_for_field (decl, NULL);
|
||
|
||
if (is_task_ctx (ctx)
|
||
&& (global || by_ref || is_reference (decl)))
|
||
{
|
||
install_var_field (decl, false, 1, ctx);
|
||
if (!global)
|
||
install_var_field (decl, by_ref, 2, ctx);
|
||
}
|
||
else if (!global)
|
||
install_var_field (decl, by_ref, 3, ctx);
|
||
}
|
||
install_var_local (decl, ctx);
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
by_ref = use_pointer_for_field (decl, NULL);
|
||
install_var_field (decl, by_ref, 3, ctx);
|
||
break;
|
||
|
||
case OMP_CLAUSE_DEFAULT:
|
||
ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c);
|
||
break;
|
||
|
||
case OMP_CLAUSE_FINAL:
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
if (ctx->outer)
|
||
scan_omp_op (&OMP_CLAUSE_OPERAND (c, 0), ctx->outer);
|
||
break;
|
||
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_COLLAPSE:
|
||
case OMP_CLAUSE_UNTIED:
|
||
case OMP_CLAUSE_MERGEABLE:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
/* Let the corresponding firstprivate clause create
|
||
the variable. */
|
||
if (OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c))
|
||
scan_array_reductions = true;
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_PRIVATE:
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (is_variable_sized (decl))
|
||
install_var_local (decl, ctx);
|
||
fixup_remapped_decl (decl, ctx,
|
||
OMP_CLAUSE_CODE (c) == OMP_CLAUSE_PRIVATE
|
||
&& OMP_CLAUSE_PRIVATE_DEBUG (c));
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
scan_array_reductions = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_SHARED:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (! is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx)))
|
||
fixup_remapped_decl (decl, ctx, false);
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_COLLAPSE:
|
||
case OMP_CLAUSE_UNTIED:
|
||
case OMP_CLAUSE_FINAL:
|
||
case OMP_CLAUSE_MERGEABLE:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
if (scan_array_reductions)
|
||
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
scan_omp (&OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c), ctx);
|
||
scan_omp (&OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c), ctx);
|
||
}
|
||
else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE
|
||
&& OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c))
|
||
scan_omp (&OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c), ctx);
|
||
}
|
||
|
||
/* Create a new name for omp child function. Returns an identifier. */
|
||
|
||
static GTY(()) unsigned int tmp_ompfn_id_num;
|
||
|
||
static tree
|
||
create_omp_child_function_name (bool task_copy)
|
||
{
|
||
return (clone_function_name (current_function_decl,
|
||
task_copy ? "_omp_cpyfn" : "_omp_fn"));
|
||
}
|
||
|
||
/* Build a decl for the omp child function. It'll not contain a body
|
||
yet, just the bare decl. */
|
||
|
||
static void
|
||
create_omp_child_function (omp_context *ctx, bool task_copy)
|
||
{
|
||
tree decl, type, name, t;
|
||
|
||
name = create_omp_child_function_name (task_copy);
|
||
if (task_copy)
|
||
type = build_function_type_list (void_type_node, ptr_type_node,
|
||
ptr_type_node, NULL_TREE);
|
||
else
|
||
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
|
||
decl = build_decl (gimple_location (ctx->stmt),
|
||
FUNCTION_DECL, name, type);
|
||
|
||
if (!task_copy)
|
||
ctx->cb.dst_fn = decl;
|
||
else
|
||
gimple_omp_task_set_copy_fn (ctx->stmt, decl);
|
||
|
||
TREE_STATIC (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_NAMELESS (decl) = 1;
|
||
DECL_IGNORED_P (decl) = 0;
|
||
TREE_PUBLIC (decl) = 0;
|
||
DECL_UNINLINABLE (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 0;
|
||
DECL_CONTEXT (decl) = NULL_TREE;
|
||
DECL_INITIAL (decl) = make_node (BLOCK);
|
||
|
||
t = build_decl (DECL_SOURCE_LOCATION (decl),
|
||
RESULT_DECL, NULL_TREE, void_type_node);
|
||
DECL_ARTIFICIAL (t) = 1;
|
||
DECL_IGNORED_P (t) = 1;
|
||
DECL_CONTEXT (t) = decl;
|
||
DECL_RESULT (decl) = t;
|
||
|
||
t = build_decl (DECL_SOURCE_LOCATION (decl),
|
||
PARM_DECL, get_identifier (".omp_data_i"), ptr_type_node);
|
||
DECL_ARTIFICIAL (t) = 1;
|
||
DECL_NAMELESS (t) = 1;
|
||
DECL_ARG_TYPE (t) = ptr_type_node;
|
||
DECL_CONTEXT (t) = current_function_decl;
|
||
TREE_USED (t) = 1;
|
||
DECL_ARGUMENTS (decl) = t;
|
||
if (!task_copy)
|
||
ctx->receiver_decl = t;
|
||
else
|
||
{
|
||
t = build_decl (DECL_SOURCE_LOCATION (decl),
|
||
PARM_DECL, get_identifier (".omp_data_o"),
|
||
ptr_type_node);
|
||
DECL_ARTIFICIAL (t) = 1;
|
||
DECL_NAMELESS (t) = 1;
|
||
DECL_ARG_TYPE (t) = ptr_type_node;
|
||
DECL_CONTEXT (t) = current_function_decl;
|
||
TREE_USED (t) = 1;
|
||
TREE_ADDRESSABLE (t) = 1;
|
||
DECL_CHAIN (t) = DECL_ARGUMENTS (decl);
|
||
DECL_ARGUMENTS (decl) = t;
|
||
}
|
||
|
||
/* Allocate memory for the function structure. The call to
|
||
allocate_struct_function clobbers CFUN, so we need to restore
|
||
it afterward. */
|
||
push_struct_function (decl);
|
||
cfun->function_end_locus = gimple_location (ctx->stmt);
|
||
pop_cfun ();
|
||
}
|
||
|
||
|
||
/* Scan an OpenMP parallel directive. */
|
||
|
||
static void
|
||
scan_omp_parallel (gimple_stmt_iterator *gsi, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
tree name;
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
|
||
/* Ignore parallel directives with empty bodies, unless there
|
||
are copyin clauses. */
|
||
if (optimize > 0
|
||
&& empty_body_p (gimple_omp_body (stmt))
|
||
&& find_omp_clause (gimple_omp_parallel_clauses (stmt),
|
||
OMP_CLAUSE_COPYIN) == NULL)
|
||
{
|
||
gsi_replace (gsi, gimple_build_nop (), false);
|
||
return;
|
||
}
|
||
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
if (taskreg_nesting_level > 1)
|
||
ctx->is_nested = true;
|
||
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
|
||
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = create_tmp_var_name (".omp_data_s");
|
||
name = build_decl (gimple_location (stmt),
|
||
TYPE_DECL, name, ctx->record_type);
|
||
DECL_ARTIFICIAL (name) = 1;
|
||
DECL_NAMELESS (name) = 1;
|
||
TYPE_NAME (ctx->record_type) = name;
|
||
create_omp_child_function (ctx, false);
|
||
gimple_omp_parallel_set_child_fn (stmt, ctx->cb.dst_fn);
|
||
|
||
scan_sharing_clauses (gimple_omp_parallel_clauses (stmt), ctx);
|
||
scan_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
|
||
if (TYPE_FIELDS (ctx->record_type) == NULL)
|
||
ctx->record_type = ctx->receiver_decl = NULL;
|
||
else
|
||
{
|
||
layout_type (ctx->record_type);
|
||
fixup_child_record_type (ctx);
|
||
}
|
||
}
|
||
|
||
/* Scan an OpenMP task directive. */
|
||
|
||
static void
|
||
scan_omp_task (gimple_stmt_iterator *gsi, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
tree name, t;
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
location_t loc = gimple_location (stmt);
|
||
|
||
/* Ignore task directives with empty bodies. */
|
||
if (optimize > 0
|
||
&& empty_body_p (gimple_omp_body (stmt)))
|
||
{
|
||
gsi_replace (gsi, gimple_build_nop (), false);
|
||
return;
|
||
}
|
||
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
if (taskreg_nesting_level > 1)
|
||
ctx->is_nested = true;
|
||
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
|
||
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = create_tmp_var_name (".omp_data_s");
|
||
name = build_decl (gimple_location (stmt),
|
||
TYPE_DECL, name, ctx->record_type);
|
||
DECL_ARTIFICIAL (name) = 1;
|
||
DECL_NAMELESS (name) = 1;
|
||
TYPE_NAME (ctx->record_type) = name;
|
||
create_omp_child_function (ctx, false);
|
||
gimple_omp_task_set_child_fn (stmt, ctx->cb.dst_fn);
|
||
|
||
scan_sharing_clauses (gimple_omp_task_clauses (stmt), ctx);
|
||
|
||
if (ctx->srecord_type)
|
||
{
|
||
name = create_tmp_var_name (".omp_data_a");
|
||
name = build_decl (gimple_location (stmt),
|
||
TYPE_DECL, name, ctx->srecord_type);
|
||
DECL_ARTIFICIAL (name) = 1;
|
||
DECL_NAMELESS (name) = 1;
|
||
TYPE_NAME (ctx->srecord_type) = name;
|
||
create_omp_child_function (ctx, true);
|
||
}
|
||
|
||
scan_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
|
||
if (TYPE_FIELDS (ctx->record_type) == NULL)
|
||
{
|
||
ctx->record_type = ctx->receiver_decl = NULL;
|
||
t = build_int_cst (long_integer_type_node, 0);
|
||
gimple_omp_task_set_arg_size (stmt, t);
|
||
t = build_int_cst (long_integer_type_node, 1);
|
||
gimple_omp_task_set_arg_align (stmt, t);
|
||
}
|
||
else
|
||
{
|
||
tree *p, vla_fields = NULL_TREE, *q = &vla_fields;
|
||
/* Move VLA fields to the end. */
|
||
p = &TYPE_FIELDS (ctx->record_type);
|
||
while (*p)
|
||
if (!TYPE_SIZE_UNIT (TREE_TYPE (*p))
|
||
|| ! TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (*p))))
|
||
{
|
||
*q = *p;
|
||
*p = TREE_CHAIN (*p);
|
||
TREE_CHAIN (*q) = NULL_TREE;
|
||
q = &TREE_CHAIN (*q);
|
||
}
|
||
else
|
||
p = &DECL_CHAIN (*p);
|
||
*p = vla_fields;
|
||
layout_type (ctx->record_type);
|
||
fixup_child_record_type (ctx);
|
||
if (ctx->srecord_type)
|
||
layout_type (ctx->srecord_type);
|
||
t = fold_convert_loc (loc, long_integer_type_node,
|
||
TYPE_SIZE_UNIT (ctx->record_type));
|
||
gimple_omp_task_set_arg_size (stmt, t);
|
||
t = build_int_cst (long_integer_type_node,
|
||
TYPE_ALIGN_UNIT (ctx->record_type));
|
||
gimple_omp_task_set_arg_align (stmt, t);
|
||
}
|
||
}
|
||
|
||
|
||
/* Scan an OpenMP loop directive. */
|
||
|
||
static void
|
||
scan_omp_for (gimple stmt, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
size_t i;
|
||
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
|
||
scan_sharing_clauses (gimple_omp_for_clauses (stmt), ctx);
|
||
|
||
scan_omp (gimple_omp_for_pre_body_ptr (stmt), ctx);
|
||
for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
|
||
{
|
||
scan_omp_op (gimple_omp_for_index_ptr (stmt, i), ctx);
|
||
scan_omp_op (gimple_omp_for_initial_ptr (stmt, i), ctx);
|
||
scan_omp_op (gimple_omp_for_final_ptr (stmt, i), ctx);
|
||
scan_omp_op (gimple_omp_for_incr_ptr (stmt, i), ctx);
|
||
}
|
||
scan_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
}
|
||
|
||
/* Scan an OpenMP sections directive. */
|
||
|
||
static void
|
||
scan_omp_sections (gimple stmt, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
scan_sharing_clauses (gimple_omp_sections_clauses (stmt), ctx);
|
||
scan_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
}
|
||
|
||
/* Scan an OpenMP single directive. */
|
||
|
||
static void
|
||
scan_omp_single (gimple stmt, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
tree name;
|
||
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = create_tmp_var_name (".omp_copy_s");
|
||
name = build_decl (gimple_location (stmt),
|
||
TYPE_DECL, name, ctx->record_type);
|
||
TYPE_NAME (ctx->record_type) = name;
|
||
|
||
scan_sharing_clauses (gimple_omp_single_clauses (stmt), ctx);
|
||
scan_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
|
||
if (TYPE_FIELDS (ctx->record_type) == NULL)
|
||
ctx->record_type = NULL;
|
||
else
|
||
layout_type (ctx->record_type);
|
||
}
|
||
|
||
|
||
/* Check OpenMP nesting restrictions. */
|
||
static bool
|
||
check_omp_nesting_restrictions (gimple stmt, omp_context *ctx)
|
||
{
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_OMP_FOR:
|
||
case GIMPLE_OMP_SECTIONS:
|
||
case GIMPLE_OMP_SINGLE:
|
||
case GIMPLE_CALL:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
switch (gimple_code (ctx->stmt))
|
||
{
|
||
case GIMPLE_OMP_FOR:
|
||
case GIMPLE_OMP_SECTIONS:
|
||
case GIMPLE_OMP_SINGLE:
|
||
case GIMPLE_OMP_ORDERED:
|
||
case GIMPLE_OMP_MASTER:
|
||
case GIMPLE_OMP_TASK:
|
||
if (is_gimple_call (stmt))
|
||
{
|
||
error_at (gimple_location (stmt),
|
||
"barrier region may not be closely nested inside "
|
||
"of work-sharing, critical, ordered, master or "
|
||
"explicit task region");
|
||
return false;
|
||
}
|
||
error_at (gimple_location (stmt),
|
||
"work-sharing region may not be closely nested inside "
|
||
"of work-sharing, critical, ordered, master or explicit "
|
||
"task region");
|
||
return false;
|
||
case GIMPLE_OMP_PARALLEL:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
case GIMPLE_OMP_MASTER:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
switch (gimple_code (ctx->stmt))
|
||
{
|
||
case GIMPLE_OMP_FOR:
|
||
case GIMPLE_OMP_SECTIONS:
|
||
case GIMPLE_OMP_SINGLE:
|
||
case GIMPLE_OMP_TASK:
|
||
error_at (gimple_location (stmt),
|
||
"master region may not be closely nested inside "
|
||
"of work-sharing or explicit task region");
|
||
return false;
|
||
case GIMPLE_OMP_PARALLEL:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
case GIMPLE_OMP_ORDERED:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
switch (gimple_code (ctx->stmt))
|
||
{
|
||
case GIMPLE_OMP_CRITICAL:
|
||
case GIMPLE_OMP_TASK:
|
||
error_at (gimple_location (stmt),
|
||
"ordered region may not be closely nested inside "
|
||
"of critical or explicit task region");
|
||
return false;
|
||
case GIMPLE_OMP_FOR:
|
||
if (find_omp_clause (gimple_omp_for_clauses (ctx->stmt),
|
||
OMP_CLAUSE_ORDERED) == NULL)
|
||
{
|
||
error_at (gimple_location (stmt),
|
||
"ordered region must be closely nested inside "
|
||
"a loop region with an ordered clause");
|
||
return false;
|
||
}
|
||
return true;
|
||
case GIMPLE_OMP_PARALLEL:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
case GIMPLE_OMP_CRITICAL:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
if (gimple_code (ctx->stmt) == GIMPLE_OMP_CRITICAL
|
||
&& (gimple_omp_critical_name (stmt)
|
||
== gimple_omp_critical_name (ctx->stmt)))
|
||
{
|
||
error_at (gimple_location (stmt),
|
||
"critical region may not be nested inside a critical "
|
||
"region with the same name");
|
||
return false;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Helper function scan_omp.
|
||
|
||
Callback for walk_tree or operators in walk_gimple_stmt used to
|
||
scan for OpenMP directives in TP. */
|
||
|
||
static tree
|
||
scan_omp_1_op (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
||
omp_context *ctx = (omp_context *) wi->info;
|
||
tree t = *tp;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case LABEL_DECL:
|
||
case RESULT_DECL:
|
||
if (ctx)
|
||
*tp = remap_decl (t, &ctx->cb);
|
||
break;
|
||
|
||
default:
|
||
if (ctx && TYPE_P (t))
|
||
*tp = remap_type (t, &ctx->cb);
|
||
else if (!DECL_P (t))
|
||
{
|
||
*walk_subtrees = 1;
|
||
if (ctx)
|
||
{
|
||
tree tem = remap_type (TREE_TYPE (t), &ctx->cb);
|
||
if (tem != TREE_TYPE (t))
|
||
{
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
*tp = build_int_cst_wide (tem,
|
||
TREE_INT_CST_LOW (t),
|
||
TREE_INT_CST_HIGH (t));
|
||
else
|
||
TREE_TYPE (t) = tem;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Helper function for scan_omp.
|
||
|
||
Callback for walk_gimple_stmt used to scan for OpenMP directives in
|
||
the current statement in GSI. */
|
||
|
||
static tree
|
||
scan_omp_1_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
omp_context *ctx = (omp_context *) wi->info;
|
||
|
||
if (gimple_has_location (stmt))
|
||
input_location = gimple_location (stmt);
|
||
|
||
/* Check the OpenMP nesting restrictions. */
|
||
if (ctx != NULL)
|
||
{
|
||
bool remove = false;
|
||
if (is_gimple_omp (stmt))
|
||
remove = !check_omp_nesting_restrictions (stmt, ctx);
|
||
else if (is_gimple_call (stmt))
|
||
{
|
||
tree fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_GOMP_BARRIER)
|
||
remove = !check_omp_nesting_restrictions (stmt, ctx);
|
||
}
|
||
if (remove)
|
||
{
|
||
stmt = gimple_build_nop ();
|
||
gsi_replace (gsi, stmt, false);
|
||
}
|
||
}
|
||
|
||
*handled_ops_p = true;
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_OMP_PARALLEL:
|
||
taskreg_nesting_level++;
|
||
scan_omp_parallel (gsi, ctx);
|
||
taskreg_nesting_level--;
|
||
break;
|
||
|
||
case GIMPLE_OMP_TASK:
|
||
taskreg_nesting_level++;
|
||
scan_omp_task (gsi, ctx);
|
||
taskreg_nesting_level--;
|
||
break;
|
||
|
||
case GIMPLE_OMP_FOR:
|
||
scan_omp_for (stmt, ctx);
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTIONS:
|
||
scan_omp_sections (stmt, ctx);
|
||
break;
|
||
|
||
case GIMPLE_OMP_SINGLE:
|
||
scan_omp_single (stmt, ctx);
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTION:
|
||
case GIMPLE_OMP_MASTER:
|
||
case GIMPLE_OMP_ORDERED:
|
||
case GIMPLE_OMP_CRITICAL:
|
||
ctx = new_omp_context (stmt, ctx);
|
||
scan_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
break;
|
||
|
||
case GIMPLE_BIND:
|
||
{
|
||
tree var;
|
||
|
||
*handled_ops_p = false;
|
||
if (ctx)
|
||
for (var = gimple_bind_vars (stmt); var ; var = DECL_CHAIN (var))
|
||
insert_decl_map (&ctx->cb, var, var);
|
||
}
|
||
break;
|
||
default:
|
||
*handled_ops_p = false;
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Scan all the statements starting at the current statement. CTX
|
||
contains context information about the OpenMP directives and
|
||
clauses found during the scan. */
|
||
|
||
static void
|
||
scan_omp (gimple_seq *body_p, omp_context *ctx)
|
||
{
|
||
location_t saved_location;
|
||
struct walk_stmt_info wi;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.info = ctx;
|
||
wi.want_locations = true;
|
||
|
||
saved_location = input_location;
|
||
walk_gimple_seq_mod (body_p, scan_omp_1_stmt, scan_omp_1_op, &wi);
|
||
input_location = saved_location;
|
||
}
|
||
|
||
/* Re-gimplification and code generation routines. */
|
||
|
||
/* Build a call to GOMP_barrier. */
|
||
|
||
static tree
|
||
build_omp_barrier (void)
|
||
{
|
||
return build_call_expr (builtin_decl_explicit (BUILT_IN_GOMP_BARRIER), 0);
|
||
}
|
||
|
||
/* If a context was created for STMT when it was scanned, return it. */
|
||
|
||
static omp_context *
|
||
maybe_lookup_ctx (gimple stmt)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (all_contexts, (splay_tree_key) stmt);
|
||
return n ? (omp_context *) n->value : NULL;
|
||
}
|
||
|
||
|
||
/* Find the mapping for DECL in CTX or the immediately enclosing
|
||
context that has a mapping for DECL.
|
||
|
||
If CTX is a nested parallel directive, we may have to use the decl
|
||
mappings created in CTX's parent context. Suppose that we have the
|
||
following parallel nesting (variable UIDs showed for clarity):
|
||
|
||
iD.1562 = 0;
|
||
#omp parallel shared(iD.1562) -> outer parallel
|
||
iD.1562 = iD.1562 + 1;
|
||
|
||
#omp parallel shared (iD.1562) -> inner parallel
|
||
iD.1562 = iD.1562 - 1;
|
||
|
||
Each parallel structure will create a distinct .omp_data_s structure
|
||
for copying iD.1562 in/out of the directive:
|
||
|
||
outer parallel .omp_data_s.1.i -> iD.1562
|
||
inner parallel .omp_data_s.2.i -> iD.1562
|
||
|
||
A shared variable mapping will produce a copy-out operation before
|
||
the parallel directive and a copy-in operation after it. So, in
|
||
this case we would have:
|
||
|
||
iD.1562 = 0;
|
||
.omp_data_o.1.i = iD.1562;
|
||
#omp parallel shared(iD.1562) -> outer parallel
|
||
.omp_data_i.1 = &.omp_data_o.1
|
||
.omp_data_i.1->i = .omp_data_i.1->i + 1;
|
||
|
||
.omp_data_o.2.i = iD.1562; -> **
|
||
#omp parallel shared(iD.1562) -> inner parallel
|
||
.omp_data_i.2 = &.omp_data_o.2
|
||
.omp_data_i.2->i = .omp_data_i.2->i - 1;
|
||
|
||
|
||
** This is a problem. The symbol iD.1562 cannot be referenced
|
||
inside the body of the outer parallel region. But since we are
|
||
emitting this copy operation while expanding the inner parallel
|
||
directive, we need to access the CTX structure of the outer
|
||
parallel directive to get the correct mapping:
|
||
|
||
.omp_data_o.2.i = .omp_data_i.1->i
|
||
|
||
Since there may be other workshare or parallel directives enclosing
|
||
the parallel directive, it may be necessary to walk up the context
|
||
parent chain. This is not a problem in general because nested
|
||
parallelism happens only rarely. */
|
||
|
||
static tree
|
||
lookup_decl_in_outer_ctx (tree decl, omp_context *ctx)
|
||
{
|
||
tree t;
|
||
omp_context *up;
|
||
|
||
for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer)
|
||
t = maybe_lookup_decl (decl, up);
|
||
|
||
gcc_assert (!ctx->is_nested || t || is_global_var (decl));
|
||
|
||
return t ? t : decl;
|
||
}
|
||
|
||
|
||
/* Similar to lookup_decl_in_outer_ctx, but return DECL if not found
|
||
in outer contexts. */
|
||
|
||
static tree
|
||
maybe_lookup_decl_in_outer_ctx (tree decl, omp_context *ctx)
|
||
{
|
||
tree t = NULL;
|
||
omp_context *up;
|
||
|
||
for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer)
|
||
t = maybe_lookup_decl (decl, up);
|
||
|
||
return t ? t : decl;
|
||
}
|
||
|
||
|
||
/* Construct the initialization value for reduction CLAUSE. */
|
||
|
||
tree
|
||
omp_reduction_init (tree clause, tree type)
|
||
{
|
||
location_t loc = OMP_CLAUSE_LOCATION (clause);
|
||
switch (OMP_CLAUSE_REDUCTION_CODE (clause))
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case NE_EXPR:
|
||
return build_zero_cst (type);
|
||
|
||
case MULT_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case EQ_EXPR:
|
||
return fold_convert_loc (loc, type, integer_one_node);
|
||
|
||
case BIT_AND_EXPR:
|
||
return fold_convert_loc (loc, type, integer_minus_one_node);
|
||
|
||
case MAX_EXPR:
|
||
if (SCALAR_FLOAT_TYPE_P (type))
|
||
{
|
||
REAL_VALUE_TYPE max, min;
|
||
if (HONOR_INFINITIES (TYPE_MODE (type)))
|
||
{
|
||
real_inf (&max);
|
||
real_arithmetic (&min, NEGATE_EXPR, &max, NULL);
|
||
}
|
||
else
|
||
real_maxval (&min, 1, TYPE_MODE (type));
|
||
return build_real (type, min);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (INTEGRAL_TYPE_P (type));
|
||
return TYPE_MIN_VALUE (type);
|
||
}
|
||
|
||
case MIN_EXPR:
|
||
if (SCALAR_FLOAT_TYPE_P (type))
|
||
{
|
||
REAL_VALUE_TYPE max;
|
||
if (HONOR_INFINITIES (TYPE_MODE (type)))
|
||
real_inf (&max);
|
||
else
|
||
real_maxval (&max, 0, TYPE_MODE (type));
|
||
return build_real (type, max);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (INTEGRAL_TYPE_P (type));
|
||
return TYPE_MAX_VALUE (type);
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Generate code to implement the input clauses, FIRSTPRIVATE and COPYIN,
|
||
from the receiver (aka child) side and initializers for REFERENCE_TYPE
|
||
private variables. Initialization statements go in ILIST, while calls
|
||
to destructors go in DLIST. */
|
||
|
||
static void
|
||
lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
|
||
omp_context *ctx)
|
||
{
|
||
tree c, dtor, copyin_seq, x, ptr;
|
||
bool copyin_by_ref = false;
|
||
bool lastprivate_firstprivate = false;
|
||
int pass;
|
||
|
||
copyin_seq = NULL;
|
||
|
||
/* Do all the fixed sized types in the first pass, and the variable sized
|
||
types in the second pass. This makes sure that the scalar arguments to
|
||
the variable sized types are processed before we use them in the
|
||
variable sized operations. */
|
||
for (pass = 0; pass < 2; ++pass)
|
||
{
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
enum omp_clause_code c_kind = OMP_CLAUSE_CODE (c);
|
||
tree var, new_var;
|
||
bool by_ref;
|
||
location_t clause_loc = OMP_CLAUSE_LOCATION (c);
|
||
|
||
switch (c_kind)
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
if (OMP_CLAUSE_PRIVATE_DEBUG (c))
|
||
continue;
|
||
break;
|
||
case OMP_CLAUSE_SHARED:
|
||
if (maybe_lookup_decl (OMP_CLAUSE_DECL (c), ctx) == NULL)
|
||
{
|
||
gcc_assert (is_global_var (OMP_CLAUSE_DECL (c)));
|
||
continue;
|
||
}
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
break;
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
{
|
||
lastprivate_firstprivate = true;
|
||
if (pass != 0)
|
||
continue;
|
||
}
|
||
break;
|
||
default:
|
||
continue;
|
||
}
|
||
|
||
new_var = var = OMP_CLAUSE_DECL (c);
|
||
if (c_kind != OMP_CLAUSE_COPYIN)
|
||
new_var = lookup_decl (var, ctx);
|
||
|
||
if (c_kind == OMP_CLAUSE_SHARED || c_kind == OMP_CLAUSE_COPYIN)
|
||
{
|
||
if (pass != 0)
|
||
continue;
|
||
}
|
||
else if (is_variable_sized (var))
|
||
{
|
||
/* For variable sized types, we need to allocate the
|
||
actual storage here. Call alloca and store the
|
||
result in the pointer decl that we created elsewhere. */
|
||
if (pass == 0)
|
||
continue;
|
||
|
||
if (c_kind != OMP_CLAUSE_FIRSTPRIVATE || !is_task_ctx (ctx))
|
||
{
|
||
gimple stmt;
|
||
tree tmp, atmp;
|
||
|
||
ptr = DECL_VALUE_EXPR (new_var);
|
||
gcc_assert (TREE_CODE (ptr) == INDIRECT_REF);
|
||
ptr = TREE_OPERAND (ptr, 0);
|
||
gcc_assert (DECL_P (ptr));
|
||
x = TYPE_SIZE_UNIT (TREE_TYPE (new_var));
|
||
|
||
/* void *tmp = __builtin_alloca */
|
||
atmp = builtin_decl_explicit (BUILT_IN_ALLOCA);
|
||
stmt = gimple_build_call (atmp, 1, x);
|
||
tmp = create_tmp_var_raw (ptr_type_node, NULL);
|
||
gimple_add_tmp_var (tmp);
|
||
gimple_call_set_lhs (stmt, tmp);
|
||
|
||
gimple_seq_add_stmt (ilist, stmt);
|
||
|
||
x = fold_convert_loc (clause_loc, TREE_TYPE (ptr), tmp);
|
||
gimplify_assign (ptr, x, ilist);
|
||
}
|
||
}
|
||
else if (is_reference (var))
|
||
{
|
||
/* For references that are being privatized for Fortran,
|
||
allocate new backing storage for the new pointer
|
||
variable. This allows us to avoid changing all the
|
||
code that expects a pointer to something that expects
|
||
a direct variable. Note that this doesn't apply to
|
||
C++, since reference types are disallowed in data
|
||
sharing clauses there, except for NRV optimized
|
||
return values. */
|
||
if (pass == 0)
|
||
continue;
|
||
|
||
x = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_var)));
|
||
if (c_kind == OMP_CLAUSE_FIRSTPRIVATE && is_task_ctx (ctx))
|
||
{
|
||
x = build_receiver_ref (var, false, ctx);
|
||
x = build_fold_addr_expr_loc (clause_loc, x);
|
||
}
|
||
else if (TREE_CONSTANT (x))
|
||
{
|
||
const char *name = NULL;
|
||
if (DECL_NAME (var))
|
||
name = IDENTIFIER_POINTER (DECL_NAME (new_var));
|
||
|
||
x = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (new_var)),
|
||
name);
|
||
gimple_add_tmp_var (x);
|
||
TREE_ADDRESSABLE (x) = 1;
|
||
x = build_fold_addr_expr_loc (clause_loc, x);
|
||
}
|
||
else
|
||
{
|
||
tree atmp = builtin_decl_explicit (BUILT_IN_ALLOCA);
|
||
x = build_call_expr_loc (clause_loc, atmp, 1, x);
|
||
}
|
||
|
||
x = fold_convert_loc (clause_loc, TREE_TYPE (new_var), x);
|
||
gimplify_assign (new_var, x, ilist);
|
||
|
||
new_var = build_simple_mem_ref_loc (clause_loc, new_var);
|
||
}
|
||
else if (c_kind == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
if (pass == 0)
|
||
continue;
|
||
}
|
||
else if (pass != 0)
|
||
continue;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
/* Shared global vars are just accessed directly. */
|
||
if (is_global_var (new_var))
|
||
break;
|
||
/* Set up the DECL_VALUE_EXPR for shared variables now. This
|
||
needs to be delayed until after fixup_child_record_type so
|
||
that we get the correct type during the dereference. */
|
||
by_ref = use_pointer_for_field (var, ctx);
|
||
x = build_receiver_ref (var, by_ref, ctx);
|
||
SET_DECL_VALUE_EXPR (new_var, x);
|
||
DECL_HAS_VALUE_EXPR_P (new_var) = 1;
|
||
|
||
/* ??? If VAR is not passed by reference, and the variable
|
||
hasn't been initialized yet, then we'll get a warning for
|
||
the store into the omp_data_s structure. Ideally, we'd be
|
||
able to notice this and not store anything at all, but
|
||
we're generating code too early. Suppress the warning. */
|
||
if (!by_ref)
|
||
TREE_NO_WARNING (var) = 1;
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_PRIVATE:
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_PRIVATE)
|
||
x = build_outer_var_ref (var, ctx);
|
||
else if (OMP_CLAUSE_PRIVATE_OUTER_REF (c))
|
||
{
|
||
if (is_task_ctx (ctx))
|
||
x = build_receiver_ref (var, false, ctx);
|
||
else
|
||
x = build_outer_var_ref (var, ctx);
|
||
}
|
||
else
|
||
x = NULL;
|
||
x = lang_hooks.decls.omp_clause_default_ctor (c, new_var, x);
|
||
if (x)
|
||
gimplify_and_add (x, ilist);
|
||
/* FALLTHRU */
|
||
|
||
do_dtor:
|
||
x = lang_hooks.decls.omp_clause_dtor (c, new_var);
|
||
if (x)
|
||
{
|
||
gimple_seq tseq = NULL;
|
||
|
||
dtor = x;
|
||
gimplify_stmt (&dtor, &tseq);
|
||
gimple_seq_add_seq (dlist, tseq);
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
if (is_task_ctx (ctx))
|
||
{
|
||
if (is_reference (var) || is_variable_sized (var))
|
||
goto do_dtor;
|
||
else if (is_global_var (maybe_lookup_decl_in_outer_ctx (var,
|
||
ctx))
|
||
|| use_pointer_for_field (var, NULL))
|
||
{
|
||
x = build_receiver_ref (var, false, ctx);
|
||
SET_DECL_VALUE_EXPR (new_var, x);
|
||
DECL_HAS_VALUE_EXPR_P (new_var) = 1;
|
||
goto do_dtor;
|
||
}
|
||
}
|
||
x = build_outer_var_ref (var, ctx);
|
||
x = lang_hooks.decls.omp_clause_copy_ctor (c, new_var, x);
|
||
gimplify_and_add (x, ilist);
|
||
goto do_dtor;
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
by_ref = use_pointer_for_field (var, NULL);
|
||
x = build_receiver_ref (var, by_ref, ctx);
|
||
x = lang_hooks.decls.omp_clause_assign_op (c, new_var, x);
|
||
append_to_statement_list (x, ©in_seq);
|
||
copyin_by_ref |= by_ref;
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c);
|
||
x = build_outer_var_ref (var, ctx);
|
||
|
||
if (is_reference (var))
|
||
x = build_fold_addr_expr_loc (clause_loc, x);
|
||
SET_DECL_VALUE_EXPR (placeholder, x);
|
||
DECL_HAS_VALUE_EXPR_P (placeholder) = 1;
|
||
lower_omp (&OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c), ctx);
|
||
gimple_seq_add_seq (ilist,
|
||
OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c));
|
||
OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c) = NULL;
|
||
DECL_HAS_VALUE_EXPR_P (placeholder) = 0;
|
||
}
|
||
else
|
||
{
|
||
x = omp_reduction_init (c, TREE_TYPE (new_var));
|
||
gcc_assert (TREE_CODE (TREE_TYPE (new_var)) != ARRAY_TYPE);
|
||
gimplify_assign (new_var, x, ilist);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The copyin sequence is not to be executed by the main thread, since
|
||
that would result in self-copies. Perhaps not visible to scalars,
|
||
but it certainly is to C++ operator=. */
|
||
if (copyin_seq)
|
||
{
|
||
x = build_call_expr (builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM),
|
||
0);
|
||
x = build2 (NE_EXPR, boolean_type_node, x,
|
||
build_int_cst (TREE_TYPE (x), 0));
|
||
x = build3 (COND_EXPR, void_type_node, x, copyin_seq, NULL);
|
||
gimplify_and_add (x, ilist);
|
||
}
|
||
|
||
/* If any copyin variable is passed by reference, we must ensure the
|
||
master thread doesn't modify it before it is copied over in all
|
||
threads. Similarly for variables in both firstprivate and
|
||
lastprivate clauses we need to ensure the lastprivate copying
|
||
happens after firstprivate copying in all threads. */
|
||
if (copyin_by_ref || lastprivate_firstprivate)
|
||
gimplify_and_add (build_omp_barrier (), ilist);
|
||
}
|
||
|
||
|
||
/* Generate code to implement the LASTPRIVATE clauses. This is used for
|
||
both parallel and workshare constructs. PREDICATE may be NULL if it's
|
||
always true. */
|
||
|
||
static void
|
||
lower_lastprivate_clauses (tree clauses, tree predicate, gimple_seq *stmt_list,
|
||
omp_context *ctx)
|
||
{
|
||
tree x, c, label = NULL;
|
||
bool par_clauses = false;
|
||
|
||
/* Early exit if there are no lastprivate clauses. */
|
||
clauses = find_omp_clause (clauses, OMP_CLAUSE_LASTPRIVATE);
|
||
if (clauses == NULL)
|
||
{
|
||
/* If this was a workshare clause, see if it had been combined
|
||
with its parallel. In that case, look for the clauses on the
|
||
parallel statement itself. */
|
||
if (is_parallel_ctx (ctx))
|
||
return;
|
||
|
||
ctx = ctx->outer;
|
||
if (ctx == NULL || !is_parallel_ctx (ctx))
|
||
return;
|
||
|
||
clauses = find_omp_clause (gimple_omp_parallel_clauses (ctx->stmt),
|
||
OMP_CLAUSE_LASTPRIVATE);
|
||
if (clauses == NULL)
|
||
return;
|
||
par_clauses = true;
|
||
}
|
||
|
||
if (predicate)
|
||
{
|
||
gimple stmt;
|
||
tree label_true, arm1, arm2;
|
||
|
||
label = create_artificial_label (UNKNOWN_LOCATION);
|
||
label_true = create_artificial_label (UNKNOWN_LOCATION);
|
||
arm1 = TREE_OPERAND (predicate, 0);
|
||
arm2 = TREE_OPERAND (predicate, 1);
|
||
gimplify_expr (&arm1, stmt_list, NULL, is_gimple_val, fb_rvalue);
|
||
gimplify_expr (&arm2, stmt_list, NULL, is_gimple_val, fb_rvalue);
|
||
stmt = gimple_build_cond (TREE_CODE (predicate), arm1, arm2,
|
||
label_true, label);
|
||
gimple_seq_add_stmt (stmt_list, stmt);
|
||
gimple_seq_add_stmt (stmt_list, gimple_build_label (label_true));
|
||
}
|
||
|
||
for (c = clauses; c ;)
|
||
{
|
||
tree var, new_var;
|
||
location_t clause_loc = OMP_CLAUSE_LOCATION (c);
|
||
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE)
|
||
{
|
||
var = OMP_CLAUSE_DECL (c);
|
||
new_var = lookup_decl (var, ctx);
|
||
|
||
if (OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c))
|
||
{
|
||
lower_omp (&OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c), ctx);
|
||
gimple_seq_add_seq (stmt_list,
|
||
OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c));
|
||
}
|
||
OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c) = NULL;
|
||
|
||
x = build_outer_var_ref (var, ctx);
|
||
if (is_reference (var))
|
||
new_var = build_simple_mem_ref_loc (clause_loc, new_var);
|
||
x = lang_hooks.decls.omp_clause_assign_op (c, x, new_var);
|
||
gimplify_and_add (x, stmt_list);
|
||
}
|
||
c = OMP_CLAUSE_CHAIN (c);
|
||
if (c == NULL && !par_clauses)
|
||
{
|
||
/* If this was a workshare clause, see if it had been combined
|
||
with its parallel. In that case, continue looking for the
|
||
clauses also on the parallel statement itself. */
|
||
if (is_parallel_ctx (ctx))
|
||
break;
|
||
|
||
ctx = ctx->outer;
|
||
if (ctx == NULL || !is_parallel_ctx (ctx))
|
||
break;
|
||
|
||
c = find_omp_clause (gimple_omp_parallel_clauses (ctx->stmt),
|
||
OMP_CLAUSE_LASTPRIVATE);
|
||
par_clauses = true;
|
||
}
|
||
}
|
||
|
||
if (label)
|
||
gimple_seq_add_stmt (stmt_list, gimple_build_label (label));
|
||
}
|
||
|
||
|
||
/* Generate code to implement the REDUCTION clauses. */
|
||
|
||
static void
|
||
lower_reduction_clauses (tree clauses, gimple_seq *stmt_seqp, omp_context *ctx)
|
||
{
|
||
gimple_seq sub_seq = NULL;
|
||
gimple stmt;
|
||
tree x, c;
|
||
int count = 0;
|
||
|
||
/* First see if there is exactly one reduction clause. Use OMP_ATOMIC
|
||
update in that case, otherwise use a lock. */
|
||
for (c = clauses; c && count < 2; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION)
|
||
{
|
||
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
/* Never use OMP_ATOMIC for array reductions. */
|
||
count = -1;
|
||
break;
|
||
}
|
||
count++;
|
||
}
|
||
|
||
if (count == 0)
|
||
return;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree var, ref, new_var;
|
||
enum tree_code code;
|
||
location_t clause_loc = OMP_CLAUSE_LOCATION (c);
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_REDUCTION)
|
||
continue;
|
||
|
||
var = OMP_CLAUSE_DECL (c);
|
||
new_var = lookup_decl (var, ctx);
|
||
if (is_reference (var))
|
||
new_var = build_simple_mem_ref_loc (clause_loc, new_var);
|
||
ref = build_outer_var_ref (var, ctx);
|
||
code = OMP_CLAUSE_REDUCTION_CODE (c);
|
||
|
||
/* reduction(-:var) sums up the partial results, so it acts
|
||
identically to reduction(+:var). */
|
||
if (code == MINUS_EXPR)
|
||
code = PLUS_EXPR;
|
||
|
||
if (count == 1)
|
||
{
|
||
tree addr = build_fold_addr_expr_loc (clause_loc, ref);
|
||
|
||
addr = save_expr (addr);
|
||
ref = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (addr)), addr);
|
||
x = fold_build2_loc (clause_loc, code, TREE_TYPE (ref), ref, new_var);
|
||
x = build2 (OMP_ATOMIC, void_type_node, addr, x);
|
||
gimplify_and_add (x, stmt_seqp);
|
||
return;
|
||
}
|
||
|
||
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c);
|
||
|
||
if (is_reference (var))
|
||
ref = build_fold_addr_expr_loc (clause_loc, ref);
|
||
SET_DECL_VALUE_EXPR (placeholder, ref);
|
||
DECL_HAS_VALUE_EXPR_P (placeholder) = 1;
|
||
lower_omp (&OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c), ctx);
|
||
gimple_seq_add_seq (&sub_seq, OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c));
|
||
OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c) = NULL;
|
||
OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = NULL;
|
||
}
|
||
else
|
||
{
|
||
x = build2 (code, TREE_TYPE (ref), ref, new_var);
|
||
ref = build_outer_var_ref (var, ctx);
|
||
gimplify_assign (ref, x, &sub_seq);
|
||
}
|
||
}
|
||
|
||
stmt = gimple_build_call (builtin_decl_explicit (BUILT_IN_GOMP_ATOMIC_START),
|
||
0);
|
||
gimple_seq_add_stmt (stmt_seqp, stmt);
|
||
|
||
gimple_seq_add_seq (stmt_seqp, sub_seq);
|
||
|
||
stmt = gimple_build_call (builtin_decl_explicit (BUILT_IN_GOMP_ATOMIC_END),
|
||
0);
|
||
gimple_seq_add_stmt (stmt_seqp, stmt);
|
||
}
|
||
|
||
|
||
/* Generate code to implement the COPYPRIVATE clauses. */
|
||
|
||
static void
|
||
lower_copyprivate_clauses (tree clauses, gimple_seq *slist, gimple_seq *rlist,
|
||
omp_context *ctx)
|
||
{
|
||
tree c;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree var, new_var, ref, x;
|
||
bool by_ref;
|
||
location_t clause_loc = OMP_CLAUSE_LOCATION (c);
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYPRIVATE)
|
||
continue;
|
||
|
||
var = OMP_CLAUSE_DECL (c);
|
||
by_ref = use_pointer_for_field (var, NULL);
|
||
|
||
ref = build_sender_ref (var, ctx);
|
||
x = new_var = lookup_decl_in_outer_ctx (var, ctx);
|
||
if (by_ref)
|
||
{
|
||
x = build_fold_addr_expr_loc (clause_loc, new_var);
|
||
x = fold_convert_loc (clause_loc, TREE_TYPE (ref), x);
|
||
}
|
||
gimplify_assign (ref, x, slist);
|
||
|
||
ref = build_receiver_ref (var, false, ctx);
|
||
if (by_ref)
|
||
{
|
||
ref = fold_convert_loc (clause_loc,
|
||
build_pointer_type (TREE_TYPE (new_var)),
|
||
ref);
|
||
ref = build_fold_indirect_ref_loc (clause_loc, ref);
|
||
}
|
||
if (is_reference (var))
|
||
{
|
||
ref = fold_convert_loc (clause_loc, TREE_TYPE (new_var), ref);
|
||
ref = build_simple_mem_ref_loc (clause_loc, ref);
|
||
new_var = build_simple_mem_ref_loc (clause_loc, new_var);
|
||
}
|
||
x = lang_hooks.decls.omp_clause_assign_op (c, new_var, ref);
|
||
gimplify_and_add (x, rlist);
|
||
}
|
||
}
|
||
|
||
|
||
/* Generate code to implement the clauses, FIRSTPRIVATE, COPYIN, LASTPRIVATE,
|
||
and REDUCTION from the sender (aka parent) side. */
|
||
|
||
static void
|
||
lower_send_clauses (tree clauses, gimple_seq *ilist, gimple_seq *olist,
|
||
omp_context *ctx)
|
||
{
|
||
tree c;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree val, ref, x, var;
|
||
bool by_ref, do_in = false, do_out = false;
|
||
location_t clause_loc = OMP_CLAUSE_LOCATION (c);
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
if (OMP_CLAUSE_PRIVATE_OUTER_REF (c))
|
||
break;
|
||
continue;
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
break;
|
||
default:
|
||
continue;
|
||
}
|
||
|
||
val = OMP_CLAUSE_DECL (c);
|
||
var = lookup_decl_in_outer_ctx (val, ctx);
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYIN
|
||
&& is_global_var (var))
|
||
continue;
|
||
if (is_variable_sized (val))
|
||
continue;
|
||
by_ref = use_pointer_for_field (val, NULL);
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
do_in = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (by_ref || is_reference (val))
|
||
{
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
continue;
|
||
do_in = true;
|
||
}
|
||
else
|
||
{
|
||
do_out = true;
|
||
if (lang_hooks.decls.omp_private_outer_ref (val))
|
||
do_in = true;
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
do_in = true;
|
||
do_out = !(by_ref || is_reference (val));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (do_in)
|
||
{
|
||
ref = build_sender_ref (val, ctx);
|
||
x = by_ref ? build_fold_addr_expr_loc (clause_loc, var) : var;
|
||
gimplify_assign (ref, x, ilist);
|
||
if (is_task_ctx (ctx))
|
||
DECL_ABSTRACT_ORIGIN (TREE_OPERAND (ref, 1)) = NULL;
|
||
}
|
||
|
||
if (do_out)
|
||
{
|
||
ref = build_sender_ref (val, ctx);
|
||
gimplify_assign (var, ref, olist);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Generate code to implement SHARED from the sender (aka parent)
|
||
side. This is trickier, since GIMPLE_OMP_PARALLEL_CLAUSES doesn't
|
||
list things that got automatically shared. */
|
||
|
||
static void
|
||
lower_send_shared_vars (gimple_seq *ilist, gimple_seq *olist, omp_context *ctx)
|
||
{
|
||
tree var, ovar, nvar, f, x, record_type;
|
||
|
||
if (ctx->record_type == NULL)
|
||
return;
|
||
|
||
record_type = ctx->srecord_type ? ctx->srecord_type : ctx->record_type;
|
||
for (f = TYPE_FIELDS (record_type); f ; f = DECL_CHAIN (f))
|
||
{
|
||
ovar = DECL_ABSTRACT_ORIGIN (f);
|
||
nvar = maybe_lookup_decl (ovar, ctx);
|
||
if (!nvar || !DECL_HAS_VALUE_EXPR_P (nvar))
|
||
continue;
|
||
|
||
/* If CTX is a nested parallel directive. Find the immediately
|
||
enclosing parallel or workshare construct that contains a
|
||
mapping for OVAR. */
|
||
var = lookup_decl_in_outer_ctx (ovar, ctx);
|
||
|
||
if (use_pointer_for_field (ovar, ctx))
|
||
{
|
||
x = build_sender_ref (ovar, ctx);
|
||
var = build_fold_addr_expr (var);
|
||
gimplify_assign (x, var, ilist);
|
||
}
|
||
else
|
||
{
|
||
x = build_sender_ref (ovar, ctx);
|
||
gimplify_assign (x, var, ilist);
|
||
|
||
if (!TREE_READONLY (var)
|
||
/* We don't need to receive a new reference to a result
|
||
or parm decl. In fact we may not store to it as we will
|
||
invalidate any pending RSO and generate wrong gimple
|
||
during inlining. */
|
||
&& !((TREE_CODE (var) == RESULT_DECL
|
||
|| TREE_CODE (var) == PARM_DECL)
|
||
&& DECL_BY_REFERENCE (var)))
|
||
{
|
||
x = build_sender_ref (ovar, ctx);
|
||
gimplify_assign (var, x, olist);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* A convenience function to build an empty GIMPLE_COND with just the
|
||
condition. */
|
||
|
||
static gimple
|
||
gimple_build_cond_empty (tree cond)
|
||
{
|
||
enum tree_code pred_code;
|
||
tree lhs, rhs;
|
||
|
||
gimple_cond_get_ops_from_tree (cond, &pred_code, &lhs, &rhs);
|
||
return gimple_build_cond (pred_code, lhs, rhs, NULL_TREE, NULL_TREE);
|
||
}
|
||
|
||
|
||
/* Build the function calls to GOMP_parallel_start etc to actually
|
||
generate the parallel operation. REGION is the parallel region
|
||
being expanded. BB is the block where to insert the code. WS_ARGS
|
||
will be set if this is a call to a combined parallel+workshare
|
||
construct, it contains the list of additional arguments needed by
|
||
the workshare construct. */
|
||
|
||
static void
|
||
expand_parallel_call (struct omp_region *region, basic_block bb,
|
||
gimple entry_stmt, VEC(tree,gc) *ws_args)
|
||
{
|
||
tree t, t1, t2, val, cond, c, clauses;
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
enum built_in_function start_ix;
|
||
int start_ix2;
|
||
location_t clause_loc;
|
||
VEC(tree,gc) *args;
|
||
|
||
clauses = gimple_omp_parallel_clauses (entry_stmt);
|
||
|
||
/* Determine what flavor of GOMP_parallel_start we will be
|
||
emitting. */
|
||
start_ix = BUILT_IN_GOMP_PARALLEL_START;
|
||
if (is_combined_parallel (region))
|
||
{
|
||
switch (region->inner->type)
|
||
{
|
||
case GIMPLE_OMP_FOR:
|
||
gcc_assert (region->inner->sched_kind != OMP_CLAUSE_SCHEDULE_AUTO);
|
||
start_ix2 = ((int)BUILT_IN_GOMP_PARALLEL_LOOP_STATIC_START
|
||
+ (region->inner->sched_kind
|
||
== OMP_CLAUSE_SCHEDULE_RUNTIME
|
||
? 3 : region->inner->sched_kind));
|
||
start_ix = (enum built_in_function)start_ix2;
|
||
break;
|
||
case GIMPLE_OMP_SECTIONS:
|
||
start_ix = BUILT_IN_GOMP_PARALLEL_SECTIONS_START;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* By default, the value of NUM_THREADS is zero (selected at run time)
|
||
and there is no conditional. */
|
||
cond = NULL_TREE;
|
||
val = build_int_cst (unsigned_type_node, 0);
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_IF);
|
||
if (c)
|
||
cond = OMP_CLAUSE_IF_EXPR (c);
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_NUM_THREADS);
|
||
if (c)
|
||
{
|
||
val = OMP_CLAUSE_NUM_THREADS_EXPR (c);
|
||
clause_loc = OMP_CLAUSE_LOCATION (c);
|
||
}
|
||
else
|
||
clause_loc = gimple_location (entry_stmt);
|
||
|
||
/* Ensure 'val' is of the correct type. */
|
||
val = fold_convert_loc (clause_loc, unsigned_type_node, val);
|
||
|
||
/* If we found the clause 'if (cond)', build either
|
||
(cond != 0) or (cond ? val : 1u). */
|
||
if (cond)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
cond = gimple_boolify (cond);
|
||
|
||
if (integer_zerop (val))
|
||
val = fold_build2_loc (clause_loc,
|
||
EQ_EXPR, unsigned_type_node, cond,
|
||
build_int_cst (TREE_TYPE (cond), 0));
|
||
else
|
||
{
|
||
basic_block cond_bb, then_bb, else_bb;
|
||
edge e, e_then, e_else;
|
||
tree tmp_then, tmp_else, tmp_join, tmp_var;
|
||
|
||
tmp_var = create_tmp_var (TREE_TYPE (val), NULL);
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
tmp_then = make_ssa_name (tmp_var, NULL);
|
||
tmp_else = make_ssa_name (tmp_var, NULL);
|
||
tmp_join = make_ssa_name (tmp_var, NULL);
|
||
}
|
||
else
|
||
{
|
||
tmp_then = tmp_var;
|
||
tmp_else = tmp_var;
|
||
tmp_join = tmp_var;
|
||
}
|
||
|
||
e = split_block (bb, NULL);
|
||
cond_bb = e->src;
|
||
bb = e->dest;
|
||
remove_edge (e);
|
||
|
||
then_bb = create_empty_bb (cond_bb);
|
||
else_bb = create_empty_bb (then_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, else_bb, cond_bb);
|
||
|
||
stmt = gimple_build_cond_empty (cond);
|
||
gsi = gsi_start_bb (cond_bb);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
gsi = gsi_start_bb (then_bb);
|
||
stmt = gimple_build_assign (tmp_then, val);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
gsi = gsi_start_bb (else_bb);
|
||
stmt = gimple_build_assign
|
||
(tmp_else, build_int_cst (unsigned_type_node, 1));
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
|
||
make_edge (cond_bb, else_bb, EDGE_FALSE_VALUE);
|
||
e_then = make_edge (then_bb, bb, EDGE_FALLTHRU);
|
||
e_else = make_edge (else_bb, bb, EDGE_FALLTHRU);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
gimple phi = create_phi_node (tmp_join, bb);
|
||
add_phi_arg (phi, tmp_then, e_then, UNKNOWN_LOCATION);
|
||
add_phi_arg (phi, tmp_else, e_else, UNKNOWN_LOCATION);
|
||
}
|
||
|
||
val = tmp_join;
|
||
}
|
||
|
||
gsi = gsi_start_bb (bb);
|
||
val = force_gimple_operand_gsi (&gsi, val, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
gsi = gsi_last_bb (bb);
|
||
t = gimple_omp_parallel_data_arg (entry_stmt);
|
||
if (t == NULL)
|
||
t1 = null_pointer_node;
|
||
else
|
||
t1 = build_fold_addr_expr (t);
|
||
t2 = build_fold_addr_expr (gimple_omp_parallel_child_fn (entry_stmt));
|
||
|
||
args = VEC_alloc (tree, gc, 3 + VEC_length (tree, ws_args));
|
||
VEC_quick_push (tree, args, t2);
|
||
VEC_quick_push (tree, args, t1);
|
||
VEC_quick_push (tree, args, val);
|
||
VEC_splice (tree, args, ws_args);
|
||
|
||
t = build_call_expr_loc_vec (UNKNOWN_LOCATION,
|
||
builtin_decl_explicit (start_ix), args);
|
||
|
||
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
|
||
t = gimple_omp_parallel_data_arg (entry_stmt);
|
||
if (t == NULL)
|
||
t = null_pointer_node;
|
||
else
|
||
t = build_fold_addr_expr (t);
|
||
t = build_call_expr_loc (gimple_location (entry_stmt),
|
||
gimple_omp_parallel_child_fn (entry_stmt), 1, t);
|
||
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
|
||
t = build_call_expr_loc (gimple_location (entry_stmt),
|
||
builtin_decl_explicit (BUILT_IN_GOMP_PARALLEL_END),
|
||
0);
|
||
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
|
||
/* Build the function call to GOMP_task to actually
|
||
generate the task operation. BB is the block where to insert the code. */
|
||
|
||
static void
|
||
expand_task_call (basic_block bb, gimple entry_stmt)
|
||
{
|
||
tree t, t1, t2, t3, flags, cond, c, c2, clauses;
|
||
gimple_stmt_iterator gsi;
|
||
location_t loc = gimple_location (entry_stmt);
|
||
|
||
clauses = gimple_omp_task_clauses (entry_stmt);
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_IF);
|
||
if (c)
|
||
cond = gimple_boolify (OMP_CLAUSE_IF_EXPR (c));
|
||
else
|
||
cond = boolean_true_node;
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_UNTIED);
|
||
c2 = find_omp_clause (clauses, OMP_CLAUSE_MERGEABLE);
|
||
flags = build_int_cst (unsigned_type_node,
|
||
(c ? 1 : 0) + (c2 ? 4 : 0));
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_FINAL);
|
||
if (c)
|
||
{
|
||
c = gimple_boolify (OMP_CLAUSE_FINAL_EXPR (c));
|
||
c = fold_build3_loc (loc, COND_EXPR, unsigned_type_node, c,
|
||
build_int_cst (unsigned_type_node, 2),
|
||
build_int_cst (unsigned_type_node, 0));
|
||
flags = fold_build2_loc (loc, PLUS_EXPR, unsigned_type_node, flags, c);
|
||
}
|
||
|
||
gsi = gsi_last_bb (bb);
|
||
t = gimple_omp_task_data_arg (entry_stmt);
|
||
if (t == NULL)
|
||
t2 = null_pointer_node;
|
||
else
|
||
t2 = build_fold_addr_expr_loc (loc, t);
|
||
t1 = build_fold_addr_expr_loc (loc, gimple_omp_task_child_fn (entry_stmt));
|
||
t = gimple_omp_task_copy_fn (entry_stmt);
|
||
if (t == NULL)
|
||
t3 = null_pointer_node;
|
||
else
|
||
t3 = build_fold_addr_expr_loc (loc, t);
|
||
|
||
t = build_call_expr (builtin_decl_explicit (BUILT_IN_GOMP_TASK),
|
||
7, t1, t2, t3,
|
||
gimple_omp_task_arg_size (entry_stmt),
|
||
gimple_omp_task_arg_align (entry_stmt), cond, flags);
|
||
|
||
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
|
||
/* If exceptions are enabled, wrap the statements in BODY in a MUST_NOT_THROW
|
||
catch handler and return it. This prevents programs from violating the
|
||
structured block semantics with throws. */
|
||
|
||
static gimple_seq
|
||
maybe_catch_exception (gimple_seq body)
|
||
{
|
||
gimple g;
|
||
tree decl;
|
||
|
||
if (!flag_exceptions)
|
||
return body;
|
||
|
||
if (lang_hooks.eh_protect_cleanup_actions != NULL)
|
||
decl = lang_hooks.eh_protect_cleanup_actions ();
|
||
else
|
||
decl = builtin_decl_explicit (BUILT_IN_TRAP);
|
||
|
||
g = gimple_build_eh_must_not_throw (decl);
|
||
g = gimple_build_try (body, gimple_seq_alloc_with_stmt (g),
|
||
GIMPLE_TRY_CATCH);
|
||
|
||
return gimple_seq_alloc_with_stmt (g);
|
||
}
|
||
|
||
/* Chain all the DECLs in LIST by their TREE_CHAIN fields. */
|
||
|
||
static tree
|
||
vec2chain (VEC(tree,gc) *v)
|
||
{
|
||
tree chain = NULL_TREE, t;
|
||
unsigned ix;
|
||
|
||
FOR_EACH_VEC_ELT_REVERSE (tree, v, ix, t)
|
||
{
|
||
DECL_CHAIN (t) = chain;
|
||
chain = t;
|
||
}
|
||
|
||
return chain;
|
||
}
|
||
|
||
|
||
/* Remove barriers in REGION->EXIT's block. Note that this is only
|
||
valid for GIMPLE_OMP_PARALLEL regions. Since the end of a parallel region
|
||
is an implicit barrier, any workshare inside the GIMPLE_OMP_PARALLEL that
|
||
left a barrier at the end of the GIMPLE_OMP_PARALLEL region can now be
|
||
removed. */
|
||
|
||
static void
|
||
remove_exit_barrier (struct omp_region *region)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
basic_block exit_bb;
|
||
edge_iterator ei;
|
||
edge e;
|
||
gimple stmt;
|
||
int any_addressable_vars = -1;
|
||
|
||
exit_bb = region->exit;
|
||
|
||
/* If the parallel region doesn't return, we don't have REGION->EXIT
|
||
block at all. */
|
||
if (! exit_bb)
|
||
return;
|
||
|
||
/* The last insn in the block will be the parallel's GIMPLE_OMP_RETURN. The
|
||
workshare's GIMPLE_OMP_RETURN will be in a preceding block. The kinds of
|
||
statements that can appear in between are extremely limited -- no
|
||
memory operations at all. Here, we allow nothing at all, so the
|
||
only thing we allow to precede this GIMPLE_OMP_RETURN is a label. */
|
||
gsi = gsi_last_bb (exit_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
|
||
gsi_prev (&gsi);
|
||
if (!gsi_end_p (gsi) && gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
|
||
return;
|
||
|
||
FOR_EACH_EDGE (e, ei, exit_bb->preds)
|
||
{
|
||
gsi = gsi_last_bb (e->src);
|
||
if (gsi_end_p (gsi))
|
||
continue;
|
||
stmt = gsi_stmt (gsi);
|
||
if (gimple_code (stmt) == GIMPLE_OMP_RETURN
|
||
&& !gimple_omp_return_nowait_p (stmt))
|
||
{
|
||
/* OpenMP 3.0 tasks unfortunately prevent this optimization
|
||
in many cases. If there could be tasks queued, the barrier
|
||
might be needed to let the tasks run before some local
|
||
variable of the parallel that the task uses as shared
|
||
runs out of scope. The task can be spawned either
|
||
from within current function (this would be easy to check)
|
||
or from some function it calls and gets passed an address
|
||
of such a variable. */
|
||
if (any_addressable_vars < 0)
|
||
{
|
||
gimple parallel_stmt = last_stmt (region->entry);
|
||
tree child_fun = gimple_omp_parallel_child_fn (parallel_stmt);
|
||
tree local_decls, block, decl;
|
||
unsigned ix;
|
||
|
||
any_addressable_vars = 0;
|
||
FOR_EACH_LOCAL_DECL (DECL_STRUCT_FUNCTION (child_fun), ix, decl)
|
||
if (TREE_ADDRESSABLE (decl))
|
||
{
|
||
any_addressable_vars = 1;
|
||
break;
|
||
}
|
||
for (block = gimple_block (stmt);
|
||
!any_addressable_vars
|
||
&& block
|
||
&& TREE_CODE (block) == BLOCK;
|
||
block = BLOCK_SUPERCONTEXT (block))
|
||
{
|
||
for (local_decls = BLOCK_VARS (block);
|
||
local_decls;
|
||
local_decls = DECL_CHAIN (local_decls))
|
||
if (TREE_ADDRESSABLE (local_decls))
|
||
{
|
||
any_addressable_vars = 1;
|
||
break;
|
||
}
|
||
if (block == gimple_block (parallel_stmt))
|
||
break;
|
||
}
|
||
}
|
||
if (!any_addressable_vars)
|
||
gimple_omp_return_set_nowait (stmt);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
remove_exit_barriers (struct omp_region *region)
|
||
{
|
||
if (region->type == GIMPLE_OMP_PARALLEL)
|
||
remove_exit_barrier (region);
|
||
|
||
if (region->inner)
|
||
{
|
||
region = region->inner;
|
||
remove_exit_barriers (region);
|
||
while (region->next)
|
||
{
|
||
region = region->next;
|
||
remove_exit_barriers (region);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Optimize omp_get_thread_num () and omp_get_num_threads ()
|
||
calls. These can't be declared as const functions, but
|
||
within one parallel body they are constant, so they can be
|
||
transformed there into __builtin_omp_get_{thread_num,num_threads} ()
|
||
which are declared const. Similarly for task body, except
|
||
that in untied task omp_get_thread_num () can change at any task
|
||
scheduling point. */
|
||
|
||
static void
|
||
optimize_omp_library_calls (gimple entry_stmt)
|
||
{
|
||
basic_block bb;
|
||
gimple_stmt_iterator gsi;
|
||
tree thr_num_tree = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
|
||
tree thr_num_id = DECL_ASSEMBLER_NAME (thr_num_tree);
|
||
tree num_thr_tree = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
|
||
tree num_thr_id = DECL_ASSEMBLER_NAME (num_thr_tree);
|
||
bool untied_task = (gimple_code (entry_stmt) == GIMPLE_OMP_TASK
|
||
&& find_omp_clause (gimple_omp_task_clauses (entry_stmt),
|
||
OMP_CLAUSE_UNTIED) != NULL);
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple call = gsi_stmt (gsi);
|
||
tree decl;
|
||
|
||
if (is_gimple_call (call)
|
||
&& (decl = gimple_call_fndecl (call))
|
||
&& DECL_EXTERNAL (decl)
|
||
&& TREE_PUBLIC (decl)
|
||
&& DECL_INITIAL (decl) == NULL)
|
||
{
|
||
tree built_in;
|
||
|
||
if (DECL_NAME (decl) == thr_num_id)
|
||
{
|
||
/* In #pragma omp task untied omp_get_thread_num () can change
|
||
during the execution of the task region. */
|
||
if (untied_task)
|
||
continue;
|
||
built_in = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
|
||
}
|
||
else if (DECL_NAME (decl) == num_thr_id)
|
||
built_in = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
|
||
else
|
||
continue;
|
||
|
||
if (DECL_ASSEMBLER_NAME (decl) != DECL_ASSEMBLER_NAME (built_in)
|
||
|| gimple_call_num_args (call) != 0)
|
||
continue;
|
||
|
||
if (flag_exceptions && !TREE_NOTHROW (decl))
|
||
continue;
|
||
|
||
if (TREE_CODE (TREE_TYPE (decl)) != FUNCTION_TYPE
|
||
|| !types_compatible_p (TREE_TYPE (TREE_TYPE (decl)),
|
||
TREE_TYPE (TREE_TYPE (built_in))))
|
||
continue;
|
||
|
||
gimple_call_set_fndecl (call, built_in);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Expand the OpenMP parallel or task directive starting at REGION. */
|
||
|
||
static void
|
||
expand_omp_taskreg (struct omp_region *region)
|
||
{
|
||
basic_block entry_bb, exit_bb, new_bb;
|
||
struct function *child_cfun;
|
||
tree child_fn, block, t;
|
||
gimple_stmt_iterator gsi;
|
||
gimple entry_stmt, stmt;
|
||
edge e;
|
||
VEC(tree,gc) *ws_args;
|
||
|
||
entry_stmt = last_stmt (region->entry);
|
||
child_fn = gimple_omp_taskreg_child_fn (entry_stmt);
|
||
child_cfun = DECL_STRUCT_FUNCTION (child_fn);
|
||
|
||
entry_bb = region->entry;
|
||
exit_bb = region->exit;
|
||
|
||
if (is_combined_parallel (region))
|
||
ws_args = region->ws_args;
|
||
else
|
||
ws_args = NULL;
|
||
|
||
if (child_cfun->cfg)
|
||
{
|
||
/* Due to inlining, it may happen that we have already outlined
|
||
the region, in which case all we need to do is make the
|
||
sub-graph unreachable and emit the parallel call. */
|
||
edge entry_succ_e, exit_succ_e;
|
||
gimple_stmt_iterator gsi;
|
||
|
||
entry_succ_e = single_succ_edge (entry_bb);
|
||
|
||
gsi = gsi_last_bb (entry_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_PARALLEL
|
||
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_TASK);
|
||
gsi_remove (&gsi, true);
|
||
|
||
new_bb = entry_bb;
|
||
if (exit_bb)
|
||
{
|
||
exit_succ_e = single_succ_edge (exit_bb);
|
||
make_edge (new_bb, exit_succ_e->dest, EDGE_FALLTHRU);
|
||
}
|
||
remove_edge_and_dominated_blocks (entry_succ_e);
|
||
}
|
||
else
|
||
{
|
||
unsigned srcidx, dstidx, num;
|
||
|
||
/* If the parallel region needs data sent from the parent
|
||
function, then the very first statement (except possible
|
||
tree profile counter updates) of the parallel body
|
||
is a copy assignment .OMP_DATA_I = &.OMP_DATA_O. Since
|
||
&.OMP_DATA_O is passed as an argument to the child function,
|
||
we need to replace it with the argument as seen by the child
|
||
function.
|
||
|
||
In most cases, this will end up being the identity assignment
|
||
.OMP_DATA_I = .OMP_DATA_I. However, if the parallel body had
|
||
a function call that has been inlined, the original PARM_DECL
|
||
.OMP_DATA_I may have been converted into a different local
|
||
variable. In which case, we need to keep the assignment. */
|
||
if (gimple_omp_taskreg_data_arg (entry_stmt))
|
||
{
|
||
basic_block entry_succ_bb = single_succ (entry_bb);
|
||
gimple_stmt_iterator gsi;
|
||
tree arg, narg;
|
||
gimple parcopy_stmt = NULL;
|
||
|
||
for (gsi = gsi_start_bb (entry_succ_bb); ; gsi_next (&gsi))
|
||
{
|
||
gimple stmt;
|
||
|
||
gcc_assert (!gsi_end_p (gsi));
|
||
stmt = gsi_stmt (gsi);
|
||
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
||
continue;
|
||
|
||
if (gimple_num_ops (stmt) == 2)
|
||
{
|
||
tree arg = gimple_assign_rhs1 (stmt);
|
||
|
||
/* We're ignore the subcode because we're
|
||
effectively doing a STRIP_NOPS. */
|
||
|
||
if (TREE_CODE (arg) == ADDR_EXPR
|
||
&& TREE_OPERAND (arg, 0)
|
||
== gimple_omp_taskreg_data_arg (entry_stmt))
|
||
{
|
||
parcopy_stmt = stmt;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
gcc_assert (parcopy_stmt != NULL);
|
||
arg = DECL_ARGUMENTS (child_fn);
|
||
|
||
if (!gimple_in_ssa_p (cfun))
|
||
{
|
||
if (gimple_assign_lhs (parcopy_stmt) == arg)
|
||
gsi_remove (&gsi, true);
|
||
else
|
||
{
|
||
/* ?? Is setting the subcode really necessary ?? */
|
||
gimple_omp_set_subcode (parcopy_stmt, TREE_CODE (arg));
|
||
gimple_assign_set_rhs1 (parcopy_stmt, arg);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If we are in ssa form, we must load the value from the default
|
||
definition of the argument. That should not be defined now,
|
||
since the argument is not used uninitialized. */
|
||
gcc_assert (ssa_default_def (cfun, arg) == NULL);
|
||
narg = make_ssa_name (arg, gimple_build_nop ());
|
||
set_ssa_default_def (cfun, arg, narg);
|
||
/* ?? Is setting the subcode really necessary ?? */
|
||
gimple_omp_set_subcode (parcopy_stmt, TREE_CODE (narg));
|
||
gimple_assign_set_rhs1 (parcopy_stmt, narg);
|
||
update_stmt (parcopy_stmt);
|
||
}
|
||
}
|
||
|
||
/* Declare local variables needed in CHILD_CFUN. */
|
||
block = DECL_INITIAL (child_fn);
|
||
BLOCK_VARS (block) = vec2chain (child_cfun->local_decls);
|
||
/* The gimplifier could record temporaries in parallel/task block
|
||
rather than in containing function's local_decls chain,
|
||
which would mean cgraph missed finalizing them. Do it now. */
|
||
for (t = BLOCK_VARS (block); t; t = DECL_CHAIN (t))
|
||
if (TREE_CODE (t) == VAR_DECL
|
||
&& TREE_STATIC (t)
|
||
&& !DECL_EXTERNAL (t))
|
||
varpool_finalize_decl (t);
|
||
DECL_SAVED_TREE (child_fn) = NULL;
|
||
/* We'll create a CFG for child_fn, so no gimple body is needed. */
|
||
gimple_set_body (child_fn, NULL);
|
||
TREE_USED (block) = 1;
|
||
|
||
/* Reset DECL_CONTEXT on function arguments. */
|
||
for (t = DECL_ARGUMENTS (child_fn); t; t = DECL_CHAIN (t))
|
||
DECL_CONTEXT (t) = child_fn;
|
||
|
||
/* Split ENTRY_BB at GIMPLE_OMP_PARALLEL or GIMPLE_OMP_TASK,
|
||
so that it can be moved to the child function. */
|
||
gsi = gsi_last_bb (entry_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
gcc_assert (stmt && (gimple_code (stmt) == GIMPLE_OMP_PARALLEL
|
||
|| gimple_code (stmt) == GIMPLE_OMP_TASK));
|
||
gsi_remove (&gsi, true);
|
||
e = split_block (entry_bb, stmt);
|
||
entry_bb = e->dest;
|
||
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
/* Convert GIMPLE_OMP_RETURN into a RETURN_EXPR. */
|
||
if (exit_bb)
|
||
{
|
||
gsi = gsi_last_bb (exit_bb);
|
||
gcc_assert (!gsi_end_p (gsi)
|
||
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
|
||
stmt = gimple_build_return (NULL);
|
||
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
}
|
||
|
||
/* Move the parallel region into CHILD_CFUN. */
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
init_tree_ssa (child_cfun);
|
||
init_ssa_operands (child_cfun);
|
||
child_cfun->gimple_df->in_ssa_p = true;
|
||
block = NULL_TREE;
|
||
}
|
||
else
|
||
block = gimple_block (entry_stmt);
|
||
|
||
new_bb = move_sese_region_to_fn (child_cfun, entry_bb, exit_bb, block);
|
||
if (exit_bb)
|
||
single_succ_edge (new_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
/* Remove non-local VAR_DECLs from child_cfun->local_decls list. */
|
||
num = VEC_length (tree, child_cfun->local_decls);
|
||
for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
|
||
{
|
||
t = VEC_index (tree, child_cfun->local_decls, srcidx);
|
||
if (DECL_CONTEXT (t) == cfun->decl)
|
||
continue;
|
||
if (srcidx != dstidx)
|
||
VEC_replace (tree, child_cfun->local_decls, dstidx, t);
|
||
dstidx++;
|
||
}
|
||
if (dstidx != num)
|
||
VEC_truncate (tree, child_cfun->local_decls, dstidx);
|
||
|
||
/* Inform the callgraph about the new function. */
|
||
DECL_STRUCT_FUNCTION (child_fn)->curr_properties
|
||
= cfun->curr_properties & ~PROP_loops;
|
||
cgraph_add_new_function (child_fn, true);
|
||
|
||
/* Fix the callgraph edges for child_cfun. Those for cfun will be
|
||
fixed in a following pass. */
|
||
push_cfun (child_cfun);
|
||
if (optimize)
|
||
optimize_omp_library_calls (entry_stmt);
|
||
rebuild_cgraph_edges ();
|
||
|
||
/* Some EH regions might become dead, see PR34608. If
|
||
pass_cleanup_cfg isn't the first pass to happen with the
|
||
new child, these dead EH edges might cause problems.
|
||
Clean them up now. */
|
||
if (flag_exceptions)
|
||
{
|
||
basic_block bb;
|
||
bool changed = false;
|
||
|
||
FOR_EACH_BB (bb)
|
||
changed |= gimple_purge_dead_eh_edges (bb);
|
||
if (changed)
|
||
cleanup_tree_cfg ();
|
||
}
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa);
|
||
pop_cfun ();
|
||
}
|
||
|
||
/* Emit a library call to launch the children threads. */
|
||
if (gimple_code (entry_stmt) == GIMPLE_OMP_PARALLEL)
|
||
expand_parallel_call (region, new_bb, entry_stmt, ws_args);
|
||
else
|
||
expand_task_call (new_bb, entry_stmt);
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_only_virtuals);
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_omp_for. Generate code for a parallel
|
||
loop with any schedule. Given parameters:
|
||
|
||
for (V = N1; V cond N2; V += STEP) BODY;
|
||
|
||
where COND is "<" or ">", we generate pseudocode
|
||
|
||
more = GOMP_loop_foo_start (N1, N2, STEP, CHUNK, &istart0, &iend0);
|
||
if (more) goto L0; else goto L3;
|
||
L0:
|
||
V = istart0;
|
||
iend = iend0;
|
||
L1:
|
||
BODY;
|
||
V += STEP;
|
||
if (V cond iend) goto L1; else goto L2;
|
||
L2:
|
||
if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3;
|
||
L3:
|
||
|
||
If this is a combined omp parallel loop, instead of the call to
|
||
GOMP_loop_foo_start, we call GOMP_loop_foo_next.
|
||
|
||
For collapsed loops, given parameters:
|
||
collapse(3)
|
||
for (V1 = N11; V1 cond1 N12; V1 += STEP1)
|
||
for (V2 = N21; V2 cond2 N22; V2 += STEP2)
|
||
for (V3 = N31; V3 cond3 N32; V3 += STEP3)
|
||
BODY;
|
||
|
||
we generate pseudocode
|
||
|
||
if (cond3 is <)
|
||
adj = STEP3 - 1;
|
||
else
|
||
adj = STEP3 + 1;
|
||
count3 = (adj + N32 - N31) / STEP3;
|
||
if (cond2 is <)
|
||
adj = STEP2 - 1;
|
||
else
|
||
adj = STEP2 + 1;
|
||
count2 = (adj + N22 - N21) / STEP2;
|
||
if (cond1 is <)
|
||
adj = STEP1 - 1;
|
||
else
|
||
adj = STEP1 + 1;
|
||
count1 = (adj + N12 - N11) / STEP1;
|
||
count = count1 * count2 * count3;
|
||
more = GOMP_loop_foo_start (0, count, 1, CHUNK, &istart0, &iend0);
|
||
if (more) goto L0; else goto L3;
|
||
L0:
|
||
V = istart0;
|
||
T = V;
|
||
V3 = N31 + (T % count3) * STEP3;
|
||
T = T / count3;
|
||
V2 = N21 + (T % count2) * STEP2;
|
||
T = T / count2;
|
||
V1 = N11 + T * STEP1;
|
||
iend = iend0;
|
||
L1:
|
||
BODY;
|
||
V += 1;
|
||
if (V < iend) goto L10; else goto L2;
|
||
L10:
|
||
V3 += STEP3;
|
||
if (V3 cond3 N32) goto L1; else goto L11;
|
||
L11:
|
||
V3 = N31;
|
||
V2 += STEP2;
|
||
if (V2 cond2 N22) goto L1; else goto L12;
|
||
L12:
|
||
V2 = N21;
|
||
V1 += STEP1;
|
||
goto L1;
|
||
L2:
|
||
if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3;
|
||
L3:
|
||
|
||
*/
|
||
|
||
static void
|
||
expand_omp_for_generic (struct omp_region *region,
|
||
struct omp_for_data *fd,
|
||
enum built_in_function start_fn,
|
||
enum built_in_function next_fn)
|
||
{
|
||
tree type, istart0, iend0, iend;
|
||
tree t, vmain, vback, bias = NULL_TREE;
|
||
basic_block entry_bb, cont_bb, exit_bb, l0_bb, l1_bb, collapse_bb;
|
||
basic_block l2_bb = NULL, l3_bb = NULL;
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
bool in_combined_parallel = is_combined_parallel (region);
|
||
bool broken_loop = region->cont == NULL;
|
||
edge e, ne;
|
||
tree *counts = NULL;
|
||
int i;
|
||
|
||
gcc_assert (!broken_loop || !in_combined_parallel);
|
||
gcc_assert (fd->iter_type == long_integer_type_node
|
||
|| !in_combined_parallel);
|
||
|
||
type = TREE_TYPE (fd->loop.v);
|
||
istart0 = create_tmp_var (fd->iter_type, ".istart0");
|
||
iend0 = create_tmp_var (fd->iter_type, ".iend0");
|
||
TREE_ADDRESSABLE (istart0) = 1;
|
||
TREE_ADDRESSABLE (iend0) = 1;
|
||
|
||
/* See if we need to bias by LLONG_MIN. */
|
||
if (fd->iter_type == long_long_unsigned_type_node
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& !TYPE_UNSIGNED (type))
|
||
{
|
||
tree n1, n2;
|
||
|
||
if (fd->loop.cond_code == LT_EXPR)
|
||
{
|
||
n1 = fd->loop.n1;
|
||
n2 = fold_build2 (PLUS_EXPR, type, fd->loop.n2, fd->loop.step);
|
||
}
|
||
else
|
||
{
|
||
n1 = fold_build2 (MINUS_EXPR, type, fd->loop.n2, fd->loop.step);
|
||
n2 = fd->loop.n1;
|
||
}
|
||
if (TREE_CODE (n1) != INTEGER_CST
|
||
|| TREE_CODE (n2) != INTEGER_CST
|
||
|| ((tree_int_cst_sgn (n1) < 0) ^ (tree_int_cst_sgn (n2) < 0)))
|
||
bias = fold_convert (fd->iter_type, TYPE_MIN_VALUE (type));
|
||
}
|
||
|
||
entry_bb = region->entry;
|
||
cont_bb = region->cont;
|
||
collapse_bb = NULL;
|
||
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
|
||
gcc_assert (broken_loop
|
||
|| BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest);
|
||
l0_bb = split_edge (FALLTHRU_EDGE (entry_bb));
|
||
l1_bb = single_succ (l0_bb);
|
||
if (!broken_loop)
|
||
{
|
||
l2_bb = create_empty_bb (cont_bb);
|
||
gcc_assert (BRANCH_EDGE (cont_bb)->dest == l1_bb);
|
||
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
|
||
}
|
||
else
|
||
l2_bb = NULL;
|
||
l3_bb = BRANCH_EDGE (entry_bb)->dest;
|
||
exit_bb = region->exit;
|
||
|
||
gsi = gsi_last_bb (entry_bb);
|
||
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
|
||
if (fd->collapse > 1)
|
||
{
|
||
/* collapsed loops need work for expansion in SSA form. */
|
||
gcc_assert (!gimple_in_ssa_p (cfun));
|
||
counts = (tree *) alloca (fd->collapse * sizeof (tree));
|
||
for (i = 0; i < fd->collapse; i++)
|
||
{
|
||
tree itype = TREE_TYPE (fd->loops[i].v);
|
||
|
||
if (POINTER_TYPE_P (itype))
|
||
itype = signed_type_for (itype);
|
||
t = build_int_cst (itype, (fd->loops[i].cond_code == LT_EXPR
|
||
? -1 : 1));
|
||
t = fold_build2 (PLUS_EXPR, itype,
|
||
fold_convert (itype, fd->loops[i].step), t);
|
||
t = fold_build2 (PLUS_EXPR, itype, t,
|
||
fold_convert (itype, fd->loops[i].n2));
|
||
t = fold_build2 (MINUS_EXPR, itype, t,
|
||
fold_convert (itype, fd->loops[i].n1));
|
||
if (TYPE_UNSIGNED (itype) && fd->loops[i].cond_code == GT_EXPR)
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype,
|
||
fold_build1 (NEGATE_EXPR, itype, t),
|
||
fold_build1 (NEGATE_EXPR, itype,
|
||
fold_convert (itype,
|
||
fd->loops[i].step)));
|
||
else
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype, t,
|
||
fold_convert (itype, fd->loops[i].step));
|
||
t = fold_convert (type, t);
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
counts[i] = t;
|
||
else
|
||
{
|
||
counts[i] = create_tmp_reg (type, ".count");
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (counts[i], t);
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
}
|
||
if (SSA_VAR_P (fd->loop.n2))
|
||
{
|
||
if (i == 0)
|
||
t = counts[0];
|
||
else
|
||
{
|
||
t = fold_build2 (MULT_EXPR, type, fd->loop.n2, counts[i]);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
}
|
||
stmt = gimple_build_assign (fd->loop.n2, t);
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
}
|
||
}
|
||
}
|
||
if (in_combined_parallel)
|
||
{
|
||
/* In a combined parallel loop, emit a call to
|
||
GOMP_loop_foo_next. */
|
||
t = build_call_expr (builtin_decl_explicit (next_fn), 2,
|
||
build_fold_addr_expr (istart0),
|
||
build_fold_addr_expr (iend0));
|
||
}
|
||
else
|
||
{
|
||
tree t0, t1, t2, t3, t4;
|
||
/* If this is not a combined parallel loop, emit a call to
|
||
GOMP_loop_foo_start in ENTRY_BB. */
|
||
t4 = build_fold_addr_expr (iend0);
|
||
t3 = build_fold_addr_expr (istart0);
|
||
t2 = fold_convert (fd->iter_type, fd->loop.step);
|
||
if (POINTER_TYPE_P (type)
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (fd->iter_type))
|
||
{
|
||
/* Avoid casting pointers to integer of a different size. */
|
||
tree itype = signed_type_for (type);
|
||
t1 = fold_convert (fd->iter_type, fold_convert (itype, fd->loop.n2));
|
||
t0 = fold_convert (fd->iter_type, fold_convert (itype, fd->loop.n1));
|
||
}
|
||
else
|
||
{
|
||
t1 = fold_convert (fd->iter_type, fd->loop.n2);
|
||
t0 = fold_convert (fd->iter_type, fd->loop.n1);
|
||
}
|
||
if (bias)
|
||
{
|
||
t1 = fold_build2 (PLUS_EXPR, fd->iter_type, t1, bias);
|
||
t0 = fold_build2 (PLUS_EXPR, fd->iter_type, t0, bias);
|
||
}
|
||
if (fd->iter_type == long_integer_type_node)
|
||
{
|
||
if (fd->chunk_size)
|
||
{
|
||
t = fold_convert (fd->iter_type, fd->chunk_size);
|
||
t = build_call_expr (builtin_decl_explicit (start_fn),
|
||
6, t0, t1, t2, t, t3, t4);
|
||
}
|
||
else
|
||
t = build_call_expr (builtin_decl_explicit (start_fn),
|
||
5, t0, t1, t2, t3, t4);
|
||
}
|
||
else
|
||
{
|
||
tree t5;
|
||
tree c_bool_type;
|
||
tree bfn_decl;
|
||
|
||
/* The GOMP_loop_ull_*start functions have additional boolean
|
||
argument, true for < loops and false for > loops.
|
||
In Fortran, the C bool type can be different from
|
||
boolean_type_node. */
|
||
bfn_decl = builtin_decl_explicit (start_fn);
|
||
c_bool_type = TREE_TYPE (TREE_TYPE (bfn_decl));
|
||
t5 = build_int_cst (c_bool_type,
|
||
fd->loop.cond_code == LT_EXPR ? 1 : 0);
|
||
if (fd->chunk_size)
|
||
{
|
||
tree bfn_decl = builtin_decl_explicit (start_fn);
|
||
t = fold_convert (fd->iter_type, fd->chunk_size);
|
||
t = build_call_expr (bfn_decl, 7, t5, t0, t1, t2, t, t3, t4);
|
||
}
|
||
else
|
||
t = build_call_expr (builtin_decl_explicit (start_fn),
|
||
6, t5, t0, t1, t2, t3, t4);
|
||
}
|
||
}
|
||
if (TREE_TYPE (t) != boolean_type_node)
|
||
t = fold_build2 (NE_EXPR, boolean_type_node,
|
||
t, build_int_cst (TREE_TYPE (t), 0));
|
||
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
gsi_insert_after (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
|
||
|
||
/* Remove the GIMPLE_OMP_FOR statement. */
|
||
gsi_remove (&gsi, true);
|
||
|
||
/* Iteration setup for sequential loop goes in L0_BB. */
|
||
gsi = gsi_start_bb (l0_bb);
|
||
t = istart0;
|
||
if (bias)
|
||
t = fold_build2 (MINUS_EXPR, fd->iter_type, t, bias);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_convert (signed_type_for (type), t);
|
||
t = fold_convert (type, t);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (fd->loop.v, t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
t = iend0;
|
||
if (bias)
|
||
t = fold_build2 (MINUS_EXPR, fd->iter_type, t, bias);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_convert (signed_type_for (type), t);
|
||
t = fold_convert (type, t);
|
||
iend = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
if (fd->collapse > 1)
|
||
{
|
||
tree tem = create_tmp_reg (type, ".tem");
|
||
stmt = gimple_build_assign (tem, fd->loop.v);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
for (i = fd->collapse - 1; i >= 0; i--)
|
||
{
|
||
tree vtype = TREE_TYPE (fd->loops[i].v), itype;
|
||
itype = vtype;
|
||
if (POINTER_TYPE_P (vtype))
|
||
itype = signed_type_for (vtype);
|
||
t = fold_build2 (TRUNC_MOD_EXPR, type, tem, counts[i]);
|
||
t = fold_convert (itype, t);
|
||
t = fold_build2 (MULT_EXPR, itype, t,
|
||
fold_convert (itype, fd->loops[i].step));
|
||
if (POINTER_TYPE_P (vtype))
|
||
t = fold_build_pointer_plus (fd->loops[i].n1, t);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, itype, fd->loops[i].n1, t);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (fd->loops[i].v, t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
if (i != 0)
|
||
{
|
||
t = fold_build2 (TRUNC_DIV_EXPR, type, tem, counts[i]);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (tem, t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!broken_loop)
|
||
{
|
||
/* Code to control the increment and predicate for the sequential
|
||
loop goes in the CONT_BB. */
|
||
gsi = gsi_last_bb (cont_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE);
|
||
vmain = gimple_omp_continue_control_use (stmt);
|
||
vback = gimple_omp_continue_control_def (stmt);
|
||
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (vmain, fd->loop.step);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, vmain, fd->loop.step);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (vback, t);
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
|
||
t = build2 (fd->loop.cond_code, boolean_type_node, vback, iend);
|
||
stmt = gimple_build_cond_empty (t);
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
|
||
/* Remove GIMPLE_OMP_CONTINUE. */
|
||
gsi_remove (&gsi, true);
|
||
|
||
if (fd->collapse > 1)
|
||
{
|
||
basic_block last_bb, bb;
|
||
|
||
last_bb = cont_bb;
|
||
for (i = fd->collapse - 1; i >= 0; i--)
|
||
{
|
||
tree vtype = TREE_TYPE (fd->loops[i].v);
|
||
|
||
bb = create_empty_bb (last_bb);
|
||
gsi = gsi_start_bb (bb);
|
||
|
||
if (i < fd->collapse - 1)
|
||
{
|
||
e = make_edge (last_bb, bb, EDGE_FALSE_VALUE);
|
||
e->probability = REG_BR_PROB_BASE / 8;
|
||
|
||
t = fd->loops[i + 1].n1;
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (fd->loops[i + 1].v, t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
}
|
||
else
|
||
collapse_bb = bb;
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, bb, last_bb);
|
||
|
||
if (POINTER_TYPE_P (vtype))
|
||
t = fold_build_pointer_plus (fd->loops[i].v, fd->loops[i].step);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, vtype, fd->loops[i].v,
|
||
fd->loops[i].step);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (fd->loops[i].v, t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
if (i > 0)
|
||
{
|
||
t = fd->loops[i].n2;
|
||
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
t = fold_build2 (fd->loops[i].cond_code, boolean_type_node,
|
||
fd->loops[i].v, t);
|
||
stmt = gimple_build_cond_empty (t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
e = make_edge (bb, l1_bb, EDGE_TRUE_VALUE);
|
||
e->probability = REG_BR_PROB_BASE * 7 / 8;
|
||
}
|
||
else
|
||
make_edge (bb, l1_bb, EDGE_FALLTHRU);
|
||
last_bb = bb;
|
||
}
|
||
}
|
||
|
||
/* Emit code to get the next parallel iteration in L2_BB. */
|
||
gsi = gsi_start_bb (l2_bb);
|
||
|
||
t = build_call_expr (builtin_decl_explicit (next_fn), 2,
|
||
build_fold_addr_expr (istart0),
|
||
build_fold_addr_expr (iend0));
|
||
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
if (TREE_TYPE (t) != boolean_type_node)
|
||
t = fold_build2 (NE_EXPR, boolean_type_node,
|
||
t, build_int_cst (TREE_TYPE (t), 0));
|
||
stmt = gimple_build_cond_empty (t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
/* Add the loop cleanup function. */
|
||
gsi = gsi_last_bb (exit_bb);
|
||
if (gimple_omp_return_nowait_p (gsi_stmt (gsi)))
|
||
t = builtin_decl_explicit (BUILT_IN_GOMP_LOOP_END_NOWAIT);
|
||
else
|
||
t = builtin_decl_explicit (BUILT_IN_GOMP_LOOP_END);
|
||
stmt = gimple_build_call (t, 0);
|
||
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
|
||
/* Connect the new blocks. */
|
||
find_edge (entry_bb, l0_bb)->flags = EDGE_TRUE_VALUE;
|
||
find_edge (entry_bb, l3_bb)->flags = EDGE_FALSE_VALUE;
|
||
|
||
if (!broken_loop)
|
||
{
|
||
gimple_seq phis;
|
||
|
||
e = find_edge (cont_bb, l3_bb);
|
||
ne = make_edge (l2_bb, l3_bb, EDGE_FALSE_VALUE);
|
||
|
||
phis = phi_nodes (l3_bb);
|
||
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple phi = gsi_stmt (gsi);
|
||
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, ne),
|
||
PHI_ARG_DEF_FROM_EDGE (phi, e));
|
||
}
|
||
remove_edge (e);
|
||
|
||
make_edge (cont_bb, l2_bb, EDGE_FALSE_VALUE);
|
||
if (fd->collapse > 1)
|
||
{
|
||
e = find_edge (cont_bb, l1_bb);
|
||
remove_edge (e);
|
||
e = make_edge (cont_bb, collapse_bb, EDGE_TRUE_VALUE);
|
||
}
|
||
else
|
||
{
|
||
e = find_edge (cont_bb, l1_bb);
|
||
e->flags = EDGE_TRUE_VALUE;
|
||
}
|
||
e->probability = REG_BR_PROB_BASE * 7 / 8;
|
||
find_edge (cont_bb, l2_bb)->probability = REG_BR_PROB_BASE / 8;
|
||
make_edge (l2_bb, l0_bb, EDGE_TRUE_VALUE);
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, l2_bb,
|
||
recompute_dominator (CDI_DOMINATORS, l2_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, l3_bb,
|
||
recompute_dominator (CDI_DOMINATORS, l3_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, l0_bb,
|
||
recompute_dominator (CDI_DOMINATORS, l0_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, l1_bb,
|
||
recompute_dominator (CDI_DOMINATORS, l1_bb));
|
||
}
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_omp_for. Generate code for a parallel
|
||
loop with static schedule and no specified chunk size. Given
|
||
parameters:
|
||
|
||
for (V = N1; V cond N2; V += STEP) BODY;
|
||
|
||
where COND is "<" or ">", we generate pseudocode
|
||
|
||
if (cond is <)
|
||
adj = STEP - 1;
|
||
else
|
||
adj = STEP + 1;
|
||
if ((__typeof (V)) -1 > 0 && cond is >)
|
||
n = -(adj + N2 - N1) / -STEP;
|
||
else
|
||
n = (adj + N2 - N1) / STEP;
|
||
q = n / nthreads;
|
||
tt = n % nthreads;
|
||
if (threadid < tt) goto L3; else goto L4;
|
||
L3:
|
||
tt = 0;
|
||
q = q + 1;
|
||
L4:
|
||
s0 = q * threadid + tt;
|
||
e0 = s0 + q;
|
||
V = s0 * STEP + N1;
|
||
if (s0 >= e0) goto L2; else goto L0;
|
||
L0:
|
||
e = e0 * STEP + N1;
|
||
L1:
|
||
BODY;
|
||
V += STEP;
|
||
if (V cond e) goto L1;
|
||
L2:
|
||
*/
|
||
|
||
static void
|
||
expand_omp_for_static_nochunk (struct omp_region *region,
|
||
struct omp_for_data *fd)
|
||
{
|
||
tree n, q, s0, e0, e, t, tt, nthreads, threadid;
|
||
tree type, itype, vmain, vback;
|
||
basic_block entry_bb, second_bb, third_bb, exit_bb, seq_start_bb;
|
||
basic_block body_bb, cont_bb;
|
||
basic_block fin_bb;
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
edge ep;
|
||
|
||
itype = type = TREE_TYPE (fd->loop.v);
|
||
if (POINTER_TYPE_P (type))
|
||
itype = signed_type_for (type);
|
||
|
||
entry_bb = region->entry;
|
||
cont_bb = region->cont;
|
||
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
|
||
gcc_assert (BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest);
|
||
seq_start_bb = split_edge (FALLTHRU_EDGE (entry_bb));
|
||
body_bb = single_succ (seq_start_bb);
|
||
gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb);
|
||
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
|
||
fin_bb = FALLTHRU_EDGE (cont_bb)->dest;
|
||
exit_bb = region->exit;
|
||
|
||
/* Iteration space partitioning goes in ENTRY_BB. */
|
||
gsi = gsi_last_bb (entry_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
|
||
|
||
t = build_call_expr (builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS), 0);
|
||
t = fold_convert (itype, t);
|
||
nthreads = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
t = build_call_expr (builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM), 0);
|
||
t = fold_convert (itype, t);
|
||
threadid = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
fd->loop.n1
|
||
= force_gimple_operand_gsi (&gsi, fold_convert (type, fd->loop.n1),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
fd->loop.n2
|
||
= force_gimple_operand_gsi (&gsi, fold_convert (itype, fd->loop.n2),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
fd->loop.step
|
||
= force_gimple_operand_gsi (&gsi, fold_convert (itype, fd->loop.step),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
t = build_int_cst (itype, (fd->loop.cond_code == LT_EXPR ? -1 : 1));
|
||
t = fold_build2 (PLUS_EXPR, itype, fd->loop.step, t);
|
||
t = fold_build2 (PLUS_EXPR, itype, t, fd->loop.n2);
|
||
t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, fd->loop.n1));
|
||
if (TYPE_UNSIGNED (itype) && fd->loop.cond_code == GT_EXPR)
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype,
|
||
fold_build1 (NEGATE_EXPR, itype, t),
|
||
fold_build1 (NEGATE_EXPR, itype, fd->loop.step));
|
||
else
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype, t, fd->loop.step);
|
||
t = fold_convert (itype, t);
|
||
n = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
q = create_tmp_reg (itype, "q");
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype, n, nthreads);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, true, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, gimple_build_assign (q, t), GSI_SAME_STMT);
|
||
|
||
tt = create_tmp_reg (itype, "tt");
|
||
t = fold_build2 (TRUNC_MOD_EXPR, itype, n, nthreads);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, true, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, gimple_build_assign (tt, t), GSI_SAME_STMT);
|
||
|
||
t = build2 (LT_EXPR, boolean_type_node, threadid, tt);
|
||
stmt = gimple_build_cond_empty (t);
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
|
||
second_bb = split_block (entry_bb, stmt)->dest;
|
||
gsi = gsi_last_bb (second_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
|
||
|
||
gsi_insert_before (&gsi, gimple_build_assign (tt, build_int_cst (itype, 0)),
|
||
GSI_SAME_STMT);
|
||
stmt = gimple_build_assign_with_ops (PLUS_EXPR, q, q,
|
||
build_int_cst (itype, 1));
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
|
||
third_bb = split_block (second_bb, stmt)->dest;
|
||
gsi = gsi_last_bb (third_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
|
||
|
||
t = build2 (MULT_EXPR, itype, q, threadid);
|
||
t = build2 (PLUS_EXPR, itype, t, tt);
|
||
s0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
t = fold_build2 (PLUS_EXPR, itype, s0, q);
|
||
e0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
t = build2 (GE_EXPR, boolean_type_node, s0, e0);
|
||
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
|
||
|
||
/* Remove the GIMPLE_OMP_FOR statement. */
|
||
gsi_remove (&gsi, true);
|
||
|
||
/* Setup code for sequential iteration goes in SEQ_START_BB. */
|
||
gsi = gsi_start_bb (seq_start_bb);
|
||
|
||
t = fold_convert (itype, s0);
|
||
t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (fd->loop.n1, t);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (fd->loop.v, t);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
t = fold_convert (itype, e0);
|
||
t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (fd->loop.n1, t);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1);
|
||
e = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
|
||
/* The code controlling the sequential loop replaces the
|
||
GIMPLE_OMP_CONTINUE. */
|
||
gsi = gsi_last_bb (cont_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE);
|
||
vmain = gimple_omp_continue_control_use (stmt);
|
||
vback = gimple_omp_continue_control_def (stmt);
|
||
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (vmain, fd->loop.step);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, vmain, fd->loop.step);
|
||
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (vback, t);
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
|
||
t = build2 (fd->loop.cond_code, boolean_type_node, vback, e);
|
||
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
|
||
|
||
/* Remove the GIMPLE_OMP_CONTINUE statement. */
|
||
gsi_remove (&gsi, true);
|
||
|
||
/* Replace the GIMPLE_OMP_RETURN with a barrier, or nothing. */
|
||
gsi = gsi_last_bb (exit_bb);
|
||
if (!gimple_omp_return_nowait_p (gsi_stmt (gsi)))
|
||
force_gimple_operand_gsi (&gsi, build_omp_barrier (), false, NULL_TREE,
|
||
false, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
|
||
/* Connect all the blocks. */
|
||
ep = make_edge (entry_bb, third_bb, EDGE_FALSE_VALUE);
|
||
ep->probability = REG_BR_PROB_BASE / 4 * 3;
|
||
ep = find_edge (entry_bb, second_bb);
|
||
ep->flags = EDGE_TRUE_VALUE;
|
||
ep->probability = REG_BR_PROB_BASE / 4;
|
||
find_edge (third_bb, seq_start_bb)->flags = EDGE_FALSE_VALUE;
|
||
find_edge (third_bb, fin_bb)->flags = EDGE_TRUE_VALUE;
|
||
|
||
find_edge (cont_bb, body_bb)->flags = EDGE_TRUE_VALUE;
|
||
find_edge (cont_bb, fin_bb)->flags = EDGE_FALSE_VALUE;
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, second_bb, entry_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, third_bb, entry_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, seq_start_bb, third_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, body_bb,
|
||
recompute_dominator (CDI_DOMINATORS, body_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, fin_bb,
|
||
recompute_dominator (CDI_DOMINATORS, fin_bb));
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_omp_for. Generate code for a parallel
|
||
loop with static schedule and a specified chunk size. Given
|
||
parameters:
|
||
|
||
for (V = N1; V cond N2; V += STEP) BODY;
|
||
|
||
where COND is "<" or ">", we generate pseudocode
|
||
|
||
if (cond is <)
|
||
adj = STEP - 1;
|
||
else
|
||
adj = STEP + 1;
|
||
if ((__typeof (V)) -1 > 0 && cond is >)
|
||
n = -(adj + N2 - N1) / -STEP;
|
||
else
|
||
n = (adj + N2 - N1) / STEP;
|
||
trip = 0;
|
||
V = threadid * CHUNK * STEP + N1; -- this extra definition of V is
|
||
here so that V is defined
|
||
if the loop is not entered
|
||
L0:
|
||
s0 = (trip * nthreads + threadid) * CHUNK;
|
||
e0 = min(s0 + CHUNK, n);
|
||
if (s0 < n) goto L1; else goto L4;
|
||
L1:
|
||
V = s0 * STEP + N1;
|
||
e = e0 * STEP + N1;
|
||
L2:
|
||
BODY;
|
||
V += STEP;
|
||
if (V cond e) goto L2; else goto L3;
|
||
L3:
|
||
trip += 1;
|
||
goto L0;
|
||
L4:
|
||
*/
|
||
|
||
static void
|
||
expand_omp_for_static_chunk (struct omp_region *region, struct omp_for_data *fd)
|
||
{
|
||
tree n, s0, e0, e, t;
|
||
tree trip_var, trip_init, trip_main, trip_back, nthreads, threadid;
|
||
tree type, itype, v_main, v_back, v_extra;
|
||
basic_block entry_bb, exit_bb, body_bb, seq_start_bb, iter_part_bb;
|
||
basic_block trip_update_bb, cont_bb, fin_bb;
|
||
gimple_stmt_iterator si;
|
||
gimple stmt;
|
||
edge se;
|
||
|
||
itype = type = TREE_TYPE (fd->loop.v);
|
||
if (POINTER_TYPE_P (type))
|
||
itype = signed_type_for (type);
|
||
|
||
entry_bb = region->entry;
|
||
se = split_block (entry_bb, last_stmt (entry_bb));
|
||
entry_bb = se->src;
|
||
iter_part_bb = se->dest;
|
||
cont_bb = region->cont;
|
||
gcc_assert (EDGE_COUNT (iter_part_bb->succs) == 2);
|
||
gcc_assert (BRANCH_EDGE (iter_part_bb)->dest
|
||
== FALLTHRU_EDGE (cont_bb)->dest);
|
||
seq_start_bb = split_edge (FALLTHRU_EDGE (iter_part_bb));
|
||
body_bb = single_succ (seq_start_bb);
|
||
gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb);
|
||
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
|
||
fin_bb = FALLTHRU_EDGE (cont_bb)->dest;
|
||
trip_update_bb = split_edge (FALLTHRU_EDGE (cont_bb));
|
||
exit_bb = region->exit;
|
||
|
||
/* Trip and adjustment setup goes in ENTRY_BB. */
|
||
si = gsi_last_bb (entry_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_FOR);
|
||
|
||
t = build_call_expr (builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS), 0);
|
||
t = fold_convert (itype, t);
|
||
nthreads = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
t = build_call_expr (builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM), 0);
|
||
t = fold_convert (itype, t);
|
||
threadid = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
fd->loop.n1
|
||
= force_gimple_operand_gsi (&si, fold_convert (type, fd->loop.n1),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
fd->loop.n2
|
||
= force_gimple_operand_gsi (&si, fold_convert (itype, fd->loop.n2),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
fd->loop.step
|
||
= force_gimple_operand_gsi (&si, fold_convert (itype, fd->loop.step),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
fd->chunk_size
|
||
= force_gimple_operand_gsi (&si, fold_convert (itype, fd->chunk_size),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
t = build_int_cst (itype, (fd->loop.cond_code == LT_EXPR ? -1 : 1));
|
||
t = fold_build2 (PLUS_EXPR, itype, fd->loop.step, t);
|
||
t = fold_build2 (PLUS_EXPR, itype, t, fd->loop.n2);
|
||
t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, fd->loop.n1));
|
||
if (TYPE_UNSIGNED (itype) && fd->loop.cond_code == GT_EXPR)
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype,
|
||
fold_build1 (NEGATE_EXPR, itype, t),
|
||
fold_build1 (NEGATE_EXPR, itype, fd->loop.step));
|
||
else
|
||
t = fold_build2 (TRUNC_DIV_EXPR, itype, t, fd->loop.step);
|
||
t = fold_convert (itype, t);
|
||
n = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
trip_var = create_tmp_reg (itype, ".trip");
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
trip_init = make_ssa_name (trip_var, NULL);
|
||
trip_main = make_ssa_name (trip_var, NULL);
|
||
trip_back = make_ssa_name (trip_var, NULL);
|
||
}
|
||
else
|
||
{
|
||
trip_init = trip_var;
|
||
trip_main = trip_var;
|
||
trip_back = trip_var;
|
||
}
|
||
|
||
stmt = gimple_build_assign (trip_init, build_int_cst (itype, 0));
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
|
||
t = fold_build2 (MULT_EXPR, itype, threadid, fd->chunk_size);
|
||
t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (fd->loop.n1, t);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1);
|
||
v_extra = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
/* Remove the GIMPLE_OMP_FOR. */
|
||
gsi_remove (&si, true);
|
||
|
||
/* Iteration space partitioning goes in ITER_PART_BB. */
|
||
si = gsi_last_bb (iter_part_bb);
|
||
|
||
t = fold_build2 (MULT_EXPR, itype, trip_main, nthreads);
|
||
t = fold_build2 (PLUS_EXPR, itype, t, threadid);
|
||
t = fold_build2 (MULT_EXPR, itype, t, fd->chunk_size);
|
||
s0 = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
|
||
t = fold_build2 (PLUS_EXPR, itype, s0, fd->chunk_size);
|
||
t = fold_build2 (MIN_EXPR, itype, t, n);
|
||
e0 = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
|
||
t = build2 (LT_EXPR, boolean_type_node, s0, n);
|
||
gsi_insert_after (&si, gimple_build_cond_empty (t), GSI_CONTINUE_LINKING);
|
||
|
||
/* Setup code for sequential iteration goes in SEQ_START_BB. */
|
||
si = gsi_start_bb (seq_start_bb);
|
||
|
||
t = fold_convert (itype, s0);
|
||
t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (fd->loop.n1, t);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1);
|
||
t = force_gimple_operand_gsi (&si, t, false, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
stmt = gimple_build_assign (fd->loop.v, t);
|
||
gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
t = fold_convert (itype, e0);
|
||
t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step);
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (fd->loop.n1, t);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1);
|
||
e = force_gimple_operand_gsi (&si, t, true, NULL_TREE,
|
||
false, GSI_CONTINUE_LINKING);
|
||
|
||
/* The code controlling the sequential loop goes in CONT_BB,
|
||
replacing the GIMPLE_OMP_CONTINUE. */
|
||
si = gsi_last_bb (cont_bb);
|
||
stmt = gsi_stmt (si);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE);
|
||
v_main = gimple_omp_continue_control_use (stmt);
|
||
v_back = gimple_omp_continue_control_def (stmt);
|
||
|
||
if (POINTER_TYPE_P (type))
|
||
t = fold_build_pointer_plus (v_main, fd->loop.step);
|
||
else
|
||
t = fold_build2 (PLUS_EXPR, type, v_main, fd->loop.step);
|
||
stmt = gimple_build_assign (v_back, t);
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
|
||
t = build2 (fd->loop.cond_code, boolean_type_node, v_back, e);
|
||
gsi_insert_before (&si, gimple_build_cond_empty (t), GSI_SAME_STMT);
|
||
|
||
/* Remove GIMPLE_OMP_CONTINUE. */
|
||
gsi_remove (&si, true);
|
||
|
||
/* Trip update code goes into TRIP_UPDATE_BB. */
|
||
si = gsi_start_bb (trip_update_bb);
|
||
|
||
t = build_int_cst (itype, 1);
|
||
t = build2 (PLUS_EXPR, itype, trip_main, t);
|
||
stmt = gimple_build_assign (trip_back, t);
|
||
gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
/* Replace the GIMPLE_OMP_RETURN with a barrier, or nothing. */
|
||
si = gsi_last_bb (exit_bb);
|
||
if (!gimple_omp_return_nowait_p (gsi_stmt (si)))
|
||
force_gimple_operand_gsi (&si, build_omp_barrier (), false, NULL_TREE,
|
||
false, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
|
||
/* Connect the new blocks. */
|
||
find_edge (iter_part_bb, seq_start_bb)->flags = EDGE_TRUE_VALUE;
|
||
find_edge (iter_part_bb, fin_bb)->flags = EDGE_FALSE_VALUE;
|
||
|
||
find_edge (cont_bb, body_bb)->flags = EDGE_TRUE_VALUE;
|
||
find_edge (cont_bb, trip_update_bb)->flags = EDGE_FALSE_VALUE;
|
||
|
||
redirect_edge_and_branch (single_succ_edge (trip_update_bb), iter_part_bb);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
gimple_stmt_iterator psi;
|
||
gimple phi;
|
||
edge re, ene;
|
||
edge_var_map_vector head;
|
||
edge_var_map *vm;
|
||
size_t i;
|
||
|
||
/* When we redirect the edge from trip_update_bb to iter_part_bb, we
|
||
remove arguments of the phi nodes in fin_bb. We need to create
|
||
appropriate phi nodes in iter_part_bb instead. */
|
||
se = single_pred_edge (fin_bb);
|
||
re = single_succ_edge (trip_update_bb);
|
||
head = redirect_edge_var_map_vector (re);
|
||
ene = single_succ_edge (entry_bb);
|
||
|
||
psi = gsi_start_phis (fin_bb);
|
||
for (i = 0; !gsi_end_p (psi) && VEC_iterate (edge_var_map, head, i, vm);
|
||
gsi_next (&psi), ++i)
|
||
{
|
||
gimple nphi;
|
||
source_location locus;
|
||
|
||
phi = gsi_stmt (psi);
|
||
t = gimple_phi_result (phi);
|
||
gcc_assert (t == redirect_edge_var_map_result (vm));
|
||
nphi = create_phi_node (t, iter_part_bb);
|
||
|
||
t = PHI_ARG_DEF_FROM_EDGE (phi, se);
|
||
locus = gimple_phi_arg_location_from_edge (phi, se);
|
||
|
||
/* A special case -- fd->loop.v is not yet computed in
|
||
iter_part_bb, we need to use v_extra instead. */
|
||
if (t == fd->loop.v)
|
||
t = v_extra;
|
||
add_phi_arg (nphi, t, ene, locus);
|
||
locus = redirect_edge_var_map_location (vm);
|
||
add_phi_arg (nphi, redirect_edge_var_map_def (vm), re, locus);
|
||
}
|
||
gcc_assert (!gsi_end_p (psi) && i == VEC_length (edge_var_map, head));
|
||
redirect_edge_var_map_clear (re);
|
||
while (1)
|
||
{
|
||
psi = gsi_start_phis (fin_bb);
|
||
if (gsi_end_p (psi))
|
||
break;
|
||
remove_phi_node (&psi, false);
|
||
}
|
||
|
||
/* Make phi node for trip. */
|
||
phi = create_phi_node (trip_main, iter_part_bb);
|
||
add_phi_arg (phi, trip_back, single_succ_edge (trip_update_bb),
|
||
UNKNOWN_LOCATION);
|
||
add_phi_arg (phi, trip_init, single_succ_edge (entry_bb),
|
||
UNKNOWN_LOCATION);
|
||
}
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, trip_update_bb, cont_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, iter_part_bb,
|
||
recompute_dominator (CDI_DOMINATORS, iter_part_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, fin_bb,
|
||
recompute_dominator (CDI_DOMINATORS, fin_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, seq_start_bb,
|
||
recompute_dominator (CDI_DOMINATORS, seq_start_bb));
|
||
set_immediate_dominator (CDI_DOMINATORS, body_bb,
|
||
recompute_dominator (CDI_DOMINATORS, body_bb));
|
||
}
|
||
|
||
|
||
/* Expand the OpenMP loop defined by REGION. */
|
||
|
||
static void
|
||
expand_omp_for (struct omp_region *region)
|
||
{
|
||
struct omp_for_data fd;
|
||
struct omp_for_data_loop *loops;
|
||
|
||
loops
|
||
= (struct omp_for_data_loop *)
|
||
alloca (gimple_omp_for_collapse (last_stmt (region->entry))
|
||
* sizeof (struct omp_for_data_loop));
|
||
extract_omp_for_data (last_stmt (region->entry), &fd, loops);
|
||
region->sched_kind = fd.sched_kind;
|
||
|
||
gcc_assert (EDGE_COUNT (region->entry->succs) == 2);
|
||
BRANCH_EDGE (region->entry)->flags &= ~EDGE_ABNORMAL;
|
||
FALLTHRU_EDGE (region->entry)->flags &= ~EDGE_ABNORMAL;
|
||
if (region->cont)
|
||
{
|
||
gcc_assert (EDGE_COUNT (region->cont->succs) == 2);
|
||
BRANCH_EDGE (region->cont)->flags &= ~EDGE_ABNORMAL;
|
||
FALLTHRU_EDGE (region->cont)->flags &= ~EDGE_ABNORMAL;
|
||
}
|
||
|
||
if (fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC
|
||
&& !fd.have_ordered
|
||
&& fd.collapse == 1
|
||
&& region->cont != NULL)
|
||
{
|
||
if (fd.chunk_size == NULL)
|
||
expand_omp_for_static_nochunk (region, &fd);
|
||
else
|
||
expand_omp_for_static_chunk (region, &fd);
|
||
}
|
||
else
|
||
{
|
||
int fn_index, start_ix, next_ix;
|
||
|
||
if (fd.chunk_size == NULL
|
||
&& fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC)
|
||
fd.chunk_size = integer_zero_node;
|
||
gcc_assert (fd.sched_kind != OMP_CLAUSE_SCHEDULE_AUTO);
|
||
fn_index = (fd.sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME)
|
||
? 3 : fd.sched_kind;
|
||
fn_index += fd.have_ordered * 4;
|
||
start_ix = ((int)BUILT_IN_GOMP_LOOP_STATIC_START) + fn_index;
|
||
next_ix = ((int)BUILT_IN_GOMP_LOOP_STATIC_NEXT) + fn_index;
|
||
if (fd.iter_type == long_long_unsigned_type_node)
|
||
{
|
||
start_ix += ((int)BUILT_IN_GOMP_LOOP_ULL_STATIC_START
|
||
- (int)BUILT_IN_GOMP_LOOP_STATIC_START);
|
||
next_ix += ((int)BUILT_IN_GOMP_LOOP_ULL_STATIC_NEXT
|
||
- (int)BUILT_IN_GOMP_LOOP_STATIC_NEXT);
|
||
}
|
||
expand_omp_for_generic (region, &fd, (enum built_in_function) start_ix,
|
||
(enum built_in_function) next_ix);
|
||
}
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_only_virtuals);
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP sections directive. In pseudo code, we generate
|
||
|
||
v = GOMP_sections_start (n);
|
||
L0:
|
||
switch (v)
|
||
{
|
||
case 0:
|
||
goto L2;
|
||
case 1:
|
||
section 1;
|
||
goto L1;
|
||
case 2:
|
||
...
|
||
case n:
|
||
...
|
||
default:
|
||
abort ();
|
||
}
|
||
L1:
|
||
v = GOMP_sections_next ();
|
||
goto L0;
|
||
L2:
|
||
reduction;
|
||
|
||
If this is a combined parallel sections, replace the call to
|
||
GOMP_sections_start with call to GOMP_sections_next. */
|
||
|
||
static void
|
||
expand_omp_sections (struct omp_region *region)
|
||
{
|
||
tree t, u, vin = NULL, vmain, vnext, l2;
|
||
VEC (tree,heap) *label_vec;
|
||
unsigned len;
|
||
basic_block entry_bb, l0_bb, l1_bb, l2_bb, default_bb;
|
||
gimple_stmt_iterator si, switch_si;
|
||
gimple sections_stmt, stmt, cont;
|
||
edge_iterator ei;
|
||
edge e;
|
||
struct omp_region *inner;
|
||
unsigned i, casei;
|
||
bool exit_reachable = region->cont != NULL;
|
||
|
||
gcc_assert (region->exit != NULL);
|
||
entry_bb = region->entry;
|
||
l0_bb = single_succ (entry_bb);
|
||
l1_bb = region->cont;
|
||
l2_bb = region->exit;
|
||
if (single_pred_p (l2_bb) && single_pred (l2_bb) == l0_bb)
|
||
l2 = gimple_block_label (l2_bb);
|
||
else
|
||
{
|
||
/* This can happen if there are reductions. */
|
||
len = EDGE_COUNT (l0_bb->succs);
|
||
gcc_assert (len > 0);
|
||
e = EDGE_SUCC (l0_bb, len - 1);
|
||
si = gsi_last_bb (e->dest);
|
||
l2 = NULL_TREE;
|
||
if (gsi_end_p (si)
|
||
|| gimple_code (gsi_stmt (si)) != GIMPLE_OMP_SECTION)
|
||
l2 = gimple_block_label (e->dest);
|
||
else
|
||
FOR_EACH_EDGE (e, ei, l0_bb->succs)
|
||
{
|
||
si = gsi_last_bb (e->dest);
|
||
if (gsi_end_p (si)
|
||
|| gimple_code (gsi_stmt (si)) != GIMPLE_OMP_SECTION)
|
||
{
|
||
l2 = gimple_block_label (e->dest);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (exit_reachable)
|
||
default_bb = create_empty_bb (l1_bb->prev_bb);
|
||
else
|
||
default_bb = create_empty_bb (l0_bb);
|
||
|
||
/* We will build a switch() with enough cases for all the
|
||
GIMPLE_OMP_SECTION regions, a '0' case to handle the end of more work
|
||
and a default case to abort if something goes wrong. */
|
||
len = EDGE_COUNT (l0_bb->succs);
|
||
|
||
/* Use VEC_quick_push on label_vec throughout, since we know the size
|
||
in advance. */
|
||
label_vec = VEC_alloc (tree, heap, len);
|
||
|
||
/* The call to GOMP_sections_start goes in ENTRY_BB, replacing the
|
||
GIMPLE_OMP_SECTIONS statement. */
|
||
si = gsi_last_bb (entry_bb);
|
||
sections_stmt = gsi_stmt (si);
|
||
gcc_assert (gimple_code (sections_stmt) == GIMPLE_OMP_SECTIONS);
|
||
vin = gimple_omp_sections_control (sections_stmt);
|
||
if (!is_combined_parallel (region))
|
||
{
|
||
/* If we are not inside a combined parallel+sections region,
|
||
call GOMP_sections_start. */
|
||
t = build_int_cst (unsigned_type_node,
|
||
exit_reachable ? len - 1 : len);
|
||
u = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_START);
|
||
stmt = gimple_build_call (u, 1, t);
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, call GOMP_sections_next. */
|
||
u = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_NEXT);
|
||
stmt = gimple_build_call (u, 0);
|
||
}
|
||
gimple_call_set_lhs (stmt, vin);
|
||
gsi_insert_after (&si, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
|
||
/* The switch() statement replacing GIMPLE_OMP_SECTIONS_SWITCH goes in
|
||
L0_BB. */
|
||
switch_si = gsi_last_bb (l0_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (switch_si)) == GIMPLE_OMP_SECTIONS_SWITCH);
|
||
if (exit_reachable)
|
||
{
|
||
cont = last_stmt (l1_bb);
|
||
gcc_assert (gimple_code (cont) == GIMPLE_OMP_CONTINUE);
|
||
vmain = gimple_omp_continue_control_use (cont);
|
||
vnext = gimple_omp_continue_control_def (cont);
|
||
}
|
||
else
|
||
{
|
||
vmain = vin;
|
||
vnext = NULL_TREE;
|
||
}
|
||
|
||
t = build_case_label (build_int_cst (unsigned_type_node, 0), NULL, l2);
|
||
VEC_quick_push (tree, label_vec, t);
|
||
i = 1;
|
||
|
||
/* Convert each GIMPLE_OMP_SECTION into a CASE_LABEL_EXPR. */
|
||
for (inner = region->inner, casei = 1;
|
||
inner;
|
||
inner = inner->next, i++, casei++)
|
||
{
|
||
basic_block s_entry_bb, s_exit_bb;
|
||
|
||
/* Skip optional reduction region. */
|
||
if (inner->type == GIMPLE_OMP_ATOMIC_LOAD)
|
||
{
|
||
--i;
|
||
--casei;
|
||
continue;
|
||
}
|
||
|
||
s_entry_bb = inner->entry;
|
||
s_exit_bb = inner->exit;
|
||
|
||
t = gimple_block_label (s_entry_bb);
|
||
u = build_int_cst (unsigned_type_node, casei);
|
||
u = build_case_label (u, NULL, t);
|
||
VEC_quick_push (tree, label_vec, u);
|
||
|
||
si = gsi_last_bb (s_entry_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SECTION);
|
||
gcc_assert (i < len || gimple_omp_section_last_p (gsi_stmt (si)));
|
||
gsi_remove (&si, true);
|
||
single_succ_edge (s_entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
if (s_exit_bb == NULL)
|
||
continue;
|
||
|
||
si = gsi_last_bb (s_exit_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_RETURN);
|
||
gsi_remove (&si, true);
|
||
|
||
single_succ_edge (s_exit_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
|
||
/* Error handling code goes in DEFAULT_BB. */
|
||
t = gimple_block_label (default_bb);
|
||
u = build_case_label (NULL, NULL, t);
|
||
make_edge (l0_bb, default_bb, 0);
|
||
|
||
stmt = gimple_build_switch (vmain, u, label_vec);
|
||
gsi_insert_after (&switch_si, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&switch_si, true);
|
||
VEC_free (tree, heap, label_vec);
|
||
|
||
si = gsi_start_bb (default_bb);
|
||
stmt = gimple_build_call (builtin_decl_explicit (BUILT_IN_TRAP), 0);
|
||
gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
if (exit_reachable)
|
||
{
|
||
tree bfn_decl;
|
||
|
||
/* Code to get the next section goes in L1_BB. */
|
||
si = gsi_last_bb (l1_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_CONTINUE);
|
||
|
||
bfn_decl = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_NEXT);
|
||
stmt = gimple_build_call (bfn_decl, 0);
|
||
gimple_call_set_lhs (stmt, vnext);
|
||
gsi_insert_after (&si, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
|
||
single_succ_edge (l1_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
|
||
/* Cleanup function replaces GIMPLE_OMP_RETURN in EXIT_BB. */
|
||
si = gsi_last_bb (l2_bb);
|
||
if (gimple_omp_return_nowait_p (gsi_stmt (si)))
|
||
t = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_END_NOWAIT);
|
||
else
|
||
t = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_END);
|
||
stmt = gimple_build_call (t, 0);
|
||
gsi_insert_after (&si, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, default_bb, l0_bb);
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP single directive. We've already expanded
|
||
much of the code, here we simply place the GOMP_barrier call. */
|
||
|
||
static void
|
||
expand_omp_single (struct omp_region *region)
|
||
{
|
||
basic_block entry_bb, exit_bb;
|
||
gimple_stmt_iterator si;
|
||
bool need_barrier = false;
|
||
|
||
entry_bb = region->entry;
|
||
exit_bb = region->exit;
|
||
|
||
si = gsi_last_bb (entry_bb);
|
||
/* The terminal barrier at the end of a GOMP_single_copy sequence cannot
|
||
be removed. We need to ensure that the thread that entered the single
|
||
does not exit before the data is copied out by the other threads. */
|
||
if (find_omp_clause (gimple_omp_single_clauses (gsi_stmt (si)),
|
||
OMP_CLAUSE_COPYPRIVATE))
|
||
need_barrier = true;
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SINGLE);
|
||
gsi_remove (&si, true);
|
||
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
si = gsi_last_bb (exit_bb);
|
||
if (!gimple_omp_return_nowait_p (gsi_stmt (si)) || need_barrier)
|
||
force_gimple_operand_gsi (&si, build_omp_barrier (), false, NULL_TREE,
|
||
false, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
|
||
|
||
/* Generic expansion for OpenMP synchronization directives: master,
|
||
ordered and critical. All we need to do here is remove the entry
|
||
and exit markers for REGION. */
|
||
|
||
static void
|
||
expand_omp_synch (struct omp_region *region)
|
||
{
|
||
basic_block entry_bb, exit_bb;
|
||
gimple_stmt_iterator si;
|
||
|
||
entry_bb = region->entry;
|
||
exit_bb = region->exit;
|
||
|
||
si = gsi_last_bb (entry_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SINGLE
|
||
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_MASTER
|
||
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ORDERED
|
||
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_CRITICAL);
|
||
gsi_remove (&si, true);
|
||
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
if (exit_bb)
|
||
{
|
||
si = gsi_last_bb (exit_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_RETURN);
|
||
gsi_remove (&si, true);
|
||
single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
}
|
||
|
||
/* A subroutine of expand_omp_atomic. Attempt to implement the atomic
|
||
operation as a normal volatile load. */
|
||
|
||
static bool
|
||
expand_omp_atomic_load (basic_block load_bb, tree addr,
|
||
tree loaded_val, int index)
|
||
{
|
||
enum built_in_function tmpbase;
|
||
gimple_stmt_iterator gsi;
|
||
basic_block store_bb;
|
||
location_t loc;
|
||
gimple stmt;
|
||
tree decl, call, type, itype;
|
||
|
||
gsi = gsi_last_bb (load_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_ATOMIC_LOAD);
|
||
loc = gimple_location (stmt);
|
||
|
||
/* ??? If the target does not implement atomic_load_optab[mode], and mode
|
||
is smaller than word size, then expand_atomic_load assumes that the load
|
||
is atomic. We could avoid the builtin entirely in this case. */
|
||
|
||
tmpbase = (enum built_in_function) (BUILT_IN_ATOMIC_LOAD_N + index + 1);
|
||
decl = builtin_decl_explicit (tmpbase);
|
||
if (decl == NULL_TREE)
|
||
return false;
|
||
|
||
type = TREE_TYPE (loaded_val);
|
||
itype = TREE_TYPE (TREE_TYPE (decl));
|
||
|
||
call = build_call_expr_loc (loc, decl, 2, addr,
|
||
build_int_cst (NULL, MEMMODEL_RELAXED));
|
||
if (!useless_type_conversion_p (type, itype))
|
||
call = fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, call);
|
||
call = build2_loc (loc, MODIFY_EXPR, void_type_node, loaded_val, call);
|
||
|
||
force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
|
||
store_bb = single_succ (load_bb);
|
||
gsi = gsi_last_bb (store_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_STORE);
|
||
gsi_remove (&gsi, true);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_no_phi);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A subroutine of expand_omp_atomic. Attempt to implement the atomic
|
||
operation as a normal volatile store. */
|
||
|
||
static bool
|
||
expand_omp_atomic_store (basic_block load_bb, tree addr,
|
||
tree loaded_val, tree stored_val, int index)
|
||
{
|
||
enum built_in_function tmpbase;
|
||
gimple_stmt_iterator gsi;
|
||
basic_block store_bb = single_succ (load_bb);
|
||
location_t loc;
|
||
gimple stmt;
|
||
tree decl, call, type, itype;
|
||
enum machine_mode imode;
|
||
bool exchange;
|
||
|
||
gsi = gsi_last_bb (load_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_ATOMIC_LOAD);
|
||
|
||
/* If the load value is needed, then this isn't a store but an exchange. */
|
||
exchange = gimple_omp_atomic_need_value_p (stmt);
|
||
|
||
gsi = gsi_last_bb (store_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_ATOMIC_STORE);
|
||
loc = gimple_location (stmt);
|
||
|
||
/* ??? If the target does not implement atomic_store_optab[mode], and mode
|
||
is smaller than word size, then expand_atomic_store assumes that the store
|
||
is atomic. We could avoid the builtin entirely in this case. */
|
||
|
||
tmpbase = (exchange ? BUILT_IN_ATOMIC_EXCHANGE_N : BUILT_IN_ATOMIC_STORE_N);
|
||
tmpbase = (enum built_in_function) ((int) tmpbase + index + 1);
|
||
decl = builtin_decl_explicit (tmpbase);
|
||
if (decl == NULL_TREE)
|
||
return false;
|
||
|
||
type = TREE_TYPE (stored_val);
|
||
|
||
/* Dig out the type of the function's second argument. */
|
||
itype = TREE_TYPE (decl);
|
||
itype = TYPE_ARG_TYPES (itype);
|
||
itype = TREE_CHAIN (itype);
|
||
itype = TREE_VALUE (itype);
|
||
imode = TYPE_MODE (itype);
|
||
|
||
if (exchange && !can_atomic_exchange_p (imode, true))
|
||
return false;
|
||
|
||
if (!useless_type_conversion_p (itype, type))
|
||
stored_val = fold_build1_loc (loc, VIEW_CONVERT_EXPR, itype, stored_val);
|
||
call = build_call_expr_loc (loc, decl, 3, addr, stored_val,
|
||
build_int_cst (NULL, MEMMODEL_RELAXED));
|
||
if (exchange)
|
||
{
|
||
if (!useless_type_conversion_p (type, itype))
|
||
call = build1_loc (loc, VIEW_CONVERT_EXPR, type, call);
|
||
call = build2_loc (loc, MODIFY_EXPR, void_type_node, loaded_val, call);
|
||
}
|
||
|
||
force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
|
||
/* Remove the GIMPLE_OMP_ATOMIC_LOAD that we verified above. */
|
||
gsi = gsi_last_bb (load_bb);
|
||
gsi_remove (&gsi, true);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_no_phi);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A subroutine of expand_omp_atomic. Attempt to implement the atomic
|
||
operation as a __atomic_fetch_op builtin. INDEX is log2 of the
|
||
size of the data type, and thus usable to find the index of the builtin
|
||
decl. Returns false if the expression is not of the proper form. */
|
||
|
||
static bool
|
||
expand_omp_atomic_fetch_op (basic_block load_bb,
|
||
tree addr, tree loaded_val,
|
||
tree stored_val, int index)
|
||
{
|
||
enum built_in_function oldbase, newbase, tmpbase;
|
||
tree decl, itype, call;
|
||
tree lhs, rhs;
|
||
basic_block store_bb = single_succ (load_bb);
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
location_t loc;
|
||
enum tree_code code;
|
||
bool need_old, need_new;
|
||
enum machine_mode imode;
|
||
|
||
/* We expect to find the following sequences:
|
||
|
||
load_bb:
|
||
GIMPLE_OMP_ATOMIC_LOAD (tmp, mem)
|
||
|
||
store_bb:
|
||
val = tmp OP something; (or: something OP tmp)
|
||
GIMPLE_OMP_STORE (val)
|
||
|
||
???FIXME: Allow a more flexible sequence.
|
||
Perhaps use data flow to pick the statements.
|
||
|
||
*/
|
||
|
||
gsi = gsi_after_labels (store_bb);
|
||
stmt = gsi_stmt (gsi);
|
||
loc = gimple_location (stmt);
|
||
if (!is_gimple_assign (stmt))
|
||
return false;
|
||
gsi_next (&gsi);
|
||
if (gimple_code (gsi_stmt (gsi)) != GIMPLE_OMP_ATOMIC_STORE)
|
||
return false;
|
||
need_new = gimple_omp_atomic_need_value_p (gsi_stmt (gsi));
|
||
need_old = gimple_omp_atomic_need_value_p (last_stmt (load_bb));
|
||
gcc_checking_assert (!need_old || !need_new);
|
||
|
||
if (!operand_equal_p (gimple_assign_lhs (stmt), stored_val, 0))
|
||
return false;
|
||
|
||
/* Check for one of the supported fetch-op operations. */
|
||
code = gimple_assign_rhs_code (stmt);
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case POINTER_PLUS_EXPR:
|
||
oldbase = BUILT_IN_ATOMIC_FETCH_ADD_N;
|
||
newbase = BUILT_IN_ATOMIC_ADD_FETCH_N;
|
||
break;
|
||
case MINUS_EXPR:
|
||
oldbase = BUILT_IN_ATOMIC_FETCH_SUB_N;
|
||
newbase = BUILT_IN_ATOMIC_SUB_FETCH_N;
|
||
break;
|
||
case BIT_AND_EXPR:
|
||
oldbase = BUILT_IN_ATOMIC_FETCH_AND_N;
|
||
newbase = BUILT_IN_ATOMIC_AND_FETCH_N;
|
||
break;
|
||
case BIT_IOR_EXPR:
|
||
oldbase = BUILT_IN_ATOMIC_FETCH_OR_N;
|
||
newbase = BUILT_IN_ATOMIC_OR_FETCH_N;
|
||
break;
|
||
case BIT_XOR_EXPR:
|
||
oldbase = BUILT_IN_ATOMIC_FETCH_XOR_N;
|
||
newbase = BUILT_IN_ATOMIC_XOR_FETCH_N;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
/* Make sure the expression is of the proper form. */
|
||
if (operand_equal_p (gimple_assign_rhs1 (stmt), loaded_val, 0))
|
||
rhs = gimple_assign_rhs2 (stmt);
|
||
else if (commutative_tree_code (gimple_assign_rhs_code (stmt))
|
||
&& operand_equal_p (gimple_assign_rhs2 (stmt), loaded_val, 0))
|
||
rhs = gimple_assign_rhs1 (stmt);
|
||
else
|
||
return false;
|
||
|
||
tmpbase = ((enum built_in_function)
|
||
((need_new ? newbase : oldbase) + index + 1));
|
||
decl = builtin_decl_explicit (tmpbase);
|
||
if (decl == NULL_TREE)
|
||
return false;
|
||
itype = TREE_TYPE (TREE_TYPE (decl));
|
||
imode = TYPE_MODE (itype);
|
||
|
||
/* We could test all of the various optabs involved, but the fact of the
|
||
matter is that (with the exception of i486 vs i586 and xadd) all targets
|
||
that support any atomic operaton optab also implements compare-and-swap.
|
||
Let optabs.c take care of expanding any compare-and-swap loop. */
|
||
if (!can_compare_and_swap_p (imode, true))
|
||
return false;
|
||
|
||
gsi = gsi_last_bb (load_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_LOAD);
|
||
|
||
/* OpenMP does not imply any barrier-like semantics on its atomic ops.
|
||
It only requires that the operation happen atomically. Thus we can
|
||
use the RELAXED memory model. */
|
||
call = build_call_expr_loc (loc, decl, 3, addr,
|
||
fold_convert_loc (loc, itype, rhs),
|
||
build_int_cst (NULL, MEMMODEL_RELAXED));
|
||
|
||
if (need_old || need_new)
|
||
{
|
||
lhs = need_old ? loaded_val : stored_val;
|
||
call = fold_convert_loc (loc, TREE_TYPE (lhs), call);
|
||
call = build2_loc (loc, MODIFY_EXPR, void_type_node, lhs, call);
|
||
}
|
||
else
|
||
call = fold_convert_loc (loc, void_type_node, call);
|
||
force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
|
||
gsi = gsi_last_bb (store_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_STORE);
|
||
gsi_remove (&gsi, true);
|
||
gsi = gsi_last_bb (store_bb);
|
||
gsi_remove (&gsi, true);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_no_phi);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A subroutine of expand_omp_atomic. Implement the atomic operation as:
|
||
|
||
oldval = *addr;
|
||
repeat:
|
||
newval = rhs; // with oldval replacing *addr in rhs
|
||
oldval = __sync_val_compare_and_swap (addr, oldval, newval);
|
||
if (oldval != newval)
|
||
goto repeat;
|
||
|
||
INDEX is log2 of the size of the data type, and thus usable to find the
|
||
index of the builtin decl. */
|
||
|
||
static bool
|
||
expand_omp_atomic_pipeline (basic_block load_bb, basic_block store_bb,
|
||
tree addr, tree loaded_val, tree stored_val,
|
||
int index)
|
||
{
|
||
tree loadedi, storedi, initial, new_storedi, old_vali;
|
||
tree type, itype, cmpxchg, iaddr;
|
||
gimple_stmt_iterator si;
|
||
basic_block loop_header = single_succ (load_bb);
|
||
gimple phi, stmt;
|
||
edge e;
|
||
enum built_in_function fncode;
|
||
|
||
/* ??? We need a non-pointer interface to __atomic_compare_exchange in
|
||
order to use the RELAXED memory model effectively. */
|
||
fncode = (enum built_in_function)((int)BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N
|
||
+ index + 1);
|
||
cmpxchg = builtin_decl_explicit (fncode);
|
||
if (cmpxchg == NULL_TREE)
|
||
return false;
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
|
||
itype = TREE_TYPE (TREE_TYPE (cmpxchg));
|
||
|
||
if (!can_compare_and_swap_p (TYPE_MODE (itype), true))
|
||
return false;
|
||
|
||
/* Load the initial value, replacing the GIMPLE_OMP_ATOMIC_LOAD. */
|
||
si = gsi_last_bb (load_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_LOAD);
|
||
|
||
/* For floating-point values, we'll need to view-convert them to integers
|
||
so that we can perform the atomic compare and swap. Simplify the
|
||
following code by always setting up the "i"ntegral variables. */
|
||
if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
|
||
{
|
||
tree iaddr_val;
|
||
|
||
iaddr = create_tmp_reg (build_pointer_type_for_mode (itype, ptr_mode,
|
||
true), NULL);
|
||
iaddr_val
|
||
= force_gimple_operand_gsi (&si,
|
||
fold_convert (TREE_TYPE (iaddr), addr),
|
||
false, NULL_TREE, true, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (iaddr, iaddr_val);
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
loadedi = create_tmp_var (itype, NULL);
|
||
if (gimple_in_ssa_p (cfun))
|
||
loadedi = make_ssa_name (loadedi, NULL);
|
||
}
|
||
else
|
||
{
|
||
iaddr = addr;
|
||
loadedi = loaded_val;
|
||
}
|
||
|
||
initial
|
||
= force_gimple_operand_gsi (&si,
|
||
build2 (MEM_REF, TREE_TYPE (TREE_TYPE (iaddr)),
|
||
iaddr,
|
||
build_int_cst (TREE_TYPE (iaddr), 0)),
|
||
true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
/* Move the value to the LOADEDI temporary. */
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
gcc_assert (gimple_seq_empty_p (phi_nodes (loop_header)));
|
||
phi = create_phi_node (loadedi, loop_header);
|
||
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (load_bb)),
|
||
initial);
|
||
}
|
||
else
|
||
gsi_insert_before (&si,
|
||
gimple_build_assign (loadedi, initial),
|
||
GSI_SAME_STMT);
|
||
if (loadedi != loaded_val)
|
||
{
|
||
gimple_stmt_iterator gsi2;
|
||
tree x;
|
||
|
||
x = build1 (VIEW_CONVERT_EXPR, type, loadedi);
|
||
gsi2 = gsi_start_bb (loop_header);
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
gimple stmt;
|
||
x = force_gimple_operand_gsi (&gsi2, x, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (loaded_val, x);
|
||
gsi_insert_before (&gsi2, stmt, GSI_SAME_STMT);
|
||
}
|
||
else
|
||
{
|
||
x = build2 (MODIFY_EXPR, TREE_TYPE (loaded_val), loaded_val, x);
|
||
force_gimple_operand_gsi (&gsi2, x, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
}
|
||
}
|
||
gsi_remove (&si, true);
|
||
|
||
si = gsi_last_bb (store_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_STORE);
|
||
|
||
if (iaddr == addr)
|
||
storedi = stored_val;
|
||
else
|
||
storedi =
|
||
force_gimple_operand_gsi (&si,
|
||
build1 (VIEW_CONVERT_EXPR, itype,
|
||
stored_val), true, NULL_TREE, true,
|
||
GSI_SAME_STMT);
|
||
|
||
/* Build the compare&swap statement. */
|
||
new_storedi = build_call_expr (cmpxchg, 3, iaddr, loadedi, storedi);
|
||
new_storedi = force_gimple_operand_gsi (&si,
|
||
fold_convert (TREE_TYPE (loadedi),
|
||
new_storedi),
|
||
true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
old_vali = loadedi;
|
||
else
|
||
{
|
||
old_vali = create_tmp_var (TREE_TYPE (loadedi), NULL);
|
||
stmt = gimple_build_assign (old_vali, loadedi);
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
|
||
stmt = gimple_build_assign (loadedi, new_storedi);
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
}
|
||
|
||
/* Note that we always perform the comparison as an integer, even for
|
||
floating point. This allows the atomic operation to properly
|
||
succeed even with NaNs and -0.0. */
|
||
stmt = gimple_build_cond_empty
|
||
(build2 (NE_EXPR, boolean_type_node,
|
||
new_storedi, old_vali));
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
|
||
/* Update cfg. */
|
||
e = single_succ_edge (store_bb);
|
||
e->flags &= ~EDGE_FALLTHRU;
|
||
e->flags |= EDGE_FALSE_VALUE;
|
||
|
||
e = make_edge (store_bb, loop_header, EDGE_TRUE_VALUE);
|
||
|
||
/* Copy the new value to loadedi (we already did that before the condition
|
||
if we are not in SSA). */
|
||
if (gimple_in_ssa_p (cfun))
|
||
{
|
||
phi = gimple_seq_first_stmt (phi_nodes (loop_header));
|
||
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e), new_storedi);
|
||
}
|
||
|
||
/* Remove GIMPLE_OMP_ATOMIC_STORE. */
|
||
gsi_remove (&si, true);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_no_phi);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A subroutine of expand_omp_atomic. Implement the atomic operation as:
|
||
|
||
GOMP_atomic_start ();
|
||
*addr = rhs;
|
||
GOMP_atomic_end ();
|
||
|
||
The result is not globally atomic, but works so long as all parallel
|
||
references are within #pragma omp atomic directives. According to
|
||
responses received from omp@openmp.org, appears to be within spec.
|
||
Which makes sense, since that's how several other compilers handle
|
||
this situation as well.
|
||
LOADED_VAL and ADDR are the operands of GIMPLE_OMP_ATOMIC_LOAD we're
|
||
expanding. STORED_VAL is the operand of the matching
|
||
GIMPLE_OMP_ATOMIC_STORE.
|
||
|
||
We replace
|
||
GIMPLE_OMP_ATOMIC_LOAD (loaded_val, addr) with
|
||
loaded_val = *addr;
|
||
|
||
and replace
|
||
GIMPLE_OMP_ATOMIC_STORE (stored_val) with
|
||
*addr = stored_val;
|
||
*/
|
||
|
||
static bool
|
||
expand_omp_atomic_mutex (basic_block load_bb, basic_block store_bb,
|
||
tree addr, tree loaded_val, tree stored_val)
|
||
{
|
||
gimple_stmt_iterator si;
|
||
gimple stmt;
|
||
tree t;
|
||
|
||
si = gsi_last_bb (load_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_LOAD);
|
||
|
||
t = builtin_decl_explicit (BUILT_IN_GOMP_ATOMIC_START);
|
||
t = build_call_expr (t, 0);
|
||
force_gimple_operand_gsi (&si, t, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
|
||
stmt = gimple_build_assign (loaded_val, build_simple_mem_ref (addr));
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
|
||
si = gsi_last_bb (store_bb);
|
||
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_STORE);
|
||
|
||
stmt = gimple_build_assign (build_simple_mem_ref (unshare_expr (addr)),
|
||
stored_val);
|
||
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
|
||
|
||
t = builtin_decl_explicit (BUILT_IN_GOMP_ATOMIC_END);
|
||
t = build_call_expr (t, 0);
|
||
force_gimple_operand_gsi (&si, t, true, NULL_TREE, true, GSI_SAME_STMT);
|
||
gsi_remove (&si, true);
|
||
|
||
if (gimple_in_ssa_p (cfun))
|
||
update_ssa (TODO_update_ssa_no_phi);
|
||
return true;
|
||
}
|
||
|
||
/* Expand an GIMPLE_OMP_ATOMIC statement. We try to expand
|
||
using expand_omp_atomic_fetch_op. If it failed, we try to
|
||
call expand_omp_atomic_pipeline, and if it fails too, the
|
||
ultimate fallback is wrapping the operation in a mutex
|
||
(expand_omp_atomic_mutex). REGION is the atomic region built
|
||
by build_omp_regions_1(). */
|
||
|
||
static void
|
||
expand_omp_atomic (struct omp_region *region)
|
||
{
|
||
basic_block load_bb = region->entry, store_bb = region->exit;
|
||
gimple load = last_stmt (load_bb), store = last_stmt (store_bb);
|
||
tree loaded_val = gimple_omp_atomic_load_lhs (load);
|
||
tree addr = gimple_omp_atomic_load_rhs (load);
|
||
tree stored_val = gimple_omp_atomic_store_val (store);
|
||
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
|
||
HOST_WIDE_INT index;
|
||
|
||
/* Make sure the type is one of the supported sizes. */
|
||
index = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
||
index = exact_log2 (index);
|
||
if (index >= 0 && index <= 4)
|
||
{
|
||
unsigned int align = TYPE_ALIGN_UNIT (type);
|
||
|
||
/* __sync builtins require strict data alignment. */
|
||
if (exact_log2 (align) >= index)
|
||
{
|
||
/* Atomic load. */
|
||
if (loaded_val == stored_val
|
||
&& (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
|
||
|| GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT)
|
||
&& GET_MODE_BITSIZE (TYPE_MODE (type)) <= BITS_PER_WORD
|
||
&& expand_omp_atomic_load (load_bb, addr, loaded_val, index))
|
||
return;
|
||
|
||
/* Atomic store. */
|
||
if ((GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
|
||
|| GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT)
|
||
&& GET_MODE_BITSIZE (TYPE_MODE (type)) <= BITS_PER_WORD
|
||
&& store_bb == single_succ (load_bb)
|
||
&& first_stmt (store_bb) == store
|
||
&& expand_omp_atomic_store (load_bb, addr, loaded_val,
|
||
stored_val, index))
|
||
return;
|
||
|
||
/* When possible, use specialized atomic update functions. */
|
||
if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
|
||
&& store_bb == single_succ (load_bb)
|
||
&& expand_omp_atomic_fetch_op (load_bb, addr,
|
||
loaded_val, stored_val, index))
|
||
return;
|
||
|
||
/* If we don't have specialized __sync builtins, try and implement
|
||
as a compare and swap loop. */
|
||
if (expand_omp_atomic_pipeline (load_bb, store_bb, addr,
|
||
loaded_val, stored_val, index))
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* The ultimate fallback is wrapping the operation in a mutex. */
|
||
expand_omp_atomic_mutex (load_bb, store_bb, addr, loaded_val, stored_val);
|
||
}
|
||
|
||
|
||
/* Expand the parallel region tree rooted at REGION. Expansion
|
||
proceeds in depth-first order. Innermost regions are expanded
|
||
first. This way, parallel regions that require a new function to
|
||
be created (e.g., GIMPLE_OMP_PARALLEL) can be expanded without having any
|
||
internal dependencies in their body. */
|
||
|
||
static void
|
||
expand_omp (struct omp_region *region)
|
||
{
|
||
while (region)
|
||
{
|
||
location_t saved_location;
|
||
|
||
/* First, determine whether this is a combined parallel+workshare
|
||
region. */
|
||
if (region->type == GIMPLE_OMP_PARALLEL)
|
||
determine_parallel_type (region);
|
||
|
||
if (region->inner)
|
||
expand_omp (region->inner);
|
||
|
||
saved_location = input_location;
|
||
if (gimple_has_location (last_stmt (region->entry)))
|
||
input_location = gimple_location (last_stmt (region->entry));
|
||
|
||
switch (region->type)
|
||
{
|
||
case GIMPLE_OMP_PARALLEL:
|
||
case GIMPLE_OMP_TASK:
|
||
expand_omp_taskreg (region);
|
||
break;
|
||
|
||
case GIMPLE_OMP_FOR:
|
||
expand_omp_for (region);
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTIONS:
|
||
expand_omp_sections (region);
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTION:
|
||
/* Individual omp sections are handled together with their
|
||
parent GIMPLE_OMP_SECTIONS region. */
|
||
break;
|
||
|
||
case GIMPLE_OMP_SINGLE:
|
||
expand_omp_single (region);
|
||
break;
|
||
|
||
case GIMPLE_OMP_MASTER:
|
||
case GIMPLE_OMP_ORDERED:
|
||
case GIMPLE_OMP_CRITICAL:
|
||
expand_omp_synch (region);
|
||
break;
|
||
|
||
case GIMPLE_OMP_ATOMIC_LOAD:
|
||
expand_omp_atomic (region);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
input_location = saved_location;
|
||
region = region->next;
|
||
}
|
||
}
|
||
|
||
|
||
/* Helper for build_omp_regions. Scan the dominator tree starting at
|
||
block BB. PARENT is the region that contains BB. If SINGLE_TREE is
|
||
true, the function ends once a single tree is built (otherwise, whole
|
||
forest of OMP constructs may be built). */
|
||
|
||
static void
|
||
build_omp_regions_1 (basic_block bb, struct omp_region *parent,
|
||
bool single_tree)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
basic_block son;
|
||
|
||
gsi = gsi_last_bb (bb);
|
||
if (!gsi_end_p (gsi) && is_gimple_omp (gsi_stmt (gsi)))
|
||
{
|
||
struct omp_region *region;
|
||
enum gimple_code code;
|
||
|
||
stmt = gsi_stmt (gsi);
|
||
code = gimple_code (stmt);
|
||
if (code == GIMPLE_OMP_RETURN)
|
||
{
|
||
/* STMT is the return point out of region PARENT. Mark it
|
||
as the exit point and make PARENT the immediately
|
||
enclosing region. */
|
||
gcc_assert (parent);
|
||
region = parent;
|
||
region->exit = bb;
|
||
parent = parent->outer;
|
||
}
|
||
else if (code == GIMPLE_OMP_ATOMIC_STORE)
|
||
{
|
||
/* GIMPLE_OMP_ATOMIC_STORE is analoguous to
|
||
GIMPLE_OMP_RETURN, but matches with
|
||
GIMPLE_OMP_ATOMIC_LOAD. */
|
||
gcc_assert (parent);
|
||
gcc_assert (parent->type == GIMPLE_OMP_ATOMIC_LOAD);
|
||
region = parent;
|
||
region->exit = bb;
|
||
parent = parent->outer;
|
||
}
|
||
|
||
else if (code == GIMPLE_OMP_CONTINUE)
|
||
{
|
||
gcc_assert (parent);
|
||
parent->cont = bb;
|
||
}
|
||
else if (code == GIMPLE_OMP_SECTIONS_SWITCH)
|
||
{
|
||
/* GIMPLE_OMP_SECTIONS_SWITCH is part of
|
||
GIMPLE_OMP_SECTIONS, and we do nothing for it. */
|
||
;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, this directive becomes the parent for a new
|
||
region. */
|
||
region = new_omp_region (bb, code, parent);
|
||
parent = region;
|
||
}
|
||
}
|
||
|
||
if (single_tree && !parent)
|
||
return;
|
||
|
||
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
||
son;
|
||
son = next_dom_son (CDI_DOMINATORS, son))
|
||
build_omp_regions_1 (son, parent, single_tree);
|
||
}
|
||
|
||
/* Builds the tree of OMP regions rooted at ROOT, storing it to
|
||
root_omp_region. */
|
||
|
||
static void
|
||
build_omp_regions_root (basic_block root)
|
||
{
|
||
gcc_assert (root_omp_region == NULL);
|
||
build_omp_regions_1 (root, NULL, true);
|
||
gcc_assert (root_omp_region != NULL);
|
||
}
|
||
|
||
/* Expands omp construct (and its subconstructs) starting in HEAD. */
|
||
|
||
void
|
||
omp_expand_local (basic_block head)
|
||
{
|
||
build_omp_regions_root (head);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "\nOMP region tree\n\n");
|
||
dump_omp_region (dump_file, root_omp_region, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
remove_exit_barriers (root_omp_region);
|
||
expand_omp (root_omp_region);
|
||
|
||
free_omp_regions ();
|
||
}
|
||
|
||
/* Scan the CFG and build a tree of OMP regions. Return the root of
|
||
the OMP region tree. */
|
||
|
||
static void
|
||
build_omp_regions (void)
|
||
{
|
||
gcc_assert (root_omp_region == NULL);
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
build_omp_regions_1 (ENTRY_BLOCK_PTR, NULL, false);
|
||
}
|
||
|
||
/* Main entry point for expanding OMP-GIMPLE into runtime calls. */
|
||
|
||
static unsigned int
|
||
execute_expand_omp (void)
|
||
{
|
||
build_omp_regions ();
|
||
|
||
if (!root_omp_region)
|
||
return 0;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "\nOMP region tree\n\n");
|
||
dump_omp_region (dump_file, root_omp_region, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
remove_exit_barriers (root_omp_region);
|
||
|
||
expand_omp (root_omp_region);
|
||
|
||
cleanup_tree_cfg ();
|
||
|
||
free_omp_regions ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* OMP expansion -- the default pass, run before creation of SSA form. */
|
||
|
||
static bool
|
||
gate_expand_omp (void)
|
||
{
|
||
return (flag_openmp != 0 && !seen_error ());
|
||
}
|
||
|
||
struct gimple_opt_pass pass_expand_omp =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"ompexp", /* name */
|
||
gate_expand_omp, /* gate */
|
||
execute_expand_omp, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0 /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
/* Routines to lower OpenMP directives into OMP-GIMPLE. */
|
||
|
||
/* Lower the OpenMP sections directive in the current statement in GSI_P.
|
||
CTX is the enclosing OMP context for the current statement. */
|
||
|
||
static void
|
||
lower_omp_sections (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree block, control;
|
||
gimple_stmt_iterator tgsi;
|
||
gimple stmt, new_stmt, bind, t;
|
||
gimple_seq ilist, dlist, olist, new_body;
|
||
struct gimplify_ctx gctx;
|
||
|
||
stmt = gsi_stmt (*gsi_p);
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
dlist = NULL;
|
||
ilist = NULL;
|
||
lower_rec_input_clauses (gimple_omp_sections_clauses (stmt),
|
||
&ilist, &dlist, ctx);
|
||
|
||
new_body = gimple_omp_body (stmt);
|
||
gimple_omp_set_body (stmt, NULL);
|
||
tgsi = gsi_start (new_body);
|
||
for (; !gsi_end_p (tgsi); gsi_next (&tgsi))
|
||
{
|
||
omp_context *sctx;
|
||
gimple sec_start;
|
||
|
||
sec_start = gsi_stmt (tgsi);
|
||
sctx = maybe_lookup_ctx (sec_start);
|
||
gcc_assert (sctx);
|
||
|
||
lower_omp (gimple_omp_body_ptr (sec_start), sctx);
|
||
gsi_insert_seq_after (&tgsi, gimple_omp_body (sec_start),
|
||
GSI_CONTINUE_LINKING);
|
||
gimple_omp_set_body (sec_start, NULL);
|
||
|
||
if (gsi_one_before_end_p (tgsi))
|
||
{
|
||
gimple_seq l = NULL;
|
||
lower_lastprivate_clauses (gimple_omp_sections_clauses (stmt), NULL,
|
||
&l, ctx);
|
||
gsi_insert_seq_after (&tgsi, l, GSI_CONTINUE_LINKING);
|
||
gimple_omp_section_set_last (sec_start);
|
||
}
|
||
|
||
gsi_insert_after (&tgsi, gimple_build_omp_return (false),
|
||
GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
block = make_node (BLOCK);
|
||
bind = gimple_build_bind (NULL, new_body, block);
|
||
|
||
olist = NULL;
|
||
lower_reduction_clauses (gimple_omp_sections_clauses (stmt), &olist, ctx);
|
||
|
||
block = make_node (BLOCK);
|
||
new_stmt = gimple_build_bind (NULL, NULL, block);
|
||
gsi_replace (gsi_p, new_stmt, true);
|
||
|
||
pop_gimplify_context (new_stmt);
|
||
gimple_bind_append_vars (new_stmt, ctx->block_vars);
|
||
BLOCK_VARS (block) = gimple_bind_vars (bind);
|
||
if (BLOCK_VARS (block))
|
||
TREE_USED (block) = 1;
|
||
|
||
new_body = NULL;
|
||
gimple_seq_add_seq (&new_body, ilist);
|
||
gimple_seq_add_stmt (&new_body, stmt);
|
||
gimple_seq_add_stmt (&new_body, gimple_build_omp_sections_switch ());
|
||
gimple_seq_add_stmt (&new_body, bind);
|
||
|
||
control = create_tmp_var (unsigned_type_node, ".section");
|
||
t = gimple_build_omp_continue (control, control);
|
||
gimple_omp_sections_set_control (stmt, control);
|
||
gimple_seq_add_stmt (&new_body, t);
|
||
|
||
gimple_seq_add_seq (&new_body, olist);
|
||
gimple_seq_add_seq (&new_body, dlist);
|
||
|
||
new_body = maybe_catch_exception (new_body);
|
||
|
||
t = gimple_build_omp_return
|
||
(!!find_omp_clause (gimple_omp_sections_clauses (stmt),
|
||
OMP_CLAUSE_NOWAIT));
|
||
gimple_seq_add_stmt (&new_body, t);
|
||
|
||
gimple_bind_set_body (new_stmt, new_body);
|
||
}
|
||
|
||
|
||
/* A subroutine of lower_omp_single. Expand the simple form of
|
||
a GIMPLE_OMP_SINGLE, without a copyprivate clause:
|
||
|
||
if (GOMP_single_start ())
|
||
BODY;
|
||
[ GOMP_barrier (); ] -> unless 'nowait' is present.
|
||
|
||
FIXME. It may be better to delay expanding the logic of this until
|
||
pass_expand_omp. The expanded logic may make the job more difficult
|
||
to a synchronization analysis pass. */
|
||
|
||
static void
|
||
lower_omp_single_simple (gimple single_stmt, gimple_seq *pre_p)
|
||
{
|
||
location_t loc = gimple_location (single_stmt);
|
||
tree tlabel = create_artificial_label (loc);
|
||
tree flabel = create_artificial_label (loc);
|
||
gimple call, cond;
|
||
tree lhs, decl;
|
||
|
||
decl = builtin_decl_explicit (BUILT_IN_GOMP_SINGLE_START);
|
||
lhs = create_tmp_var (TREE_TYPE (TREE_TYPE (decl)), NULL);
|
||
call = gimple_build_call (decl, 0);
|
||
gimple_call_set_lhs (call, lhs);
|
||
gimple_seq_add_stmt (pre_p, call);
|
||
|
||
cond = gimple_build_cond (EQ_EXPR, lhs,
|
||
fold_convert_loc (loc, TREE_TYPE (lhs),
|
||
boolean_true_node),
|
||
tlabel, flabel);
|
||
gimple_seq_add_stmt (pre_p, cond);
|
||
gimple_seq_add_stmt (pre_p, gimple_build_label (tlabel));
|
||
gimple_seq_add_seq (pre_p, gimple_omp_body (single_stmt));
|
||
gimple_seq_add_stmt (pre_p, gimple_build_label (flabel));
|
||
}
|
||
|
||
|
||
/* A subroutine of lower_omp_single. Expand the simple form of
|
||
a GIMPLE_OMP_SINGLE, with a copyprivate clause:
|
||
|
||
#pragma omp single copyprivate (a, b, c)
|
||
|
||
Create a new structure to hold copies of 'a', 'b' and 'c' and emit:
|
||
|
||
{
|
||
if ((copyout_p = GOMP_single_copy_start ()) == NULL)
|
||
{
|
||
BODY;
|
||
copyout.a = a;
|
||
copyout.b = b;
|
||
copyout.c = c;
|
||
GOMP_single_copy_end (©out);
|
||
}
|
||
else
|
||
{
|
||
a = copyout_p->a;
|
||
b = copyout_p->b;
|
||
c = copyout_p->c;
|
||
}
|
||
GOMP_barrier ();
|
||
}
|
||
|
||
FIXME. It may be better to delay expanding the logic of this until
|
||
pass_expand_omp. The expanded logic may make the job more difficult
|
||
to a synchronization analysis pass. */
|
||
|
||
static void
|
||
lower_omp_single_copy (gimple single_stmt, gimple_seq *pre_p, omp_context *ctx)
|
||
{
|
||
tree ptr_type, t, l0, l1, l2, bfn_decl;
|
||
gimple_seq copyin_seq;
|
||
location_t loc = gimple_location (single_stmt);
|
||
|
||
ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_copy_o");
|
||
|
||
ptr_type = build_pointer_type (ctx->record_type);
|
||
ctx->receiver_decl = create_tmp_var (ptr_type, ".omp_copy_i");
|
||
|
||
l0 = create_artificial_label (loc);
|
||
l1 = create_artificial_label (loc);
|
||
l2 = create_artificial_label (loc);
|
||
|
||
bfn_decl = builtin_decl_explicit (BUILT_IN_GOMP_SINGLE_COPY_START);
|
||
t = build_call_expr_loc (loc, bfn_decl, 0);
|
||
t = fold_convert_loc (loc, ptr_type, t);
|
||
gimplify_assign (ctx->receiver_decl, t, pre_p);
|
||
|
||
t = build2 (EQ_EXPR, boolean_type_node, ctx->receiver_decl,
|
||
build_int_cst (ptr_type, 0));
|
||
t = build3 (COND_EXPR, void_type_node, t,
|
||
build_and_jump (&l0), build_and_jump (&l1));
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
gimple_seq_add_stmt (pre_p, gimple_build_label (l0));
|
||
|
||
gimple_seq_add_seq (pre_p, gimple_omp_body (single_stmt));
|
||
|
||
copyin_seq = NULL;
|
||
lower_copyprivate_clauses (gimple_omp_single_clauses (single_stmt), pre_p,
|
||
©in_seq, ctx);
|
||
|
||
t = build_fold_addr_expr_loc (loc, ctx->sender_decl);
|
||
bfn_decl = builtin_decl_explicit (BUILT_IN_GOMP_SINGLE_COPY_END);
|
||
t = build_call_expr_loc (loc, bfn_decl, 1, t);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = build_and_jump (&l2);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
gimple_seq_add_stmt (pre_p, gimple_build_label (l1));
|
||
|
||
gimple_seq_add_seq (pre_p, copyin_seq);
|
||
|
||
gimple_seq_add_stmt (pre_p, gimple_build_label (l2));
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP single directive. */
|
||
|
||
static void
|
||
lower_omp_single (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree block;
|
||
gimple t, bind, single_stmt = gsi_stmt (*gsi_p);
|
||
gimple_seq bind_body, dlist;
|
||
struct gimplify_ctx gctx;
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
block = make_node (BLOCK);
|
||
bind = gimple_build_bind (NULL, NULL, block);
|
||
gsi_replace (gsi_p, bind, true);
|
||
bind_body = NULL;
|
||
dlist = NULL;
|
||
lower_rec_input_clauses (gimple_omp_single_clauses (single_stmt),
|
||
&bind_body, &dlist, ctx);
|
||
lower_omp (gimple_omp_body_ptr (single_stmt), ctx);
|
||
|
||
gimple_seq_add_stmt (&bind_body, single_stmt);
|
||
|
||
if (ctx->record_type)
|
||
lower_omp_single_copy (single_stmt, &bind_body, ctx);
|
||
else
|
||
lower_omp_single_simple (single_stmt, &bind_body);
|
||
|
||
gimple_omp_set_body (single_stmt, NULL);
|
||
|
||
gimple_seq_add_seq (&bind_body, dlist);
|
||
|
||
bind_body = maybe_catch_exception (bind_body);
|
||
|
||
t = gimple_build_omp_return
|
||
(!!find_omp_clause (gimple_omp_single_clauses (single_stmt),
|
||
OMP_CLAUSE_NOWAIT));
|
||
gimple_seq_add_stmt (&bind_body, t);
|
||
gimple_bind_set_body (bind, bind_body);
|
||
|
||
pop_gimplify_context (bind);
|
||
|
||
gimple_bind_append_vars (bind, ctx->block_vars);
|
||
BLOCK_VARS (block) = ctx->block_vars;
|
||
if (BLOCK_VARS (block))
|
||
TREE_USED (block) = 1;
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP master directive. */
|
||
|
||
static void
|
||
lower_omp_master (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree block, lab = NULL, x, bfn_decl;
|
||
gimple stmt = gsi_stmt (*gsi_p), bind;
|
||
location_t loc = gimple_location (stmt);
|
||
gimple_seq tseq;
|
||
struct gimplify_ctx gctx;
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
block = make_node (BLOCK);
|
||
bind = gimple_build_bind (NULL, NULL, block);
|
||
gsi_replace (gsi_p, bind, true);
|
||
gimple_bind_add_stmt (bind, stmt);
|
||
|
||
bfn_decl = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
|
||
x = build_call_expr_loc (loc, bfn_decl, 0);
|
||
x = build2 (EQ_EXPR, boolean_type_node, x, integer_zero_node);
|
||
x = build3 (COND_EXPR, void_type_node, x, NULL, build_and_jump (&lab));
|
||
tseq = NULL;
|
||
gimplify_and_add (x, &tseq);
|
||
gimple_bind_add_seq (bind, tseq);
|
||
|
||
lower_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
gimple_omp_set_body (stmt, maybe_catch_exception (gimple_omp_body (stmt)));
|
||
gimple_bind_add_seq (bind, gimple_omp_body (stmt));
|
||
gimple_omp_set_body (stmt, NULL);
|
||
|
||
gimple_bind_add_stmt (bind, gimple_build_label (lab));
|
||
|
||
gimple_bind_add_stmt (bind, gimple_build_omp_return (true));
|
||
|
||
pop_gimplify_context (bind);
|
||
|
||
gimple_bind_append_vars (bind, ctx->block_vars);
|
||
BLOCK_VARS (block) = ctx->block_vars;
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP ordered directive. */
|
||
|
||
static void
|
||
lower_omp_ordered (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree block;
|
||
gimple stmt = gsi_stmt (*gsi_p), bind, x;
|
||
struct gimplify_ctx gctx;
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
block = make_node (BLOCK);
|
||
bind = gimple_build_bind (NULL, NULL, block);
|
||
gsi_replace (gsi_p, bind, true);
|
||
gimple_bind_add_stmt (bind, stmt);
|
||
|
||
x = gimple_build_call (builtin_decl_explicit (BUILT_IN_GOMP_ORDERED_START),
|
||
0);
|
||
gimple_bind_add_stmt (bind, x);
|
||
|
||
lower_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
gimple_omp_set_body (stmt, maybe_catch_exception (gimple_omp_body (stmt)));
|
||
gimple_bind_add_seq (bind, gimple_omp_body (stmt));
|
||
gimple_omp_set_body (stmt, NULL);
|
||
|
||
x = gimple_build_call (builtin_decl_explicit (BUILT_IN_GOMP_ORDERED_END), 0);
|
||
gimple_bind_add_stmt (bind, x);
|
||
|
||
gimple_bind_add_stmt (bind, gimple_build_omp_return (true));
|
||
|
||
pop_gimplify_context (bind);
|
||
|
||
gimple_bind_append_vars (bind, ctx->block_vars);
|
||
BLOCK_VARS (block) = gimple_bind_vars (bind);
|
||
}
|
||
|
||
|
||
/* Gimplify a GIMPLE_OMP_CRITICAL statement. This is a relatively simple
|
||
substitution of a couple of function calls. But in the NAMED case,
|
||
requires that languages coordinate a symbol name. It is therefore
|
||
best put here in common code. */
|
||
|
||
static GTY((param1_is (tree), param2_is (tree)))
|
||
splay_tree critical_name_mutexes;
|
||
|
||
static void
|
||
lower_omp_critical (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree block;
|
||
tree name, lock, unlock;
|
||
gimple stmt = gsi_stmt (*gsi_p), bind;
|
||
location_t loc = gimple_location (stmt);
|
||
gimple_seq tbody;
|
||
struct gimplify_ctx gctx;
|
||
|
||
name = gimple_omp_critical_name (stmt);
|
||
if (name)
|
||
{
|
||
tree decl;
|
||
splay_tree_node n;
|
||
|
||
if (!critical_name_mutexes)
|
||
critical_name_mutexes
|
||
= splay_tree_new_ggc (splay_tree_compare_pointers,
|
||
ggc_alloc_splay_tree_tree_node_tree_node_splay_tree_s,
|
||
ggc_alloc_splay_tree_tree_node_tree_node_splay_tree_node_s);
|
||
|
||
n = splay_tree_lookup (critical_name_mutexes, (splay_tree_key) name);
|
||
if (n == NULL)
|
||
{
|
||
char *new_str;
|
||
|
||
decl = create_tmp_var_raw (ptr_type_node, NULL);
|
||
|
||
new_str = ACONCAT ((".gomp_critical_user_",
|
||
IDENTIFIER_POINTER (name), NULL));
|
||
DECL_NAME (decl) = get_identifier (new_str);
|
||
TREE_PUBLIC (decl) = 1;
|
||
TREE_STATIC (decl) = 1;
|
||
DECL_COMMON (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_IGNORED_P (decl) = 1;
|
||
varpool_finalize_decl (decl);
|
||
|
||
splay_tree_insert (critical_name_mutexes, (splay_tree_key) name,
|
||
(splay_tree_value) decl);
|
||
}
|
||
else
|
||
decl = (tree) n->value;
|
||
|
||
lock = builtin_decl_explicit (BUILT_IN_GOMP_CRITICAL_NAME_START);
|
||
lock = build_call_expr_loc (loc, lock, 1, build_fold_addr_expr_loc (loc, decl));
|
||
|
||
unlock = builtin_decl_explicit (BUILT_IN_GOMP_CRITICAL_NAME_END);
|
||
unlock = build_call_expr_loc (loc, unlock, 1,
|
||
build_fold_addr_expr_loc (loc, decl));
|
||
}
|
||
else
|
||
{
|
||
lock = builtin_decl_explicit (BUILT_IN_GOMP_CRITICAL_START);
|
||
lock = build_call_expr_loc (loc, lock, 0);
|
||
|
||
unlock = builtin_decl_explicit (BUILT_IN_GOMP_CRITICAL_END);
|
||
unlock = build_call_expr_loc (loc, unlock, 0);
|
||
}
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
block = make_node (BLOCK);
|
||
bind = gimple_build_bind (NULL, NULL, block);
|
||
gsi_replace (gsi_p, bind, true);
|
||
gimple_bind_add_stmt (bind, stmt);
|
||
|
||
tbody = gimple_bind_body (bind);
|
||
gimplify_and_add (lock, &tbody);
|
||
gimple_bind_set_body (bind, tbody);
|
||
|
||
lower_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
gimple_omp_set_body (stmt, maybe_catch_exception (gimple_omp_body (stmt)));
|
||
gimple_bind_add_seq (bind, gimple_omp_body (stmt));
|
||
gimple_omp_set_body (stmt, NULL);
|
||
|
||
tbody = gimple_bind_body (bind);
|
||
gimplify_and_add (unlock, &tbody);
|
||
gimple_bind_set_body (bind, tbody);
|
||
|
||
gimple_bind_add_stmt (bind, gimple_build_omp_return (true));
|
||
|
||
pop_gimplify_context (bind);
|
||
gimple_bind_append_vars (bind, ctx->block_vars);
|
||
BLOCK_VARS (block) = gimple_bind_vars (bind);
|
||
}
|
||
|
||
|
||
/* A subroutine of lower_omp_for. Generate code to emit the predicate
|
||
for a lastprivate clause. Given a loop control predicate of (V
|
||
cond N2), we gate the clause on (!(V cond N2)). The lowered form
|
||
is appended to *DLIST, iterator initialization is appended to
|
||
*BODY_P. */
|
||
|
||
static void
|
||
lower_omp_for_lastprivate (struct omp_for_data *fd, gimple_seq *body_p,
|
||
gimple_seq *dlist, struct omp_context *ctx)
|
||
{
|
||
tree clauses, cond, vinit;
|
||
enum tree_code cond_code;
|
||
gimple_seq stmts;
|
||
|
||
cond_code = fd->loop.cond_code;
|
||
cond_code = cond_code == LT_EXPR ? GE_EXPR : LE_EXPR;
|
||
|
||
/* When possible, use a strict equality expression. This can let VRP
|
||
type optimizations deduce the value and remove a copy. */
|
||
if (host_integerp (fd->loop.step, 0))
|
||
{
|
||
HOST_WIDE_INT step = TREE_INT_CST_LOW (fd->loop.step);
|
||
if (step == 1 || step == -1)
|
||
cond_code = EQ_EXPR;
|
||
}
|
||
|
||
cond = build2 (cond_code, boolean_type_node, fd->loop.v, fd->loop.n2);
|
||
|
||
clauses = gimple_omp_for_clauses (fd->for_stmt);
|
||
stmts = NULL;
|
||
lower_lastprivate_clauses (clauses, cond, &stmts, ctx);
|
||
if (!gimple_seq_empty_p (stmts))
|
||
{
|
||
gimple_seq_add_seq (&stmts, *dlist);
|
||
*dlist = stmts;
|
||
|
||
/* Optimize: v = 0; is usually cheaper than v = some_other_constant. */
|
||
vinit = fd->loop.n1;
|
||
if (cond_code == EQ_EXPR
|
||
&& host_integerp (fd->loop.n2, 0)
|
||
&& ! integer_zerop (fd->loop.n2))
|
||
vinit = build_int_cst (TREE_TYPE (fd->loop.v), 0);
|
||
|
||
/* Initialize the iterator variable, so that threads that don't execute
|
||
any iterations don't execute the lastprivate clauses by accident. */
|
||
gimplify_assign (fd->loop.v, vinit, body_p);
|
||
}
|
||
}
|
||
|
||
|
||
/* Lower code for an OpenMP loop directive. */
|
||
|
||
static void
|
||
lower_omp_for (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree *rhs_p, block;
|
||
struct omp_for_data fd;
|
||
gimple stmt = gsi_stmt (*gsi_p), new_stmt;
|
||
gimple_seq omp_for_body, body, dlist;
|
||
size_t i;
|
||
struct gimplify_ctx gctx;
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
lower_omp (gimple_omp_for_pre_body_ptr (stmt), ctx);
|
||
lower_omp (gimple_omp_body_ptr (stmt), ctx);
|
||
|
||
block = make_node (BLOCK);
|
||
new_stmt = gimple_build_bind (NULL, NULL, block);
|
||
/* Replace at gsi right away, so that 'stmt' is no member
|
||
of a sequence anymore as we're going to add to to a different
|
||
one below. */
|
||
gsi_replace (gsi_p, new_stmt, true);
|
||
|
||
/* Move declaration of temporaries in the loop body before we make
|
||
it go away. */
|
||
omp_for_body = gimple_omp_body (stmt);
|
||
if (!gimple_seq_empty_p (omp_for_body)
|
||
&& gimple_code (gimple_seq_first_stmt (omp_for_body)) == GIMPLE_BIND)
|
||
{
|
||
tree vars = gimple_bind_vars (gimple_seq_first_stmt (omp_for_body));
|
||
gimple_bind_append_vars (new_stmt, vars);
|
||
}
|
||
|
||
/* The pre-body and input clauses go before the lowered GIMPLE_OMP_FOR. */
|
||
dlist = NULL;
|
||
body = NULL;
|
||
lower_rec_input_clauses (gimple_omp_for_clauses (stmt), &body, &dlist, ctx);
|
||
gimple_seq_add_seq (&body, gimple_omp_for_pre_body (stmt));
|
||
|
||
/* Lower the header expressions. At this point, we can assume that
|
||
the header is of the form:
|
||
|
||
#pragma omp for (V = VAL1; V {<|>|<=|>=} VAL2; V = V [+-] VAL3)
|
||
|
||
We just need to make sure that VAL1, VAL2 and VAL3 are lowered
|
||
using the .omp_data_s mapping, if needed. */
|
||
for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
|
||
{
|
||
rhs_p = gimple_omp_for_initial_ptr (stmt, i);
|
||
if (!is_gimple_min_invariant (*rhs_p))
|
||
*rhs_p = get_formal_tmp_var (*rhs_p, &body);
|
||
|
||
rhs_p = gimple_omp_for_final_ptr (stmt, i);
|
||
if (!is_gimple_min_invariant (*rhs_p))
|
||
*rhs_p = get_formal_tmp_var (*rhs_p, &body);
|
||
|
||
rhs_p = &TREE_OPERAND (gimple_omp_for_incr (stmt, i), 1);
|
||
if (!is_gimple_min_invariant (*rhs_p))
|
||
*rhs_p = get_formal_tmp_var (*rhs_p, &body);
|
||
}
|
||
|
||
/* Once lowered, extract the bounds and clauses. */
|
||
extract_omp_for_data (stmt, &fd, NULL);
|
||
|
||
lower_omp_for_lastprivate (&fd, &body, &dlist, ctx);
|
||
|
||
gimple_seq_add_stmt (&body, stmt);
|
||
gimple_seq_add_seq (&body, gimple_omp_body (stmt));
|
||
|
||
gimple_seq_add_stmt (&body, gimple_build_omp_continue (fd.loop.v,
|
||
fd.loop.v));
|
||
|
||
/* After the loop, add exit clauses. */
|
||
lower_reduction_clauses (gimple_omp_for_clauses (stmt), &body, ctx);
|
||
gimple_seq_add_seq (&body, dlist);
|
||
|
||
body = maybe_catch_exception (body);
|
||
|
||
/* Region exit marker goes at the end of the loop body. */
|
||
gimple_seq_add_stmt (&body, gimple_build_omp_return (fd.have_nowait));
|
||
|
||
pop_gimplify_context (new_stmt);
|
||
|
||
gimple_bind_append_vars (new_stmt, ctx->block_vars);
|
||
BLOCK_VARS (block) = gimple_bind_vars (new_stmt);
|
||
if (BLOCK_VARS (block))
|
||
TREE_USED (block) = 1;
|
||
|
||
gimple_bind_set_body (new_stmt, body);
|
||
gimple_omp_set_body (stmt, NULL);
|
||
gimple_omp_for_set_pre_body (stmt, NULL);
|
||
}
|
||
|
||
/* Callback for walk_stmts. Check if the current statement only contains
|
||
GIMPLE_OMP_FOR or GIMPLE_OMP_PARALLEL. */
|
||
|
||
static tree
|
||
check_combined_parallel (gimple_stmt_iterator *gsi_p,
|
||
bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
int *info = (int *) wi->info;
|
||
gimple stmt = gsi_stmt (*gsi_p);
|
||
|
||
*handled_ops_p = true;
|
||
switch (gimple_code (stmt))
|
||
{
|
||
WALK_SUBSTMTS;
|
||
|
||
case GIMPLE_OMP_FOR:
|
||
case GIMPLE_OMP_SECTIONS:
|
||
*info = *info == 0 ? 1 : -1;
|
||
break;
|
||
default:
|
||
*info = -1;
|
||
break;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
struct omp_taskcopy_context
|
||
{
|
||
/* This field must be at the beginning, as we do "inheritance": Some
|
||
callback functions for tree-inline.c (e.g., omp_copy_decl)
|
||
receive a copy_body_data pointer that is up-casted to an
|
||
omp_context pointer. */
|
||
copy_body_data cb;
|
||
omp_context *ctx;
|
||
};
|
||
|
||
static tree
|
||
task_copyfn_copy_decl (tree var, copy_body_data *cb)
|
||
{
|
||
struct omp_taskcopy_context *tcctx = (struct omp_taskcopy_context *) cb;
|
||
|
||
if (splay_tree_lookup (tcctx->ctx->sfield_map, (splay_tree_key) var))
|
||
return create_tmp_var (TREE_TYPE (var), NULL);
|
||
|
||
return var;
|
||
}
|
||
|
||
static tree
|
||
task_copyfn_remap_type (struct omp_taskcopy_context *tcctx, tree orig_type)
|
||
{
|
||
tree name, new_fields = NULL, type, f;
|
||
|
||
type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = DECL_NAME (TYPE_NAME (orig_type));
|
||
name = build_decl (gimple_location (tcctx->ctx->stmt),
|
||
TYPE_DECL, name, type);
|
||
TYPE_NAME (type) = name;
|
||
|
||
for (f = TYPE_FIELDS (orig_type); f ; f = TREE_CHAIN (f))
|
||
{
|
||
tree new_f = copy_node (f);
|
||
DECL_CONTEXT (new_f) = type;
|
||
TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &tcctx->cb);
|
||
TREE_CHAIN (new_f) = new_fields;
|
||
walk_tree (&DECL_SIZE (new_f), copy_tree_body_r, &tcctx->cb, NULL);
|
||
walk_tree (&DECL_SIZE_UNIT (new_f), copy_tree_body_r, &tcctx->cb, NULL);
|
||
walk_tree (&DECL_FIELD_OFFSET (new_f), copy_tree_body_r,
|
||
&tcctx->cb, NULL);
|
||
new_fields = new_f;
|
||
*pointer_map_insert (tcctx->cb.decl_map, f) = new_f;
|
||
}
|
||
TYPE_FIELDS (type) = nreverse (new_fields);
|
||
layout_type (type);
|
||
return type;
|
||
}
|
||
|
||
/* Create task copyfn. */
|
||
|
||
static void
|
||
create_task_copyfn (gimple task_stmt, omp_context *ctx)
|
||
{
|
||
struct function *child_cfun;
|
||
tree child_fn, t, c, src, dst, f, sf, arg, sarg, decl;
|
||
tree record_type, srecord_type, bind, list;
|
||
bool record_needs_remap = false, srecord_needs_remap = false;
|
||
splay_tree_node n;
|
||
struct omp_taskcopy_context tcctx;
|
||
struct gimplify_ctx gctx;
|
||
location_t loc = gimple_location (task_stmt);
|
||
|
||
child_fn = gimple_omp_task_copy_fn (task_stmt);
|
||
child_cfun = DECL_STRUCT_FUNCTION (child_fn);
|
||
gcc_assert (child_cfun->cfg == NULL);
|
||
DECL_SAVED_TREE (child_fn) = alloc_stmt_list ();
|
||
|
||
/* Reset DECL_CONTEXT on function arguments. */
|
||
for (t = DECL_ARGUMENTS (child_fn); t; t = DECL_CHAIN (t))
|
||
DECL_CONTEXT (t) = child_fn;
|
||
|
||
/* Populate the function. */
|
||
push_gimplify_context (&gctx);
|
||
push_cfun (child_cfun);
|
||
|
||
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
list = NULL;
|
||
DECL_SAVED_TREE (child_fn) = bind;
|
||
DECL_SOURCE_LOCATION (child_fn) = gimple_location (task_stmt);
|
||
|
||
/* Remap src and dst argument types if needed. */
|
||
record_type = ctx->record_type;
|
||
srecord_type = ctx->srecord_type;
|
||
for (f = TYPE_FIELDS (record_type); f ; f = DECL_CHAIN (f))
|
||
if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn))
|
||
{
|
||
record_needs_remap = true;
|
||
break;
|
||
}
|
||
for (f = TYPE_FIELDS (srecord_type); f ; f = DECL_CHAIN (f))
|
||
if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn))
|
||
{
|
||
srecord_needs_remap = true;
|
||
break;
|
||
}
|
||
|
||
if (record_needs_remap || srecord_needs_remap)
|
||
{
|
||
memset (&tcctx, '\0', sizeof (tcctx));
|
||
tcctx.cb.src_fn = ctx->cb.src_fn;
|
||
tcctx.cb.dst_fn = child_fn;
|
||
tcctx.cb.src_node = cgraph_get_node (tcctx.cb.src_fn);
|
||
gcc_checking_assert (tcctx.cb.src_node);
|
||
tcctx.cb.dst_node = tcctx.cb.src_node;
|
||
tcctx.cb.src_cfun = ctx->cb.src_cfun;
|
||
tcctx.cb.copy_decl = task_copyfn_copy_decl;
|
||
tcctx.cb.eh_lp_nr = 0;
|
||
tcctx.cb.transform_call_graph_edges = CB_CGE_MOVE;
|
||
tcctx.cb.decl_map = pointer_map_create ();
|
||
tcctx.ctx = ctx;
|
||
|
||
if (record_needs_remap)
|
||
record_type = task_copyfn_remap_type (&tcctx, record_type);
|
||
if (srecord_needs_remap)
|
||
srecord_type = task_copyfn_remap_type (&tcctx, srecord_type);
|
||
}
|
||
else
|
||
tcctx.cb.decl_map = NULL;
|
||
|
||
arg = DECL_ARGUMENTS (child_fn);
|
||
TREE_TYPE (arg) = build_pointer_type (record_type);
|
||
sarg = DECL_CHAIN (arg);
|
||
TREE_TYPE (sarg) = build_pointer_type (srecord_type);
|
||
|
||
/* First pass: initialize temporaries used in record_type and srecord_type
|
||
sizes and field offsets. */
|
||
if (tcctx.cb.decl_map)
|
||
for (c = gimple_omp_task_clauses (task_stmt); c; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE)
|
||
{
|
||
tree *p;
|
||
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
p = (tree *) pointer_map_contains (tcctx.cb.decl_map, decl);
|
||
if (p == NULL)
|
||
continue;
|
||
n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl);
|
||
sf = (tree) n->value;
|
||
sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf);
|
||
src = build_simple_mem_ref_loc (loc, sarg);
|
||
src = omp_build_component_ref (src, sf);
|
||
t = build2 (MODIFY_EXPR, TREE_TYPE (*p), *p, src);
|
||
append_to_statement_list (t, &list);
|
||
}
|
||
|
||
/* Second pass: copy shared var pointers and copy construct non-VLA
|
||
firstprivate vars. */
|
||
for (c = gimple_omp_task_clauses (task_stmt); c; c = OMP_CLAUSE_CHAIN (c))
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl);
|
||
if (n == NULL)
|
||
break;
|
||
f = (tree) n->value;
|
||
if (tcctx.cb.decl_map)
|
||
f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f);
|
||
n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl);
|
||
sf = (tree) n->value;
|
||
if (tcctx.cb.decl_map)
|
||
sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf);
|
||
src = build_simple_mem_ref_loc (loc, sarg);
|
||
src = omp_build_component_ref (src, sf);
|
||
dst = build_simple_mem_ref_loc (loc, arg);
|
||
dst = omp_build_component_ref (dst, f);
|
||
t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
|
||
append_to_statement_list (t, &list);
|
||
break;
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (is_variable_sized (decl))
|
||
break;
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl);
|
||
if (n == NULL)
|
||
break;
|
||
f = (tree) n->value;
|
||
if (tcctx.cb.decl_map)
|
||
f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f);
|
||
n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl);
|
||
if (n != NULL)
|
||
{
|
||
sf = (tree) n->value;
|
||
if (tcctx.cb.decl_map)
|
||
sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf);
|
||
src = build_simple_mem_ref_loc (loc, sarg);
|
||
src = omp_build_component_ref (src, sf);
|
||
if (use_pointer_for_field (decl, NULL) || is_reference (decl))
|
||
src = build_simple_mem_ref_loc (loc, src);
|
||
}
|
||
else
|
||
src = decl;
|
||
dst = build_simple_mem_ref_loc (loc, arg);
|
||
dst = omp_build_component_ref (dst, f);
|
||
t = lang_hooks.decls.omp_clause_copy_ctor (c, dst, src);
|
||
append_to_statement_list (t, &list);
|
||
break;
|
||
case OMP_CLAUSE_PRIVATE:
|
||
if (! OMP_CLAUSE_PRIVATE_OUTER_REF (c))
|
||
break;
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl);
|
||
f = (tree) n->value;
|
||
if (tcctx.cb.decl_map)
|
||
f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f);
|
||
n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl);
|
||
if (n != NULL)
|
||
{
|
||
sf = (tree) n->value;
|
||
if (tcctx.cb.decl_map)
|
||
sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf);
|
||
src = build_simple_mem_ref_loc (loc, sarg);
|
||
src = omp_build_component_ref (src, sf);
|
||
if (use_pointer_for_field (decl, NULL))
|
||
src = build_simple_mem_ref_loc (loc, src);
|
||
}
|
||
else
|
||
src = decl;
|
||
dst = build_simple_mem_ref_loc (loc, arg);
|
||
dst = omp_build_component_ref (dst, f);
|
||
t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
|
||
append_to_statement_list (t, &list);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Last pass: handle VLA firstprivates. */
|
||
if (tcctx.cb.decl_map)
|
||
for (c = gimple_omp_task_clauses (task_stmt); c; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE)
|
||
{
|
||
tree ind, ptr, df;
|
||
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (!is_variable_sized (decl))
|
||
continue;
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl);
|
||
if (n == NULL)
|
||
continue;
|
||
f = (tree) n->value;
|
||
f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f);
|
||
gcc_assert (DECL_HAS_VALUE_EXPR_P (decl));
|
||
ind = DECL_VALUE_EXPR (decl);
|
||
gcc_assert (TREE_CODE (ind) == INDIRECT_REF);
|
||
gcc_assert (DECL_P (TREE_OPERAND (ind, 0)));
|
||
n = splay_tree_lookup (ctx->sfield_map,
|
||
(splay_tree_key) TREE_OPERAND (ind, 0));
|
||
sf = (tree) n->value;
|
||
sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf);
|
||
src = build_simple_mem_ref_loc (loc, sarg);
|
||
src = omp_build_component_ref (src, sf);
|
||
src = build_simple_mem_ref_loc (loc, src);
|
||
dst = build_simple_mem_ref_loc (loc, arg);
|
||
dst = omp_build_component_ref (dst, f);
|
||
t = lang_hooks.decls.omp_clause_copy_ctor (c, dst, src);
|
||
append_to_statement_list (t, &list);
|
||
n = splay_tree_lookup (ctx->field_map,
|
||
(splay_tree_key) TREE_OPERAND (ind, 0));
|
||
df = (tree) n->value;
|
||
df = *(tree *) pointer_map_contains (tcctx.cb.decl_map, df);
|
||
ptr = build_simple_mem_ref_loc (loc, arg);
|
||
ptr = omp_build_component_ref (ptr, df);
|
||
t = build2 (MODIFY_EXPR, TREE_TYPE (ptr), ptr,
|
||
build_fold_addr_expr_loc (loc, dst));
|
||
append_to_statement_list (t, &list);
|
||
}
|
||
|
||
t = build1 (RETURN_EXPR, void_type_node, NULL);
|
||
append_to_statement_list (t, &list);
|
||
|
||
if (tcctx.cb.decl_map)
|
||
pointer_map_destroy (tcctx.cb.decl_map);
|
||
pop_gimplify_context (NULL);
|
||
BIND_EXPR_BODY (bind) = list;
|
||
pop_cfun ();
|
||
}
|
||
|
||
/* Lower the OpenMP parallel or task directive in the current statement
|
||
in GSI_P. CTX holds context information for the directive. */
|
||
|
||
static void
|
||
lower_omp_taskreg (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
tree clauses;
|
||
tree child_fn, t;
|
||
gimple stmt = gsi_stmt (*gsi_p);
|
||
gimple par_bind, bind;
|
||
gimple_seq par_body, olist, ilist, par_olist, par_ilist, new_body;
|
||
struct gimplify_ctx gctx;
|
||
location_t loc = gimple_location (stmt);
|
||
|
||
clauses = gimple_omp_taskreg_clauses (stmt);
|
||
par_bind = gimple_seq_first_stmt (gimple_omp_body (stmt));
|
||
par_body = gimple_bind_body (par_bind);
|
||
child_fn = ctx->cb.dst_fn;
|
||
if (gimple_code (stmt) == GIMPLE_OMP_PARALLEL
|
||
&& !gimple_omp_parallel_combined_p (stmt))
|
||
{
|
||
struct walk_stmt_info wi;
|
||
int ws_num = 0;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.info = &ws_num;
|
||
wi.val_only = true;
|
||
walk_gimple_seq (par_body, check_combined_parallel, NULL, &wi);
|
||
if (ws_num == 1)
|
||
gimple_omp_parallel_set_combined_p (stmt, true);
|
||
}
|
||
if (ctx->srecord_type)
|
||
create_task_copyfn (stmt, ctx);
|
||
|
||
push_gimplify_context (&gctx);
|
||
|
||
par_olist = NULL;
|
||
par_ilist = NULL;
|
||
lower_rec_input_clauses (clauses, &par_ilist, &par_olist, ctx);
|
||
lower_omp (&par_body, ctx);
|
||
if (gimple_code (stmt) == GIMPLE_OMP_PARALLEL)
|
||
lower_reduction_clauses (clauses, &par_olist, ctx);
|
||
|
||
/* Declare all the variables created by mapping and the variables
|
||
declared in the scope of the parallel body. */
|
||
record_vars_into (ctx->block_vars, child_fn);
|
||
record_vars_into (gimple_bind_vars (par_bind), child_fn);
|
||
|
||
if (ctx->record_type)
|
||
{
|
||
ctx->sender_decl
|
||
= create_tmp_var (ctx->srecord_type ? ctx->srecord_type
|
||
: ctx->record_type, ".omp_data_o");
|
||
DECL_NAMELESS (ctx->sender_decl) = 1;
|
||
TREE_ADDRESSABLE (ctx->sender_decl) = 1;
|
||
gimple_omp_taskreg_set_data_arg (stmt, ctx->sender_decl);
|
||
}
|
||
|
||
olist = NULL;
|
||
ilist = NULL;
|
||
lower_send_clauses (clauses, &ilist, &olist, ctx);
|
||
lower_send_shared_vars (&ilist, &olist, ctx);
|
||
|
||
/* Once all the expansions are done, sequence all the different
|
||
fragments inside gimple_omp_body. */
|
||
|
||
new_body = NULL;
|
||
|
||
if (ctx->record_type)
|
||
{
|
||
t = build_fold_addr_expr_loc (loc, ctx->sender_decl);
|
||
/* fixup_child_record_type might have changed receiver_decl's type. */
|
||
t = fold_convert_loc (loc, TREE_TYPE (ctx->receiver_decl), t);
|
||
gimple_seq_add_stmt (&new_body,
|
||
gimple_build_assign (ctx->receiver_decl, t));
|
||
}
|
||
|
||
gimple_seq_add_seq (&new_body, par_ilist);
|
||
gimple_seq_add_seq (&new_body, par_body);
|
||
gimple_seq_add_seq (&new_body, par_olist);
|
||
new_body = maybe_catch_exception (new_body);
|
||
gimple_seq_add_stmt (&new_body, gimple_build_omp_return (false));
|
||
gimple_omp_set_body (stmt, new_body);
|
||
|
||
bind = gimple_build_bind (NULL, NULL, gimple_bind_block (par_bind));
|
||
gsi_replace (gsi_p, bind, true);
|
||
gimple_bind_add_seq (bind, ilist);
|
||
gimple_bind_add_stmt (bind, stmt);
|
||
gimple_bind_add_seq (bind, olist);
|
||
|
||
pop_gimplify_context (NULL);
|
||
}
|
||
|
||
/* Callback for lower_omp_1. Return non-NULL if *tp needs to be
|
||
regimplified. If DATA is non-NULL, lower_omp_1 is outside
|
||
of OpenMP context, but with task_shared_vars set. */
|
||
|
||
static tree
|
||
lower_omp_regimplify_p (tree *tp, int *walk_subtrees,
|
||
void *data)
|
||
{
|
||
tree t = *tp;
|
||
|
||
/* Any variable with DECL_VALUE_EXPR needs to be regimplified. */
|
||
if (TREE_CODE (t) == VAR_DECL && data == NULL && DECL_HAS_VALUE_EXPR_P (t))
|
||
return t;
|
||
|
||
if (task_shared_vars
|
||
&& DECL_P (t)
|
||
&& bitmap_bit_p (task_shared_vars, DECL_UID (t)))
|
||
return t;
|
||
|
||
/* If a global variable has been privatized, TREE_CONSTANT on
|
||
ADDR_EXPR might be wrong. */
|
||
if (data == NULL && TREE_CODE (t) == ADDR_EXPR)
|
||
recompute_tree_invariant_for_addr_expr (t);
|
||
|
||
*walk_subtrees = !TYPE_P (t) && !DECL_P (t);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static void
|
||
lower_omp_1 (gimple_stmt_iterator *gsi_p, omp_context *ctx)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi_p);
|
||
struct walk_stmt_info wi;
|
||
|
||
if (gimple_has_location (stmt))
|
||
input_location = gimple_location (stmt);
|
||
|
||
if (task_shared_vars)
|
||
memset (&wi, '\0', sizeof (wi));
|
||
|
||
/* If we have issued syntax errors, avoid doing any heavy lifting.
|
||
Just replace the OpenMP directives with a NOP to avoid
|
||
confusing RTL expansion. */
|
||
if (seen_error () && is_gimple_omp (stmt))
|
||
{
|
||
gsi_replace (gsi_p, gimple_build_nop (), true);
|
||
return;
|
||
}
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_COND:
|
||
if ((ctx || task_shared_vars)
|
||
&& (walk_tree (gimple_cond_lhs_ptr (stmt), lower_omp_regimplify_p,
|
||
ctx ? NULL : &wi, NULL)
|
||
|| walk_tree (gimple_cond_rhs_ptr (stmt), lower_omp_regimplify_p,
|
||
ctx ? NULL : &wi, NULL)))
|
||
gimple_regimplify_operands (stmt, gsi_p);
|
||
break;
|
||
case GIMPLE_CATCH:
|
||
lower_omp (gimple_catch_handler_ptr (stmt), ctx);
|
||
break;
|
||
case GIMPLE_EH_FILTER:
|
||
lower_omp (gimple_eh_filter_failure_ptr (stmt), ctx);
|
||
break;
|
||
case GIMPLE_TRY:
|
||
lower_omp (gimple_try_eval_ptr (stmt), ctx);
|
||
lower_omp (gimple_try_cleanup_ptr (stmt), ctx);
|
||
break;
|
||
case GIMPLE_TRANSACTION:
|
||
lower_omp (gimple_transaction_body_ptr (stmt), ctx);
|
||
break;
|
||
case GIMPLE_BIND:
|
||
lower_omp (gimple_bind_body_ptr (stmt), ctx);
|
||
break;
|
||
case GIMPLE_OMP_PARALLEL:
|
||
case GIMPLE_OMP_TASK:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
lower_omp_taskreg (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_FOR:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
gcc_assert (ctx);
|
||
lower_omp_for (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_SECTIONS:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
gcc_assert (ctx);
|
||
lower_omp_sections (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_SINGLE:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
gcc_assert (ctx);
|
||
lower_omp_single (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_MASTER:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
gcc_assert (ctx);
|
||
lower_omp_master (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_ORDERED:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
gcc_assert (ctx);
|
||
lower_omp_ordered (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_CRITICAL:
|
||
ctx = maybe_lookup_ctx (stmt);
|
||
gcc_assert (ctx);
|
||
lower_omp_critical (gsi_p, ctx);
|
||
break;
|
||
case GIMPLE_OMP_ATOMIC_LOAD:
|
||
if ((ctx || task_shared_vars)
|
||
&& walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt),
|
||
lower_omp_regimplify_p, ctx ? NULL : &wi, NULL))
|
||
gimple_regimplify_operands (stmt, gsi_p);
|
||
break;
|
||
default:
|
||
if ((ctx || task_shared_vars)
|
||
&& walk_gimple_op (stmt, lower_omp_regimplify_p,
|
||
ctx ? NULL : &wi))
|
||
gimple_regimplify_operands (stmt, gsi_p);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
lower_omp (gimple_seq *body, omp_context *ctx)
|
||
{
|
||
location_t saved_location = input_location;
|
||
gimple_stmt_iterator gsi;
|
||
for (gsi = gsi_start (*body); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
lower_omp_1 (&gsi, ctx);
|
||
input_location = saved_location;
|
||
}
|
||
|
||
/* Main entry point. */
|
||
|
||
static unsigned int
|
||
execute_lower_omp (void)
|
||
{
|
||
gimple_seq body;
|
||
|
||
/* This pass always runs, to provide PROP_gimple_lomp.
|
||
But there is nothing to do unless -fopenmp is given. */
|
||
if (flag_openmp == 0)
|
||
return 0;
|
||
|
||
all_contexts = splay_tree_new (splay_tree_compare_pointers, 0,
|
||
delete_omp_context);
|
||
|
||
body = gimple_body (current_function_decl);
|
||
scan_omp (&body, NULL);
|
||
gcc_assert (taskreg_nesting_level == 0);
|
||
|
||
if (all_contexts->root)
|
||
{
|
||
struct gimplify_ctx gctx;
|
||
|
||
if (task_shared_vars)
|
||
push_gimplify_context (&gctx);
|
||
lower_omp (&body, NULL);
|
||
if (task_shared_vars)
|
||
pop_gimplify_context (NULL);
|
||
}
|
||
|
||
if (all_contexts)
|
||
{
|
||
splay_tree_delete (all_contexts);
|
||
all_contexts = NULL;
|
||
}
|
||
BITMAP_FREE (task_shared_vars);
|
||
return 0;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_lower_omp =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"omplower", /* name */
|
||
NULL, /* gate */
|
||
execute_lower_omp, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
PROP_gimple_lomp, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0 /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
/* The following is a utility to diagnose OpenMP structured block violations.
|
||
It is not part of the "omplower" pass, as that's invoked too late. It
|
||
should be invoked by the respective front ends after gimplification. */
|
||
|
||
static splay_tree all_labels;
|
||
|
||
/* Check for mismatched contexts and generate an error if needed. Return
|
||
true if an error is detected. */
|
||
|
||
static bool
|
||
diagnose_sb_0 (gimple_stmt_iterator *gsi_p,
|
||
gimple branch_ctx, gimple label_ctx)
|
||
{
|
||
if (label_ctx == branch_ctx)
|
||
return false;
|
||
|
||
|
||
/*
|
||
Previously we kept track of the label's entire context in diagnose_sb_[12]
|
||
so we could traverse it and issue a correct "exit" or "enter" error
|
||
message upon a structured block violation.
|
||
|
||
We built the context by building a list with tree_cons'ing, but there is
|
||
no easy counterpart in gimple tuples. It seems like far too much work
|
||
for issuing exit/enter error messages. If someone really misses the
|
||
distinct error message... patches welcome.
|
||
*/
|
||
|
||
#if 0
|
||
/* Try to avoid confusing the user by producing and error message
|
||
with correct "exit" or "enter" verbiage. We prefer "exit"
|
||
unless we can show that LABEL_CTX is nested within BRANCH_CTX. */
|
||
if (branch_ctx == NULL)
|
||
exit_p = false;
|
||
else
|
||
{
|
||
while (label_ctx)
|
||
{
|
||
if (TREE_VALUE (label_ctx) == branch_ctx)
|
||
{
|
||
exit_p = false;
|
||
break;
|
||
}
|
||
label_ctx = TREE_CHAIN (label_ctx);
|
||
}
|
||
}
|
||
|
||
if (exit_p)
|
||
error ("invalid exit from OpenMP structured block");
|
||
else
|
||
error ("invalid entry to OpenMP structured block");
|
||
#endif
|
||
|
||
/* If it's obvious we have an invalid entry, be specific about the error. */
|
||
if (branch_ctx == NULL)
|
||
error ("invalid entry to OpenMP structured block");
|
||
else
|
||
/* Otherwise, be vague and lazy, but efficient. */
|
||
error ("invalid branch to/from an OpenMP structured block");
|
||
|
||
gsi_replace (gsi_p, gimple_build_nop (), false);
|
||
return true;
|
||
}
|
||
|
||
/* Pass 1: Create a minimal tree of OpenMP structured blocks, and record
|
||
where each label is found. */
|
||
|
||
static tree
|
||
diagnose_sb_1 (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
gimple context = (gimple) wi->info;
|
||
gimple inner_context;
|
||
gimple stmt = gsi_stmt (*gsi_p);
|
||
|
||
*handled_ops_p = true;
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
WALK_SUBSTMTS;
|
||
|
||
case GIMPLE_OMP_PARALLEL:
|
||
case GIMPLE_OMP_TASK:
|
||
case GIMPLE_OMP_SECTIONS:
|
||
case GIMPLE_OMP_SINGLE:
|
||
case GIMPLE_OMP_SECTION:
|
||
case GIMPLE_OMP_MASTER:
|
||
case GIMPLE_OMP_ORDERED:
|
||
case GIMPLE_OMP_CRITICAL:
|
||
/* The minimal context here is just the current OMP construct. */
|
||
inner_context = stmt;
|
||
wi->info = inner_context;
|
||
walk_gimple_seq (gimple_omp_body (stmt), diagnose_sb_1, NULL, wi);
|
||
wi->info = context;
|
||
break;
|
||
|
||
case GIMPLE_OMP_FOR:
|
||
inner_context = stmt;
|
||
wi->info = inner_context;
|
||
/* gimple_omp_for_{index,initial,final} are all DECLs; no need to
|
||
walk them. */
|
||
walk_gimple_seq (gimple_omp_for_pre_body (stmt),
|
||
diagnose_sb_1, NULL, wi);
|
||
walk_gimple_seq (gimple_omp_body (stmt), diagnose_sb_1, NULL, wi);
|
||
wi->info = context;
|
||
break;
|
||
|
||
case GIMPLE_LABEL:
|
||
splay_tree_insert (all_labels, (splay_tree_key) gimple_label_label (stmt),
|
||
(splay_tree_value) context);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Pass 2: Check each branch and see if its context differs from that of
|
||
the destination label's context. */
|
||
|
||
static tree
|
||
diagnose_sb_2 (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
gimple context = (gimple) wi->info;
|
||
splay_tree_node n;
|
||
gimple stmt = gsi_stmt (*gsi_p);
|
||
|
||
*handled_ops_p = true;
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
WALK_SUBSTMTS;
|
||
|
||
case GIMPLE_OMP_PARALLEL:
|
||
case GIMPLE_OMP_TASK:
|
||
case GIMPLE_OMP_SECTIONS:
|
||
case GIMPLE_OMP_SINGLE:
|
||
case GIMPLE_OMP_SECTION:
|
||
case GIMPLE_OMP_MASTER:
|
||
case GIMPLE_OMP_ORDERED:
|
||
case GIMPLE_OMP_CRITICAL:
|
||
wi->info = stmt;
|
||
walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), diagnose_sb_2, NULL, wi);
|
||
wi->info = context;
|
||
break;
|
||
|
||
case GIMPLE_OMP_FOR:
|
||
wi->info = stmt;
|
||
/* gimple_omp_for_{index,initial,final} are all DECLs; no need to
|
||
walk them. */
|
||
walk_gimple_seq_mod (gimple_omp_for_pre_body_ptr (stmt),
|
||
diagnose_sb_2, NULL, wi);
|
||
walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), diagnose_sb_2, NULL, wi);
|
||
wi->info = context;
|
||
break;
|
||
|
||
case GIMPLE_COND:
|
||
{
|
||
tree lab = gimple_cond_true_label (stmt);
|
||
if (lab)
|
||
{
|
||
n = splay_tree_lookup (all_labels,
|
||
(splay_tree_key) lab);
|
||
diagnose_sb_0 (gsi_p, context,
|
||
n ? (gimple) n->value : NULL);
|
||
}
|
||
lab = gimple_cond_false_label (stmt);
|
||
if (lab)
|
||
{
|
||
n = splay_tree_lookup (all_labels,
|
||
(splay_tree_key) lab);
|
||
diagnose_sb_0 (gsi_p, context,
|
||
n ? (gimple) n->value : NULL);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_GOTO:
|
||
{
|
||
tree lab = gimple_goto_dest (stmt);
|
||
if (TREE_CODE (lab) != LABEL_DECL)
|
||
break;
|
||
|
||
n = splay_tree_lookup (all_labels, (splay_tree_key) lab);
|
||
diagnose_sb_0 (gsi_p, context, n ? (gimple) n->value : NULL);
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_SWITCH:
|
||
{
|
||
unsigned int i;
|
||
for (i = 0; i < gimple_switch_num_labels (stmt); ++i)
|
||
{
|
||
tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
|
||
n = splay_tree_lookup (all_labels, (splay_tree_key) lab);
|
||
if (n && diagnose_sb_0 (gsi_p, context, (gimple) n->value))
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_RETURN:
|
||
diagnose_sb_0 (gsi_p, context, NULL);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static unsigned int
|
||
diagnose_omp_structured_block_errors (void)
|
||
{
|
||
struct walk_stmt_info wi;
|
||
gimple_seq body = gimple_body (current_function_decl);
|
||
|
||
all_labels = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
walk_gimple_seq (body, diagnose_sb_1, NULL, &wi);
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.want_locations = true;
|
||
walk_gimple_seq_mod (&body, diagnose_sb_2, NULL, &wi);
|
||
|
||
gimple_set_body (current_function_decl, body);
|
||
|
||
splay_tree_delete (all_labels);
|
||
all_labels = NULL;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_diagnose_omp_blocks (void)
|
||
{
|
||
return flag_openmp != 0;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_diagnose_omp_blocks =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"*diagnose_omp_blocks", /* name */
|
||
gate_diagnose_omp_blocks, /* gate */
|
||
diagnose_omp_structured_block_errors, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
#include "gt-omp-low.h"
|