ac47786e99
gcc/ * vec.h (FOR_EACH_VEC_ELT): Define. * c-decl.c: Use it. * cfgloop.c: Likewise. * cfgloopmanip.c: Likewise. * cgraph.c: Likewise. * cgraphunit.c: Likewise. * combine.c: Likewise. * config/bfin/bfin.c: Likewise. * config/mips/mips.c: Likewise. * config/rs6000/rs6000.c: Likewise. * dbxout.c: Likewise. * df-scan.c: Likewise. * dominance.c: Likewise. * dse.c: Likewise. * dwarf2out.c: Likewise. * except.c: Likewise. * expr.c: Likewise. * function.c: Likewise. * gcse.c: Likewise. * genattr.c: Likewise. * ggc-common.c: Likewise. * gimplify.c: Likewise. * graphite-blocking.c: Likewise. * graphite-clast-to-gimple.c: Likewise. * graphite-dependences.c: Likewise. * graphite-interchange.c: Likewise. * graphite-poly.c: Likewise. * graphite-scop-detection.c: Likewise. * graphite-sese-to-poly.c: Likewise. * graphite.c: Likewise. * haifa-sched.c: Likewise. * ifcvt.c: Likewise. * implicit-zee.c: Likewise. * ipa-prop.c: Likewise. * ipa-struct-reorg.c: Likewise. * ipa.c: Likewise. * ira-build.c: Likewise. * ira-color.c: Likewise. * ira-emit.c: Likewise. * lambda-code.c: Likewise. * loop-invariant.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * lto-cgraph.c: Likewise. * lto-opts.c: Likewise. * lto-streamer-in.c: Likewise. * lto-streamer-out.c: Likewise. * lto-streamer.c: Likewise. * lto-symtab.c: Likewise. * matrix-reorg.c: Likewise. * opts.c: Likewise. * predict.c: Likewise. * print-tree.c: Likewise. * sdbout.c: Likewise. * sel-sched-dump.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched.c: Likewise. * sese.c: Likewise. * stor-layout.c: Likewise. * tree-cfg.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-chrec.c: Likewise. * tree-data-ref.c: Likewise. * tree-emutls.c: Likewise. * tree-inline.c: Likewise. * tree-into-ssa.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-loop-linear.c: Likewise. * tree-mudflap.c: Likewise. * tree-outof-ssa.c: Likewise. * tree-parloops.c: Likewise. * tree-predcom.c: Likewise. * tree-pretty-print.c: Likewise. * tree-scalar-evolution.c: Likewise. * tree-ssa-live.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-ssa-loop-manip.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-ssa-phiprop.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-reassoc.c: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa.c: Likewise. * tree-vect-data-refs.c: Likewise. * tree-vect-loop-manip.c: Likewise. * tree-vect-loop.c: Likewise. * tree-vect-patterns.c: Likewise. * tree-vect-slp.c: Likewise. * tree-vect-stmts.c: Likewise. * tree-vrp.c: Likewise. * tree.c: Likewise. * value-prof.c: Likewise. * var-tracking.c: Likewise. * varasm.c: Likewise. * vmsdbgout.c: Likewise. gcc/ada/ * gcc-interface/decl.c: Use FOR_EACH_VEC_ELT. * gcc-interface/trans.c: Likewise. * gcc-interface/utils.c: Likewise. gcc/c-family/ * c-common.c: Use FOR_EACH_VEC_ELT. * c-gimplify.c: Likewise. * c-pragma.c: Likewise. gcc/cp/ * call.c: Use FOR_EACH_VEC_ELT. * class.c: Likewise. * decl.c: Likewise. * decl2.c: Likewise. * error.c: Likewise. * except.c: Likewise. * mangle.c: Likewise. * method.c: Likewise. * name-lookup.c: Likewise. * parser.c: Likewise. * pt.c: Likewise. * repo.c: Likewise. * semantics.c: Likewise. * typeck2.c: Likewise. gcc/fortran/ * trans-openmp.c: Use FOR_EACH_VEC_ELT. gcc/java/ * class.c: Use FOR_EACH_VEC_ELT. * expr.c: Likewise. * jcf-parse.c: Likewise. * resource.c: Likewise. gcc/lto/ * lto.c: Use FOR_EACH_VEC_ELT. From-SVN: r163401
3076 lines
91 KiB
C
3076 lines
91 KiB
C
/* Building internal representation for IRA.
|
||
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "target.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "diagnostic-core.h"
|
||
#include "toplev.h"
|
||
#include "params.h"
|
||
#include "df.h"
|
||
#include "output.h"
|
||
#include "reload.h"
|
||
#include "sparseset.h"
|
||
#include "ira-int.h"
|
||
#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
|
||
|
||
static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx,
|
||
ira_loop_tree_node_t);
|
||
|
||
/* The root of the loop tree corresponding to the all function. */
|
||
ira_loop_tree_node_t ira_loop_tree_root;
|
||
|
||
/* Height of the loop tree. */
|
||
int ira_loop_tree_height;
|
||
|
||
/* All nodes representing basic blocks are referred through the
|
||
following array. We can not use basic block member `aux' for this
|
||
because it is used for insertion of insns on edges. */
|
||
ira_loop_tree_node_t ira_bb_nodes;
|
||
|
||
/* All nodes representing loops are referred through the following
|
||
array. */
|
||
ira_loop_tree_node_t ira_loop_nodes;
|
||
|
||
/* Map regno -> allocnos with given regno (see comments for
|
||
allocno member `next_regno_allocno'). */
|
||
ira_allocno_t *ira_regno_allocno_map;
|
||
|
||
/* Array of references to all allocnos. The order number of the
|
||
allocno corresponds to the index in the array. Removed allocnos
|
||
have NULL element value. */
|
||
ira_allocno_t *ira_allocnos;
|
||
|
||
/* Sizes of the previous array. */
|
||
int ira_allocnos_num;
|
||
|
||
/* Count of conflict record structures we've created, used when creating
|
||
a new conflict id. */
|
||
int ira_objects_num;
|
||
|
||
/* Map a conflict id to its conflict record. */
|
||
ira_object_t *ira_object_id_map;
|
||
|
||
/* Array of references to all copies. The order number of the copy
|
||
corresponds to the index in the array. Removed copies have NULL
|
||
element value. */
|
||
ira_copy_t *ira_copies;
|
||
|
||
/* Size of the previous array. */
|
||
int ira_copies_num;
|
||
|
||
|
||
|
||
/* LAST_BASIC_BLOCK before generating additional insns because of live
|
||
range splitting. Emitting insns on a critical edge creates a new
|
||
basic block. */
|
||
static int last_basic_block_before_change;
|
||
|
||
/* The following function allocates the loop tree nodes. If LOOPS_P
|
||
is FALSE, the nodes corresponding to the loops (except the root
|
||
which corresponds the all function) will be not allocated but nodes
|
||
will still be allocated for basic blocks. */
|
||
static void
|
||
create_loop_tree_nodes (bool loops_p)
|
||
{
|
||
unsigned int i, j;
|
||
int max_regno;
|
||
bool skip_p;
|
||
edge_iterator ei;
|
||
edge e;
|
||
VEC (edge, heap) *edges;
|
||
loop_p loop;
|
||
|
||
ira_bb_nodes
|
||
= ((struct ira_loop_tree_node *)
|
||
ira_allocate (sizeof (struct ira_loop_tree_node) * last_basic_block));
|
||
last_basic_block_before_change = last_basic_block;
|
||
for (i = 0; i < (unsigned int) last_basic_block; i++)
|
||
{
|
||
ira_bb_nodes[i].regno_allocno_map = NULL;
|
||
memset (ira_bb_nodes[i].reg_pressure, 0,
|
||
sizeof (ira_bb_nodes[i].reg_pressure));
|
||
ira_bb_nodes[i].all_allocnos = NULL;
|
||
ira_bb_nodes[i].modified_regnos = NULL;
|
||
ira_bb_nodes[i].border_allocnos = NULL;
|
||
ira_bb_nodes[i].local_copies = NULL;
|
||
}
|
||
ira_loop_nodes = ((struct ira_loop_tree_node *)
|
||
ira_allocate (sizeof (struct ira_loop_tree_node)
|
||
* VEC_length (loop_p, ira_loops.larray)));
|
||
max_regno = max_reg_num ();
|
||
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
||
{
|
||
if (loop != ira_loops.tree_root)
|
||
{
|
||
ira_loop_nodes[i].regno_allocno_map = NULL;
|
||
if (! loops_p)
|
||
continue;
|
||
skip_p = false;
|
||
FOR_EACH_EDGE (e, ei, loop->header->preds)
|
||
if (e->src != loop->latch
|
||
&& (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
|
||
{
|
||
skip_p = true;
|
||
break;
|
||
}
|
||
if (skip_p)
|
||
continue;
|
||
edges = get_loop_exit_edges (loop);
|
||
FOR_EACH_VEC_ELT (edge, edges, j, e)
|
||
if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
|
||
{
|
||
skip_p = true;
|
||
break;
|
||
}
|
||
VEC_free (edge, heap, edges);
|
||
if (skip_p)
|
||
continue;
|
||
}
|
||
ira_loop_nodes[i].regno_allocno_map
|
||
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
|
||
memset (ira_loop_nodes[i].regno_allocno_map, 0,
|
||
sizeof (ira_allocno_t) * max_regno);
|
||
memset (ira_loop_nodes[i].reg_pressure, 0,
|
||
sizeof (ira_loop_nodes[i].reg_pressure));
|
||
ira_loop_nodes[i].all_allocnos = ira_allocate_bitmap ();
|
||
ira_loop_nodes[i].modified_regnos = ira_allocate_bitmap ();
|
||
ira_loop_nodes[i].border_allocnos = ira_allocate_bitmap ();
|
||
ira_loop_nodes[i].local_copies = ira_allocate_bitmap ();
|
||
}
|
||
}
|
||
|
||
/* The function returns TRUE if there are more one allocation
|
||
region. */
|
||
static bool
|
||
more_one_region_p (void)
|
||
{
|
||
unsigned int i;
|
||
loop_p loop;
|
||
|
||
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
||
if (ira_loop_nodes[i].regno_allocno_map != NULL
|
||
&& ira_loop_tree_root != &ira_loop_nodes[i])
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Free the loop tree node of a loop. */
|
||
static void
|
||
finish_loop_tree_node (ira_loop_tree_node_t loop)
|
||
{
|
||
if (loop->regno_allocno_map != NULL)
|
||
{
|
||
ira_assert (loop->bb == NULL);
|
||
ira_free_bitmap (loop->local_copies);
|
||
ira_free_bitmap (loop->border_allocnos);
|
||
ira_free_bitmap (loop->modified_regnos);
|
||
ira_free_bitmap (loop->all_allocnos);
|
||
ira_free (loop->regno_allocno_map);
|
||
loop->regno_allocno_map = NULL;
|
||
}
|
||
}
|
||
|
||
/* Free the loop tree nodes. */
|
||
static void
|
||
finish_loop_tree_nodes (void)
|
||
{
|
||
unsigned int i;
|
||
loop_p loop;
|
||
|
||
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
||
finish_loop_tree_node (&ira_loop_nodes[i]);
|
||
ira_free (ira_loop_nodes);
|
||
for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
|
||
{
|
||
if (ira_bb_nodes[i].local_copies != NULL)
|
||
ira_free_bitmap (ira_bb_nodes[i].local_copies);
|
||
if (ira_bb_nodes[i].border_allocnos != NULL)
|
||
ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
|
||
if (ira_bb_nodes[i].modified_regnos != NULL)
|
||
ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
|
||
if (ira_bb_nodes[i].all_allocnos != NULL)
|
||
ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
|
||
if (ira_bb_nodes[i].regno_allocno_map != NULL)
|
||
ira_free (ira_bb_nodes[i].regno_allocno_map);
|
||
}
|
||
ira_free (ira_bb_nodes);
|
||
}
|
||
|
||
|
||
|
||
/* The following recursive function adds LOOP to the loop tree
|
||
hierarchy. LOOP is added only once. */
|
||
static void
|
||
add_loop_to_tree (struct loop *loop)
|
||
{
|
||
struct loop *parent;
|
||
ira_loop_tree_node_t loop_node, parent_node;
|
||
|
||
/* We can not use loop node access macros here because of potential
|
||
checking and because the nodes are not initialized enough
|
||
yet. */
|
||
if (loop_outer (loop) != NULL)
|
||
add_loop_to_tree (loop_outer (loop));
|
||
if (ira_loop_nodes[loop->num].regno_allocno_map != NULL
|
||
&& ira_loop_nodes[loop->num].children == NULL)
|
||
{
|
||
/* We have not added loop node to the tree yet. */
|
||
loop_node = &ira_loop_nodes[loop->num];
|
||
loop_node->loop = loop;
|
||
loop_node->bb = NULL;
|
||
for (parent = loop_outer (loop);
|
||
parent != NULL;
|
||
parent = loop_outer (parent))
|
||
if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
|
||
break;
|
||
if (parent == NULL)
|
||
{
|
||
loop_node->next = NULL;
|
||
loop_node->subloop_next = NULL;
|
||
loop_node->parent = NULL;
|
||
}
|
||
else
|
||
{
|
||
parent_node = &ira_loop_nodes[parent->num];
|
||
loop_node->next = parent_node->children;
|
||
parent_node->children = loop_node;
|
||
loop_node->subloop_next = parent_node->subloops;
|
||
parent_node->subloops = loop_node;
|
||
loop_node->parent = parent_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The following recursive function sets up levels of nodes of the
|
||
tree given its root LOOP_NODE. The enumeration starts with LEVEL.
|
||
The function returns maximal value of level in the tree + 1. */
|
||
static int
|
||
setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
|
||
{
|
||
int height, max_height;
|
||
ira_loop_tree_node_t subloop_node;
|
||
|
||
ira_assert (loop_node->bb == NULL);
|
||
loop_node->level = level;
|
||
max_height = level + 1;
|
||
for (subloop_node = loop_node->subloops;
|
||
subloop_node != NULL;
|
||
subloop_node = subloop_node->subloop_next)
|
||
{
|
||
ira_assert (subloop_node->bb == NULL);
|
||
height = setup_loop_tree_level (subloop_node, level + 1);
|
||
if (height > max_height)
|
||
max_height = height;
|
||
}
|
||
return max_height;
|
||
}
|
||
|
||
/* Create the loop tree. The algorithm is designed to provide correct
|
||
order of loops (they are ordered by their last loop BB) and basic
|
||
blocks in the chain formed by member next. */
|
||
static void
|
||
form_loop_tree (void)
|
||
{
|
||
unsigned int i;
|
||
basic_block bb;
|
||
struct loop *parent;
|
||
ira_loop_tree_node_t bb_node, loop_node;
|
||
loop_p loop;
|
||
|
||
/* We can not use loop/bb node access macros because of potential
|
||
checking and because the nodes are not initialized enough
|
||
yet. */
|
||
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
||
if (ira_loop_nodes[i].regno_allocno_map != NULL)
|
||
{
|
||
ira_loop_nodes[i].children = NULL;
|
||
ira_loop_nodes[i].subloops = NULL;
|
||
}
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bb_node = &ira_bb_nodes[bb->index];
|
||
bb_node->bb = bb;
|
||
bb_node->loop = NULL;
|
||
bb_node->subloops = NULL;
|
||
bb_node->children = NULL;
|
||
bb_node->subloop_next = NULL;
|
||
bb_node->next = NULL;
|
||
for (parent = bb->loop_father;
|
||
parent != NULL;
|
||
parent = loop_outer (parent))
|
||
if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
|
||
break;
|
||
add_loop_to_tree (parent);
|
||
loop_node = &ira_loop_nodes[parent->num];
|
||
bb_node->next = loop_node->children;
|
||
bb_node->parent = loop_node;
|
||
loop_node->children = bb_node;
|
||
}
|
||
ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (ira_loops.tree_root->num);
|
||
ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
|
||
ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
|
||
}
|
||
|
||
|
||
|
||
/* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
|
||
tree nodes. */
|
||
static void
|
||
rebuild_regno_allocno_maps (void)
|
||
{
|
||
unsigned int l;
|
||
int max_regno, regno;
|
||
ira_allocno_t a;
|
||
ira_loop_tree_node_t loop_tree_node;
|
||
loop_p loop;
|
||
ira_allocno_iterator ai;
|
||
|
||
max_regno = max_reg_num ();
|
||
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, l, loop)
|
||
if (ira_loop_nodes[l].regno_allocno_map != NULL)
|
||
{
|
||
ira_free (ira_loop_nodes[l].regno_allocno_map);
|
||
ira_loop_nodes[l].regno_allocno_map
|
||
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
||
* max_regno);
|
||
memset (ira_loop_nodes[l].regno_allocno_map, 0,
|
||
sizeof (ira_allocno_t) * max_regno);
|
||
}
|
||
ira_free (ira_regno_allocno_map);
|
||
ira_regno_allocno_map
|
||
= (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
|
||
memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
/* Caps are not in the regno allocno maps. */
|
||
continue;
|
||
regno = ALLOCNO_REGNO (a);
|
||
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
|
||
ira_regno_allocno_map[regno] = a;
|
||
if (loop_tree_node->regno_allocno_map[regno] == NULL)
|
||
/* Remember that we can create temporary allocnos to break
|
||
cycles in register shuffle. */
|
||
loop_tree_node->regno_allocno_map[regno] = a;
|
||
}
|
||
}
|
||
|
||
|
||
/* Pools for allocnos, allocno live ranges and objects. */
|
||
static alloc_pool allocno_pool, live_range_pool, object_pool;
|
||
|
||
/* Vec containing references to all created allocnos. It is a
|
||
container of array allocnos. */
|
||
static VEC(ira_allocno_t,heap) *allocno_vec;
|
||
|
||
/* Vec containing references to all created ira_objects. It is a
|
||
container of ira_object_id_map. */
|
||
static VEC(ira_object_t,heap) *ira_object_id_map_vec;
|
||
|
||
/* Initialize data concerning allocnos. */
|
||
static void
|
||
initiate_allocnos (void)
|
||
{
|
||
live_range_pool
|
||
= create_alloc_pool ("live ranges",
|
||
sizeof (struct live_range), 100);
|
||
allocno_pool
|
||
= create_alloc_pool ("allocnos", sizeof (struct ira_allocno), 100);
|
||
object_pool
|
||
= create_alloc_pool ("objects", sizeof (struct ira_object), 100);
|
||
allocno_vec = VEC_alloc (ira_allocno_t, heap, max_reg_num () * 2);
|
||
ira_allocnos = NULL;
|
||
ira_allocnos_num = 0;
|
||
ira_objects_num = 0;
|
||
ira_object_id_map_vec
|
||
= VEC_alloc (ira_object_t, heap, max_reg_num () * 2);
|
||
ira_object_id_map = NULL;
|
||
ira_regno_allocno_map
|
||
= (ira_allocno_t *) ira_allocate (max_reg_num () * sizeof (ira_allocno_t));
|
||
memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
|
||
}
|
||
|
||
/* Create and return an object corresponding to a new allocno A. */
|
||
static ira_object_t
|
||
ira_create_object (ira_allocno_t a, int subword)
|
||
{
|
||
enum reg_class cover_class = ALLOCNO_COVER_CLASS (a);
|
||
ira_object_t obj = (ira_object_t) pool_alloc (object_pool);
|
||
|
||
OBJECT_ALLOCNO (obj) = a;
|
||
OBJECT_SUBWORD (obj) = subword;
|
||
OBJECT_CONFLICT_ID (obj) = ira_objects_num;
|
||
OBJECT_CONFLICT_VEC_P (obj) = false;
|
||
OBJECT_CONFLICT_ARRAY (obj) = NULL;
|
||
OBJECT_NUM_CONFLICTS (obj) = 0;
|
||
COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
|
||
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
|
||
IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
||
reg_class_contents[cover_class]);
|
||
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
||
reg_class_contents[cover_class]);
|
||
OBJECT_MIN (obj) = INT_MAX;
|
||
OBJECT_MAX (obj) = -1;
|
||
OBJECT_LIVE_RANGES (obj) = NULL;
|
||
|
||
VEC_safe_push (ira_object_t, heap, ira_object_id_map_vec, obj);
|
||
ira_object_id_map
|
||
= VEC_address (ira_object_t, ira_object_id_map_vec);
|
||
ira_objects_num = VEC_length (ira_object_t, ira_object_id_map_vec);
|
||
|
||
return obj;
|
||
}
|
||
|
||
/* Create and return the allocno corresponding to REGNO in
|
||
LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
|
||
same regno if CAP_P is FALSE. */
|
||
ira_allocno_t
|
||
ira_create_allocno (int regno, bool cap_p, ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
ira_allocno_t a;
|
||
|
||
a = (ira_allocno_t) pool_alloc (allocno_pool);
|
||
ALLOCNO_REGNO (a) = regno;
|
||
ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
|
||
if (! cap_p)
|
||
{
|
||
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
|
||
ira_regno_allocno_map[regno] = a;
|
||
if (loop_tree_node->regno_allocno_map[regno] == NULL)
|
||
/* Remember that we can create temporary allocnos to break
|
||
cycles in register shuffle on region borders (see
|
||
ira-emit.c). */
|
||
loop_tree_node->regno_allocno_map[regno] = a;
|
||
}
|
||
ALLOCNO_CAP (a) = NULL;
|
||
ALLOCNO_CAP_MEMBER (a) = NULL;
|
||
ALLOCNO_NUM (a) = ira_allocnos_num;
|
||
bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
|
||
ALLOCNO_NREFS (a) = 0;
|
||
ALLOCNO_FREQ (a) = 0;
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
ALLOCNO_CALL_FREQ (a) = 0;
|
||
ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
|
||
#ifdef STACK_REGS
|
||
ALLOCNO_NO_STACK_REG_P (a) = false;
|
||
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
|
||
#endif
|
||
ALLOCNO_MEM_OPTIMIZED_DEST (a) = NULL;
|
||
ALLOCNO_MEM_OPTIMIZED_DEST_P (a) = false;
|
||
ALLOCNO_SOMEWHERE_RENAMED_P (a) = false;
|
||
ALLOCNO_CHILD_RENAMED_P (a) = false;
|
||
ALLOCNO_DONT_REASSIGN_P (a) = false;
|
||
ALLOCNO_BAD_SPILL_P (a) = false;
|
||
ALLOCNO_IN_GRAPH_P (a) = false;
|
||
ALLOCNO_ASSIGNED_P (a) = false;
|
||
ALLOCNO_MAY_BE_SPILLED_P (a) = false;
|
||
ALLOCNO_SPLAY_REMOVED_P (a) = false;
|
||
ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
|
||
ALLOCNO_COPIES (a) = NULL;
|
||
ALLOCNO_HARD_REG_COSTS (a) = NULL;
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
||
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
|
||
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
||
ALLOCNO_LEFT_CONFLICTS_SIZE (a) = -1;
|
||
ALLOCNO_COVER_CLASS (a) = NO_REGS;
|
||
ALLOCNO_UPDATED_COVER_CLASS_COST (a) = 0;
|
||
ALLOCNO_COVER_CLASS_COST (a) = 0;
|
||
ALLOCNO_MEMORY_COST (a) = 0;
|
||
ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
|
||
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
|
||
ALLOCNO_NEXT_BUCKET_ALLOCNO (a) = NULL;
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (a) = NULL;
|
||
ALLOCNO_FIRST_COALESCED_ALLOCNO (a) = a;
|
||
ALLOCNO_NEXT_COALESCED_ALLOCNO (a) = a;
|
||
ALLOCNO_NUM_OBJECTS (a) = 0;
|
||
|
||
VEC_safe_push (ira_allocno_t, heap, allocno_vec, a);
|
||
ira_allocnos = VEC_address (ira_allocno_t, allocno_vec);
|
||
ira_allocnos_num = VEC_length (ira_allocno_t, allocno_vec);
|
||
|
||
return a;
|
||
}
|
||
|
||
/* Set up cover class for A and update its conflict hard registers. */
|
||
void
|
||
ira_set_allocno_cover_class (ira_allocno_t a, enum reg_class cover_class)
|
||
{
|
||
ALLOCNO_COVER_CLASS (a) = cover_class;
|
||
}
|
||
|
||
/* Determine the number of objects we should associate with allocno A
|
||
and allocate them. */
|
||
void
|
||
ira_create_allocno_objects (ira_allocno_t a)
|
||
{
|
||
enum machine_mode mode = ALLOCNO_MODE (a);
|
||
enum reg_class cover_class = ALLOCNO_COVER_CLASS (a);
|
||
int n = ira_reg_class_nregs[cover_class][mode];
|
||
int i;
|
||
|
||
if (GET_MODE_SIZE (mode) != 2 * UNITS_PER_WORD || n != 2)
|
||
n = 1;
|
||
|
||
ALLOCNO_NUM_OBJECTS (a) = n;
|
||
for (i = 0; i < n; i++)
|
||
ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
|
||
}
|
||
|
||
/* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
|
||
ALLOCNO_OBJECT structures. This must be called after the cover
|
||
classes are known. */
|
||
static void
|
||
create_allocno_objects (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
ira_create_allocno_objects (a);
|
||
}
|
||
|
||
/* Merge hard register conflict information for all objects associated with
|
||
allocno TO into the corresponding objects associated with FROM.
|
||
If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
|
||
static void
|
||
merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
|
||
bool total_only)
|
||
{
|
||
int i;
|
||
gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
|
||
for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
|
||
{
|
||
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
||
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
||
if (!total_only)
|
||
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
|
||
OBJECT_CONFLICT_HARD_REGS (from_obj));
|
||
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
|
||
OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
|
||
}
|
||
#ifdef STACK_REGS
|
||
if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
|
||
ALLOCNO_NO_STACK_REG_P (to) = true;
|
||
if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
|
||
ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
|
||
#endif
|
||
}
|
||
|
||
/* Update hard register conflict information for all objects associated with
|
||
A to include the regs in SET. */
|
||
void
|
||
ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
|
||
{
|
||
ira_allocno_object_iterator i;
|
||
ira_object_t obj;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
|
||
{
|
||
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
|
||
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if a conflict vector with NUM elements is more
|
||
profitable than a conflict bit vector for OBJ. */
|
||
bool
|
||
ira_conflict_vector_profitable_p (ira_object_t obj, int num)
|
||
{
|
||
int nw;
|
||
int max = OBJECT_MAX (obj);
|
||
int min = OBJECT_MIN (obj);
|
||
|
||
if (max < min)
|
||
/* We prefer a bit vector in such case because it does not result
|
||
in allocation. */
|
||
return false;
|
||
|
||
nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
|
||
return (2 * sizeof (ira_object_t) * (num + 1)
|
||
< 3 * nw * sizeof (IRA_INT_TYPE));
|
||
}
|
||
|
||
/* Allocates and initialize the conflict vector of OBJ for NUM
|
||
conflicting objects. */
|
||
void
|
||
ira_allocate_conflict_vec (ira_object_t obj, int num)
|
||
{
|
||
int size;
|
||
ira_object_t *vec;
|
||
|
||
ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
|
||
num++; /* for NULL end marker */
|
||
size = sizeof (ira_object_t) * num;
|
||
OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
|
||
vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
|
||
vec[0] = NULL;
|
||
OBJECT_NUM_CONFLICTS (obj) = 0;
|
||
OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
|
||
OBJECT_CONFLICT_VEC_P (obj) = true;
|
||
}
|
||
|
||
/* Allocate and initialize the conflict bit vector of OBJ. */
|
||
static void
|
||
allocate_conflict_bit_vec (ira_object_t obj)
|
||
{
|
||
unsigned int size;
|
||
|
||
ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
|
||
size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
|
||
/ IRA_INT_BITS * sizeof (IRA_INT_TYPE));
|
||
OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
|
||
memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
|
||
OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
|
||
OBJECT_CONFLICT_VEC_P (obj) = false;
|
||
}
|
||
|
||
/* Allocate and initialize the conflict vector or conflict bit vector
|
||
of OBJ for NUM conflicting allocnos whatever is more profitable. */
|
||
void
|
||
ira_allocate_object_conflicts (ira_object_t obj, int num)
|
||
{
|
||
if (ira_conflict_vector_profitable_p (obj, num))
|
||
ira_allocate_conflict_vec (obj, num);
|
||
else
|
||
allocate_conflict_bit_vec (obj);
|
||
}
|
||
|
||
/* Add OBJ2 to the conflicts of OBJ1. */
|
||
static void
|
||
add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
|
||
{
|
||
int num;
|
||
unsigned int size;
|
||
|
||
if (OBJECT_CONFLICT_VEC_P (obj1))
|
||
{
|
||
ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
|
||
int curr_num = OBJECT_NUM_CONFLICTS (obj1);
|
||
num = curr_num + 2;
|
||
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
|
||
{
|
||
ira_object_t *newvec;
|
||
size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
|
||
newvec = (ira_object_t *) ira_allocate (size);
|
||
memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
|
||
ira_free (vec);
|
||
vec = newvec;
|
||
OBJECT_CONFLICT_ARRAY (obj1) = vec;
|
||
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
|
||
}
|
||
vec[num - 2] = obj2;
|
||
vec[num - 1] = NULL;
|
||
OBJECT_NUM_CONFLICTS (obj1)++;
|
||
}
|
||
else
|
||
{
|
||
int nw, added_head_nw, id;
|
||
IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
|
||
|
||
id = OBJECT_CONFLICT_ID (obj2);
|
||
if (OBJECT_MIN (obj1) > id)
|
||
{
|
||
/* Expand head of the bit vector. */
|
||
added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
|
||
nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
|
||
size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
|
||
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
|
||
{
|
||
memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
|
||
vec, nw * sizeof (IRA_INT_TYPE));
|
||
memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
|
||
}
|
||
else
|
||
{
|
||
size
|
||
= (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
|
||
vec = (IRA_INT_TYPE *) ira_allocate (size);
|
||
memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
|
||
OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
|
||
memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
|
||
memset ((char *) vec
|
||
+ (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
|
||
0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
|
||
ira_free (OBJECT_CONFLICT_ARRAY (obj1));
|
||
OBJECT_CONFLICT_ARRAY (obj1) = vec;
|
||
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
|
||
}
|
||
OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
|
||
}
|
||
else if (OBJECT_MAX (obj1) < id)
|
||
{
|
||
nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
|
||
size = nw * sizeof (IRA_INT_TYPE);
|
||
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
|
||
{
|
||
/* Expand tail of the bit vector. */
|
||
size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
|
||
vec = (IRA_INT_TYPE *) ira_allocate (size);
|
||
memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
|
||
memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
|
||
0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
|
||
ira_free (OBJECT_CONFLICT_ARRAY (obj1));
|
||
OBJECT_CONFLICT_ARRAY (obj1) = vec;
|
||
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
|
||
}
|
||
OBJECT_MAX (obj1) = id;
|
||
}
|
||
SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
|
||
}
|
||
}
|
||
|
||
/* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
|
||
static void
|
||
ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
|
||
{
|
||
add_to_conflicts (obj1, obj2);
|
||
add_to_conflicts (obj2, obj1);
|
||
}
|
||
|
||
/* Clear all conflicts of OBJ. */
|
||
static void
|
||
clear_conflicts (ira_object_t obj)
|
||
{
|
||
if (OBJECT_CONFLICT_VEC_P (obj))
|
||
{
|
||
OBJECT_NUM_CONFLICTS (obj) = 0;
|
||
OBJECT_CONFLICT_VEC (obj)[0] = NULL;
|
||
}
|
||
else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
|
||
{
|
||
int nw;
|
||
|
||
nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
|
||
memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
|
||
}
|
||
}
|
||
|
||
/* The array used to find duplications in conflict vectors of
|
||
allocnos. */
|
||
static int *conflict_check;
|
||
|
||
/* The value used to mark allocation presence in conflict vector of
|
||
the current allocno. */
|
||
static int curr_conflict_check_tick;
|
||
|
||
/* Remove duplications in conflict vector of OBJ. */
|
||
static void
|
||
compress_conflict_vec (ira_object_t obj)
|
||
{
|
||
ira_object_t *vec, conflict_obj;
|
||
int i, j;
|
||
|
||
ira_assert (OBJECT_CONFLICT_VEC_P (obj));
|
||
vec = OBJECT_CONFLICT_VEC (obj);
|
||
curr_conflict_check_tick++;
|
||
for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
|
||
{
|
||
int id = OBJECT_CONFLICT_ID (conflict_obj);
|
||
if (conflict_check[id] != curr_conflict_check_tick)
|
||
{
|
||
conflict_check[id] = curr_conflict_check_tick;
|
||
vec[j++] = conflict_obj;
|
||
}
|
||
}
|
||
OBJECT_NUM_CONFLICTS (obj) = j;
|
||
vec[j] = NULL;
|
||
}
|
||
|
||
/* Remove duplications in conflict vectors of all allocnos. */
|
||
static void
|
||
compress_conflict_vecs (void)
|
||
{
|
||
ira_object_t obj;
|
||
ira_object_iterator oi;
|
||
|
||
conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
|
||
memset (conflict_check, 0, sizeof (int) * ira_objects_num);
|
||
curr_conflict_check_tick = 0;
|
||
FOR_EACH_OBJECT (obj, oi)
|
||
{
|
||
if (OBJECT_CONFLICT_VEC_P (obj))
|
||
compress_conflict_vec (obj);
|
||
}
|
||
ira_free (conflict_check);
|
||
}
|
||
|
||
/* This recursive function outputs allocno A and if it is a cap the
|
||
function outputs its members. */
|
||
void
|
||
ira_print_expanded_allocno (ira_allocno_t a)
|
||
{
|
||
basic_block bb;
|
||
|
||
fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
||
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
||
fprintf (ira_dump_file, ",b%d", bb->index);
|
||
else
|
||
fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
{
|
||
fprintf (ira_dump_file, ":");
|
||
ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
|
||
}
|
||
fprintf (ira_dump_file, ")");
|
||
}
|
||
|
||
/* Create and return the cap representing allocno A in the
|
||
parent loop. */
|
||
static ira_allocno_t
|
||
create_cap_allocno (ira_allocno_t a)
|
||
{
|
||
ira_allocno_t cap;
|
||
ira_loop_tree_node_t parent;
|
||
enum reg_class cover_class;
|
||
|
||
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a
|
||
&& ALLOCNO_NEXT_COALESCED_ALLOCNO (a) == a);
|
||
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
|
||
cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
|
||
ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
ira_set_allocno_cover_class (cap, cover_class);
|
||
ira_create_allocno_objects (cap);
|
||
ALLOCNO_AVAILABLE_REGS_NUM (cap) = ALLOCNO_AVAILABLE_REGS_NUM (a);
|
||
ALLOCNO_CAP_MEMBER (cap) = a;
|
||
ALLOCNO_CAP (a) = cap;
|
||
ALLOCNO_COVER_CLASS_COST (cap) = ALLOCNO_COVER_CLASS_COST (a);
|
||
ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
|
||
ira_allocate_and_copy_costs
|
||
(&ALLOCNO_HARD_REG_COSTS (cap), cover_class, ALLOCNO_HARD_REG_COSTS (a));
|
||
ira_allocate_and_copy_costs
|
||
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), cover_class,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
|
||
ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
|
||
ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
|
||
ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
|
||
ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
|
||
|
||
merge_hard_reg_conflicts (a, cap, false);
|
||
|
||
ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
|
||
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " Creating cap ");
|
||
ira_print_expanded_allocno (cap);
|
||
fprintf (ira_dump_file, "\n");
|
||
}
|
||
return cap;
|
||
}
|
||
|
||
/* Create and return a live range for OBJECT with given attributes. */
|
||
live_range_t
|
||
ira_create_live_range (ira_object_t obj, int start, int finish,
|
||
live_range_t next)
|
||
{
|
||
live_range_t p;
|
||
|
||
p = (live_range_t) pool_alloc (live_range_pool);
|
||
p->object = obj;
|
||
p->start = start;
|
||
p->finish = finish;
|
||
p->next = next;
|
||
return p;
|
||
}
|
||
|
||
/* Create a new live range for OBJECT and queue it at the head of its
|
||
live range list. */
|
||
void
|
||
ira_add_live_range_to_object (ira_object_t object, int start, int finish)
|
||
{
|
||
live_range_t p;
|
||
p = ira_create_live_range (object, start, finish,
|
||
OBJECT_LIVE_RANGES (object));
|
||
OBJECT_LIVE_RANGES (object) = p;
|
||
}
|
||
|
||
/* Copy allocno live range R and return the result. */
|
||
static live_range_t
|
||
copy_live_range (live_range_t r)
|
||
{
|
||
live_range_t p;
|
||
|
||
p = (live_range_t) pool_alloc (live_range_pool);
|
||
*p = *r;
|
||
return p;
|
||
}
|
||
|
||
/* Copy allocno live range list given by its head R and return the
|
||
result. */
|
||
live_range_t
|
||
ira_copy_live_range_list (live_range_t r)
|
||
{
|
||
live_range_t p, first, last;
|
||
|
||
if (r == NULL)
|
||
return NULL;
|
||
for (first = last = NULL; r != NULL; r = r->next)
|
||
{
|
||
p = copy_live_range (r);
|
||
if (first == NULL)
|
||
first = p;
|
||
else
|
||
last->next = p;
|
||
last = p;
|
||
}
|
||
return first;
|
||
}
|
||
|
||
/* Merge ranges R1 and R2 and returns the result. The function
|
||
maintains the order of ranges and tries to minimize number of the
|
||
result ranges. */
|
||
live_range_t
|
||
ira_merge_live_ranges (live_range_t r1, live_range_t r2)
|
||
{
|
||
live_range_t first, last, temp;
|
||
|
||
if (r1 == NULL)
|
||
return r2;
|
||
if (r2 == NULL)
|
||
return r1;
|
||
for (first = last = NULL; r1 != NULL && r2 != NULL;)
|
||
{
|
||
if (r1->start < r2->start)
|
||
{
|
||
temp = r1;
|
||
r1 = r2;
|
||
r2 = temp;
|
||
}
|
||
if (r1->start <= r2->finish + 1)
|
||
{
|
||
/* Intersected ranges: merge r1 and r2 into r1. */
|
||
r1->start = r2->start;
|
||
if (r1->finish < r2->finish)
|
||
r1->finish = r2->finish;
|
||
temp = r2;
|
||
r2 = r2->next;
|
||
ira_finish_live_range (temp);
|
||
if (r2 == NULL)
|
||
{
|
||
/* To try to merge with subsequent ranges in r1. */
|
||
r2 = r1->next;
|
||
r1->next = NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Add r1 to the result. */
|
||
if (first == NULL)
|
||
first = last = r1;
|
||
else
|
||
{
|
||
last->next = r1;
|
||
last = r1;
|
||
}
|
||
r1 = r1->next;
|
||
if (r1 == NULL)
|
||
{
|
||
/* To try to merge with subsequent ranges in r2. */
|
||
r1 = r2->next;
|
||
r2->next = NULL;
|
||
}
|
||
}
|
||
}
|
||
if (r1 != NULL)
|
||
{
|
||
if (first == NULL)
|
||
first = r1;
|
||
else
|
||
last->next = r1;
|
||
ira_assert (r1->next == NULL);
|
||
}
|
||
else if (r2 != NULL)
|
||
{
|
||
if (first == NULL)
|
||
first = r2;
|
||
else
|
||
last->next = r2;
|
||
ira_assert (r2->next == NULL);
|
||
}
|
||
else
|
||
{
|
||
ira_assert (last->next == NULL);
|
||
}
|
||
return first;
|
||
}
|
||
|
||
/* Return TRUE if live ranges R1 and R2 intersect. */
|
||
bool
|
||
ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
|
||
{
|
||
/* Remember the live ranges are always kept ordered. */
|
||
while (r1 != NULL && r2 != NULL)
|
||
{
|
||
if (r1->start > r2->finish)
|
||
r1 = r1->next;
|
||
else if (r2->start > r1->finish)
|
||
r2 = r2->next;
|
||
else
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Free allocno live range R. */
|
||
void
|
||
ira_finish_live_range (live_range_t r)
|
||
{
|
||
pool_free (live_range_pool, r);
|
||
}
|
||
|
||
/* Free list of allocno live ranges starting with R. */
|
||
void
|
||
ira_finish_live_range_list (live_range_t r)
|
||
{
|
||
live_range_t next_r;
|
||
|
||
for (; r != NULL; r = next_r)
|
||
{
|
||
next_r = r->next;
|
||
ira_finish_live_range (r);
|
||
}
|
||
}
|
||
|
||
/* Free updated register costs of allocno A. */
|
||
void
|
||
ira_free_allocno_updated_costs (ira_allocno_t a)
|
||
{
|
||
enum reg_class cover_class;
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
|
||
ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), cover_class);
|
||
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
|
||
if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
|
||
ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
|
||
cover_class);
|
||
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
||
}
|
||
|
||
/* Free the memory allocated for allocno A. */
|
||
static void
|
||
finish_allocno (ira_allocno_t a)
|
||
{
|
||
enum reg_class cover_class = ALLOCNO_COVER_CLASS (a);
|
||
ira_object_t obj;
|
||
ira_allocno_object_iterator oi;
|
||
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
||
{
|
||
ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
|
||
ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
|
||
if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
|
||
ira_free (OBJECT_CONFLICT_ARRAY (obj));
|
||
pool_free (object_pool, obj);
|
||
}
|
||
|
||
ira_allocnos[ALLOCNO_NUM (a)] = NULL;
|
||
if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
|
||
ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), cover_class);
|
||
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
|
||
ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), cover_class);
|
||
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
|
||
ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), cover_class);
|
||
if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
|
||
ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
|
||
cover_class);
|
||
pool_free (allocno_pool, a);
|
||
}
|
||
|
||
/* Free the memory allocated for all allocnos. */
|
||
static void
|
||
finish_allocnos (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
finish_allocno (a);
|
||
ira_free (ira_regno_allocno_map);
|
||
VEC_free (ira_object_t, heap, ira_object_id_map_vec);
|
||
VEC_free (ira_allocno_t, heap, allocno_vec);
|
||
free_alloc_pool (allocno_pool);
|
||
free_alloc_pool (object_pool);
|
||
free_alloc_pool (live_range_pool);
|
||
}
|
||
|
||
|
||
|
||
/* Pools for copies. */
|
||
static alloc_pool copy_pool;
|
||
|
||
/* Vec containing references to all created copies. It is a
|
||
container of array ira_copies. */
|
||
static VEC(ira_copy_t,heap) *copy_vec;
|
||
|
||
/* The function initializes data concerning allocno copies. */
|
||
static void
|
||
initiate_copies (void)
|
||
{
|
||
copy_pool
|
||
= create_alloc_pool ("copies", sizeof (struct ira_allocno_copy), 100);
|
||
copy_vec = VEC_alloc (ira_copy_t, heap, get_max_uid ());
|
||
ira_copies = NULL;
|
||
ira_copies_num = 0;
|
||
}
|
||
|
||
/* Return copy connecting A1 and A2 and originated from INSN of
|
||
LOOP_TREE_NODE if any. */
|
||
static ira_copy_t
|
||
find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx insn,
|
||
ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
ira_copy_t cp, next_cp;
|
||
ira_allocno_t another_a;
|
||
|
||
for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
|
||
{
|
||
if (cp->first == a1)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
another_a = cp->second;
|
||
}
|
||
else if (cp->second == a1)
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
another_a = cp->first;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
if (another_a == a2 && cp->insn == insn
|
||
&& cp->loop_tree_node == loop_tree_node)
|
||
return cp;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
|
||
SECOND, FREQ, CONSTRAINT_P, and INSN. */
|
||
ira_copy_t
|
||
ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
|
||
bool constraint_p, rtx insn,
|
||
ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
ira_copy_t cp;
|
||
|
||
cp = (ira_copy_t) pool_alloc (copy_pool);
|
||
cp->num = ira_copies_num;
|
||
cp->first = first;
|
||
cp->second = second;
|
||
cp->freq = freq;
|
||
cp->constraint_p = constraint_p;
|
||
cp->insn = insn;
|
||
cp->loop_tree_node = loop_tree_node;
|
||
VEC_safe_push (ira_copy_t, heap, copy_vec, cp);
|
||
ira_copies = VEC_address (ira_copy_t, copy_vec);
|
||
ira_copies_num = VEC_length (ira_copy_t, copy_vec);
|
||
return cp;
|
||
}
|
||
|
||
/* Attach a copy CP to allocnos involved into the copy. */
|
||
void
|
||
ira_add_allocno_copy_to_list (ira_copy_t cp)
|
||
{
|
||
ira_allocno_t first = cp->first, second = cp->second;
|
||
|
||
cp->prev_first_allocno_copy = NULL;
|
||
cp->prev_second_allocno_copy = NULL;
|
||
cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
|
||
if (cp->next_first_allocno_copy != NULL)
|
||
{
|
||
if (cp->next_first_allocno_copy->first == first)
|
||
cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
|
||
else
|
||
cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
|
||
}
|
||
cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
|
||
if (cp->next_second_allocno_copy != NULL)
|
||
{
|
||
if (cp->next_second_allocno_copy->second == second)
|
||
cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
|
||
else
|
||
cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
|
||
}
|
||
ALLOCNO_COPIES (first) = cp;
|
||
ALLOCNO_COPIES (second) = cp;
|
||
}
|
||
|
||
/* Make a copy CP a canonical copy where number of the
|
||
first allocno is less than the second one. */
|
||
void
|
||
ira_swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
|
||
{
|
||
ira_allocno_t temp;
|
||
ira_copy_t temp_cp;
|
||
|
||
if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
|
||
return;
|
||
|
||
temp = cp->first;
|
||
cp->first = cp->second;
|
||
cp->second = temp;
|
||
|
||
temp_cp = cp->prev_first_allocno_copy;
|
||
cp->prev_first_allocno_copy = cp->prev_second_allocno_copy;
|
||
cp->prev_second_allocno_copy = temp_cp;
|
||
|
||
temp_cp = cp->next_first_allocno_copy;
|
||
cp->next_first_allocno_copy = cp->next_second_allocno_copy;
|
||
cp->next_second_allocno_copy = temp_cp;
|
||
}
|
||
|
||
/* Create (or update frequency if the copy already exists) and return
|
||
the copy of allocnos FIRST and SECOND with frequency FREQ
|
||
corresponding to move insn INSN (if any) and originated from
|
||
LOOP_TREE_NODE. */
|
||
ira_copy_t
|
||
ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
|
||
bool constraint_p, rtx insn,
|
||
ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
ira_copy_t cp;
|
||
|
||
if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
|
||
{
|
||
cp->freq += freq;
|
||
return cp;
|
||
}
|
||
cp = ira_create_copy (first, second, freq, constraint_p, insn,
|
||
loop_tree_node);
|
||
ira_assert (first != NULL && second != NULL);
|
||
ira_add_allocno_copy_to_list (cp);
|
||
ira_swap_allocno_copy_ends_if_necessary (cp);
|
||
return cp;
|
||
}
|
||
|
||
/* Print info about copy CP into file F. */
|
||
static void
|
||
print_copy (FILE *f, ira_copy_t cp)
|
||
{
|
||
fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
|
||
ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
|
||
ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
|
||
cp->insn != NULL
|
||
? "move" : cp->constraint_p ? "constraint" : "shuffle");
|
||
}
|
||
|
||
/* Print info about copy CP into stderr. */
|
||
void
|
||
ira_debug_copy (ira_copy_t cp)
|
||
{
|
||
print_copy (stderr, cp);
|
||
}
|
||
|
||
/* Print info about all copies into file F. */
|
||
static void
|
||
print_copies (FILE *f)
|
||
{
|
||
ira_copy_t cp;
|
||
ira_copy_iterator ci;
|
||
|
||
FOR_EACH_COPY (cp, ci)
|
||
print_copy (f, cp);
|
||
}
|
||
|
||
/* Print info about all copies into stderr. */
|
||
void
|
||
ira_debug_copies (void)
|
||
{
|
||
print_copies (stderr);
|
||
}
|
||
|
||
/* Print info about copies involving allocno A into file F. */
|
||
static void
|
||
print_allocno_copies (FILE *f, ira_allocno_t a)
|
||
{
|
||
ira_allocno_t another_a;
|
||
ira_copy_t cp, next_cp;
|
||
|
||
fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
||
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
||
{
|
||
if (cp->first == a)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
another_a = cp->second;
|
||
}
|
||
else if (cp->second == a)
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
another_a = cp->first;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
|
||
ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
|
||
}
|
||
fprintf (f, "\n");
|
||
}
|
||
|
||
/* Print info about copies involving allocno A into stderr. */
|
||
void
|
||
ira_debug_allocno_copies (ira_allocno_t a)
|
||
{
|
||
print_allocno_copies (stderr, a);
|
||
}
|
||
|
||
/* The function frees memory allocated for copy CP. */
|
||
static void
|
||
finish_copy (ira_copy_t cp)
|
||
{
|
||
pool_free (copy_pool, cp);
|
||
}
|
||
|
||
|
||
/* Free memory allocated for all copies. */
|
||
static void
|
||
finish_copies (void)
|
||
{
|
||
ira_copy_t cp;
|
||
ira_copy_iterator ci;
|
||
|
||
FOR_EACH_COPY (cp, ci)
|
||
finish_copy (cp);
|
||
VEC_free (ira_copy_t, heap, copy_vec);
|
||
free_alloc_pool (copy_pool);
|
||
}
|
||
|
||
|
||
|
||
/* Pools for cost vectors. It is defined only for cover classes. */
|
||
static alloc_pool cost_vector_pool[N_REG_CLASSES];
|
||
|
||
/* The function initiates work with hard register cost vectors. It
|
||
creates allocation pool for each cover class. */
|
||
static void
|
||
initiate_cost_vectors (void)
|
||
{
|
||
int i;
|
||
enum reg_class cover_class;
|
||
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
cost_vector_pool[cover_class]
|
||
= create_alloc_pool ("cost vectors",
|
||
sizeof (int)
|
||
* ira_class_hard_regs_num[cover_class],
|
||
100);
|
||
}
|
||
}
|
||
|
||
/* Allocate and return a cost vector VEC for COVER_CLASS. */
|
||
int *
|
||
ira_allocate_cost_vector (enum reg_class cover_class)
|
||
{
|
||
return (int *) pool_alloc (cost_vector_pool[cover_class]);
|
||
}
|
||
|
||
/* Free a cost vector VEC for COVER_CLASS. */
|
||
void
|
||
ira_free_cost_vector (int *vec, enum reg_class cover_class)
|
||
{
|
||
ira_assert (vec != NULL);
|
||
pool_free (cost_vector_pool[cover_class], vec);
|
||
}
|
||
|
||
/* Finish work with hard register cost vectors. Release allocation
|
||
pool for each cover class. */
|
||
static void
|
||
finish_cost_vectors (void)
|
||
{
|
||
int i;
|
||
enum reg_class cover_class;
|
||
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
free_alloc_pool (cost_vector_pool[cover_class]);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* The current loop tree node and its regno allocno map. */
|
||
ira_loop_tree_node_t ira_curr_loop_tree_node;
|
||
ira_allocno_t *ira_curr_regno_allocno_map;
|
||
|
||
/* This recursive function traverses loop tree with root LOOP_NODE
|
||
calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
|
||
correspondingly in preorder and postorder. The function sets up
|
||
IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
|
||
basic block nodes of LOOP_NODE is also processed (before its
|
||
subloop nodes). */
|
||
void
|
||
ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
|
||
void (*preorder_func) (ira_loop_tree_node_t),
|
||
void (*postorder_func) (ira_loop_tree_node_t))
|
||
{
|
||
ira_loop_tree_node_t subloop_node;
|
||
|
||
ira_assert (loop_node->bb == NULL);
|
||
ira_curr_loop_tree_node = loop_node;
|
||
ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
|
||
|
||
if (preorder_func != NULL)
|
||
(*preorder_func) (loop_node);
|
||
|
||
if (bb_p)
|
||
for (subloop_node = loop_node->children;
|
||
subloop_node != NULL;
|
||
subloop_node = subloop_node->next)
|
||
if (subloop_node->bb != NULL)
|
||
{
|
||
if (preorder_func != NULL)
|
||
(*preorder_func) (subloop_node);
|
||
|
||
if (postorder_func != NULL)
|
||
(*postorder_func) (subloop_node);
|
||
}
|
||
|
||
for (subloop_node = loop_node->subloops;
|
||
subloop_node != NULL;
|
||
subloop_node = subloop_node->subloop_next)
|
||
{
|
||
ira_assert (subloop_node->bb == NULL);
|
||
ira_traverse_loop_tree (bb_p, subloop_node,
|
||
preorder_func, postorder_func);
|
||
}
|
||
|
||
ira_curr_loop_tree_node = loop_node;
|
||
ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
|
||
|
||
if (postorder_func != NULL)
|
||
(*postorder_func) (loop_node);
|
||
}
|
||
|
||
|
||
|
||
/* The basic block currently being processed. */
|
||
static basic_block curr_bb;
|
||
|
||
/* This recursive function creates allocnos corresponding to
|
||
pseudo-registers containing in X. True OUTPUT_P means that X is
|
||
a lvalue. */
|
||
static void
|
||
create_insn_allocnos (rtx x, bool output_p)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
if (code == REG)
|
||
{
|
||
int regno;
|
||
|
||
if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
ira_allocno_t a;
|
||
|
||
if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
|
||
a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
|
||
|
||
ALLOCNO_NREFS (a)++;
|
||
ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
|
||
if (output_p)
|
||
bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
|
||
}
|
||
return;
|
||
}
|
||
else if (code == SET)
|
||
{
|
||
create_insn_allocnos (SET_DEST (x), true);
|
||
create_insn_allocnos (SET_SRC (x), false);
|
||
return;
|
||
}
|
||
else if (code == CLOBBER)
|
||
{
|
||
create_insn_allocnos (XEXP (x, 0), true);
|
||
return;
|
||
}
|
||
else if (code == MEM)
|
||
{
|
||
create_insn_allocnos (XEXP (x, 0), false);
|
||
return;
|
||
}
|
||
else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
|
||
code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
|
||
{
|
||
create_insn_allocnos (XEXP (x, 0), true);
|
||
create_insn_allocnos (XEXP (x, 0), false);
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
create_insn_allocnos (XEXP (x, i), output_p);
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
create_insn_allocnos (XVECEXP (x, i, j), output_p);
|
||
}
|
||
}
|
||
|
||
/* Create allocnos corresponding to pseudo-registers living in the
|
||
basic block represented by the corresponding loop tree node
|
||
BB_NODE. */
|
||
static void
|
||
create_bb_allocnos (ira_loop_tree_node_t bb_node)
|
||
{
|
||
basic_block bb;
|
||
rtx insn;
|
||
unsigned int i;
|
||
bitmap_iterator bi;
|
||
|
||
curr_bb = bb = bb_node->bb;
|
||
ira_assert (bb != NULL);
|
||
FOR_BB_INSNS_REVERSE (bb, insn)
|
||
if (NONDEBUG_INSN_P (insn))
|
||
create_insn_allocnos (PATTERN (insn), false);
|
||
/* It might be a allocno living through from one subloop to
|
||
another. */
|
||
EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (bb), FIRST_PSEUDO_REGISTER, i, bi)
|
||
if (ira_curr_regno_allocno_map[i] == NULL)
|
||
ira_create_allocno (i, false, ira_curr_loop_tree_node);
|
||
}
|
||
|
||
/* Create allocnos corresponding to pseudo-registers living on edge E
|
||
(a loop entry or exit). Also mark the allocnos as living on the
|
||
loop border. */
|
||
static void
|
||
create_loop_allocnos (edge e)
|
||
{
|
||
unsigned int i;
|
||
bitmap live_in_regs, border_allocnos;
|
||
bitmap_iterator bi;
|
||
ira_loop_tree_node_t parent;
|
||
|
||
live_in_regs = DF_LR_IN (e->dest);
|
||
border_allocnos = ira_curr_loop_tree_node->border_allocnos;
|
||
EXECUTE_IF_SET_IN_REG_SET (DF_LR_OUT (e->src),
|
||
FIRST_PSEUDO_REGISTER, i, bi)
|
||
if (bitmap_bit_p (live_in_regs, i))
|
||
{
|
||
if (ira_curr_regno_allocno_map[i] == NULL)
|
||
{
|
||
/* The order of creations is important for right
|
||
ira_regno_allocno_map. */
|
||
if ((parent = ira_curr_loop_tree_node->parent) != NULL
|
||
&& parent->regno_allocno_map[i] == NULL)
|
||
ira_create_allocno (i, false, parent);
|
||
ira_create_allocno (i, false, ira_curr_loop_tree_node);
|
||
}
|
||
bitmap_set_bit (border_allocnos,
|
||
ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
|
||
}
|
||
}
|
||
|
||
/* Create allocnos corresponding to pseudo-registers living in loop
|
||
represented by the corresponding loop tree node LOOP_NODE. This
|
||
function is called by ira_traverse_loop_tree. */
|
||
static void
|
||
create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
|
||
{
|
||
if (loop_node->bb != NULL)
|
||
create_bb_allocnos (loop_node);
|
||
else if (loop_node != ira_loop_tree_root)
|
||
{
|
||
int i;
|
||
edge_iterator ei;
|
||
edge e;
|
||
VEC (edge, heap) *edges;
|
||
|
||
FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
|
||
if (e->src != loop_node->loop->latch)
|
||
create_loop_allocnos (e);
|
||
|
||
edges = get_loop_exit_edges (loop_node->loop);
|
||
FOR_EACH_VEC_ELT (edge, edges, i, e)
|
||
create_loop_allocnos (e);
|
||
VEC_free (edge, heap, edges);
|
||
}
|
||
}
|
||
|
||
/* Propagate information about allocnos modified inside the loop given
|
||
by its LOOP_TREE_NODE to its parent. */
|
||
static void
|
||
propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
if (loop_tree_node == ira_loop_tree_root)
|
||
return;
|
||
ira_assert (loop_tree_node->bb == NULL);
|
||
bitmap_ior_into (loop_tree_node->parent->modified_regnos,
|
||
loop_tree_node->modified_regnos);
|
||
}
|
||
|
||
/* Propagate new info about allocno A (see comments about accumulated
|
||
info in allocno definition) to the corresponding allocno on upper
|
||
loop tree level. So allocnos on upper levels accumulate
|
||
information about the corresponding allocnos in nested regions.
|
||
The new info means allocno info finally calculated in this
|
||
file. */
|
||
static void
|
||
propagate_allocno_info (void)
|
||
{
|
||
int i;
|
||
ira_allocno_t a, parent_a;
|
||
ira_loop_tree_node_t parent;
|
||
enum reg_class cover_class;
|
||
|
||
if (flag_ira_region != IRA_REGION_ALL
|
||
&& flag_ira_region != IRA_REGION_MIXED)
|
||
return;
|
||
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
for (a = ira_regno_allocno_map[i];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
|
||
&& (parent_a = parent->regno_allocno_map[i]) != NULL
|
||
/* There are no caps yet at this point. So use
|
||
border_allocnos to find allocnos for the propagation. */
|
||
&& bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
|
||
ALLOCNO_NUM (a)))
|
||
{
|
||
if (! ALLOCNO_BAD_SPILL_P (a))
|
||
ALLOCNO_BAD_SPILL_P (parent_a) = false;
|
||
ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
|
||
ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
|
||
ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
|
||
merge_hard_reg_conflicts (a, parent_a, true);
|
||
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
|
||
+= ALLOCNO_CALLS_CROSSED_NUM (a);
|
||
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
|
||
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
ira_assert (cover_class == ALLOCNO_COVER_CLASS (parent_a));
|
||
ira_allocate_and_accumulate_costs
|
||
(&ALLOCNO_HARD_REG_COSTS (parent_a), cover_class,
|
||
ALLOCNO_HARD_REG_COSTS (a));
|
||
ira_allocate_and_accumulate_costs
|
||
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
|
||
cover_class,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
|
||
ALLOCNO_COVER_CLASS_COST (parent_a)
|
||
+= ALLOCNO_COVER_CLASS_COST (a);
|
||
ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
|
||
}
|
||
}
|
||
|
||
/* Create allocnos corresponding to pseudo-registers in the current
|
||
function. Traverse the loop tree for this. */
|
||
static void
|
||
create_allocnos (void)
|
||
{
|
||
/* We need to process BB first to correctly link allocnos by member
|
||
next_regno_allocno. */
|
||
ira_traverse_loop_tree (true, ira_loop_tree_root,
|
||
create_loop_tree_node_allocnos, NULL);
|
||
if (optimize)
|
||
ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
|
||
propagate_modified_regnos);
|
||
}
|
||
|
||
|
||
|
||
/* The page contains function to remove some regions from a separate
|
||
register allocation. We remove regions whose separate allocation
|
||
will hardly improve the result. As a result we speed up regional
|
||
register allocation. */
|
||
|
||
/* The function changes the object in range list given by R to OBJ. */
|
||
static void
|
||
change_object_in_range_list (live_range_t r, ira_object_t obj)
|
||
{
|
||
for (; r != NULL; r = r->next)
|
||
r->object = obj;
|
||
}
|
||
|
||
/* Move all live ranges associated with allocno FROM to allocno TO. */
|
||
static void
|
||
move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
|
||
{
|
||
int i;
|
||
int n = ALLOCNO_NUM_OBJECTS (from);
|
||
|
||
gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
||
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
||
live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
|
||
|
||
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file,
|
||
" Moving ranges of a%dr%d to a%dr%d: ",
|
||
ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
|
||
ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
|
||
ira_print_live_range_list (ira_dump_file, lr);
|
||
}
|
||
change_object_in_range_list (lr, to_obj);
|
||
OBJECT_LIVE_RANGES (to_obj)
|
||
= ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
|
||
OBJECT_LIVE_RANGES (from_obj) = NULL;
|
||
}
|
||
}
|
||
|
||
static void
|
||
copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
|
||
{
|
||
int i;
|
||
int n = ALLOCNO_NUM_OBJECTS (from);
|
||
|
||
gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
||
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
||
live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
|
||
|
||
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
|
||
ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
|
||
ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
|
||
ira_print_live_range_list (ira_dump_file, lr);
|
||
}
|
||
lr = ira_copy_live_range_list (lr);
|
||
change_object_in_range_list (lr, to_obj);
|
||
OBJECT_LIVE_RANGES (to_obj)
|
||
= ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if NODE represents a loop with low register
|
||
pressure. */
|
||
static bool
|
||
low_pressure_loop_node_p (ira_loop_tree_node_t node)
|
||
{
|
||
int i;
|
||
enum reg_class cover_class;
|
||
|
||
if (node->bb != NULL)
|
||
return false;
|
||
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
if (node->reg_pressure[cover_class]
|
||
> ira_available_class_regs[cover_class])
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Sort loops for marking them for removal. We put already marked
|
||
loops first, then less frequent loops next, and then outer loops
|
||
next. */
|
||
static int
|
||
loop_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
int diff;
|
||
ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
|
||
ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
|
||
|
||
ira_assert (l1->parent != NULL && l2->parent != NULL);
|
||
if (l1->to_remove_p && ! l2->to_remove_p)
|
||
return -1;
|
||
if (! l1->to_remove_p && l2->to_remove_p)
|
||
return 1;
|
||
if ((diff = l1->loop->header->frequency - l2->loop->header->frequency) != 0)
|
||
return diff;
|
||
if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
|
||
return diff;
|
||
/* Make sorting stable. */
|
||
return l1->loop->num - l2->loop->num;
|
||
}
|
||
|
||
|
||
/* Mark loops which should be removed from regional allocation. We
|
||
remove a loop with low register pressure inside another loop with
|
||
register pressure. In this case a separate allocation of the loop
|
||
hardly helps (for irregular register file architecture it could
|
||
help by choosing a better hard register in the loop but we prefer
|
||
faster allocation even in this case). We also remove cheap loops
|
||
if there are more than IRA_MAX_LOOPS_NUM of them. */
|
||
static void
|
||
mark_loops_for_removal (void)
|
||
{
|
||
int i, n;
|
||
ira_loop_tree_node_t *sorted_loops;
|
||
loop_p loop;
|
||
|
||
sorted_loops
|
||
= (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
|
||
* VEC_length (loop_p,
|
||
ira_loops.larray));
|
||
for (n = i = 0; VEC_iterate (loop_p, ira_loops.larray, i, loop); i++)
|
||
if (ira_loop_nodes[i].regno_allocno_map != NULL)
|
||
{
|
||
if (ira_loop_nodes[i].parent == NULL)
|
||
{
|
||
/* Don't remove the root. */
|
||
ira_loop_nodes[i].to_remove_p = false;
|
||
continue;
|
||
}
|
||
sorted_loops[n++] = &ira_loop_nodes[i];
|
||
ira_loop_nodes[i].to_remove_p
|
||
= (low_pressure_loop_node_p (ira_loop_nodes[i].parent)
|
||
&& low_pressure_loop_node_p (&ira_loop_nodes[i]));
|
||
}
|
||
qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
|
||
for (i = 0; n - i + 1 > IRA_MAX_LOOPS_NUM; i++)
|
||
{
|
||
sorted_loops[i]->to_remove_p = true;
|
||
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
||
fprintf
|
||
(ira_dump_file,
|
||
" Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
|
||
sorted_loops[i]->loop->num, sorted_loops[i]->loop->header->index,
|
||
sorted_loops[i]->loop->header->frequency,
|
||
loop_depth (sorted_loops[i]->loop),
|
||
low_pressure_loop_node_p (sorted_loops[i]->parent)
|
||
&& low_pressure_loop_node_p (sorted_loops[i])
|
||
? "low pressure" : "cheap loop");
|
||
}
|
||
ira_free (sorted_loops);
|
||
}
|
||
|
||
/* Mark all loops but root for removing. */
|
||
static void
|
||
mark_all_loops_for_removal (void)
|
||
{
|
||
int i;
|
||
loop_p loop;
|
||
|
||
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
||
if (ira_loop_nodes[i].regno_allocno_map != NULL)
|
||
{
|
||
if (ira_loop_nodes[i].parent == NULL)
|
||
{
|
||
/* Don't remove the root. */
|
||
ira_loop_nodes[i].to_remove_p = false;
|
||
continue;
|
||
}
|
||
ira_loop_nodes[i].to_remove_p = true;
|
||
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
||
fprintf
|
||
(ira_dump_file,
|
||
" Mark loop %d (header %d, freq %d, depth %d) for removal\n",
|
||
ira_loop_nodes[i].loop->num,
|
||
ira_loop_nodes[i].loop->header->index,
|
||
ira_loop_nodes[i].loop->header->frequency,
|
||
loop_depth (ira_loop_nodes[i].loop));
|
||
}
|
||
}
|
||
|
||
/* Definition of vector of loop tree nodes. */
|
||
DEF_VEC_P(ira_loop_tree_node_t);
|
||
DEF_VEC_ALLOC_P(ira_loop_tree_node_t, heap);
|
||
|
||
/* Vec containing references to all removed loop tree nodes. */
|
||
static VEC(ira_loop_tree_node_t,heap) *removed_loop_vec;
|
||
|
||
/* Vec containing references to all children of loop tree nodes. */
|
||
static VEC(ira_loop_tree_node_t,heap) *children_vec;
|
||
|
||
/* Remove subregions of NODE if their separate allocation will not
|
||
improve the result. */
|
||
static void
|
||
remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
|
||
{
|
||
unsigned int start;
|
||
bool remove_p;
|
||
ira_loop_tree_node_t subnode;
|
||
|
||
remove_p = node->to_remove_p;
|
||
if (! remove_p)
|
||
VEC_safe_push (ira_loop_tree_node_t, heap, children_vec, node);
|
||
start = VEC_length (ira_loop_tree_node_t, children_vec);
|
||
for (subnode = node->children; subnode != NULL; subnode = subnode->next)
|
||
if (subnode->bb == NULL)
|
||
remove_uneccesary_loop_nodes_from_loop_tree (subnode);
|
||
else
|
||
VEC_safe_push (ira_loop_tree_node_t, heap, children_vec, subnode);
|
||
node->children = node->subloops = NULL;
|
||
if (remove_p)
|
||
{
|
||
VEC_safe_push (ira_loop_tree_node_t, heap, removed_loop_vec, node);
|
||
return;
|
||
}
|
||
while (VEC_length (ira_loop_tree_node_t, children_vec) > start)
|
||
{
|
||
subnode = VEC_pop (ira_loop_tree_node_t, children_vec);
|
||
subnode->parent = node;
|
||
subnode->next = node->children;
|
||
node->children = subnode;
|
||
if (subnode->bb == NULL)
|
||
{
|
||
subnode->subloop_next = node->subloops;
|
||
node->subloops = subnode;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if NODE is inside PARENT. */
|
||
static bool
|
||
loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
|
||
{
|
||
for (node = node->parent; node != NULL; node = node->parent)
|
||
if (node == parent)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Sort allocnos according to their order in regno allocno list. */
|
||
static int
|
||
regno_allocno_order_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
|
||
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
|
||
ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
|
||
ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
|
||
|
||
if (loop_is_inside_p (n1, n2))
|
||
return -1;
|
||
else if (loop_is_inside_p (n2, n1))
|
||
return 1;
|
||
/* If allocnos are equally good, sort by allocno numbers, so that
|
||
the results of qsort leave nothing to chance. We put allocnos
|
||
with higher number first in the list because it is the original
|
||
order for allocnos from loops on the same levels. */
|
||
return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
|
||
}
|
||
|
||
/* This array is used to sort allocnos to restore allocno order in
|
||
the regno allocno list. */
|
||
static ira_allocno_t *regno_allocnos;
|
||
|
||
/* Restore allocno order for REGNO in the regno allocno list. */
|
||
static void
|
||
ira_rebuild_regno_allocno_list (int regno)
|
||
{
|
||
int i, n;
|
||
ira_allocno_t a;
|
||
|
||
for (n = 0, a = ira_regno_allocno_map[regno];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
regno_allocnos[n++] = a;
|
||
ira_assert (n > 0);
|
||
qsort (regno_allocnos, n, sizeof (ira_allocno_t),
|
||
regno_allocno_order_compare_func);
|
||
for (i = 1; i < n; i++)
|
||
ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
|
||
ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
|
||
ira_regno_allocno_map[regno] = regno_allocnos[0];
|
||
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
|
||
}
|
||
|
||
/* Propagate info from allocno FROM_A to allocno A. */
|
||
static void
|
||
propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
|
||
{
|
||
enum reg_class cover_class;
|
||
|
||
merge_hard_reg_conflicts (from_a, a, false);
|
||
ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
|
||
ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
|
||
ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
|
||
ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
|
||
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
|
||
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
|
||
if (! ALLOCNO_BAD_SPILL_P (from_a))
|
||
ALLOCNO_BAD_SPILL_P (a) = false;
|
||
cover_class = ALLOCNO_COVER_CLASS (from_a);
|
||
ira_assert (cover_class == ALLOCNO_COVER_CLASS (a));
|
||
ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), cover_class,
|
||
ALLOCNO_HARD_REG_COSTS (from_a));
|
||
ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
|
||
cover_class,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
|
||
ALLOCNO_COVER_CLASS_COST (a) += ALLOCNO_COVER_CLASS_COST (from_a);
|
||
ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
|
||
}
|
||
|
||
/* Remove allocnos from loops removed from the allocation
|
||
consideration. */
|
||
static void
|
||
remove_unnecessary_allocnos (void)
|
||
{
|
||
int regno;
|
||
bool merged_p, rebuild_p;
|
||
ira_allocno_t a, prev_a, next_a, parent_a;
|
||
ira_loop_tree_node_t a_node, parent;
|
||
|
||
merged_p = false;
|
||
regno_allocnos = NULL;
|
||
for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
|
||
{
|
||
rebuild_p = false;
|
||
for (prev_a = NULL, a = ira_regno_allocno_map[regno];
|
||
a != NULL;
|
||
a = next_a)
|
||
{
|
||
next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
|
||
a_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
if (! a_node->to_remove_p)
|
||
prev_a = a;
|
||
else
|
||
{
|
||
for (parent = a_node->parent;
|
||
(parent_a = parent->regno_allocno_map[regno]) == NULL
|
||
&& parent->to_remove_p;
|
||
parent = parent->parent)
|
||
;
|
||
if (parent_a == NULL)
|
||
{
|
||
/* There are no allocnos with the same regno in
|
||
upper region -- just move the allocno to the
|
||
upper region. */
|
||
prev_a = a;
|
||
ALLOCNO_LOOP_TREE_NODE (a) = parent;
|
||
parent->regno_allocno_map[regno] = a;
|
||
bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
|
||
rebuild_p = true;
|
||
}
|
||
else
|
||
{
|
||
/* Remove the allocno and update info of allocno in
|
||
the upper region. */
|
||
if (prev_a == NULL)
|
||
ira_regno_allocno_map[regno] = next_a;
|
||
else
|
||
ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
|
||
move_allocno_live_ranges (a, parent_a);
|
||
merged_p = true;
|
||
propagate_some_info_from_allocno (parent_a, a);
|
||
/* Remove it from the corresponding regno allocno
|
||
map to avoid info propagation of subsequent
|
||
allocno into this already removed allocno. */
|
||
a_node->regno_allocno_map[regno] = NULL;
|
||
finish_allocno (a);
|
||
}
|
||
}
|
||
}
|
||
if (rebuild_p)
|
||
/* We need to restore the order in regno allocno list. */
|
||
{
|
||
if (regno_allocnos == NULL)
|
||
regno_allocnos
|
||
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
||
* ira_allocnos_num);
|
||
ira_rebuild_regno_allocno_list (regno);
|
||
}
|
||
}
|
||
if (merged_p)
|
||
ira_rebuild_start_finish_chains ();
|
||
if (regno_allocnos != NULL)
|
||
ira_free (regno_allocnos);
|
||
}
|
||
|
||
/* Remove allocnos from all loops but the root. */
|
||
static void
|
||
remove_low_level_allocnos (void)
|
||
{
|
||
int regno;
|
||
bool merged_p, propagate_p;
|
||
ira_allocno_t a, top_a;
|
||
ira_loop_tree_node_t a_node, parent;
|
||
ira_allocno_iterator ai;
|
||
|
||
merged_p = false;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
a_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
continue;
|
||
regno = ALLOCNO_REGNO (a);
|
||
if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
|
||
{
|
||
ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
|
||
ira_loop_tree_root->regno_allocno_map[regno] = a;
|
||
continue;
|
||
}
|
||
propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
|
||
/* Remove the allocno and update info of allocno in the upper
|
||
region. */
|
||
move_allocno_live_ranges (a, top_a);
|
||
merged_p = true;
|
||
if (propagate_p)
|
||
propagate_some_info_from_allocno (top_a, a);
|
||
}
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
a_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
if (a_node == ira_loop_tree_root)
|
||
continue;
|
||
parent = a_node->parent;
|
||
regno = ALLOCNO_REGNO (a);
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
ira_assert (ALLOCNO_CAP (a) != NULL);
|
||
else if (ALLOCNO_CAP (a) == NULL)
|
||
ira_assert (parent->regno_allocno_map[regno] != NULL);
|
||
}
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
regno = ALLOCNO_REGNO (a);
|
||
if (ira_loop_tree_root->regno_allocno_map[regno] == a)
|
||
{
|
||
ira_object_t obj;
|
||
ira_allocno_object_iterator oi;
|
||
|
||
ira_regno_allocno_map[regno] = a;
|
||
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
|
||
ALLOCNO_CAP_MEMBER (a) = NULL;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
||
COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
||
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
||
#ifdef STACK_REGS
|
||
if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
|
||
ALLOCNO_NO_STACK_REG_P (a) = true;
|
||
#endif
|
||
}
|
||
else
|
||
finish_allocno (a);
|
||
}
|
||
if (merged_p)
|
||
ira_rebuild_start_finish_chains ();
|
||
}
|
||
|
||
/* Remove loops from consideration. We remove all loops except for
|
||
root if ALL_P or loops for which a separate allocation will not
|
||
improve the result. We have to do this after allocno creation and
|
||
their costs and cover class evaluation because only after that the
|
||
register pressure can be known and is calculated. */
|
||
static void
|
||
remove_unnecessary_regions (bool all_p)
|
||
{
|
||
if (all_p)
|
||
mark_all_loops_for_removal ();
|
||
else
|
||
mark_loops_for_removal ();
|
||
children_vec
|
||
= VEC_alloc (ira_loop_tree_node_t, heap,
|
||
last_basic_block + VEC_length (loop_p, ira_loops.larray));
|
||
removed_loop_vec
|
||
= VEC_alloc (ira_loop_tree_node_t, heap,
|
||
last_basic_block + VEC_length (loop_p, ira_loops.larray));
|
||
remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root) ;
|
||
VEC_free (ira_loop_tree_node_t, heap, children_vec);
|
||
if (all_p)
|
||
remove_low_level_allocnos ();
|
||
else
|
||
remove_unnecessary_allocnos ();
|
||
while (VEC_length (ira_loop_tree_node_t, removed_loop_vec) > 0)
|
||
finish_loop_tree_node (VEC_pop (ira_loop_tree_node_t, removed_loop_vec));
|
||
VEC_free (ira_loop_tree_node_t, heap, removed_loop_vec);
|
||
}
|
||
|
||
|
||
|
||
/* At this point true value of allocno attribute bad_spill_p means
|
||
that there is an insn where allocno occurs and where the allocno
|
||
can not be used as memory. The function updates the attribute, now
|
||
it can be true only for allocnos which can not be used as memory in
|
||
an insn and in whose live ranges there is other allocno deaths.
|
||
Spilling allocnos with true value will not improve the code because
|
||
it will not make other allocnos colorable and additional reloads
|
||
for the corresponding pseudo will be generated in reload pass for
|
||
each insn it occurs.
|
||
|
||
This is a trick mentioned in one classic article of Chaitin etc
|
||
which is frequently omitted in other implementations of RA based on
|
||
graph coloring. */
|
||
static void
|
||
update_bad_spill_attribute (void)
|
||
{
|
||
int i;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
ira_allocno_object_iterator aoi;
|
||
ira_object_t obj;
|
||
live_range_t r;
|
||
enum reg_class cover_class;
|
||
bitmap_head dead_points[N_REG_CLASSES];
|
||
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
bitmap_initialize (&dead_points[cover_class], ®_obstack);
|
||
}
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
if (cover_class == NO_REGS)
|
||
continue;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
|
||
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
||
bitmap_set_bit (&dead_points[cover_class], r->finish);
|
||
}
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
if (cover_class == NO_REGS)
|
||
continue;
|
||
if (! ALLOCNO_BAD_SPILL_P (a))
|
||
continue;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
|
||
{
|
||
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
||
{
|
||
for (i = r->start + 1; i < r->finish; i++)
|
||
if (bitmap_bit_p (&dead_points[cover_class], i))
|
||
break;
|
||
if (i < r->finish)
|
||
break;
|
||
}
|
||
if (r != NULL)
|
||
{
|
||
ALLOCNO_BAD_SPILL_P (a) = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
bitmap_clear (&dead_points[cover_class]);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Set up minimal and maximal live range points for allocnos. */
|
||
static void
|
||
setup_min_max_allocno_live_range_point (void)
|
||
{
|
||
int i;
|
||
ira_allocno_t a, parent_a, cap;
|
||
ira_allocno_iterator ai;
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
ira_object_iterator oi;
|
||
ira_object_t obj;
|
||
#endif
|
||
live_range_t r;
|
||
ira_loop_tree_node_t parent;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
r = OBJECT_LIVE_RANGES (obj);
|
||
if (r == NULL)
|
||
continue;
|
||
OBJECT_MAX (obj) = r->finish;
|
||
for (; r->next != NULL; r = r->next)
|
||
;
|
||
OBJECT_MIN (obj) = r->start;
|
||
}
|
||
}
|
||
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
for (a = ira_regno_allocno_map[i];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
{
|
||
int j;
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, j);
|
||
ira_object_t parent_obj;
|
||
|
||
if (OBJECT_MAX (obj) < 0)
|
||
continue;
|
||
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
||
/* Accumulation of range info. */
|
||
if (ALLOCNO_CAP (a) != NULL)
|
||
{
|
||
for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
|
||
{
|
||
ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
|
||
if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
|
||
OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
|
||
if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
|
||
OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
|
||
}
|
||
continue;
|
||
}
|
||
if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
|
||
continue;
|
||
parent_a = parent->regno_allocno_map[i];
|
||
parent_obj = ALLOCNO_OBJECT (parent_a, j);
|
||
if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
|
||
OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
|
||
if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
|
||
OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
|
||
}
|
||
}
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
FOR_EACH_OBJECT (obj, oi)
|
||
{
|
||
if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point)
|
||
&& (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point))
|
||
continue;
|
||
gcc_unreachable ();
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Sort allocnos according to their live ranges. Allocnos with
|
||
smaller cover class are put first unless we use priority coloring.
|
||
Allocnos with the same cover class are ordered according their start
|
||
(min). Allocnos with the same start are ordered according their
|
||
finish (max). */
|
||
static int
|
||
object_range_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
int diff;
|
||
ira_object_t obj1 = *(const ira_object_t *) v1p;
|
||
ira_object_t obj2 = *(const ira_object_t *) v2p;
|
||
ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
|
||
ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
|
||
|
||
if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
|
||
&& (diff = ALLOCNO_COVER_CLASS (a1) - ALLOCNO_COVER_CLASS (a2)) != 0)
|
||
return diff;
|
||
if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
|
||
return diff;
|
||
if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
|
||
return diff;
|
||
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
|
||
}
|
||
|
||
/* Sort ira_object_id_map and set up conflict id of allocnos. */
|
||
static void
|
||
sort_conflict_id_map (void)
|
||
{
|
||
int i, num;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
num = 0;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
ira_allocno_object_iterator oi;
|
||
ira_object_t obj;
|
||
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
||
ira_object_id_map[num++] = obj;
|
||
}
|
||
qsort (ira_object_id_map, num, sizeof (ira_object_t),
|
||
object_range_compare_func);
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
ira_object_t obj = ira_object_id_map[i];
|
||
gcc_assert (obj != NULL);
|
||
OBJECT_CONFLICT_ID (obj) = i;
|
||
}
|
||
for (i = num; i < ira_objects_num; i++)
|
||
ira_object_id_map[i] = NULL;
|
||
}
|
||
|
||
/* Set up minimal and maximal conflict ids of allocnos with which
|
||
given allocno can conflict. */
|
||
static void
|
||
setup_min_max_conflict_allocno_ids (void)
|
||
{
|
||
int cover_class;
|
||
int i, j, min, max, start, finish, first_not_finished, filled_area_start;
|
||
int *live_range_min, *last_lived;
|
||
int word0_min, word0_max;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
|
||
cover_class = -1;
|
||
first_not_finished = -1;
|
||
for (i = 0; i < ira_objects_num; i++)
|
||
{
|
||
ira_object_t obj = ira_object_id_map[i];
|
||
if (obj == NULL)
|
||
continue;
|
||
|
||
a = OBJECT_ALLOCNO (obj);
|
||
|
||
if (cover_class < 0
|
||
|| (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
|
||
&& cover_class != (int) ALLOCNO_COVER_CLASS (a)))
|
||
{
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
min = i;
|
||
first_not_finished = i;
|
||
}
|
||
else
|
||
{
|
||
start = OBJECT_MIN (obj);
|
||
/* If we skip an allocno, the allocno with smaller ids will
|
||
be also skipped because of the secondary sorting the
|
||
range finishes (see function
|
||
object_range_compare_func). */
|
||
while (first_not_finished < i
|
||
&& start > OBJECT_MAX (ira_object_id_map
|
||
[first_not_finished]))
|
||
first_not_finished++;
|
||
min = first_not_finished;
|
||
}
|
||
if (min == i)
|
||
/* We could increase min further in this case but it is good
|
||
enough. */
|
||
min++;
|
||
live_range_min[i] = OBJECT_MIN (obj);
|
||
OBJECT_MIN (obj) = min;
|
||
}
|
||
last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
|
||
cover_class = -1;
|
||
filled_area_start = -1;
|
||
for (i = ira_objects_num - 1; i >= 0; i--)
|
||
{
|
||
ira_object_t obj = ira_object_id_map[i];
|
||
if (obj == NULL)
|
||
continue;
|
||
|
||
a = OBJECT_ALLOCNO (obj);
|
||
if (cover_class < 0
|
||
|| (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
|
||
&& cover_class != (int) ALLOCNO_COVER_CLASS (a)))
|
||
{
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
for (j = 0; j < ira_max_point; j++)
|
||
last_lived[j] = -1;
|
||
filled_area_start = ira_max_point;
|
||
}
|
||
min = live_range_min[i];
|
||
finish = OBJECT_MAX (obj);
|
||
max = last_lived[finish];
|
||
if (max < 0)
|
||
/* We could decrease max further in this case but it is good
|
||
enough. */
|
||
max = OBJECT_CONFLICT_ID (obj) - 1;
|
||
OBJECT_MAX (obj) = max;
|
||
/* In filling, we can go further A range finish to recognize
|
||
intersection quickly because if the finish of subsequently
|
||
processed allocno (it has smaller conflict id) range is
|
||
further A range finish than they are definitely intersected
|
||
(the reason for this is the allocnos with bigger conflict id
|
||
have their range starts not smaller than allocnos with
|
||
smaller ids. */
|
||
for (j = min; j < filled_area_start; j++)
|
||
last_lived[j] = i;
|
||
filled_area_start = min;
|
||
}
|
||
ira_free (last_lived);
|
||
ira_free (live_range_min);
|
||
|
||
/* For allocnos with more than one object, we may later record extra conflicts in
|
||
subobject 0 that we cannot really know about here.
|
||
For now, simply widen the min/max range of these subobjects. */
|
||
|
||
word0_min = INT_MAX;
|
||
word0_max = INT_MIN;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
ira_object_t obj0;
|
||
if (n < 2)
|
||
continue;
|
||
obj0 = ALLOCNO_OBJECT (a, 0);
|
||
if (OBJECT_CONFLICT_ID (obj0) < word0_min)
|
||
word0_min = OBJECT_CONFLICT_ID (obj0);
|
||
if (OBJECT_CONFLICT_ID (obj0) > word0_max)
|
||
word0_max = OBJECT_CONFLICT_ID (obj0);
|
||
}
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
ira_object_t obj0;
|
||
if (n < 2)
|
||
continue;
|
||
obj0 = ALLOCNO_OBJECT (a, 0);
|
||
if (OBJECT_MIN (obj0) > word0_min)
|
||
OBJECT_MIN (obj0) = word0_min;
|
||
if (OBJECT_MAX (obj0) < word0_max)
|
||
OBJECT_MAX (obj0) = word0_max;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
static void
|
||
create_caps (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
ira_loop_tree_node_t loop_tree_node;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
|
||
continue;
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
create_cap_allocno (a);
|
||
else if (ALLOCNO_CAP (a) == NULL)
|
||
{
|
||
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
|
||
create_cap_allocno (a);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* The page contains code transforming more one region internal
|
||
representation (IR) to one region IR which is necessary for reload.
|
||
This transformation is called IR flattening. We might just rebuild
|
||
the IR for one region but we don't do it because it takes a lot of
|
||
time. */
|
||
|
||
/* Map: regno -> allocnos which will finally represent the regno for
|
||
IR with one region. */
|
||
static ira_allocno_t *regno_top_level_allocno_map;
|
||
|
||
/* Find the allocno that corresponds to A at a level one higher up in the
|
||
loop tree. Returns NULL if A is a cap, or if it has no parent. */
|
||
ira_allocno_t
|
||
ira_parent_allocno (ira_allocno_t a)
|
||
{
|
||
ira_loop_tree_node_t parent;
|
||
|
||
if (ALLOCNO_CAP (a) != NULL)
|
||
return NULL;
|
||
|
||
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
|
||
if (parent == NULL)
|
||
return NULL;
|
||
|
||
return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
|
||
}
|
||
|
||
/* Find the allocno that corresponds to A at a level one higher up in the
|
||
loop tree. If ALLOCNO_CAP is set for A, return that. */
|
||
ira_allocno_t
|
||
ira_parent_or_cap_allocno (ira_allocno_t a)
|
||
{
|
||
if (ALLOCNO_CAP (a) != NULL)
|
||
return ALLOCNO_CAP (a);
|
||
|
||
return ira_parent_allocno (a);
|
||
}
|
||
|
||
/* Process all allocnos originated from pseudo REGNO and copy live
|
||
ranges, hard reg conflicts, and allocno stack reg attributes from
|
||
low level allocnos to final allocnos which are destinations of
|
||
removed stores at a loop exit. Return true if we copied live
|
||
ranges. */
|
||
static bool
|
||
copy_info_to_removed_store_destinations (int regno)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_t parent_a = NULL;
|
||
ira_loop_tree_node_t parent;
|
||
bool merged_p;
|
||
|
||
merged_p = false;
|
||
for (a = ira_regno_allocno_map[regno];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
{
|
||
if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))])
|
||
/* This allocno will be removed. */
|
||
continue;
|
||
|
||
/* Caps will be removed. */
|
||
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
||
for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
|
||
parent != NULL;
|
||
parent = parent->parent)
|
||
if ((parent_a = parent->regno_allocno_map[regno]) == NULL
|
||
|| (parent_a == regno_top_level_allocno_map[REGNO (ALLOCNO_REG
|
||
(parent_a))]
|
||
&& ALLOCNO_MEM_OPTIMIZED_DEST_P (parent_a)))
|
||
break;
|
||
if (parent == NULL || parent_a == NULL)
|
||
continue;
|
||
|
||
copy_allocno_live_ranges (a, parent_a);
|
||
merge_hard_reg_conflicts (a, parent_a, true);
|
||
|
||
ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
|
||
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
|
||
+= ALLOCNO_CALLS_CROSSED_NUM (a);
|
||
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
|
||
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
||
merged_p = true;
|
||
}
|
||
return merged_p;
|
||
}
|
||
|
||
/* Flatten the IR. In other words, this function transforms IR as if
|
||
it were built with one region (without loops). We could make it
|
||
much simpler by rebuilding IR with one region, but unfortunately it
|
||
takes a lot of time. MAX_REGNO_BEFORE_EMIT and
|
||
IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
|
||
IRA_MAX_POINT before emitting insns on the loop borders. */
|
||
void
|
||
ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
|
||
{
|
||
int i, j;
|
||
bool keep_p;
|
||
int hard_regs_num;
|
||
bool new_pseudos_p, merged_p, mem_dest_p;
|
||
unsigned int n;
|
||
enum reg_class cover_class;
|
||
ira_allocno_t a, parent_a, first, second, node_first, node_second;
|
||
ira_copy_t cp;
|
||
ira_loop_tree_node_t node;
|
||
live_range_t r;
|
||
ira_allocno_iterator ai;
|
||
ira_copy_iterator ci;
|
||
|
||
regno_top_level_allocno_map
|
||
= (ira_allocno_t *) ira_allocate (max_reg_num () * sizeof (ira_allocno_t));
|
||
memset (regno_top_level_allocno_map, 0,
|
||
max_reg_num () * sizeof (ira_allocno_t));
|
||
new_pseudos_p = merged_p = false;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
ira_allocno_object_iterator oi;
|
||
ira_object_t obj;
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
/* Caps are not in the regno allocno maps and they are never
|
||
will be transformed into allocnos existing after IR
|
||
flattening. */
|
||
continue;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
||
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
||
OBJECT_CONFLICT_HARD_REGS (obj));
|
||
#ifdef STACK_REGS
|
||
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
|
||
#endif
|
||
}
|
||
/* Fix final allocno attributes. */
|
||
for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
{
|
||
mem_dest_p = false;
|
||
for (a = ira_regno_allocno_map[i];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
{
|
||
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
||
if (ALLOCNO_SOMEWHERE_RENAMED_P (a))
|
||
new_pseudos_p = true;
|
||
parent_a = ira_parent_allocno (a);
|
||
if (parent_a == NULL)
|
||
{
|
||
ALLOCNO_COPIES (a) = NULL;
|
||
regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] = a;
|
||
continue;
|
||
}
|
||
ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
|
||
|
||
if (ALLOCNO_MEM_OPTIMIZED_DEST (a) != NULL)
|
||
mem_dest_p = true;
|
||
if (REGNO (ALLOCNO_REG (a)) == REGNO (ALLOCNO_REG (parent_a)))
|
||
{
|
||
merge_hard_reg_conflicts (a, parent_a, true);
|
||
move_allocno_live_ranges (a, parent_a);
|
||
merged_p = true;
|
||
ALLOCNO_MEM_OPTIMIZED_DEST_P (parent_a)
|
||
= (ALLOCNO_MEM_OPTIMIZED_DEST_P (parent_a)
|
||
|| ALLOCNO_MEM_OPTIMIZED_DEST_P (a));
|
||
continue;
|
||
}
|
||
new_pseudos_p = true;
|
||
for (;;)
|
||
{
|
||
ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
|
||
ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
|
||
ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
|
||
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
|
||
-= ALLOCNO_CALLS_CROSSED_NUM (a);
|
||
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
|
||
-= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
||
ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
|
||
&& ALLOCNO_NREFS (parent_a) >= 0
|
||
&& ALLOCNO_FREQ (parent_a) >= 0);
|
||
cover_class = ALLOCNO_COVER_CLASS (parent_a);
|
||
hard_regs_num = ira_class_hard_regs_num[cover_class];
|
||
if (ALLOCNO_HARD_REG_COSTS (a) != NULL
|
||
&& ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
|
||
for (j = 0; j < hard_regs_num; j++)
|
||
ALLOCNO_HARD_REG_COSTS (parent_a)[j]
|
||
-= ALLOCNO_HARD_REG_COSTS (a)[j];
|
||
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
|
||
&& ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
|
||
for (j = 0; j < hard_regs_num; j++)
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
|
||
-= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
|
||
ALLOCNO_COVER_CLASS_COST (parent_a)
|
||
-= ALLOCNO_COVER_CLASS_COST (a);
|
||
ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
|
||
parent_a = ira_parent_allocno (parent_a);
|
||
if (parent_a == NULL)
|
||
break;
|
||
}
|
||
ALLOCNO_COPIES (a) = NULL;
|
||
regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] = a;
|
||
}
|
||
if (mem_dest_p && copy_info_to_removed_store_destinations (i))
|
||
merged_p = true;
|
||
}
|
||
ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
|
||
if (merged_p || ira_max_point_before_emit != ira_max_point)
|
||
ira_rebuild_start_finish_chains ();
|
||
if (new_pseudos_p)
|
||
{
|
||
sparseset objects_live;
|
||
|
||
/* Rebuild conflicts. */
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
ira_allocno_object_iterator oi;
|
||
ira_object_t obj;
|
||
if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))]
|
||
|| ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
continue;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
||
{
|
||
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
||
ira_assert (r->object == obj);
|
||
clear_conflicts (obj);
|
||
}
|
||
}
|
||
objects_live = sparseset_alloc (ira_objects_num);
|
||
for (i = 0; i < ira_max_point; i++)
|
||
{
|
||
for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
|
||
{
|
||
ira_object_t obj = r->object;
|
||
a = OBJECT_ALLOCNO (obj);
|
||
if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))]
|
||
|| ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
continue;
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
|
||
EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
|
||
{
|
||
ira_object_t live_obj = ira_object_id_map[n];
|
||
ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
|
||
enum reg_class live_cover = ALLOCNO_COVER_CLASS (live_a);
|
||
if (ira_reg_classes_intersect_p[cover_class][live_cover]
|
||
/* Don't set up conflict for the allocno with itself. */
|
||
&& live_a != a)
|
||
ira_add_conflict (obj, live_obj);
|
||
}
|
||
}
|
||
|
||
for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
|
||
sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
|
||
}
|
||
sparseset_free (objects_live);
|
||
compress_conflict_vecs ();
|
||
}
|
||
/* Mark some copies for removing and change allocnos in the rest
|
||
copies. */
|
||
FOR_EACH_COPY (cp, ci)
|
||
{
|
||
if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
|
||
|| ALLOCNO_CAP_MEMBER (cp->second) != NULL)
|
||
{
|
||
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
||
fprintf
|
||
(ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
|
||
cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
|
||
ALLOCNO_NUM (cp->first), REGNO (ALLOCNO_REG (cp->first)),
|
||
ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
|
||
ALLOCNO_NUM (cp->second), REGNO (ALLOCNO_REG (cp->second)));
|
||
cp->loop_tree_node = NULL;
|
||
continue;
|
||
}
|
||
first = regno_top_level_allocno_map[REGNO (ALLOCNO_REG (cp->first))];
|
||
second = regno_top_level_allocno_map[REGNO (ALLOCNO_REG (cp->second))];
|
||
node = cp->loop_tree_node;
|
||
if (node == NULL)
|
||
keep_p = true; /* It copy generated in ira-emit.c. */
|
||
else
|
||
{
|
||
/* Check that the copy was not propagated from level on
|
||
which we will have different pseudos. */
|
||
node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
|
||
node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
|
||
keep_p = ((REGNO (ALLOCNO_REG (first))
|
||
== REGNO (ALLOCNO_REG (node_first)))
|
||
&& (REGNO (ALLOCNO_REG (second))
|
||
== REGNO (ALLOCNO_REG (node_second))));
|
||
}
|
||
if (keep_p)
|
||
{
|
||
cp->loop_tree_node = ira_loop_tree_root;
|
||
cp->first = first;
|
||
cp->second = second;
|
||
}
|
||
else
|
||
{
|
||
cp->loop_tree_node = NULL;
|
||
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
|
||
cp->num, ALLOCNO_NUM (cp->first),
|
||
REGNO (ALLOCNO_REG (cp->first)), ALLOCNO_NUM (cp->second),
|
||
REGNO (ALLOCNO_REG (cp->second)));
|
||
}
|
||
}
|
||
/* Remove unnecessary allocnos on lower levels of the loop tree. */
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))]
|
||
|| ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
{
|
||
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " Remove a%dr%d\n",
|
||
ALLOCNO_NUM (a), REGNO (ALLOCNO_REG (a)));
|
||
finish_allocno (a);
|
||
continue;
|
||
}
|
||
ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
|
||
ALLOCNO_REGNO (a) = REGNO (ALLOCNO_REG (a));
|
||
ALLOCNO_CAP (a) = NULL;
|
||
/* Restore updated costs for assignments from reload. */
|
||
ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
|
||
ALLOCNO_UPDATED_COVER_CLASS_COST (a) = ALLOCNO_COVER_CLASS_COST (a);
|
||
if (! ALLOCNO_ASSIGNED_P (a))
|
||
ira_free_allocno_updated_costs (a);
|
||
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
|
||
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
|
||
}
|
||
/* Remove unnecessary copies. */
|
||
FOR_EACH_COPY (cp, ci)
|
||
{
|
||
if (cp->loop_tree_node == NULL)
|
||
{
|
||
ira_copies[cp->num] = NULL;
|
||
finish_copy (cp);
|
||
continue;
|
||
}
|
||
ira_assert
|
||
(ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
|
||
&& ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
|
||
ira_add_allocno_copy_to_list (cp);
|
||
ira_swap_allocno_copy_ends_if_necessary (cp);
|
||
}
|
||
rebuild_regno_allocno_maps ();
|
||
if (ira_max_point != ira_max_point_before_emit)
|
||
ira_compress_allocno_live_ranges ();
|
||
ira_free (regno_top_level_allocno_map);
|
||
}
|
||
|
||
|
||
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
/* Check creation of all allocnos. Allocnos on lower levels should
|
||
have allocnos or caps on all upper levels. */
|
||
static void
|
||
check_allocno_creation (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
ira_loop_tree_node_t loop_tree_node;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
|
||
ALLOCNO_NUM (a)));
|
||
if (loop_tree_node == ira_loop_tree_root)
|
||
continue;
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
ira_assert (ALLOCNO_CAP (a) != NULL);
|
||
else if (ALLOCNO_CAP (a) == NULL)
|
||
ira_assert (loop_tree_node->parent
|
||
->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
|
||
&& bitmap_bit_p (loop_tree_node->border_allocnos,
|
||
ALLOCNO_NUM (a)));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Identify allocnos which prefer a register class with a single hard register.
|
||
Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
|
||
less likely to use the preferred singleton register. */
|
||
static void
|
||
update_conflict_hard_reg_costs (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
int i, index, min;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
enum reg_class cover_class = ALLOCNO_COVER_CLASS (a);
|
||
enum reg_class pref = reg_preferred_class (ALLOCNO_REGNO (a));
|
||
|
||
if (reg_class_size[pref] != 1)
|
||
continue;
|
||
index = (ira_class_hard_reg_index[cover_class]
|
||
[ira_class_hard_regs[pref][0]]);
|
||
if (index < 0)
|
||
continue;
|
||
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
|
||
|| ALLOCNO_HARD_REG_COSTS (a) == NULL)
|
||
continue;
|
||
min = INT_MAX;
|
||
for (i = ira_class_hard_regs_num[cover_class] - 1; i >= 0; i--)
|
||
if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_COVER_CLASS_COST (a)
|
||
&& min > ALLOCNO_HARD_REG_COSTS (a)[i])
|
||
min = ALLOCNO_HARD_REG_COSTS (a)[i];
|
||
if (min == INT_MAX)
|
||
continue;
|
||
ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
|
||
cover_class, 0);
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
|
||
-= min - ALLOCNO_COVER_CLASS_COST (a);
|
||
}
|
||
}
|
||
|
||
/* Create a internal representation (IR) for IRA (allocnos, copies,
|
||
loop tree nodes). If LOOPS_P is FALSE the nodes corresponding to
|
||
the loops (except the root which corresponds the all function) and
|
||
correspondingly allocnos for the loops will be not created. Such
|
||
parameter value is used for Chaitin-Briggs coloring. The function
|
||
returns TRUE if we generate loop structure (besides nodes
|
||
representing all function and the basic blocks) for regional
|
||
allocation. A true return means that we really need to flatten IR
|
||
before the reload. */
|
||
bool
|
||
ira_build (bool loops_p)
|
||
{
|
||
df_analyze ();
|
||
|
||
initiate_cost_vectors ();
|
||
initiate_allocnos ();
|
||
initiate_copies ();
|
||
create_loop_tree_nodes (loops_p);
|
||
form_loop_tree ();
|
||
create_allocnos ();
|
||
ira_costs ();
|
||
create_allocno_objects ();
|
||
ira_create_allocno_live_ranges ();
|
||
remove_unnecessary_regions (false);
|
||
ira_compress_allocno_live_ranges ();
|
||
update_bad_spill_attribute ();
|
||
loops_p = more_one_region_p ();
|
||
if (loops_p)
|
||
{
|
||
propagate_allocno_info ();
|
||
create_caps ();
|
||
}
|
||
ira_tune_allocno_costs_and_cover_classes ();
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
check_allocno_creation ();
|
||
#endif
|
||
setup_min_max_allocno_live_range_point ();
|
||
sort_conflict_id_map ();
|
||
setup_min_max_conflict_allocno_ids ();
|
||
ira_build_conflicts ();
|
||
update_conflict_hard_reg_costs ();
|
||
if (! ira_conflicts_p)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
/* Remove all regions but root one. */
|
||
if (loops_p)
|
||
{
|
||
remove_unnecessary_regions (true);
|
||
loops_p = false;
|
||
}
|
||
/* We don't save hard registers around calls for fast allocation
|
||
-- add caller clobbered registers as conflicting ones to
|
||
allocno crossing calls. */
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
|
||
ior_hard_reg_conflicts (a, &call_used_reg_set);
|
||
}
|
||
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
||
print_copies (ira_dump_file);
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
||
{
|
||
int n, nr, nr_big;
|
||
ira_allocno_t a;
|
||
live_range_t r;
|
||
ira_allocno_iterator ai;
|
||
|
||
n = 0;
|
||
nr = 0;
|
||
nr_big = 0;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int j, nobj = ALLOCNO_NUM_OBJECTS (a);
|
||
if (nobj > 1)
|
||
nr_big++;
|
||
for (j = 0; j < nobj; j++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, j);
|
||
n += OBJECT_NUM_CONFLICTS (obj);
|
||
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
||
nr++;
|
||
}
|
||
}
|
||
fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
|
||
VEC_length (loop_p, ira_loops.larray), n_basic_blocks,
|
||
ira_max_point);
|
||
fprintf (ira_dump_file,
|
||
" allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
|
||
ira_allocnos_num, nr_big, ira_copies_num, n, nr);
|
||
}
|
||
return loops_p;
|
||
}
|
||
|
||
/* Release the data created by function ira_build. */
|
||
void
|
||
ira_destroy (void)
|
||
{
|
||
finish_loop_tree_nodes ();
|
||
finish_copies ();
|
||
finish_allocnos ();
|
||
finish_cost_vectors ();
|
||
ira_finish_allocno_live_ranges ();
|
||
}
|