Jakub Jelinek 8d9254fc8a Update copyright years.
From-SVN: r279813
2020-01-01 12:51:42 +01:00

431 lines
12 KiB
C++

// -*- C++ -*-
// Copyright (C) 2007-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file parallel/base.h
* @brief Sequential helper functions.
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_BASE_H
#define _GLIBCXX_PARALLEL_BASE_H 1
#include <bits/c++config.h>
#include <bits/stl_function.h>
#include <omp.h>
#include <parallel/features.h>
#include <parallel/basic_iterator.h>
#include <parallel/parallel.h>
// Parallel mode namespaces.
/**
* @namespace std::__parallel
* @brief GNU parallel code, replaces standard behavior with parallel behavior.
*/
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace __parallel { }
}
/**
* @namespace __gnu_parallel
* @brief GNU parallel code for public use.
*/
namespace __gnu_parallel
{
// Import all the parallel versions of components in namespace std.
using namespace std::__parallel;
}
/**
* @namespace __gnu_sequential
* @brief GNU sequential classes for public use.
*/
namespace __gnu_sequential
{
// Import whatever is the serial version.
#ifdef _GLIBCXX_PARALLEL
using namespace std::_GLIBCXX_STD_A;
#else
using namespace std;
#endif
}
namespace __gnu_parallel
{
// NB: Including this file cannot produce (unresolved) symbols from
// the OpenMP runtime unless the parallel mode is actually invoked
// and active, which imples that the OpenMP runtime is actually
// going to be linked in.
inline _ThreadIndex
__get_max_threads()
{
_ThreadIndex __i = omp_get_max_threads();
return __i > 1 ? __i : 1;
}
inline bool
__is_parallel(const _Parallelism __p) { return __p != sequential; }
/** @brief Calculates the rounded-down logarithm of @c __n for base 2.
* @param __n Argument.
* @return Returns 0 for any argument <1.
*/
template<typename _Size>
inline _Size
__rd_log2(_Size __n)
{
_Size __k;
for (__k = 0; __n > 1; __n >>= 1)
++__k;
return __k;
}
/** @brief Encode two integers into one gnu_parallel::_CASable.
* @param __a First integer, to be encoded in the most-significant @c
* _CASable_bits/2 bits.
* @param __b Second integer, to be encoded in the least-significant
* @c _CASable_bits/2 bits.
* @return value encoding @c __a and @c __b.
* @see __decode2
*/
inline _CASable
__encode2(int __a, int __b) //must all be non-negative, actually
{
return (((_CASable)__a) << (_CASable_bits / 2)) | (((_CASable)__b) << 0);
}
/** @brief Decode two integers from one gnu_parallel::_CASable.
* @param __x __gnu_parallel::_CASable to decode integers from.
* @param __a First integer, to be decoded from the most-significant
* @c _CASable_bits/2 bits of @c __x.
* @param __b Second integer, to be encoded in the least-significant
* @c _CASable_bits/2 bits of @c __x.
* @see __encode2
*/
inline void
__decode2(_CASable __x, int& __a, int& __b)
{
__a = (int)((__x >> (_CASable_bits / 2)) & _CASable_mask);
__b = (int)((__x >> 0 ) & _CASable_mask);
}
//needed for parallel "numeric", even if "algorithm" not included
/** @brief Equivalent to std::min. */
template<typename _Tp>
inline const _Tp&
min(const _Tp& __a, const _Tp& __b)
{ return (__a < __b) ? __a : __b; }
/** @brief Equivalent to std::max. */
template<typename _Tp>
inline const _Tp&
max(const _Tp& __a, const _Tp& __b)
{ return (__a > __b) ? __a : __b; }
/** @brief Constructs predicate for equality from strict weak
* ordering predicate
*/
template<typename _T1, typename _T2, typename _Compare>
class _EqualFromLess : public std::binary_function<_T1, _T2, bool>
{
private:
_Compare& _M_comp;
public:
_EqualFromLess(_Compare& __comp) : _M_comp(__comp) { }
bool operator()(const _T1& __a, const _T2& __b)
{ return !_M_comp(__a, __b) && !_M_comp(__b, __a); }
};
/** @brief Similar to std::unary_negate,
* but giving the argument types explicitly. */
template<typename _Predicate, typename argument_type>
class __unary_negate
: public std::unary_function<argument_type, bool>
{
protected:
_Predicate _M_pred;
public:
explicit
__unary_negate(const _Predicate& __x) : _M_pred(__x) { }
bool
operator()(const argument_type& __x)
{ return !_M_pred(__x); }
};
/** @brief Similar to std::binder1st,
* but giving the argument types explicitly. */
template<typename _Operation, typename _FirstArgumentType,
typename _SecondArgumentType, typename _ResultType>
class __binder1st
: public std::unary_function<_SecondArgumentType, _ResultType>
{
protected:
_Operation _M_op;
_FirstArgumentType _M_value;
public:
__binder1st(const _Operation& __x, const _FirstArgumentType& __y)
: _M_op(__x), _M_value(__y) { }
_ResultType
operator()(const _SecondArgumentType& __x)
{ return _M_op(_M_value, __x); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 109. Missing binders for non-const sequence elements
_ResultType
operator()(_SecondArgumentType& __x) const
{ return _M_op(_M_value, __x); }
};
/**
* @brief Similar to std::binder2nd, but giving the argument types
* explicitly.
*/
template<typename _Operation, typename _FirstArgumentType,
typename _SecondArgumentType, typename _ResultType>
class __binder2nd
: public std::unary_function<_FirstArgumentType, _ResultType>
{
protected:
_Operation _M_op;
_SecondArgumentType _M_value;
public:
__binder2nd(const _Operation& __x, const _SecondArgumentType& __y)
: _M_op(__x), _M_value(__y) { }
_ResultType
operator()(const _FirstArgumentType& __x) const
{ return _M_op(__x, _M_value); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 109. Missing binders for non-const sequence elements
_ResultType
operator()(_FirstArgumentType& __x)
{ return _M_op(__x, _M_value); }
};
/** @brief Similar to std::equal_to, but allows two different types. */
template<typename _T1, typename _T2>
struct _EqualTo : std::binary_function<_T1, _T2, bool>
{
bool operator()(const _T1& __t1, const _T2& __t2) const
{ return __t1 == __t2; }
};
/** @brief Similar to std::less, but allows two different types. */
template<typename _T1, typename _T2>
struct _Less : std::binary_function<_T1, _T2, bool>
{
bool
operator()(const _T1& __t1, const _T2& __t2) const
{ return __t1 < __t2; }
bool
operator()(const _T2& __t2, const _T1& __t1) const
{ return __t2 < __t1; }
};
// Partial specialization for one type. Same as std::less.
template<typename _Tp>
struct _Less<_Tp, _Tp>
: public std::less<_Tp> { };
/** @brief Similar to std::plus, but allows two different types. */
template<typename _Tp1, typename _Tp2, typename _Result
= __typeof__(*static_cast<_Tp1*>(0)
+ *static_cast<_Tp2*>(0))>
struct _Plus : public std::binary_function<_Tp1, _Tp2, _Result>
{
_Result
operator()(const _Tp1& __x, const _Tp2& __y) const
{ return __x + __y; }
};
// Partial specialization for one type. Same as std::plus.
template<typename _Tp>
struct _Plus<_Tp, _Tp, _Tp>
: public std::plus<_Tp> { };
/** @brief Similar to std::multiplies, but allows two different types. */
template<typename _Tp1, typename _Tp2, typename _Result
= __typeof__(*static_cast<_Tp1*>(0)
* *static_cast<_Tp2*>(0))>
struct _Multiplies : public std::binary_function<_Tp1, _Tp2, _Result>
{
_Result
operator()(const _Tp1& __x, const _Tp2& __y) const
{ return __x * __y; }
};
// Partial specialization for one type. Same as std::multiplies.
template<typename _Tp>
struct _Multiplies<_Tp, _Tp, _Tp>
: public std::multiplies<_Tp> { };
/** @brief _Iterator associated with __gnu_parallel::_PseudoSequence.
* If features the usual random-access iterator functionality.
* @param _Tp Sequence _M_value type.
* @param _DifferenceTp Sequence difference type.
*/
template<typename _Tp, typename _DifferenceTp>
class _PseudoSequenceIterator
{
public:
typedef _DifferenceTp _DifferenceType;
_PseudoSequenceIterator(const _Tp& __val, _DifferenceType __pos)
: _M_val(__val), _M_pos(__pos) { }
// Pre-increment operator.
_PseudoSequenceIterator&
operator++()
{
++_M_pos;
return *this;
}
// Post-increment operator.
_PseudoSequenceIterator
operator++(int)
{ return _PseudoSequenceIterator(_M_pos++); }
const _Tp&
operator*() const
{ return _M_val; }
const _Tp&
operator[](_DifferenceType) const
{ return _M_val; }
bool
operator==(const _PseudoSequenceIterator& __i2)
{ return _M_pos == __i2._M_pos; }
bool
operator!=(const _PseudoSequenceIterator& __i2)
{ return _M_pos != __i2._M_pos; }
_DifferenceType
operator-(const _PseudoSequenceIterator& __i2)
{ return _M_pos - __i2._M_pos; }
private:
const _Tp& _M_val;
_DifferenceType _M_pos;
};
/** @brief Sequence that conceptually consists of multiple copies of
the same element.
* The copies are not stored explicitly, of course.
* @param _Tp Sequence _M_value type.
* @param _DifferenceTp Sequence difference type.
*/
template<typename _Tp, typename _DifferenceTp>
class _PseudoSequence
{
public:
typedef _DifferenceTp _DifferenceType;
// Better cast down to uint64_t, than up to _DifferenceTp.
typedef _PseudoSequenceIterator<_Tp, uint64_t> iterator;
/** @brief Constructor.
* @param __val Element of the sequence.
* @param __count Number of (virtual) copies.
*/
_PseudoSequence(const _Tp& __val, _DifferenceType __count)
: _M_val(__val), _M_count(__count) { }
/** @brief Begin iterator. */
iterator
begin() const
{ return iterator(_M_val, 0); }
/** @brief End iterator. */
iterator
end() const
{ return iterator(_M_val, _M_count); }
private:
const _Tp& _M_val;
_DifferenceType _M_count;
};
/** @brief Compute the median of three referenced elements,
according to @c __comp.
* @param __a First iterator.
* @param __b Second iterator.
* @param __c Third iterator.
* @param __comp Comparator.
*/
template<typename _RAIter, typename _Compare>
_RAIter
__median_of_three_iterators(_RAIter __a, _RAIter __b,
_RAIter __c, _Compare __comp)
{
if (__comp(*__a, *__b))
if (__comp(*__b, *__c))
return __b;
else
if (__comp(*__a, *__c))
return __c;
else
return __a;
else
{
// Just swap __a and __b.
if (__comp(*__a, *__c))
return __a;
else
if (__comp(*__b, *__c))
return __c;
else
return __b;
}
}
#if _GLIBCXX_PARALLEL_ASSERTIONS && defined(__glibcxx_assert_impl)
#define _GLIBCXX_PARALLEL_ASSERT(_Condition) __glibcxx_assert_impl(_Condition)
#else
#define _GLIBCXX_PARALLEL_ASSERT(_Condition)
#endif
} //namespace __gnu_parallel
#endif /* _GLIBCXX_PARALLEL_BASE_H */