gcc/gcc/function-abi.cc
Richard Sandiford 6d1e98dfd2 Make ira call df_set_regs_ever_live for extra call-clobbered regs
If we support multiple ABIs in the same translation unit, it can
sometimes be the case that a callee clobbers more registers than
its caller is allowed to.  We need to call df_set_regs_ever_live
on these extra registers so that the prologue and epilogue code
can handle them appropriately.

This patch does that in IRA.  I wanted to avoid another full
instruction walk just for this, so I combined it with the existing
set_paradoxical_subreg walk.  This happens before the first
calculation of elimination offsets.

2019-09-30  Richard Sandiford  <richard.sandiford@arm.com>

gcc/
	* function-abi.h (function_abi_aggregator): New class.
	* function-abi.cc (function_abi_aggregator::caller_save_regs): New
	function.
	* ira.c (update_equiv_regs_prescan): New function.  Call
	set_paradoxical_subreg here rather than...
	(update_equiv_regs): ...here.
	(ira): Call update_equiv_regs_prescan.

From-SVN: r276339
2019-09-30 16:39:38 +00:00

232 lines
7.9 KiB
C++

/* Information about fuunction binary interfaces.
Copyright (C) 2019 Free Software Foundation, Inc.
This file is part of GCC
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "function-abi.h"
#include "varasm.h"
#include "cgraph.h"
target_function_abi_info default_target_function_abi_info;
#if SWITCHABLE_TARGET
target_function_abi_info *this_target_function_abi_info
= &default_target_function_abi_info;
#endif
/* Initialize a predefined function ABI with the given values of
ID and FULL_REG_CLOBBERS. */
void
predefined_function_abi::initialize (unsigned int id,
const_hard_reg_set full_reg_clobbers)
{
m_id = id;
m_initialized = true;
m_full_reg_clobbers = full_reg_clobbers;
/* Set up the value of m_full_and_partial_reg_clobbers.
If the ABI specifies that part of a hard register R is call-clobbered,
we should be able to find a single-register mode M for which
targetm.hard_regno_call_part_clobbered (m_id, R, M) is true.
In other words, it shouldn't be the case that R can hold all
single-register modes across a call, but can't hold part of
a multi-register mode.
If that assumption doesn't hold for a future target, we would need
to change the interface of TARGET_HARD_REGNO_CALL_PART_CLOBBERED so
that it tells us which registers in a multi-register value are
actually clobbered. */
m_full_and_partial_reg_clobbers = full_reg_clobbers;
for (unsigned int i = 0; i < NUM_MACHINE_MODES; ++i)
{
machine_mode mode = (machine_mode) i;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
if (targetm.hard_regno_mode_ok (regno, mode)
&& hard_regno_nregs (regno, mode) == 1
&& targetm.hard_regno_call_part_clobbered (m_id, regno, mode))
SET_HARD_REG_BIT (m_full_and_partial_reg_clobbers, regno);
}
/* For each mode MODE, work out which registers are unable to hold
any part of a MODE value across a call, i.e. those for which no
overlapping call-preserved (reg:MODE REGNO) exists.
We assume that this can be flipped around to say that a call
preserves (reg:MODE REGNO) unless the register overlaps this set.
The usual reason for this being true is that if (reg:MODE REGNO)
contains a part-clobbered register, that register would be
part-clobbered regardless of which part of MODE it holds.
For example, if (reg:M 2) occupies two registers and if the
register 3 portion of it is part-clobbered, (reg:M 3) is usually
either invalid or also part-clobbered. */
for (unsigned int i = 0; i < NUM_MACHINE_MODES; ++i)
{
machine_mode mode = (machine_mode) i;
m_mode_clobbers[i] = m_full_and_partial_reg_clobbers;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
if (targetm.hard_regno_mode_ok (regno, mode)
&& !overlaps_hard_reg_set_p (m_full_reg_clobbers, mode, regno)
&& !targetm.hard_regno_call_part_clobbered (m_id, regno, mode))
remove_from_hard_reg_set (&m_mode_clobbers[i], mode, regno);
}
/* Check that the assumptions above actually hold, i.e. that testing
for single-register modes makes sense, and that overlap tests for
mode_clobbers work as expected. */
if (flag_checking)
for (unsigned int i = 0; i < NUM_MACHINE_MODES; ++i)
{
machine_mode mode = (machine_mode) i;
const_hard_reg_set all_clobbers = m_full_and_partial_reg_clobbers;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
if (targetm.hard_regno_mode_ok (regno, mode)
&& !overlaps_hard_reg_set_p (m_full_reg_clobbers, mode, regno)
&& targetm.hard_regno_call_part_clobbered (m_id, regno, mode))
gcc_assert (overlaps_hard_reg_set_p (all_clobbers, mode, regno)
&& overlaps_hard_reg_set_p (m_mode_clobbers[i],
mode, regno));
}
}
/* If the ABI has been initialized, add REGNO to the set of registers
that can be completely altered by a call. */
void
predefined_function_abi::add_full_reg_clobber (unsigned int regno)
{
if (!m_initialized)
return;
SET_HARD_REG_BIT (m_full_reg_clobbers, regno);
SET_HARD_REG_BIT (m_full_and_partial_reg_clobbers, regno);
for (unsigned int i = 0; i < NUM_MACHINE_MODES; ++i)
SET_HARD_REG_BIT (m_mode_clobbers[i], regno);
}
/* Return the set of registers that the caller of the recorded functions must
save in order to honor the requirements of CALLER_ABI. */
HARD_REG_SET
function_abi_aggregator::
caller_save_regs (const function_abi &caller_abi) const
{
HARD_REG_SET result;
CLEAR_HARD_REG_SET (result);
for (unsigned int abi_id = 0; abi_id < NUM_ABI_IDS; ++abi_id)
{
const predefined_function_abi &callee_abi = function_abis[abi_id];
/* Skip cases that clearly aren't problematic. */
if (abi_id == caller_abi.id ()
|| hard_reg_set_empty_p (m_abi_clobbers[abi_id]))
continue;
/* Collect the set of registers that can be "more clobbered" by
CALLEE_ABI than by CALLER_ABI. */
HARD_REG_SET extra_clobbers;
CLEAR_HARD_REG_SET (extra_clobbers);
for (unsigned int i = 0; i < NUM_MACHINE_MODES; ++i)
{
machine_mode mode = (machine_mode) i;
extra_clobbers |= (callee_abi.mode_clobbers (mode)
& ~caller_abi.mode_clobbers (mode));
}
/* Restrict it to the set of registers that we actually saw
clobbers for (e.g. taking -fipa-ra into account). */
result |= (extra_clobbers & m_abi_clobbers[abi_id]);
}
return result;
}
/* Return the set of registers that cannot be used to hold a value of
mode MODE across the calls in a region described by ABIS and MASK, where:
* Bit ID of ABIS is set if the region contains a call with
function_abi identifier ID.
* MASK contains all the registers that are fully or partially
clobbered by calls in the region.
This is not quite as accurate as testing each individual call,
but it's a close and conservatively-correct approximation.
It's much better for some targets than just using MASK. */
HARD_REG_SET
call_clobbers_in_region (unsigned int abis, const_hard_reg_set mask,
machine_mode mode)
{
HARD_REG_SET result;
CLEAR_HARD_REG_SET (result);
for (unsigned int id = 0; abis; abis >>= 1, ++id)
if (abis & 1)
result |= function_abis[id].mode_clobbers (mode);
return result & mask;
}
/* Return the predefined ABI used by functions with type TYPE. */
const predefined_function_abi &
fntype_abi (const_tree type)
{
gcc_assert (FUNC_OR_METHOD_TYPE_P (type));
if (targetm.calls.fntype_abi)
return targetm.calls.fntype_abi (type);
return default_function_abi;
}
/* Return the ABI of function decl FNDECL. */
function_abi
fndecl_abi (const_tree fndecl)
{
gcc_assert (TREE_CODE (fndecl) == FUNCTION_DECL);
const predefined_function_abi &base_abi = fntype_abi (TREE_TYPE (fndecl));
if (flag_ipa_ra && decl_binds_to_current_def_p (fndecl))
if (cgraph_rtl_info *info = cgraph_node::rtl_info (fndecl))
return function_abi (base_abi, info->function_used_regs);
return base_abi;
}
/* Return the ABI of the function called by INSN. */
function_abi
insn_callee_abi (const rtx_insn *insn)
{
gcc_assert (insn && CALL_P (insn));
if (flag_ipa_ra)
if (tree fndecl = get_call_fndecl (insn))
return fndecl_abi (fndecl);
if (targetm.calls.insn_callee_abi)
return targetm.calls.insn_callee_abi (insn);
return default_function_abi;
}