58cc98767a
2019-09-12 Yuliang Wang <yuliang.wang@arm.com> gcc/ PR tree-optimization/89386 * config/aarch64/aarch64-sve2.md (<su>mull<bt><Vwide>) (<r>shrnb<mode>, <r>shrnt<mode>): New SVE2 patterns. (<su>mulh<r>s<mode>3): New pattern for MULHRS. * config/aarch64/iterators.md (UNSPEC_SMULLB, UNSPEC_SMULLT) (UNSPEC_UMULLB, UNSPEC_UMULLT, UNSPEC_SHRNB, UNSPEC_SHRNT) (UNSPEC_RSHRNB, UNSPEC_RSHRNT, UNSPEC_SMULHS, UNSPEC_SMULHRS) UNSPEC_UMULHS, UNSPEC_UMULHRS): New unspecs. (MULLBT, SHRNB, SHRNT, MULHRS): New int iterators. (su, r): Handle the unspecs above. (bt): New int attribute. * internal-fn.def (IFN_MULHS, IFN_MULHRS): New internal functions. * internal-fn.c (first_commutative_argument): Commutativity info for above. * optabs.def (smulhs_optab, smulhrs_optab, umulhs_optab) (umulhrs_optab): New optabs. * doc/md.texi (smulhs$var{m3}, umulhs$var{m3}) (smulhrs$var{m3}, umulhrs$var{m3}): Documentation for the above. * tree-vect-patterns.c (vect_recog_mulhs_pattern): New pattern function. (vect_vect_recog_func_ptrs): Add it. * testsuite/gcc.target/aarch64/sve2/mulhrs_1.c: New test. * testsuite/gcc.dg/vect/vect-mulhrs-1.c: As above. * testsuite/gcc.dg/vect/vect-mulhrs-2.c: As above. * testsuite/gcc.dg/vect/vect-mulhrs-3.c: As above. * testsuite/gcc.dg/vect/vect-mulhrs-4.c: As above. * doc/sourcebuild.texi (vect_mulhrs_hi): Document new target selector. * testsuite/lib/target-supports.exp (check_effective_target_vect_mulhrs_hi): Return true for AArch64 with SVE2. From-SVN: r275682
3613 lines
109 KiB
C
3613 lines
109 KiB
C
/* Internal functions.
|
|
Copyright (C) 2011-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "predict.h"
|
|
#include "stringpool.h"
|
|
#include "tree-vrp.h"
|
|
#include "tree-ssanames.h"
|
|
#include "expmed.h"
|
|
#include "memmodel.h"
|
|
#include "optabs.h"
|
|
#include "emit-rtl.h"
|
|
#include "diagnostic-core.h"
|
|
#include "fold-const.h"
|
|
#include "internal-fn.h"
|
|
#include "stor-layout.h"
|
|
#include "dojump.h"
|
|
#include "expr.h"
|
|
#include "stringpool.h"
|
|
#include "attribs.h"
|
|
#include "asan.h"
|
|
#include "ubsan.h"
|
|
#include "recog.h"
|
|
#include "builtins.h"
|
|
#include "optabs-tree.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
|
|
/* The names of each internal function, indexed by function number. */
|
|
const char *const internal_fn_name_array[] = {
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE,
|
|
#include "internal-fn.def"
|
|
"<invalid-fn>"
|
|
};
|
|
|
|
/* The ECF_* flags of each internal function, indexed by function number. */
|
|
const int internal_fn_flags_array[] = {
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS,
|
|
#include "internal-fn.def"
|
|
0
|
|
};
|
|
|
|
/* Return the internal function called NAME, or IFN_LAST if there's
|
|
no such function. */
|
|
|
|
internal_fn
|
|
lookup_internal_fn (const char *name)
|
|
{
|
|
typedef hash_map<nofree_string_hash, internal_fn> name_to_fn_map_type;
|
|
static name_to_fn_map_type *name_to_fn_map;
|
|
|
|
if (!name_to_fn_map)
|
|
{
|
|
name_to_fn_map = new name_to_fn_map_type (IFN_LAST);
|
|
for (unsigned int i = 0; i < IFN_LAST; ++i)
|
|
name_to_fn_map->put (internal_fn_name (internal_fn (i)),
|
|
internal_fn (i));
|
|
}
|
|
internal_fn *entry = name_to_fn_map->get (name);
|
|
return entry ? *entry : IFN_LAST;
|
|
}
|
|
|
|
/* Fnspec of each internal function, indexed by function number. */
|
|
const_tree internal_fn_fnspec_array[IFN_LAST + 1];
|
|
|
|
void
|
|
init_internal_fns ()
|
|
{
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
|
|
if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \
|
|
build_string ((int) sizeof (FNSPEC), FNSPEC ? FNSPEC : "");
|
|
#include "internal-fn.def"
|
|
internal_fn_fnspec_array[IFN_LAST] = 0;
|
|
}
|
|
|
|
/* Create static initializers for the information returned by
|
|
direct_internal_fn. */
|
|
#define not_direct { -2, -2, false }
|
|
#define mask_load_direct { -1, 2, false }
|
|
#define load_lanes_direct { -1, -1, false }
|
|
#define mask_load_lanes_direct { -1, -1, false }
|
|
#define gather_load_direct { -1, -1, false }
|
|
#define mask_store_direct { 3, 2, false }
|
|
#define store_lanes_direct { 0, 0, false }
|
|
#define mask_store_lanes_direct { 0, 0, false }
|
|
#define scatter_store_direct { 3, 3, false }
|
|
#define unary_direct { 0, 0, true }
|
|
#define binary_direct { 0, 0, true }
|
|
#define ternary_direct { 0, 0, true }
|
|
#define cond_unary_direct { 1, 1, true }
|
|
#define cond_binary_direct { 1, 1, true }
|
|
#define cond_ternary_direct { 1, 1, true }
|
|
#define while_direct { 0, 2, false }
|
|
#define fold_extract_direct { 2, 2, false }
|
|
#define fold_left_direct { 1, 1, false }
|
|
#define mask_fold_left_direct { 1, 1, false }
|
|
|
|
const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = {
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct,
|
|
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct,
|
|
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
|
|
UNSIGNED_OPTAB, TYPE) TYPE##_direct,
|
|
#include "internal-fn.def"
|
|
not_direct
|
|
};
|
|
|
|
/* ARRAY_TYPE is an array of vector modes. Return the associated insn
|
|
for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */
|
|
|
|
static enum insn_code
|
|
get_multi_vector_move (tree array_type, convert_optab optab)
|
|
{
|
|
machine_mode imode;
|
|
machine_mode vmode;
|
|
|
|
gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE);
|
|
imode = TYPE_MODE (array_type);
|
|
vmode = TYPE_MODE (TREE_TYPE (array_type));
|
|
|
|
return convert_optab_handler (optab, imode, vmode);
|
|
}
|
|
|
|
/* Expand LOAD_LANES call STMT using optab OPTAB. */
|
|
|
|
static void
|
|
expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
|
|
{
|
|
class expand_operand ops[2];
|
|
tree type, lhs, rhs;
|
|
rtx target, mem;
|
|
|
|
lhs = gimple_call_lhs (stmt);
|
|
rhs = gimple_call_arg (stmt, 0);
|
|
type = TREE_TYPE (lhs);
|
|
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
mem = expand_normal (rhs);
|
|
|
|
gcc_assert (MEM_P (mem));
|
|
PUT_MODE (mem, TYPE_MODE (type));
|
|
|
|
create_output_operand (&ops[0], target, TYPE_MODE (type));
|
|
create_fixed_operand (&ops[1], mem);
|
|
expand_insn (get_multi_vector_move (type, optab), 2, ops);
|
|
}
|
|
|
|
/* Expand STORE_LANES call STMT using optab OPTAB. */
|
|
|
|
static void
|
|
expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
|
|
{
|
|
class expand_operand ops[2];
|
|
tree type, lhs, rhs;
|
|
rtx target, reg;
|
|
|
|
lhs = gimple_call_lhs (stmt);
|
|
rhs = gimple_call_arg (stmt, 0);
|
|
type = TREE_TYPE (rhs);
|
|
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
reg = expand_normal (rhs);
|
|
|
|
gcc_assert (MEM_P (target));
|
|
PUT_MODE (target, TYPE_MODE (type));
|
|
|
|
create_fixed_operand (&ops[0], target);
|
|
create_input_operand (&ops[1], reg, TYPE_MODE (type));
|
|
expand_insn (get_multi_vector_move (type, optab), 2, ops);
|
|
}
|
|
|
|
static void
|
|
expand_ANNOTATE (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in omp_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOMP_USE_SIMT (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in omp_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_ENTER (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Allocate per-lane storage and begin non-uniform execution region. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt)
|
|
{
|
|
rtx target;
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs)
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
else
|
|
target = gen_reg_rtx (Pmode);
|
|
rtx size = expand_normal (gimple_call_arg (stmt, 0));
|
|
rtx align = expand_normal (gimple_call_arg (stmt, 1));
|
|
class expand_operand ops[3];
|
|
create_output_operand (&ops[0], target, Pmode);
|
|
create_input_operand (&ops[1], size, Pmode);
|
|
create_input_operand (&ops[2], align, Pmode);
|
|
gcc_assert (targetm.have_omp_simt_enter ());
|
|
expand_insn (targetm.code_for_omp_simt_enter, 3, ops);
|
|
}
|
|
|
|
/* Deallocate per-lane storage and leave non-uniform execution region. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt)
|
|
{
|
|
gcc_checking_assert (!gimple_call_lhs (stmt));
|
|
rtx arg = expand_normal (gimple_call_arg (stmt, 0));
|
|
class expand_operand ops[1];
|
|
create_input_operand (&ops[0], arg, Pmode);
|
|
gcc_assert (targetm.have_omp_simt_exit ());
|
|
expand_insn (targetm.code_for_omp_simt_exit, 1, ops);
|
|
}
|
|
|
|
/* Lane index on SIMT targets: thread index in the warp on NVPTX. On targets
|
|
without SIMT execution this should be expanded in omp_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
gcc_assert (targetm.have_omp_simt_lane ());
|
|
emit_insn (targetm.gen_omp_simt_lane (target));
|
|
}
|
|
|
|
/* This should get expanded in omp_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_VF (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Lane index of the first SIMT lane that supplies a non-zero argument.
|
|
This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the
|
|
lane that executed the last iteration for handling OpenMP lastprivate. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
rtx cond = expand_normal (gimple_call_arg (stmt, 0));
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
|
|
class expand_operand ops[2];
|
|
create_output_operand (&ops[0], target, mode);
|
|
create_input_operand (&ops[1], cond, mode);
|
|
gcc_assert (targetm.have_omp_simt_last_lane ());
|
|
expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops);
|
|
}
|
|
|
|
/* Non-transparent predicate used in SIMT lowering of OpenMP "ordered". */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
rtx ctr = expand_normal (gimple_call_arg (stmt, 0));
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
|
|
class expand_operand ops[2];
|
|
create_output_operand (&ops[0], target, mode);
|
|
create_input_operand (&ops[1], ctr, mode);
|
|
gcc_assert (targetm.have_omp_simt_ordered ());
|
|
expand_insn (targetm.code_for_omp_simt_ordered, 2, ops);
|
|
}
|
|
|
|
/* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if
|
|
any lane supplies a non-zero argument. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
rtx cond = expand_normal (gimple_call_arg (stmt, 0));
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
|
|
class expand_operand ops[2];
|
|
create_output_operand (&ops[0], target, mode);
|
|
create_input_operand (&ops[1], cond, mode);
|
|
gcc_assert (targetm.have_omp_simt_vote_any ());
|
|
expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops);
|
|
}
|
|
|
|
/* Exchange between SIMT lanes with a "butterfly" pattern: source lane index
|
|
is destination lane index XOR given offset. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
rtx src = expand_normal (gimple_call_arg (stmt, 0));
|
|
rtx idx = expand_normal (gimple_call_arg (stmt, 1));
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
|
|
class expand_operand ops[3];
|
|
create_output_operand (&ops[0], target, mode);
|
|
create_input_operand (&ops[1], src, mode);
|
|
create_input_operand (&ops[2], idx, SImode);
|
|
gcc_assert (targetm.have_omp_simt_xchg_bfly ());
|
|
expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops);
|
|
}
|
|
|
|
/* Exchange between SIMT lanes according to given source lane index. */
|
|
|
|
static void
|
|
expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
rtx src = expand_normal (gimple_call_arg (stmt, 0));
|
|
rtx idx = expand_normal (gimple_call_arg (stmt, 1));
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
|
|
class expand_operand ops[3];
|
|
create_output_operand (&ops[0], target, mode);
|
|
create_input_operand (&ops[1], src, mode);
|
|
create_input_operand (&ops[2], idx, SImode);
|
|
gcc_assert (targetm.have_omp_simt_xchg_idx ());
|
|
expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops);
|
|
}
|
|
|
|
/* This should get expanded in adjust_simduid_builtins. */
|
|
|
|
static void
|
|
expand_GOMP_SIMD_LANE (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in adjust_simduid_builtins. */
|
|
|
|
static void
|
|
expand_GOMP_SIMD_VF (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in adjust_simduid_builtins. */
|
|
|
|
static void
|
|
expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in adjust_simduid_builtins. */
|
|
|
|
static void
|
|
expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in adjust_simduid_builtins. */
|
|
|
|
static void
|
|
expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_UBSAN_NULL (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_UBSAN_BOUNDS (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_UBSAN_VPTR (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_UBSAN_PTR (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_ASAN_CHECK (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_ASAN_MARK (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_ASAN_POISON (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the sanopt pass. */
|
|
|
|
static void
|
|
expand_ASAN_POISON_USE (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the tsan pass. */
|
|
|
|
static void
|
|
expand_TSAN_FUNC_EXIT (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get expanded in the lower pass. */
|
|
|
|
static void
|
|
expand_FALLTHROUGH (internal_fn, gcall *call)
|
|
{
|
|
error_at (gimple_location (call),
|
|
"invalid use of attribute %<fallthrough%>");
|
|
}
|
|
|
|
/* Return minimum precision needed to represent all values
|
|
of ARG in SIGNed integral type. */
|
|
|
|
static int
|
|
get_min_precision (tree arg, signop sign)
|
|
{
|
|
int prec = TYPE_PRECISION (TREE_TYPE (arg));
|
|
int cnt = 0;
|
|
signop orig_sign = sign;
|
|
if (TREE_CODE (arg) == INTEGER_CST)
|
|
{
|
|
int p;
|
|
if (TYPE_SIGN (TREE_TYPE (arg)) != sign)
|
|
{
|
|
widest_int w = wi::to_widest (arg);
|
|
w = wi::ext (w, prec, sign);
|
|
p = wi::min_precision (w, sign);
|
|
}
|
|
else
|
|
p = wi::min_precision (wi::to_wide (arg), sign);
|
|
return MIN (p, prec);
|
|
}
|
|
while (CONVERT_EXPR_P (arg)
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
|
|
&& TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
|
|
{
|
|
arg = TREE_OPERAND (arg, 0);
|
|
if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
|
|
{
|
|
if (TYPE_UNSIGNED (TREE_TYPE (arg)))
|
|
sign = UNSIGNED;
|
|
else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
|
|
return prec + (orig_sign != sign);
|
|
prec = TYPE_PRECISION (TREE_TYPE (arg));
|
|
}
|
|
if (++cnt > 30)
|
|
return prec + (orig_sign != sign);
|
|
}
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
|
return prec + (orig_sign != sign);
|
|
wide_int arg_min, arg_max;
|
|
while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
|
|
{
|
|
gimple *g = SSA_NAME_DEF_STMT (arg);
|
|
if (is_gimple_assign (g)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
|
|
{
|
|
tree t = gimple_assign_rhs1 (g);
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (t))
|
|
&& TYPE_PRECISION (TREE_TYPE (t)) <= prec)
|
|
{
|
|
arg = t;
|
|
if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
|
|
{
|
|
if (TYPE_UNSIGNED (TREE_TYPE (arg)))
|
|
sign = UNSIGNED;
|
|
else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
|
|
return prec + (orig_sign != sign);
|
|
prec = TYPE_PRECISION (TREE_TYPE (arg));
|
|
}
|
|
if (++cnt > 30)
|
|
return prec + (orig_sign != sign);
|
|
continue;
|
|
}
|
|
}
|
|
return prec + (orig_sign != sign);
|
|
}
|
|
if (sign == TYPE_SIGN (TREE_TYPE (arg)))
|
|
{
|
|
int p1 = wi::min_precision (arg_min, sign);
|
|
int p2 = wi::min_precision (arg_max, sign);
|
|
p1 = MAX (p1, p2);
|
|
prec = MIN (prec, p1);
|
|
}
|
|
else if (sign == UNSIGNED && !wi::neg_p (arg_min, SIGNED))
|
|
{
|
|
int p = wi::min_precision (arg_max, UNSIGNED);
|
|
prec = MIN (prec, p);
|
|
}
|
|
return prec + (orig_sign != sign);
|
|
}
|
|
|
|
/* Helper for expand_*_overflow. Set the __imag__ part to true
|
|
(1 except for signed:1 type, in which case store -1). */
|
|
|
|
static void
|
|
expand_arith_set_overflow (tree lhs, rtx target)
|
|
{
|
|
if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))))
|
|
write_complex_part (target, constm1_rtx, true);
|
|
else
|
|
write_complex_part (target, const1_rtx, true);
|
|
}
|
|
|
|
/* Helper for expand_*_overflow. Store RES into the __real__ part
|
|
of TARGET. If RES has larger MODE than __real__ part of TARGET,
|
|
set the __imag__ part to 1 if RES doesn't fit into it. Similarly
|
|
if LHS has smaller precision than its mode. */
|
|
|
|
static void
|
|
expand_arith_overflow_result_store (tree lhs, rtx target,
|
|
scalar_int_mode mode, rtx res)
|
|
{
|
|
scalar_int_mode tgtmode
|
|
= as_a <scalar_int_mode> (GET_MODE_INNER (GET_MODE (target)));
|
|
rtx lres = res;
|
|
if (tgtmode != mode)
|
|
{
|
|
rtx_code_label *done_label = gen_label_rtx ();
|
|
int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
|
|
lres = convert_modes (tgtmode, mode, res, uns);
|
|
gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode));
|
|
do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns),
|
|
EQ, true, mode, NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
expand_arith_set_overflow (lhs, target);
|
|
emit_label (done_label);
|
|
}
|
|
int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs)));
|
|
int tgtprec = GET_MODE_PRECISION (tgtmode);
|
|
if (prec < tgtprec)
|
|
{
|
|
rtx_code_label *done_label = gen_label_rtx ();
|
|
int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
|
|
res = lres;
|
|
if (uns)
|
|
{
|
|
rtx mask
|
|
= immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec),
|
|
tgtmode);
|
|
lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX,
|
|
true, OPTAB_LIB_WIDEN);
|
|
}
|
|
else
|
|
{
|
|
lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec,
|
|
NULL_RTX, 1);
|
|
lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec,
|
|
NULL_RTX, 0);
|
|
}
|
|
do_compare_rtx_and_jump (res, lres,
|
|
EQ, true, tgtmode, NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
expand_arith_set_overflow (lhs, target);
|
|
emit_label (done_label);
|
|
}
|
|
write_complex_part (target, lres, false);
|
|
}
|
|
|
|
/* Helper for expand_*_overflow. Store RES into TARGET. */
|
|
|
|
static void
|
|
expand_ubsan_result_store (rtx target, rtx res)
|
|
{
|
|
if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
|
|
/* If this is a scalar in a register that is stored in a wider mode
|
|
than the declared mode, compute the result into its declared mode
|
|
and then convert to the wider mode. Our value is the computed
|
|
expression. */
|
|
convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target));
|
|
else
|
|
emit_move_insn (target, res);
|
|
}
|
|
|
|
/* Add sub/add overflow checking to the statement STMT.
|
|
CODE says whether the operation is +, or -. */
|
|
|
|
static void
|
|
expand_addsub_overflow (location_t loc, tree_code code, tree lhs,
|
|
tree arg0, tree arg1, bool unsr_p, bool uns0_p,
|
|
bool uns1_p, bool is_ubsan, tree *datap)
|
|
{
|
|
rtx res, target = NULL_RTX;
|
|
tree fn;
|
|
rtx_code_label *done_label = gen_label_rtx ();
|
|
rtx_code_label *do_error = gen_label_rtx ();
|
|
do_pending_stack_adjust ();
|
|
rtx op0 = expand_normal (arg0);
|
|
rtx op1 = expand_normal (arg1);
|
|
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
|
|
int prec = GET_MODE_PRECISION (mode);
|
|
rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
|
|
bool do_xor = false;
|
|
|
|
if (is_ubsan)
|
|
gcc_assert (!unsr_p && !uns0_p && !uns1_p);
|
|
|
|
if (lhs)
|
|
{
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (!is_ubsan)
|
|
write_complex_part (target, const0_rtx, true);
|
|
}
|
|
|
|
/* We assume both operands and result have the same precision
|
|
here (GET_MODE_BITSIZE (mode)), S stands for signed type
|
|
with that precision, U for unsigned type with that precision,
|
|
sgn for unsigned most significant bit in that precision.
|
|
s1 is signed first operand, u1 is unsigned first operand,
|
|
s2 is signed second operand, u2 is unsigned second operand,
|
|
sr is signed result, ur is unsigned result and the following
|
|
rules say how to compute result (which is always result of
|
|
the operands as if both were unsigned, cast to the right
|
|
signedness) and how to compute whether operation overflowed.
|
|
|
|
s1 + s2 -> sr
|
|
res = (S) ((U) s1 + (U) s2)
|
|
ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow)
|
|
s1 - s2 -> sr
|
|
res = (S) ((U) s1 - (U) s2)
|
|
ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow)
|
|
u1 + u2 -> ur
|
|
res = u1 + u2
|
|
ovf = res < u1 (or jump on carry, but RTL opts will handle it)
|
|
u1 - u2 -> ur
|
|
res = u1 - u2
|
|
ovf = res > u1 (or jump on carry, but RTL opts will handle it)
|
|
s1 + u2 -> sr
|
|
res = (S) ((U) s1 + u2)
|
|
ovf = ((U) res ^ sgn) < u2
|
|
s1 + u2 -> ur
|
|
t1 = (S) (u2 ^ sgn)
|
|
t2 = s1 + t1
|
|
res = (U) t2 ^ sgn
|
|
ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow)
|
|
s1 - u2 -> sr
|
|
res = (S) ((U) s1 - u2)
|
|
ovf = u2 > ((U) s1 ^ sgn)
|
|
s1 - u2 -> ur
|
|
res = (U) s1 - u2
|
|
ovf = s1 < 0 || u2 > (U) s1
|
|
u1 - s2 -> sr
|
|
res = u1 - (U) s2
|
|
ovf = u1 >= ((U) s2 ^ sgn)
|
|
u1 - s2 -> ur
|
|
t1 = u1 ^ sgn
|
|
t2 = t1 - (U) s2
|
|
res = t2 ^ sgn
|
|
ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow)
|
|
s1 + s2 -> ur
|
|
res = (U) s1 + (U) s2
|
|
ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0)
|
|
u1 + u2 -> sr
|
|
res = (S) (u1 + u2)
|
|
ovf = (U) res < u2 || res < 0
|
|
u1 - u2 -> sr
|
|
res = (S) (u1 - u2)
|
|
ovf = u1 >= u2 ? res < 0 : res >= 0
|
|
s1 - s2 -> ur
|
|
res = (U) s1 - (U) s2
|
|
ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */
|
|
|
|
if (code == PLUS_EXPR && uns0_p && !uns1_p)
|
|
{
|
|
/* PLUS_EXPR is commutative, if operand signedness differs,
|
|
canonicalize to the first operand being signed and second
|
|
unsigned to simplify following code. */
|
|
std::swap (op0, op1);
|
|
std::swap (arg0, arg1);
|
|
uns0_p = false;
|
|
uns1_p = true;
|
|
}
|
|
|
|
/* u1 +- u2 -> ur */
|
|
if (uns0_p && uns1_p && unsr_p)
|
|
{
|
|
insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab
|
|
: usubv4_optab, mode);
|
|
if (icode != CODE_FOR_nothing)
|
|
{
|
|
class expand_operand ops[4];
|
|
rtx_insn *last = get_last_insn ();
|
|
|
|
res = gen_reg_rtx (mode);
|
|
create_output_operand (&ops[0], res, mode);
|
|
create_input_operand (&ops[1], op0, mode);
|
|
create_input_operand (&ops[2], op1, mode);
|
|
create_fixed_operand (&ops[3], do_error);
|
|
if (maybe_expand_insn (icode, 4, ops))
|
|
{
|
|
last = get_last_insn ();
|
|
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
|
|
&& JUMP_P (last)
|
|
&& any_condjump_p (last)
|
|
&& !find_reg_note (last, REG_BR_PROB, 0))
|
|
add_reg_br_prob_note (last,
|
|
profile_probability::very_unlikely ());
|
|
emit_jump (done_label);
|
|
goto do_error_label;
|
|
}
|
|
|
|
delete_insns_since (last);
|
|
}
|
|
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
|
|
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
|
|
rtx tem = op0;
|
|
/* For PLUS_EXPR, the operation is commutative, so we can pick
|
|
operand to compare against. For prec <= BITS_PER_WORD, I think
|
|
preferring REG operand is better over CONST_INT, because
|
|
the CONST_INT might enlarge the instruction or CSE would need
|
|
to figure out we'd already loaded it into a register before.
|
|
For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial,
|
|
as then the multi-word comparison can be perhaps simplified. */
|
|
if (code == PLUS_EXPR
|
|
&& (prec <= BITS_PER_WORD
|
|
? (CONST_SCALAR_INT_P (op0) && REG_P (op1))
|
|
: CONST_SCALAR_INT_P (op1)))
|
|
tem = op1;
|
|
do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU,
|
|
true, mode, NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
|
|
/* s1 +- u2 -> sr */
|
|
if (!uns0_p && uns1_p && !unsr_p)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
|
|
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
|
|
rtx tem = expand_binop (mode, add_optab,
|
|
code == PLUS_EXPR ? res : op0, sgn,
|
|
NULL_RTX, false, OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL,
|
|
done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
|
|
/* s1 + u2 -> ur */
|
|
if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p)
|
|
{
|
|
op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
/* As we've changed op1, we have to avoid using the value range
|
|
for the original argument. */
|
|
arg1 = error_mark_node;
|
|
do_xor = true;
|
|
goto do_signed;
|
|
}
|
|
|
|
/* u1 - s2 -> ur */
|
|
if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p)
|
|
{
|
|
op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
/* As we've changed op0, we have to avoid using the value range
|
|
for the original argument. */
|
|
arg0 = error_mark_node;
|
|
do_xor = true;
|
|
goto do_signed;
|
|
}
|
|
|
|
/* s1 - u2 -> ur */
|
|
if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
int pos_neg = get_range_pos_neg (arg0);
|
|
if (pos_neg == 2)
|
|
/* If ARG0 is known to be always negative, this is always overflow. */
|
|
emit_jump (do_error);
|
|
else if (pos_neg == 3)
|
|
/* If ARG0 is not known to be always positive, check at runtime. */
|
|
do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX,
|
|
NULL, do_error, profile_probability::very_unlikely ());
|
|
do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL,
|
|
done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
|
|
/* u1 - s2 -> sr */
|
|
if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL,
|
|
done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
|
|
/* u1 + u2 -> sr */
|
|
if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
|
|
NULL, do_error, profile_probability::very_unlikely ());
|
|
rtx tem = op1;
|
|
/* The operation is commutative, so we can pick operand to compare
|
|
against. For prec <= BITS_PER_WORD, I think preferring REG operand
|
|
is better over CONST_INT, because the CONST_INT might enlarge the
|
|
instruction or CSE would need to figure out we'd already loaded it
|
|
into a register before. For prec > BITS_PER_WORD, I think CONST_INT
|
|
might be more beneficial, as then the multi-word comparison can be
|
|
perhaps simplified. */
|
|
if (prec <= BITS_PER_WORD
|
|
? (CONST_SCALAR_INT_P (op1) && REG_P (op0))
|
|
: CONST_SCALAR_INT_P (op0))
|
|
tem = op0;
|
|
do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL,
|
|
done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
|
|
/* s1 +- s2 -> ur */
|
|
if (!uns0_p && !uns1_p && unsr_p)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
|
|
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
|
|
int pos_neg = get_range_pos_neg (arg1);
|
|
if (code == PLUS_EXPR)
|
|
{
|
|
int pos_neg0 = get_range_pos_neg (arg0);
|
|
if (pos_neg0 != 3 && pos_neg == 3)
|
|
{
|
|
std::swap (op0, op1);
|
|
pos_neg = pos_neg0;
|
|
}
|
|
}
|
|
rtx tem;
|
|
if (pos_neg != 3)
|
|
{
|
|
tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR))
|
|
? and_optab : ior_optab,
|
|
op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
}
|
|
else
|
|
{
|
|
rtx_code_label *do_ior_label = gen_label_rtx ();
|
|
do_compare_rtx_and_jump (op1, const0_rtx,
|
|
code == MINUS_EXPR ? GE : LT, false, mode,
|
|
NULL_RTX, NULL, do_ior_label,
|
|
profile_probability::even ());
|
|
tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
emit_jump (do_error);
|
|
emit_label (do_ior_label);
|
|
tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
}
|
|
goto do_error_label;
|
|
}
|
|
|
|
/* u1 - u2 -> sr */
|
|
if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
rtx_code_label *op0_geu_op1 = gen_label_rtx ();
|
|
do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL,
|
|
op0_geu_op1, profile_probability::even ());
|
|
do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
emit_jump (do_error);
|
|
emit_label (op0_geu_op1);
|
|
do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
|
|
gcc_assert (!uns0_p && !uns1_p && !unsr_p);
|
|
|
|
/* s1 +- s2 -> sr */
|
|
do_signed:
|
|
{
|
|
insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab
|
|
: subv4_optab, mode);
|
|
if (icode != CODE_FOR_nothing)
|
|
{
|
|
class expand_operand ops[4];
|
|
rtx_insn *last = get_last_insn ();
|
|
|
|
res = gen_reg_rtx (mode);
|
|
create_output_operand (&ops[0], res, mode);
|
|
create_input_operand (&ops[1], op0, mode);
|
|
create_input_operand (&ops[2], op1, mode);
|
|
create_fixed_operand (&ops[3], do_error);
|
|
if (maybe_expand_insn (icode, 4, ops))
|
|
{
|
|
last = get_last_insn ();
|
|
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
|
|
&& JUMP_P (last)
|
|
&& any_condjump_p (last)
|
|
&& !find_reg_note (last, REG_BR_PROB, 0))
|
|
add_reg_br_prob_note (last,
|
|
profile_probability::very_unlikely ());
|
|
emit_jump (done_label);
|
|
goto do_error_label;
|
|
}
|
|
|
|
delete_insns_since (last);
|
|
}
|
|
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
|
|
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
|
|
|
|
/* If we can prove that one of the arguments (for MINUS_EXPR only
|
|
the second operand, as subtraction is not commutative) is always
|
|
non-negative or always negative, we can do just one comparison
|
|
and conditional jump. */
|
|
int pos_neg = get_range_pos_neg (arg1);
|
|
if (code == PLUS_EXPR)
|
|
{
|
|
int pos_neg0 = get_range_pos_neg (arg0);
|
|
if (pos_neg0 != 3 && pos_neg == 3)
|
|
{
|
|
std::swap (op0, op1);
|
|
pos_neg = pos_neg0;
|
|
}
|
|
}
|
|
|
|
/* Addition overflows if and only if the two operands have the same sign,
|
|
and the result has the opposite sign. Subtraction overflows if and
|
|
only if the two operands have opposite sign, and the subtrahend has
|
|
the same sign as the result. Here 0 is counted as positive. */
|
|
if (pos_neg == 3)
|
|
{
|
|
/* Compute op0 ^ op1 (operands have opposite sign). */
|
|
rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
|
|
/* Compute res ^ op1 (result and 2nd operand have opposite sign). */
|
|
rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
|
|
rtx tem;
|
|
if (code == PLUS_EXPR)
|
|
{
|
|
/* Compute (res ^ op1) & ~(op0 ^ op1). */
|
|
tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false);
|
|
tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
}
|
|
else
|
|
{
|
|
/* Compute (op0 ^ op1) & ~(res ^ op1). */
|
|
tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false);
|
|
tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
}
|
|
|
|
/* No overflow if the result has bit sign cleared. */
|
|
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
}
|
|
|
|
/* Compare the result of the operation with the first operand.
|
|
No overflow for addition if second operand is positive and result
|
|
is larger or second operand is negative and result is smaller.
|
|
Likewise for subtraction with sign of second operand flipped. */
|
|
else
|
|
do_compare_rtx_and_jump (res, op0,
|
|
(pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE,
|
|
false, mode, NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
}
|
|
|
|
do_error_label:
|
|
emit_label (do_error);
|
|
if (is_ubsan)
|
|
{
|
|
/* Expand the ubsan builtin call. */
|
|
push_temp_slots ();
|
|
fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0),
|
|
arg0, arg1, datap);
|
|
expand_normal (fn);
|
|
pop_temp_slots ();
|
|
do_pending_stack_adjust ();
|
|
}
|
|
else if (lhs)
|
|
expand_arith_set_overflow (lhs, target);
|
|
|
|
/* We're done. */
|
|
emit_label (done_label);
|
|
|
|
if (lhs)
|
|
{
|
|
if (is_ubsan)
|
|
expand_ubsan_result_store (target, res);
|
|
else
|
|
{
|
|
if (do_xor)
|
|
res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
|
|
expand_arith_overflow_result_store (lhs, target, mode, res);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add negate overflow checking to the statement STMT. */
|
|
|
|
static void
|
|
expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan,
|
|
tree *datap)
|
|
{
|
|
rtx res, op1;
|
|
tree fn;
|
|
rtx_code_label *done_label, *do_error;
|
|
rtx target = NULL_RTX;
|
|
|
|
done_label = gen_label_rtx ();
|
|
do_error = gen_label_rtx ();
|
|
|
|
do_pending_stack_adjust ();
|
|
op1 = expand_normal (arg1);
|
|
|
|
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg1));
|
|
if (lhs)
|
|
{
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (!is_ubsan)
|
|
write_complex_part (target, const0_rtx, true);
|
|
}
|
|
|
|
enum insn_code icode = optab_handler (negv3_optab, mode);
|
|
if (icode != CODE_FOR_nothing)
|
|
{
|
|
class expand_operand ops[3];
|
|
rtx_insn *last = get_last_insn ();
|
|
|
|
res = gen_reg_rtx (mode);
|
|
create_output_operand (&ops[0], res, mode);
|
|
create_input_operand (&ops[1], op1, mode);
|
|
create_fixed_operand (&ops[2], do_error);
|
|
if (maybe_expand_insn (icode, 3, ops))
|
|
{
|
|
last = get_last_insn ();
|
|
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
|
|
&& JUMP_P (last)
|
|
&& any_condjump_p (last)
|
|
&& !find_reg_note (last, REG_BR_PROB, 0))
|
|
add_reg_br_prob_note (last,
|
|
profile_probability::very_unlikely ());
|
|
emit_jump (done_label);
|
|
}
|
|
else
|
|
{
|
|
delete_insns_since (last);
|
|
icode = CODE_FOR_nothing;
|
|
}
|
|
}
|
|
|
|
if (icode == CODE_FOR_nothing)
|
|
{
|
|
/* Compute the operation. On RTL level, the addition is always
|
|
unsigned. */
|
|
res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
|
|
|
|
/* Compare the operand with the most negative value. */
|
|
rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
|
|
do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL,
|
|
done_label, profile_probability::very_likely ());
|
|
}
|
|
|
|
emit_label (do_error);
|
|
if (is_ubsan)
|
|
{
|
|
/* Expand the ubsan builtin call. */
|
|
push_temp_slots ();
|
|
fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1),
|
|
arg1, NULL_TREE, datap);
|
|
expand_normal (fn);
|
|
pop_temp_slots ();
|
|
do_pending_stack_adjust ();
|
|
}
|
|
else if (lhs)
|
|
expand_arith_set_overflow (lhs, target);
|
|
|
|
/* We're done. */
|
|
emit_label (done_label);
|
|
|
|
if (lhs)
|
|
{
|
|
if (is_ubsan)
|
|
expand_ubsan_result_store (target, res);
|
|
else
|
|
expand_arith_overflow_result_store (lhs, target, mode, res);
|
|
}
|
|
}
|
|
|
|
/* Return true if UNS WIDEN_MULT_EXPR with result mode WMODE and operand
|
|
mode MODE can be expanded without using a libcall. */
|
|
|
|
static bool
|
|
can_widen_mult_without_libcall (scalar_int_mode wmode, scalar_int_mode mode,
|
|
rtx op0, rtx op1, bool uns)
|
|
{
|
|
if (find_widening_optab_handler (umul_widen_optab, wmode, mode)
|
|
!= CODE_FOR_nothing)
|
|
return true;
|
|
|
|
if (find_widening_optab_handler (smul_widen_optab, wmode, mode)
|
|
!= CODE_FOR_nothing)
|
|
return true;
|
|
|
|
rtx_insn *last = get_last_insn ();
|
|
if (CONSTANT_P (op0))
|
|
op0 = convert_modes (wmode, mode, op0, uns);
|
|
else
|
|
op0 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 1);
|
|
if (CONSTANT_P (op1))
|
|
op1 = convert_modes (wmode, mode, op1, uns);
|
|
else
|
|
op1 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 2);
|
|
rtx ret = expand_mult (wmode, op0, op1, NULL_RTX, uns, true);
|
|
delete_insns_since (last);
|
|
return ret != NULL_RTX;
|
|
}
|
|
|
|
/* Add mul overflow checking to the statement STMT. */
|
|
|
|
static void
|
|
expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1,
|
|
bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan,
|
|
tree *datap)
|
|
{
|
|
rtx res, op0, op1;
|
|
tree fn, type;
|
|
rtx_code_label *done_label, *do_error;
|
|
rtx target = NULL_RTX;
|
|
signop sign;
|
|
enum insn_code icode;
|
|
|
|
done_label = gen_label_rtx ();
|
|
do_error = gen_label_rtx ();
|
|
|
|
do_pending_stack_adjust ();
|
|
op0 = expand_normal (arg0);
|
|
op1 = expand_normal (arg1);
|
|
|
|
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
|
|
bool uns = unsr_p;
|
|
if (lhs)
|
|
{
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (!is_ubsan)
|
|
write_complex_part (target, const0_rtx, true);
|
|
}
|
|
|
|
if (is_ubsan)
|
|
gcc_assert (!unsr_p && !uns0_p && !uns1_p);
|
|
|
|
/* We assume both operands and result have the same precision
|
|
here (GET_MODE_BITSIZE (mode)), S stands for signed type
|
|
with that precision, U for unsigned type with that precision,
|
|
sgn for unsigned most significant bit in that precision.
|
|
s1 is signed first operand, u1 is unsigned first operand,
|
|
s2 is signed second operand, u2 is unsigned second operand,
|
|
sr is signed result, ur is unsigned result and the following
|
|
rules say how to compute result (which is always result of
|
|
the operands as if both were unsigned, cast to the right
|
|
signedness) and how to compute whether operation overflowed.
|
|
main_ovf (false) stands for jump on signed multiplication
|
|
overflow or the main algorithm with uns == false.
|
|
main_ovf (true) stands for jump on unsigned multiplication
|
|
overflow or the main algorithm with uns == true.
|
|
|
|
s1 * s2 -> sr
|
|
res = (S) ((U) s1 * (U) s2)
|
|
ovf = main_ovf (false)
|
|
u1 * u2 -> ur
|
|
res = u1 * u2
|
|
ovf = main_ovf (true)
|
|
s1 * u2 -> ur
|
|
res = (U) s1 * u2
|
|
ovf = (s1 < 0 && u2) || main_ovf (true)
|
|
u1 * u2 -> sr
|
|
res = (S) (u1 * u2)
|
|
ovf = res < 0 || main_ovf (true)
|
|
s1 * u2 -> sr
|
|
res = (S) ((U) s1 * u2)
|
|
ovf = (S) u2 >= 0 ? main_ovf (false)
|
|
: (s1 != 0 && (s1 != -1 || u2 != (U) res))
|
|
s1 * s2 -> ur
|
|
t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1)
|
|
t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2)
|
|
res = t1 * t2
|
|
ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */
|
|
|
|
if (uns0_p && !uns1_p)
|
|
{
|
|
/* Multiplication is commutative, if operand signedness differs,
|
|
canonicalize to the first operand being signed and second
|
|
unsigned to simplify following code. */
|
|
std::swap (op0, op1);
|
|
std::swap (arg0, arg1);
|
|
uns0_p = false;
|
|
uns1_p = true;
|
|
}
|
|
|
|
int pos_neg0 = get_range_pos_neg (arg0);
|
|
int pos_neg1 = get_range_pos_neg (arg1);
|
|
|
|
/* s1 * u2 -> ur */
|
|
if (!uns0_p && uns1_p && unsr_p)
|
|
{
|
|
switch (pos_neg0)
|
|
{
|
|
case 1:
|
|
/* If s1 is non-negative, just perform normal u1 * u2 -> ur. */
|
|
goto do_main;
|
|
case 2:
|
|
/* If s1 is negative, avoid the main code, just multiply and
|
|
signal overflow if op1 is not 0. */
|
|
struct separate_ops ops;
|
|
ops.code = MULT_EXPR;
|
|
ops.type = TREE_TYPE (arg1);
|
|
ops.op0 = make_tree (ops.type, op0);
|
|
ops.op1 = make_tree (ops.type, op1);
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
case 3:
|
|
rtx_code_label *do_main_label;
|
|
do_main_label = gen_label_rtx ();
|
|
do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, do_main_label, profile_probability::very_likely ());
|
|
do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
|
|
NULL, do_main_label, profile_probability::very_likely ());
|
|
expand_arith_set_overflow (lhs, target);
|
|
emit_label (do_main_label);
|
|
goto do_main;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* u1 * u2 -> sr */
|
|
if (uns0_p && uns1_p && !unsr_p)
|
|
{
|
|
uns = true;
|
|
/* Rest of handling of this case after res is computed. */
|
|
goto do_main;
|
|
}
|
|
|
|
/* s1 * u2 -> sr */
|
|
if (!uns0_p && uns1_p && !unsr_p)
|
|
{
|
|
switch (pos_neg1)
|
|
{
|
|
case 1:
|
|
goto do_main;
|
|
case 2:
|
|
/* If (S) u2 is negative (i.e. u2 is larger than maximum of S,
|
|
avoid the main code, just multiply and signal overflow
|
|
unless 0 * u2 or -1 * ((U) Smin). */
|
|
struct separate_ops ops;
|
|
ops.code = MULT_EXPR;
|
|
ops.type = TREE_TYPE (arg1);
|
|
ops.op0 = make_tree (ops.type, op0);
|
|
ops.op1 = make_tree (ops.type, op1);
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
|
|
NULL, do_error, profile_probability::very_unlikely ());
|
|
int prec;
|
|
prec = GET_MODE_PRECISION (mode);
|
|
rtx sgn;
|
|
sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
|
|
do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX,
|
|
NULL, done_label, profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
case 3:
|
|
/* Rest of handling of this case after res is computed. */
|
|
goto do_main;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* s1 * s2 -> ur */
|
|
if (!uns0_p && !uns1_p && unsr_p)
|
|
{
|
|
rtx tem, tem2;
|
|
switch (pos_neg0 | pos_neg1)
|
|
{
|
|
case 1: /* Both operands known to be non-negative. */
|
|
goto do_main;
|
|
case 2: /* Both operands known to be negative. */
|
|
op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false);
|
|
op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
|
|
/* Avoid looking at arg0/arg1 ranges, as we've changed
|
|
the arguments. */
|
|
arg0 = error_mark_node;
|
|
arg1 = error_mark_node;
|
|
goto do_main;
|
|
case 3:
|
|
if ((pos_neg0 ^ pos_neg1) == 3)
|
|
{
|
|
/* If one operand is known to be negative and the other
|
|
non-negative, this overflows always, unless the non-negative
|
|
one is 0. Just do normal multiply and set overflow
|
|
unless one of the operands is 0. */
|
|
struct separate_ops ops;
|
|
ops.code = MULT_EXPR;
|
|
ops.type
|
|
= build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
|
|
1);
|
|
ops.op0 = make_tree (ops.type, op0);
|
|
ops.op1 = make_tree (ops.type, op1);
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode,
|
|
NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
/* The general case, do all the needed comparisons at runtime. */
|
|
rtx_code_label *do_main_label, *after_negate_label;
|
|
rtx rop0, rop1;
|
|
rop0 = gen_reg_rtx (mode);
|
|
rop1 = gen_reg_rtx (mode);
|
|
emit_move_insn (rop0, op0);
|
|
emit_move_insn (rop1, op1);
|
|
op0 = rop0;
|
|
op1 = rop1;
|
|
do_main_label = gen_label_rtx ();
|
|
after_negate_label = gen_label_rtx ();
|
|
tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, after_negate_label, profile_probability::very_likely ());
|
|
/* Both arguments negative here, negate them and continue with
|
|
normal unsigned overflow checking multiplication. */
|
|
emit_move_insn (op0, expand_unop (mode, neg_optab, op0,
|
|
NULL_RTX, false));
|
|
emit_move_insn (op1, expand_unop (mode, neg_optab, op1,
|
|
NULL_RTX, false));
|
|
/* Avoid looking at arg0/arg1 ranges, as we might have changed
|
|
the arguments. */
|
|
arg0 = error_mark_node;
|
|
arg1 = error_mark_node;
|
|
emit_jump (do_main_label);
|
|
emit_label (after_negate_label);
|
|
tem2 = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
|
|
OPTAB_LIB_WIDEN);
|
|
do_compare_rtx_and_jump (tem2, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, do_main_label, profile_probability::very_likely ());
|
|
/* One argument is negative here, the other positive. This
|
|
overflows always, unless one of the arguments is 0. But
|
|
if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1
|
|
is, thus we can keep do_main code oring in overflow as is. */
|
|
do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode, NULL_RTX,
|
|
NULL, do_main_label, profile_probability::very_likely ());
|
|
expand_arith_set_overflow (lhs, target);
|
|
emit_label (do_main_label);
|
|
goto do_main;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
do_main:
|
|
type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns);
|
|
sign = uns ? UNSIGNED : SIGNED;
|
|
icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode);
|
|
if (uns
|
|
&& (integer_pow2p (arg0) || integer_pow2p (arg1))
|
|
&& (optimize_insn_for_speed_p () || icode == CODE_FOR_nothing))
|
|
{
|
|
/* Optimize unsigned multiplication by power of 2 constant
|
|
using 2 shifts, one for result, one to extract the shifted
|
|
out bits to see if they are all zero.
|
|
Don't do this if optimizing for size and we have umulv4_optab,
|
|
in that case assume multiplication will be shorter.
|
|
This is heuristics based on the single target that provides
|
|
umulv4 right now (i?86/x86_64), if further targets add it, this
|
|
might need to be revisited.
|
|
Cases where both operands are constant should be folded already
|
|
during GIMPLE, and cases where one operand is constant but not
|
|
power of 2 are questionable, either the WIDEN_MULT_EXPR case
|
|
below can be done without multiplication, just by shifts and adds,
|
|
or we'd need to divide the result (and hope it actually doesn't
|
|
really divide nor multiply) and compare the result of the division
|
|
with the original operand. */
|
|
rtx opn0 = op0;
|
|
rtx opn1 = op1;
|
|
tree argn0 = arg0;
|
|
tree argn1 = arg1;
|
|
if (integer_pow2p (arg0))
|
|
{
|
|
std::swap (opn0, opn1);
|
|
std::swap (argn0, argn1);
|
|
}
|
|
int cnt = tree_log2 (argn1);
|
|
if (cnt >= 0 && cnt < GET_MODE_PRECISION (mode))
|
|
{
|
|
rtx upper = const0_rtx;
|
|
res = expand_shift (LSHIFT_EXPR, mode, opn0, cnt, NULL_RTX, uns);
|
|
if (cnt != 0)
|
|
upper = expand_shift (RSHIFT_EXPR, mode, opn0,
|
|
GET_MODE_PRECISION (mode) - cnt,
|
|
NULL_RTX, uns);
|
|
do_compare_rtx_and_jump (upper, const0_rtx, EQ, true, mode,
|
|
NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
goto do_error_label;
|
|
}
|
|
}
|
|
if (icode != CODE_FOR_nothing)
|
|
{
|
|
class expand_operand ops[4];
|
|
rtx_insn *last = get_last_insn ();
|
|
|
|
res = gen_reg_rtx (mode);
|
|
create_output_operand (&ops[0], res, mode);
|
|
create_input_operand (&ops[1], op0, mode);
|
|
create_input_operand (&ops[2], op1, mode);
|
|
create_fixed_operand (&ops[3], do_error);
|
|
if (maybe_expand_insn (icode, 4, ops))
|
|
{
|
|
last = get_last_insn ();
|
|
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
|
|
&& JUMP_P (last)
|
|
&& any_condjump_p (last)
|
|
&& !find_reg_note (last, REG_BR_PROB, 0))
|
|
add_reg_br_prob_note (last,
|
|
profile_probability::very_unlikely ());
|
|
emit_jump (done_label);
|
|
}
|
|
else
|
|
{
|
|
delete_insns_since (last);
|
|
icode = CODE_FOR_nothing;
|
|
}
|
|
}
|
|
|
|
if (icode == CODE_FOR_nothing)
|
|
{
|
|
struct separate_ops ops;
|
|
int prec = GET_MODE_PRECISION (mode);
|
|
scalar_int_mode hmode, wmode;
|
|
ops.op0 = make_tree (type, op0);
|
|
ops.op1 = make_tree (type, op1);
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
|
|
/* Optimize unsigned overflow check where we don't use the
|
|
multiplication result, just whether overflow happened.
|
|
If we can do MULT_HIGHPART_EXPR, that followed by
|
|
comparison of the result against zero is cheapest.
|
|
We'll still compute res, but it should be DCEd later. */
|
|
use_operand_p use;
|
|
gimple *use_stmt;
|
|
if (!is_ubsan
|
|
&& lhs
|
|
&& uns
|
|
&& !(uns0_p && uns1_p && !unsr_p)
|
|
&& can_mult_highpart_p (mode, uns) == 1
|
|
&& single_imm_use (lhs, &use, &use_stmt)
|
|
&& is_gimple_assign (use_stmt)
|
|
&& gimple_assign_rhs_code (use_stmt) == IMAGPART_EXPR)
|
|
goto highpart;
|
|
|
|
if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode)
|
|
&& targetm.scalar_mode_supported_p (wmode)
|
|
&& can_widen_mult_without_libcall (wmode, mode, op0, op1, uns))
|
|
{
|
|
twoxwider:
|
|
ops.code = WIDEN_MULT_EXPR;
|
|
ops.type
|
|
= build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns);
|
|
|
|
res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
|
|
rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec,
|
|
NULL_RTX, uns);
|
|
hipart = convert_modes (mode, wmode, hipart, uns);
|
|
res = convert_modes (mode, wmode, res, uns);
|
|
if (uns)
|
|
/* For the unsigned multiplication, there was overflow if
|
|
HIPART is non-zero. */
|
|
do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
|
|
NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
else
|
|
{
|
|
rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
|
|
NULL_RTX, 0);
|
|
/* RES is low half of the double width result, HIPART
|
|
the high half. There was overflow if
|
|
HIPART is different from RES < 0 ? -1 : 0. */
|
|
do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
|
|
NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
}
|
|
}
|
|
else if (can_mult_highpart_p (mode, uns) == 1)
|
|
{
|
|
highpart:
|
|
ops.code = MULT_HIGHPART_EXPR;
|
|
ops.type = type;
|
|
|
|
rtx hipart = expand_expr_real_2 (&ops, NULL_RTX, mode,
|
|
EXPAND_NORMAL);
|
|
ops.code = MULT_EXPR;
|
|
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
if (uns)
|
|
/* For the unsigned multiplication, there was overflow if
|
|
HIPART is non-zero. */
|
|
do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
|
|
NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
else
|
|
{
|
|
rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
|
|
NULL_RTX, 0);
|
|
/* RES is low half of the double width result, HIPART
|
|
the high half. There was overflow if
|
|
HIPART is different from RES < 0 ? -1 : 0. */
|
|
do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
|
|
NULL_RTX, NULL, done_label,
|
|
profile_probability::very_likely ());
|
|
}
|
|
|
|
}
|
|
else if (int_mode_for_size (prec / 2, 1).exists (&hmode)
|
|
&& 2 * GET_MODE_PRECISION (hmode) == prec)
|
|
{
|
|
rtx_code_label *large_op0 = gen_label_rtx ();
|
|
rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
|
|
rtx_code_label *one_small_one_large = gen_label_rtx ();
|
|
rtx_code_label *both_ops_large = gen_label_rtx ();
|
|
rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx ();
|
|
rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx ();
|
|
rtx_code_label *do_overflow = gen_label_rtx ();
|
|
rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx ();
|
|
|
|
unsigned int hprec = GET_MODE_PRECISION (hmode);
|
|
rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
|
|
NULL_RTX, uns);
|
|
hipart0 = convert_modes (hmode, mode, hipart0, uns);
|
|
rtx lopart0 = convert_modes (hmode, mode, op0, uns);
|
|
rtx signbit0 = const0_rtx;
|
|
if (!uns)
|
|
signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
|
|
NULL_RTX, 0);
|
|
rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
|
|
NULL_RTX, uns);
|
|
hipart1 = convert_modes (hmode, mode, hipart1, uns);
|
|
rtx lopart1 = convert_modes (hmode, mode, op1, uns);
|
|
rtx signbit1 = const0_rtx;
|
|
if (!uns)
|
|
signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
|
|
NULL_RTX, 0);
|
|
|
|
res = gen_reg_rtx (mode);
|
|
|
|
/* True if op0 resp. op1 are known to be in the range of
|
|
halfstype. */
|
|
bool op0_small_p = false;
|
|
bool op1_small_p = false;
|
|
/* True if op0 resp. op1 are known to have all zeros or all ones
|
|
in the upper half of bits, but are not known to be
|
|
op{0,1}_small_p. */
|
|
bool op0_medium_p = false;
|
|
bool op1_medium_p = false;
|
|
/* -1 if op{0,1} is known to be negative, 0 if it is known to be
|
|
nonnegative, 1 if unknown. */
|
|
int op0_sign = 1;
|
|
int op1_sign = 1;
|
|
|
|
if (pos_neg0 == 1)
|
|
op0_sign = 0;
|
|
else if (pos_neg0 == 2)
|
|
op0_sign = -1;
|
|
if (pos_neg1 == 1)
|
|
op1_sign = 0;
|
|
else if (pos_neg1 == 2)
|
|
op1_sign = -1;
|
|
|
|
unsigned int mprec0 = prec;
|
|
if (arg0 != error_mark_node)
|
|
mprec0 = get_min_precision (arg0, sign);
|
|
if (mprec0 <= hprec)
|
|
op0_small_p = true;
|
|
else if (!uns && mprec0 <= hprec + 1)
|
|
op0_medium_p = true;
|
|
unsigned int mprec1 = prec;
|
|
if (arg1 != error_mark_node)
|
|
mprec1 = get_min_precision (arg1, sign);
|
|
if (mprec1 <= hprec)
|
|
op1_small_p = true;
|
|
else if (!uns && mprec1 <= hprec + 1)
|
|
op1_medium_p = true;
|
|
|
|
int smaller_sign = 1;
|
|
int larger_sign = 1;
|
|
if (op0_small_p)
|
|
{
|
|
smaller_sign = op0_sign;
|
|
larger_sign = op1_sign;
|
|
}
|
|
else if (op1_small_p)
|
|
{
|
|
smaller_sign = op1_sign;
|
|
larger_sign = op0_sign;
|
|
}
|
|
else if (op0_sign == op1_sign)
|
|
{
|
|
smaller_sign = op0_sign;
|
|
larger_sign = op0_sign;
|
|
}
|
|
|
|
if (!op0_small_p)
|
|
do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode,
|
|
NULL_RTX, NULL, large_op0,
|
|
profile_probability::unlikely ());
|
|
|
|
if (!op1_small_p)
|
|
do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
|
|
NULL_RTX, NULL, small_op0_large_op1,
|
|
profile_probability::unlikely ());
|
|
|
|
/* If both op0 and op1 are sign (!uns) or zero (uns) extended from
|
|
hmode to mode, the multiplication will never overflow. We can
|
|
do just one hmode x hmode => mode widening multiplication. */
|
|
tree halfstype = build_nonstandard_integer_type (hprec, uns);
|
|
ops.op0 = make_tree (halfstype, lopart0);
|
|
ops.op1 = make_tree (halfstype, lopart1);
|
|
ops.code = WIDEN_MULT_EXPR;
|
|
ops.type = type;
|
|
rtx thisres
|
|
= expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
emit_move_insn (res, thisres);
|
|
emit_jump (done_label);
|
|
|
|
emit_label (small_op0_large_op1);
|
|
|
|
/* If op0 is sign (!uns) or zero (uns) extended from hmode to mode,
|
|
but op1 is not, just swap the arguments and handle it as op1
|
|
sign/zero extended, op0 not. */
|
|
rtx larger = gen_reg_rtx (mode);
|
|
rtx hipart = gen_reg_rtx (hmode);
|
|
rtx lopart = gen_reg_rtx (hmode);
|
|
emit_move_insn (larger, op1);
|
|
emit_move_insn (hipart, hipart1);
|
|
emit_move_insn (lopart, lopart0);
|
|
emit_jump (one_small_one_large);
|
|
|
|
emit_label (large_op0);
|
|
|
|
if (!op1_small_p)
|
|
do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
|
|
NULL_RTX, NULL, both_ops_large,
|
|
profile_probability::unlikely ());
|
|
|
|
/* If op1 is sign (!uns) or zero (uns) extended from hmode to mode,
|
|
but op0 is not, prepare larger, hipart and lopart pseudos and
|
|
handle it together with small_op0_large_op1. */
|
|
emit_move_insn (larger, op0);
|
|
emit_move_insn (hipart, hipart0);
|
|
emit_move_insn (lopart, lopart1);
|
|
|
|
emit_label (one_small_one_large);
|
|
|
|
/* lopart is the low part of the operand that is sign extended
|
|
to mode, larger is the other operand, hipart is the
|
|
high part of larger and lopart0 and lopart1 are the low parts
|
|
of both operands.
|
|
We perform lopart0 * lopart1 and lopart * hipart widening
|
|
multiplications. */
|
|
tree halfutype = build_nonstandard_integer_type (hprec, 1);
|
|
ops.op0 = make_tree (halfutype, lopart0);
|
|
ops.op1 = make_tree (halfutype, lopart1);
|
|
rtx lo0xlo1
|
|
= expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
|
|
ops.op0 = make_tree (halfutype, lopart);
|
|
ops.op1 = make_tree (halfutype, hipart);
|
|
rtx loxhi = gen_reg_rtx (mode);
|
|
rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
emit_move_insn (loxhi, tem);
|
|
|
|
if (!uns)
|
|
{
|
|
/* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */
|
|
if (larger_sign == 0)
|
|
emit_jump (after_hipart_neg);
|
|
else if (larger_sign != -1)
|
|
do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode,
|
|
NULL_RTX, NULL, after_hipart_neg,
|
|
profile_probability::even ());
|
|
|
|
tem = convert_modes (mode, hmode, lopart, 1);
|
|
tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
|
|
tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
|
|
1, OPTAB_WIDEN);
|
|
emit_move_insn (loxhi, tem);
|
|
|
|
emit_label (after_hipart_neg);
|
|
|
|
/* if (lopart < 0) loxhi -= larger; */
|
|
if (smaller_sign == 0)
|
|
emit_jump (after_lopart_neg);
|
|
else if (smaller_sign != -1)
|
|
do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode,
|
|
NULL_RTX, NULL, after_lopart_neg,
|
|
profile_probability::even ());
|
|
|
|
tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
|
|
1, OPTAB_WIDEN);
|
|
emit_move_insn (loxhi, tem);
|
|
|
|
emit_label (after_lopart_neg);
|
|
}
|
|
|
|
/* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */
|
|
tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
|
|
tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
|
|
1, OPTAB_WIDEN);
|
|
emit_move_insn (loxhi, tem);
|
|
|
|
/* if (loxhi >> (bitsize / 2)
|
|
== (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns)
|
|
if (loxhi >> (bitsize / 2) == 0 (if uns). */
|
|
rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
|
|
NULL_RTX, 0);
|
|
hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0);
|
|
rtx signbitloxhi = const0_rtx;
|
|
if (!uns)
|
|
signbitloxhi = expand_shift (RSHIFT_EXPR, hmode,
|
|
convert_modes (hmode, mode,
|
|
loxhi, 0),
|
|
hprec - 1, NULL_RTX, 0);
|
|
|
|
do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode,
|
|
NULL_RTX, NULL, do_overflow,
|
|
profile_probability::very_unlikely ());
|
|
|
|
/* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */
|
|
rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
|
|
NULL_RTX, 1);
|
|
tem = convert_modes (mode, hmode,
|
|
convert_modes (hmode, mode, lo0xlo1, 1), 1);
|
|
|
|
tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
|
|
1, OPTAB_WIDEN);
|
|
if (tem != res)
|
|
emit_move_insn (res, tem);
|
|
emit_jump (done_label);
|
|
|
|
emit_label (both_ops_large);
|
|
|
|
/* If both operands are large (not sign (!uns) or zero (uns)
|
|
extended from hmode), then perform the full multiplication
|
|
which will be the result of the operation.
|
|
The only cases which don't overflow are for signed multiplication
|
|
some cases where both hipart0 and highpart1 are 0 or -1.
|
|
For unsigned multiplication when high parts are both non-zero
|
|
this overflows always. */
|
|
ops.code = MULT_EXPR;
|
|
ops.op0 = make_tree (type, op0);
|
|
ops.op1 = make_tree (type, op1);
|
|
tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
emit_move_insn (res, tem);
|
|
|
|
if (!uns)
|
|
{
|
|
if (!op0_medium_p)
|
|
{
|
|
tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
|
|
NULL_RTX, 1, OPTAB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
|
|
NULL_RTX, NULL, do_error,
|
|
profile_probability::very_unlikely ());
|
|
}
|
|
|
|
if (!op1_medium_p)
|
|
{
|
|
tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
|
|
NULL_RTX, 1, OPTAB_WIDEN);
|
|
do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
|
|
NULL_RTX, NULL, do_error,
|
|
profile_probability::very_unlikely ());
|
|
}
|
|
|
|
/* At this point hipart{0,1} are both in [-1, 0]. If they are
|
|
the same, overflow happened if res is non-positive, if they
|
|
are different, overflow happened if res is positive. */
|
|
if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
|
|
emit_jump (hipart_different);
|
|
else if (op0_sign == 1 || op1_sign == 1)
|
|
do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode,
|
|
NULL_RTX, NULL, hipart_different,
|
|
profile_probability::even ());
|
|
|
|
do_compare_rtx_and_jump (res, const0_rtx, LE, false, mode,
|
|
NULL_RTX, NULL, do_error,
|
|
profile_probability::very_unlikely ());
|
|
emit_jump (done_label);
|
|
|
|
emit_label (hipart_different);
|
|
|
|
do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode,
|
|
NULL_RTX, NULL, do_error,
|
|
profile_probability::very_unlikely ());
|
|
emit_jump (done_label);
|
|
}
|
|
|
|
emit_label (do_overflow);
|
|
|
|
/* Overflow, do full multiplication and fallthru into do_error. */
|
|
ops.op0 = make_tree (type, op0);
|
|
ops.op1 = make_tree (type, op1);
|
|
tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
emit_move_insn (res, tem);
|
|
}
|
|
else if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode)
|
|
&& targetm.scalar_mode_supported_p (wmode))
|
|
/* Even emitting a libcall is better than not detecting overflow
|
|
at all. */
|
|
goto twoxwider;
|
|
else
|
|
{
|
|
gcc_assert (!is_ubsan);
|
|
ops.code = MULT_EXPR;
|
|
ops.type = type;
|
|
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
emit_jump (done_label);
|
|
}
|
|
}
|
|
|
|
do_error_label:
|
|
emit_label (do_error);
|
|
if (is_ubsan)
|
|
{
|
|
/* Expand the ubsan builtin call. */
|
|
push_temp_slots ();
|
|
fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0),
|
|
arg0, arg1, datap);
|
|
expand_normal (fn);
|
|
pop_temp_slots ();
|
|
do_pending_stack_adjust ();
|
|
}
|
|
else if (lhs)
|
|
expand_arith_set_overflow (lhs, target);
|
|
|
|
/* We're done. */
|
|
emit_label (done_label);
|
|
|
|
/* u1 * u2 -> sr */
|
|
if (uns0_p && uns1_p && !unsr_p)
|
|
{
|
|
rtx_code_label *all_done_label = gen_label_rtx ();
|
|
do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, all_done_label, profile_probability::very_likely ());
|
|
expand_arith_set_overflow (lhs, target);
|
|
emit_label (all_done_label);
|
|
}
|
|
|
|
/* s1 * u2 -> sr */
|
|
if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3)
|
|
{
|
|
rtx_code_label *all_done_label = gen_label_rtx ();
|
|
rtx_code_label *set_noovf = gen_label_rtx ();
|
|
do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX,
|
|
NULL, all_done_label, profile_probability::very_likely ());
|
|
expand_arith_set_overflow (lhs, target);
|
|
do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
|
|
NULL, set_noovf, profile_probability::very_likely ());
|
|
do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
|
|
NULL, all_done_label, profile_probability::very_unlikely ());
|
|
do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL,
|
|
all_done_label, profile_probability::very_unlikely ());
|
|
emit_label (set_noovf);
|
|
write_complex_part (target, const0_rtx, true);
|
|
emit_label (all_done_label);
|
|
}
|
|
|
|
if (lhs)
|
|
{
|
|
if (is_ubsan)
|
|
expand_ubsan_result_store (target, res);
|
|
else
|
|
expand_arith_overflow_result_store (lhs, target, mode, res);
|
|
}
|
|
}
|
|
|
|
/* Expand UBSAN_CHECK_* internal function if it has vector operands. */
|
|
|
|
static void
|
|
expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs,
|
|
tree arg0, tree arg1)
|
|
{
|
|
poly_uint64 cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
|
|
rtx_code_label *loop_lab = NULL;
|
|
rtx cntvar = NULL_RTX;
|
|
tree cntv = NULL_TREE;
|
|
tree eltype = TREE_TYPE (TREE_TYPE (arg0));
|
|
tree sz = TYPE_SIZE (eltype);
|
|
tree data = NULL_TREE;
|
|
tree resv = NULL_TREE;
|
|
rtx lhsr = NULL_RTX;
|
|
rtx resvr = NULL_RTX;
|
|
unsigned HOST_WIDE_INT const_cnt = 0;
|
|
bool use_loop_p = (!cnt.is_constant (&const_cnt) || const_cnt > 4);
|
|
|
|
if (lhs)
|
|
{
|
|
optab op;
|
|
lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (!VECTOR_MODE_P (GET_MODE (lhsr))
|
|
|| (op = optab_for_tree_code (code, TREE_TYPE (arg0),
|
|
optab_default)) == unknown_optab
|
|
|| (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0)))
|
|
== CODE_FOR_nothing))
|
|
{
|
|
if (MEM_P (lhsr))
|
|
resv = make_tree (TREE_TYPE (lhs), lhsr);
|
|
else
|
|
{
|
|
resvr = assign_temp (TREE_TYPE (lhs), 1, 1);
|
|
resv = make_tree (TREE_TYPE (lhs), resvr);
|
|
}
|
|
}
|
|
}
|
|
if (use_loop_p)
|
|
{
|
|
do_pending_stack_adjust ();
|
|
loop_lab = gen_label_rtx ();
|
|
cntvar = gen_reg_rtx (TYPE_MODE (sizetype));
|
|
cntv = make_tree (sizetype, cntvar);
|
|
emit_move_insn (cntvar, const0_rtx);
|
|
emit_label (loop_lab);
|
|
}
|
|
if (TREE_CODE (arg0) != VECTOR_CST)
|
|
{
|
|
rtx arg0r = expand_normal (arg0);
|
|
arg0 = make_tree (TREE_TYPE (arg0), arg0r);
|
|
}
|
|
if (TREE_CODE (arg1) != VECTOR_CST)
|
|
{
|
|
rtx arg1r = expand_normal (arg1);
|
|
arg1 = make_tree (TREE_TYPE (arg1), arg1r);
|
|
}
|
|
for (unsigned int i = 0; i < (use_loop_p ? 1 : const_cnt); i++)
|
|
{
|
|
tree op0, op1, res = NULL_TREE;
|
|
if (use_loop_p)
|
|
{
|
|
tree atype = build_array_type_nelts (eltype, cnt);
|
|
op0 = uniform_vector_p (arg0);
|
|
if (op0 == NULL_TREE)
|
|
{
|
|
op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0);
|
|
op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv,
|
|
NULL_TREE, NULL_TREE);
|
|
}
|
|
op1 = uniform_vector_p (arg1);
|
|
if (op1 == NULL_TREE)
|
|
{
|
|
op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1);
|
|
op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv,
|
|
NULL_TREE, NULL_TREE);
|
|
}
|
|
if (resv)
|
|
{
|
|
res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv);
|
|
res = build4_loc (loc, ARRAY_REF, eltype, res, cntv,
|
|
NULL_TREE, NULL_TREE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree bitpos = bitsize_int (tree_to_uhwi (sz) * i);
|
|
op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos);
|
|
op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos);
|
|
if (resv)
|
|
res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz,
|
|
bitpos);
|
|
}
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1,
|
|
false, false, false, true, &data);
|
|
break;
|
|
case MINUS_EXPR:
|
|
if (use_loop_p ? integer_zerop (arg0) : integer_zerop (op0))
|
|
expand_neg_overflow (loc, res, op1, true, &data);
|
|
else
|
|
expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1,
|
|
false, false, false, true, &data);
|
|
break;
|
|
case MULT_EXPR:
|
|
expand_mul_overflow (loc, res, op0, op1, false, false, false,
|
|
true, &data);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
if (use_loop_p)
|
|
{
|
|
struct separate_ops ops;
|
|
ops.code = PLUS_EXPR;
|
|
ops.type = TREE_TYPE (cntv);
|
|
ops.op0 = cntv;
|
|
ops.op1 = build_int_cst (TREE_TYPE (cntv), 1);
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype),
|
|
EXPAND_NORMAL);
|
|
if (ret != cntvar)
|
|
emit_move_insn (cntvar, ret);
|
|
rtx cntrtx = gen_int_mode (cnt, TYPE_MODE (sizetype));
|
|
do_compare_rtx_and_jump (cntvar, cntrtx, NE, false,
|
|
TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab,
|
|
profile_probability::very_likely ());
|
|
}
|
|
if (lhs && resv == NULL_TREE)
|
|
{
|
|
struct separate_ops ops;
|
|
ops.code = code;
|
|
ops.type = TREE_TYPE (arg0);
|
|
ops.op0 = arg0;
|
|
ops.op1 = arg1;
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)),
|
|
EXPAND_NORMAL);
|
|
if (ret != lhsr)
|
|
emit_move_insn (lhsr, ret);
|
|
}
|
|
else if (resvr)
|
|
emit_move_insn (lhsr, resvr);
|
|
}
|
|
|
|
/* Expand UBSAN_CHECK_ADD call STMT. */
|
|
|
|
static void
|
|
expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt)
|
|
{
|
|
location_t loc = gimple_location (stmt);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
|
|
expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1);
|
|
else
|
|
expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1,
|
|
false, false, false, true, NULL);
|
|
}
|
|
|
|
/* Expand UBSAN_CHECK_SUB call STMT. */
|
|
|
|
static void
|
|
expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt)
|
|
{
|
|
location_t loc = gimple_location (stmt);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
|
|
expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1);
|
|
else if (integer_zerop (arg0))
|
|
expand_neg_overflow (loc, lhs, arg1, true, NULL);
|
|
else
|
|
expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1,
|
|
false, false, false, true, NULL);
|
|
}
|
|
|
|
/* Expand UBSAN_CHECK_MUL call STMT. */
|
|
|
|
static void
|
|
expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt)
|
|
{
|
|
location_t loc = gimple_location (stmt);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
|
|
expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1);
|
|
else
|
|
expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true,
|
|
NULL);
|
|
}
|
|
|
|
/* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */
|
|
|
|
static void
|
|
expand_arith_overflow (enum tree_code code, gimple *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
return;
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
tree type = TREE_TYPE (TREE_TYPE (lhs));
|
|
int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
|
|
int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1));
|
|
int unsr_p = TYPE_UNSIGNED (type);
|
|
int prec0 = TYPE_PRECISION (TREE_TYPE (arg0));
|
|
int prec1 = TYPE_PRECISION (TREE_TYPE (arg1));
|
|
int precres = TYPE_PRECISION (type);
|
|
location_t loc = gimple_location (stmt);
|
|
if (!uns0_p && get_range_pos_neg (arg0) == 1)
|
|
uns0_p = true;
|
|
if (!uns1_p && get_range_pos_neg (arg1) == 1)
|
|
uns1_p = true;
|
|
int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED);
|
|
prec0 = MIN (prec0, pr);
|
|
pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED);
|
|
prec1 = MIN (prec1, pr);
|
|
|
|
/* If uns0_p && uns1_p, precop is minimum needed precision
|
|
of unsigned type to hold the exact result, otherwise
|
|
precop is minimum needed precision of signed type to
|
|
hold the exact result. */
|
|
int precop;
|
|
if (code == MULT_EXPR)
|
|
precop = prec0 + prec1 + (uns0_p != uns1_p);
|
|
else
|
|
{
|
|
if (uns0_p == uns1_p)
|
|
precop = MAX (prec0, prec1) + 1;
|
|
else if (uns0_p)
|
|
precop = MAX (prec0 + 1, prec1) + 1;
|
|
else
|
|
precop = MAX (prec0, prec1 + 1) + 1;
|
|
}
|
|
int orig_precres = precres;
|
|
|
|
do
|
|
{
|
|
if ((uns0_p && uns1_p)
|
|
? ((precop + !unsr_p) <= precres
|
|
/* u1 - u2 -> ur can overflow, no matter what precision
|
|
the result has. */
|
|
&& (code != MINUS_EXPR || !unsr_p))
|
|
: (!unsr_p && precop <= precres))
|
|
{
|
|
/* The infinity precision result will always fit into result. */
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
write_complex_part (target, const0_rtx, true);
|
|
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
|
|
struct separate_ops ops;
|
|
ops.code = code;
|
|
ops.type = type;
|
|
ops.op0 = fold_convert_loc (loc, type, arg0);
|
|
ops.op1 = fold_convert_loc (loc, type, arg1);
|
|
ops.op2 = NULL_TREE;
|
|
ops.location = loc;
|
|
rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
|
|
expand_arith_overflow_result_store (lhs, target, mode, tem);
|
|
return;
|
|
}
|
|
|
|
/* For operations with low precision, if target doesn't have them, start
|
|
with precres widening right away, otherwise do it only if the most
|
|
simple cases can't be used. */
|
|
const int min_precision = targetm.min_arithmetic_precision ();
|
|
if (orig_precres == precres && precres < min_precision)
|
|
;
|
|
else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres
|
|
&& prec1 <= precres)
|
|
|| ((!uns0_p || !uns1_p) && !unsr_p
|
|
&& prec0 + uns0_p <= precres
|
|
&& prec1 + uns1_p <= precres))
|
|
{
|
|
arg0 = fold_convert_loc (loc, type, arg0);
|
|
arg1 = fold_convert_loc (loc, type, arg1);
|
|
switch (code)
|
|
{
|
|
case MINUS_EXPR:
|
|
if (integer_zerop (arg0) && !unsr_p)
|
|
{
|
|
expand_neg_overflow (loc, lhs, arg1, false, NULL);
|
|
return;
|
|
}
|
|
/* FALLTHRU */
|
|
case PLUS_EXPR:
|
|
expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
|
|
unsr_p, unsr_p, false, NULL);
|
|
return;
|
|
case MULT_EXPR:
|
|
expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
|
|
unsr_p, unsr_p, false, NULL);
|
|
return;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* For sub-word operations, retry with a wider type first. */
|
|
if (orig_precres == precres && precop <= BITS_PER_WORD)
|
|
{
|
|
int p = MAX (min_precision, precop);
|
|
scalar_int_mode m = smallest_int_mode_for_size (p);
|
|
tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
|
|
uns0_p && uns1_p
|
|
&& unsr_p);
|
|
p = TYPE_PRECISION (optype);
|
|
if (p > precres)
|
|
{
|
|
precres = p;
|
|
unsr_p = TYPE_UNSIGNED (optype);
|
|
type = optype;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (prec0 <= precres && prec1 <= precres)
|
|
{
|
|
tree types[2];
|
|
if (unsr_p)
|
|
{
|
|
types[0] = build_nonstandard_integer_type (precres, 0);
|
|
types[1] = type;
|
|
}
|
|
else
|
|
{
|
|
types[0] = type;
|
|
types[1] = build_nonstandard_integer_type (precres, 1);
|
|
}
|
|
arg0 = fold_convert_loc (loc, types[uns0_p], arg0);
|
|
arg1 = fold_convert_loc (loc, types[uns1_p], arg1);
|
|
if (code != MULT_EXPR)
|
|
expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
|
|
uns0_p, uns1_p, false, NULL);
|
|
else
|
|
expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
|
|
uns0_p, uns1_p, false, NULL);
|
|
return;
|
|
}
|
|
|
|
/* Retry with a wider type. */
|
|
if (orig_precres == precres)
|
|
{
|
|
int p = MAX (prec0, prec1);
|
|
scalar_int_mode m = smallest_int_mode_for_size (p);
|
|
tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
|
|
uns0_p && uns1_p
|
|
&& unsr_p);
|
|
p = TYPE_PRECISION (optype);
|
|
if (p > precres)
|
|
{
|
|
precres = p;
|
|
unsr_p = TYPE_UNSIGNED (optype);
|
|
type = optype;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
gcc_unreachable ();
|
|
}
|
|
while (1);
|
|
}
|
|
|
|
/* Expand ADD_OVERFLOW STMT. */
|
|
|
|
static void
|
|
expand_ADD_OVERFLOW (internal_fn, gcall *stmt)
|
|
{
|
|
expand_arith_overflow (PLUS_EXPR, stmt);
|
|
}
|
|
|
|
/* Expand SUB_OVERFLOW STMT. */
|
|
|
|
static void
|
|
expand_SUB_OVERFLOW (internal_fn, gcall *stmt)
|
|
{
|
|
expand_arith_overflow (MINUS_EXPR, stmt);
|
|
}
|
|
|
|
/* Expand MUL_OVERFLOW STMT. */
|
|
|
|
static void
|
|
expand_MUL_OVERFLOW (internal_fn, gcall *stmt)
|
|
{
|
|
expand_arith_overflow (MULT_EXPR, stmt);
|
|
}
|
|
|
|
/* This should get folded in tree-vectorizer.c. */
|
|
|
|
static void
|
|
expand_LOOP_VECTORIZED (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This should get folded in tree-vectorizer.c. */
|
|
|
|
static void
|
|
expand_LOOP_DIST_ALIAS (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return a memory reference of type TYPE for argument INDEX of STMT.
|
|
Use argument INDEX + 1 to derive the second (TBAA) operand. */
|
|
|
|
static tree
|
|
expand_call_mem_ref (tree type, gcall *stmt, int index)
|
|
{
|
|
tree addr = gimple_call_arg (stmt, index);
|
|
tree alias_ptr_type = TREE_TYPE (gimple_call_arg (stmt, index + 1));
|
|
unsigned int align = tree_to_shwi (gimple_call_arg (stmt, index + 1));
|
|
if (TYPE_ALIGN (type) != align)
|
|
type = build_aligned_type (type, align);
|
|
|
|
tree tmp = addr;
|
|
if (TREE_CODE (tmp) == SSA_NAME)
|
|
{
|
|
gimple *def = SSA_NAME_DEF_STMT (tmp);
|
|
if (gimple_assign_single_p (def))
|
|
tmp = gimple_assign_rhs1 (def);
|
|
}
|
|
|
|
if (TREE_CODE (tmp) == ADDR_EXPR)
|
|
{
|
|
tree mem = TREE_OPERAND (tmp, 0);
|
|
if (TREE_CODE (mem) == TARGET_MEM_REF
|
|
&& types_compatible_p (TREE_TYPE (mem), type))
|
|
{
|
|
tree offset = TMR_OFFSET (mem);
|
|
if (type != TREE_TYPE (mem)
|
|
|| alias_ptr_type != TREE_TYPE (offset)
|
|
|| !integer_zerop (offset))
|
|
{
|
|
mem = copy_node (mem);
|
|
TMR_OFFSET (mem) = wide_int_to_tree (alias_ptr_type,
|
|
wi::to_poly_wide (offset));
|
|
TREE_TYPE (mem) = type;
|
|
}
|
|
return mem;
|
|
}
|
|
}
|
|
|
|
return fold_build2 (MEM_REF, type, addr, build_int_cst (alias_ptr_type, 0));
|
|
}
|
|
|
|
/* Expand MASK_LOAD{,_LANES} call STMT using optab OPTAB. */
|
|
|
|
static void
|
|
expand_mask_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
|
|
{
|
|
class expand_operand ops[3];
|
|
tree type, lhs, rhs, maskt;
|
|
rtx mem, target, mask;
|
|
insn_code icode;
|
|
|
|
maskt = gimple_call_arg (stmt, 2);
|
|
lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
return;
|
|
type = TREE_TYPE (lhs);
|
|
rhs = expand_call_mem_ref (type, stmt, 0);
|
|
|
|
if (optab == vec_mask_load_lanes_optab)
|
|
icode = get_multi_vector_move (type, optab);
|
|
else
|
|
icode = convert_optab_handler (optab, TYPE_MODE (type),
|
|
TYPE_MODE (TREE_TYPE (maskt)));
|
|
|
|
mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
gcc_assert (MEM_P (mem));
|
|
mask = expand_normal (maskt);
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
create_output_operand (&ops[0], target, TYPE_MODE (type));
|
|
create_fixed_operand (&ops[1], mem);
|
|
create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
|
|
expand_insn (icode, 3, ops);
|
|
}
|
|
|
|
#define expand_mask_load_lanes_optab_fn expand_mask_load_optab_fn
|
|
|
|
/* Expand MASK_STORE{,_LANES} call STMT using optab OPTAB. */
|
|
|
|
static void
|
|
expand_mask_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
|
|
{
|
|
class expand_operand ops[3];
|
|
tree type, lhs, rhs, maskt;
|
|
rtx mem, reg, mask;
|
|
insn_code icode;
|
|
|
|
maskt = gimple_call_arg (stmt, 2);
|
|
rhs = gimple_call_arg (stmt, 3);
|
|
type = TREE_TYPE (rhs);
|
|
lhs = expand_call_mem_ref (type, stmt, 0);
|
|
|
|
if (optab == vec_mask_store_lanes_optab)
|
|
icode = get_multi_vector_move (type, optab);
|
|
else
|
|
icode = convert_optab_handler (optab, TYPE_MODE (type),
|
|
TYPE_MODE (TREE_TYPE (maskt)));
|
|
|
|
mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
gcc_assert (MEM_P (mem));
|
|
mask = expand_normal (maskt);
|
|
reg = expand_normal (rhs);
|
|
create_fixed_operand (&ops[0], mem);
|
|
create_input_operand (&ops[1], reg, TYPE_MODE (type));
|
|
create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
|
|
expand_insn (icode, 3, ops);
|
|
}
|
|
|
|
#define expand_mask_store_lanes_optab_fn expand_mask_store_optab_fn
|
|
|
|
static void
|
|
expand_ABNORMAL_DISPATCHER (internal_fn, gcall *)
|
|
{
|
|
}
|
|
|
|
static void
|
|
expand_BUILTIN_EXPECT (internal_fn, gcall *stmt)
|
|
{
|
|
/* When guessing was done, the hints should be already stripped away. */
|
|
gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());
|
|
|
|
rtx target;
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs)
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
else
|
|
target = const0_rtx;
|
|
rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
|
|
if (lhs && val != target)
|
|
emit_move_insn (target, val);
|
|
}
|
|
|
|
/* IFN_VA_ARG is supposed to be expanded at pass_stdarg. So this dummy function
|
|
should never be called. */
|
|
|
|
static void
|
|
expand_VA_ARG (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* IFN_VEC_CONVERT is supposed to be expanded at pass_lower_vector. So this
|
|
dummy function should never be called. */
|
|
|
|
static void
|
|
expand_VEC_CONVERT (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Expand the IFN_UNIQUE function according to its first argument. */
|
|
|
|
static void
|
|
expand_UNIQUE (internal_fn, gcall *stmt)
|
|
{
|
|
rtx pattern = NULL_RTX;
|
|
enum ifn_unique_kind kind
|
|
= (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0));
|
|
|
|
switch (kind)
|
|
{
|
|
default:
|
|
gcc_unreachable ();
|
|
|
|
case IFN_UNIQUE_UNSPEC:
|
|
if (targetm.have_unique ())
|
|
pattern = targetm.gen_unique ();
|
|
break;
|
|
|
|
case IFN_UNIQUE_OACC_FORK:
|
|
case IFN_UNIQUE_OACC_JOIN:
|
|
if (targetm.have_oacc_fork () && targetm.have_oacc_join ())
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
rtx target = const0_rtx;
|
|
|
|
if (lhs)
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
|
|
rtx data_dep = expand_normal (gimple_call_arg (stmt, 1));
|
|
rtx axis = expand_normal (gimple_call_arg (stmt, 2));
|
|
|
|
if (kind == IFN_UNIQUE_OACC_FORK)
|
|
pattern = targetm.gen_oacc_fork (target, data_dep, axis);
|
|
else
|
|
pattern = targetm.gen_oacc_join (target, data_dep, axis);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
break;
|
|
}
|
|
|
|
if (pattern)
|
|
emit_insn (pattern);
|
|
}
|
|
|
|
/* The size of an OpenACC compute dimension. */
|
|
|
|
static void
|
|
expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (targetm.have_oacc_dim_size ())
|
|
{
|
|
rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
|
|
VOIDmode, EXPAND_NORMAL);
|
|
emit_insn (targetm.gen_oacc_dim_size (target, dim));
|
|
}
|
|
else
|
|
emit_move_insn (target, GEN_INT (1));
|
|
}
|
|
|
|
/* The position of an OpenACC execution engine along one compute axis. */
|
|
|
|
static void
|
|
expand_GOACC_DIM_POS (internal_fn, gcall *stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
|
|
if (!lhs)
|
|
return;
|
|
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (targetm.have_oacc_dim_pos ())
|
|
{
|
|
rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
|
|
VOIDmode, EXPAND_NORMAL);
|
|
emit_insn (targetm.gen_oacc_dim_pos (target, dim));
|
|
}
|
|
else
|
|
emit_move_insn (target, const0_rtx);
|
|
}
|
|
|
|
/* This is expanded by oacc_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOACC_LOOP (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This is expanded by oacc_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOACC_REDUCTION (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* This is expanded by oacc_device_lower pass. */
|
|
|
|
static void
|
|
expand_GOACC_TILE (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Set errno to EDOM. */
|
|
|
|
static void
|
|
expand_SET_EDOM (internal_fn, gcall *)
|
|
{
|
|
#ifdef TARGET_EDOM
|
|
#ifdef GEN_ERRNO_RTX
|
|
rtx errno_rtx = GEN_ERRNO_RTX;
|
|
#else
|
|
rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
|
|
#endif
|
|
emit_move_insn (errno_rtx,
|
|
gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx)));
|
|
#else
|
|
gcc_unreachable ();
|
|
#endif
|
|
}
|
|
|
|
/* Expand atomic bit test and set. */
|
|
|
|
static void
|
|
expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call)
|
|
{
|
|
expand_ifn_atomic_bit_test_and (call);
|
|
}
|
|
|
|
/* Expand atomic bit test and complement. */
|
|
|
|
static void
|
|
expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call)
|
|
{
|
|
expand_ifn_atomic_bit_test_and (call);
|
|
}
|
|
|
|
/* Expand atomic bit test and reset. */
|
|
|
|
static void
|
|
expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call)
|
|
{
|
|
expand_ifn_atomic_bit_test_and (call);
|
|
}
|
|
|
|
/* Expand atomic bit test and set. */
|
|
|
|
static void
|
|
expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call)
|
|
{
|
|
expand_ifn_atomic_compare_exchange (call);
|
|
}
|
|
|
|
/* Expand LAUNDER to assignment, lhs = arg0. */
|
|
|
|
static void
|
|
expand_LAUNDER (internal_fn, gcall *call)
|
|
{
|
|
tree lhs = gimple_call_lhs (call);
|
|
|
|
if (!lhs)
|
|
return;
|
|
|
|
expand_assignment (lhs, gimple_call_arg (call, 0), false);
|
|
}
|
|
|
|
/* Expand {MASK_,}SCATTER_STORE{S,U} call CALL using optab OPTAB. */
|
|
|
|
static void
|
|
expand_scatter_store_optab_fn (internal_fn, gcall *stmt, direct_optab optab)
|
|
{
|
|
internal_fn ifn = gimple_call_internal_fn (stmt);
|
|
int rhs_index = internal_fn_stored_value_index (ifn);
|
|
int mask_index = internal_fn_mask_index (ifn);
|
|
tree base = gimple_call_arg (stmt, 0);
|
|
tree offset = gimple_call_arg (stmt, 1);
|
|
tree scale = gimple_call_arg (stmt, 2);
|
|
tree rhs = gimple_call_arg (stmt, rhs_index);
|
|
|
|
rtx base_rtx = expand_normal (base);
|
|
rtx offset_rtx = expand_normal (offset);
|
|
HOST_WIDE_INT scale_int = tree_to_shwi (scale);
|
|
rtx rhs_rtx = expand_normal (rhs);
|
|
|
|
class expand_operand ops[6];
|
|
int i = 0;
|
|
create_address_operand (&ops[i++], base_rtx);
|
|
create_input_operand (&ops[i++], offset_rtx, TYPE_MODE (TREE_TYPE (offset)));
|
|
create_integer_operand (&ops[i++], TYPE_UNSIGNED (TREE_TYPE (offset)));
|
|
create_integer_operand (&ops[i++], scale_int);
|
|
create_input_operand (&ops[i++], rhs_rtx, TYPE_MODE (TREE_TYPE (rhs)));
|
|
if (mask_index >= 0)
|
|
{
|
|
tree mask = gimple_call_arg (stmt, mask_index);
|
|
rtx mask_rtx = expand_normal (mask);
|
|
create_input_operand (&ops[i++], mask_rtx, TYPE_MODE (TREE_TYPE (mask)));
|
|
}
|
|
|
|
insn_code icode = direct_optab_handler (optab, TYPE_MODE (TREE_TYPE (rhs)));
|
|
expand_insn (icode, i, ops);
|
|
}
|
|
|
|
/* Expand {MASK_,}GATHER_LOAD call CALL using optab OPTAB. */
|
|
|
|
static void
|
|
expand_gather_load_optab_fn (internal_fn, gcall *stmt, direct_optab optab)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree base = gimple_call_arg (stmt, 0);
|
|
tree offset = gimple_call_arg (stmt, 1);
|
|
tree scale = gimple_call_arg (stmt, 2);
|
|
|
|
rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
rtx base_rtx = expand_normal (base);
|
|
rtx offset_rtx = expand_normal (offset);
|
|
HOST_WIDE_INT scale_int = tree_to_shwi (scale);
|
|
|
|
int i = 0;
|
|
class expand_operand ops[6];
|
|
create_output_operand (&ops[i++], lhs_rtx, TYPE_MODE (TREE_TYPE (lhs)));
|
|
create_address_operand (&ops[i++], base_rtx);
|
|
create_input_operand (&ops[i++], offset_rtx, TYPE_MODE (TREE_TYPE (offset)));
|
|
create_integer_operand (&ops[i++], TYPE_UNSIGNED (TREE_TYPE (offset)));
|
|
create_integer_operand (&ops[i++], scale_int);
|
|
if (optab == mask_gather_load_optab)
|
|
{
|
|
tree mask = gimple_call_arg (stmt, 3);
|
|
rtx mask_rtx = expand_normal (mask);
|
|
create_input_operand (&ops[i++], mask_rtx, TYPE_MODE (TREE_TYPE (mask)));
|
|
}
|
|
insn_code icode = direct_optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)));
|
|
expand_insn (icode, i, ops);
|
|
}
|
|
|
|
/* Expand DIVMOD() using:
|
|
a) optab handler for udivmod/sdivmod if it is available.
|
|
b) If optab_handler doesn't exist, generate call to
|
|
target-specific divmod libfunc. */
|
|
|
|
static void
|
|
expand_DIVMOD (internal_fn, gcall *call_stmt)
|
|
{
|
|
tree lhs = gimple_call_lhs (call_stmt);
|
|
tree arg0 = gimple_call_arg (call_stmt, 0);
|
|
tree arg1 = gimple_call_arg (call_stmt, 1);
|
|
|
|
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
|
|
tree type = TREE_TYPE (TREE_TYPE (lhs));
|
|
machine_mode mode = TYPE_MODE (type);
|
|
bool unsignedp = TYPE_UNSIGNED (type);
|
|
optab tab = (unsignedp) ? udivmod_optab : sdivmod_optab;
|
|
|
|
rtx op0 = expand_normal (arg0);
|
|
rtx op1 = expand_normal (arg1);
|
|
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
|
|
rtx quotient, remainder, libfunc;
|
|
|
|
/* Check if optab_handler exists for divmod_optab for given mode. */
|
|
if (optab_handler (tab, mode) != CODE_FOR_nothing)
|
|
{
|
|
quotient = gen_reg_rtx (mode);
|
|
remainder = gen_reg_rtx (mode);
|
|
expand_twoval_binop (tab, op0, op1, quotient, remainder, unsignedp);
|
|
}
|
|
|
|
/* Generate call to divmod libfunc if it exists. */
|
|
else if ((libfunc = optab_libfunc (tab, mode)) != NULL_RTX)
|
|
targetm.expand_divmod_libfunc (libfunc, mode, op0, op1,
|
|
"ient, &remainder);
|
|
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
/* Wrap the return value (quotient, remainder) within COMPLEX_EXPR. */
|
|
expand_expr (build2 (COMPLEX_EXPR, TREE_TYPE (lhs),
|
|
make_tree (TREE_TYPE (arg0), quotient),
|
|
make_tree (TREE_TYPE (arg1), remainder)),
|
|
target, VOIDmode, EXPAND_NORMAL);
|
|
}
|
|
|
|
/* Expand a NOP. */
|
|
|
|
static void
|
|
expand_NOP (internal_fn, gcall *)
|
|
{
|
|
/* Nothing. But it shouldn't really prevail. */
|
|
}
|
|
|
|
/* Expand a call to FN using the operands in STMT. FN has a single
|
|
output operand and NARGS input operands. */
|
|
|
|
static void
|
|
expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab,
|
|
unsigned int nargs)
|
|
{
|
|
expand_operand *ops = XALLOCAVEC (expand_operand, nargs + 1);
|
|
|
|
tree_pair types = direct_internal_fn_types (fn, stmt);
|
|
insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first));
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
|
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
rtx lhs_rtx = NULL_RTX;
|
|
if (lhs)
|
|
lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
|
|
/* Do not assign directly to a promoted subreg, since there is no
|
|
guarantee that the instruction will leave the upper bits of the
|
|
register in the state required by SUBREG_PROMOTED_SIGN. */
|
|
rtx dest = lhs_rtx;
|
|
if (dest && GET_CODE (dest) == SUBREG && SUBREG_PROMOTED_VAR_P (dest))
|
|
dest = NULL_RTX;
|
|
|
|
create_output_operand (&ops[0], dest, insn_data[icode].operand[0].mode);
|
|
|
|
for (unsigned int i = 0; i < nargs; ++i)
|
|
{
|
|
tree rhs = gimple_call_arg (stmt, i);
|
|
tree rhs_type = TREE_TYPE (rhs);
|
|
rtx rhs_rtx = expand_normal (rhs);
|
|
if (INTEGRAL_TYPE_P (rhs_type))
|
|
create_convert_operand_from (&ops[i + 1], rhs_rtx,
|
|
TYPE_MODE (rhs_type),
|
|
TYPE_UNSIGNED (rhs_type));
|
|
else
|
|
create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type));
|
|
}
|
|
|
|
expand_insn (icode, nargs + 1, ops);
|
|
if (lhs_rtx && !rtx_equal_p (lhs_rtx, ops[0].value))
|
|
{
|
|
/* If the return value has an integral type, convert the instruction
|
|
result to that type. This is useful for things that return an
|
|
int regardless of the size of the input. If the instruction result
|
|
is smaller than required, assume that it is signed.
|
|
|
|
If the return value has a nonintegral type, its mode must match
|
|
the instruction result. */
|
|
if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx))
|
|
{
|
|
/* If this is a scalar in a register that is stored in a wider
|
|
mode than the declared mode, compute the result into its
|
|
declared mode and then convert to the wider mode. */
|
|
gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs)));
|
|
rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0);
|
|
convert_move (SUBREG_REG (lhs_rtx), tmp,
|
|
SUBREG_PROMOTED_SIGN (lhs_rtx));
|
|
}
|
|
else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value))
|
|
emit_move_insn (lhs_rtx, ops[0].value);
|
|
else
|
|
{
|
|
gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs)));
|
|
convert_move (lhs_rtx, ops[0].value, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Expand WHILE_ULT call STMT using optab OPTAB. */
|
|
|
|
static void
|
|
expand_while_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
|
|
{
|
|
expand_operand ops[3];
|
|
tree rhs_type[2];
|
|
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree lhs_type = TREE_TYPE (lhs);
|
|
rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
create_output_operand (&ops[0], lhs_rtx, TYPE_MODE (lhs_type));
|
|
|
|
for (unsigned int i = 0; i < 2; ++i)
|
|
{
|
|
tree rhs = gimple_call_arg (stmt, i);
|
|
rhs_type[i] = TREE_TYPE (rhs);
|
|
rtx rhs_rtx = expand_normal (rhs);
|
|
create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type[i]));
|
|
}
|
|
|
|
insn_code icode = convert_optab_handler (optab, TYPE_MODE (rhs_type[0]),
|
|
TYPE_MODE (lhs_type));
|
|
|
|
expand_insn (icode, 3, ops);
|
|
if (!rtx_equal_p (lhs_rtx, ops[0].value))
|
|
emit_move_insn (lhs_rtx, ops[0].value);
|
|
}
|
|
|
|
/* Expanders for optabs that can use expand_direct_optab_fn. */
|
|
|
|
#define expand_unary_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 1)
|
|
|
|
#define expand_binary_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 2)
|
|
|
|
#define expand_ternary_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 3)
|
|
|
|
#define expand_cond_unary_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 3)
|
|
|
|
#define expand_cond_binary_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 4)
|
|
|
|
#define expand_cond_ternary_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 5)
|
|
|
|
#define expand_fold_extract_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 3)
|
|
|
|
#define expand_fold_left_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 2)
|
|
|
|
#define expand_mask_fold_left_optab_fn(FN, STMT, OPTAB) \
|
|
expand_direct_optab_fn (FN, STMT, OPTAB, 3)
|
|
|
|
/* RETURN_TYPE and ARGS are a return type and argument list that are
|
|
in principle compatible with FN (which satisfies direct_internal_fn_p).
|
|
Return the types that should be used to determine whether the
|
|
target supports FN. */
|
|
|
|
tree_pair
|
|
direct_internal_fn_types (internal_fn fn, tree return_type, tree *args)
|
|
{
|
|
const direct_internal_fn_info &info = direct_internal_fn (fn);
|
|
tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0]));
|
|
tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1]));
|
|
return tree_pair (type0, type1);
|
|
}
|
|
|
|
/* CALL is a call whose return type and arguments are in principle
|
|
compatible with FN (which satisfies direct_internal_fn_p). Return the
|
|
types that should be used to determine whether the target supports FN. */
|
|
|
|
tree_pair
|
|
direct_internal_fn_types (internal_fn fn, gcall *call)
|
|
{
|
|
const direct_internal_fn_info &info = direct_internal_fn (fn);
|
|
tree op0 = (info.type0 < 0
|
|
? gimple_call_lhs (call)
|
|
: gimple_call_arg (call, info.type0));
|
|
tree op1 = (info.type1 < 0
|
|
? gimple_call_lhs (call)
|
|
: gimple_call_arg (call, info.type1));
|
|
return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1));
|
|
}
|
|
|
|
/* Return true if OPTAB is supported for TYPES (whose modes should be
|
|
the same) when the optimization type is OPT_TYPE. Used for simple
|
|
direct optabs. */
|
|
|
|
static bool
|
|
direct_optab_supported_p (direct_optab optab, tree_pair types,
|
|
optimization_type opt_type)
|
|
{
|
|
machine_mode mode = TYPE_MODE (types.first);
|
|
gcc_checking_assert (mode == TYPE_MODE (types.second));
|
|
return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing;
|
|
}
|
|
|
|
/* Return true if OPTAB is supported for TYPES, where the first type
|
|
is the destination and the second type is the source. Used for
|
|
convert optabs. */
|
|
|
|
static bool
|
|
convert_optab_supported_p (convert_optab optab, tree_pair types,
|
|
optimization_type opt_type)
|
|
{
|
|
return (convert_optab_handler (optab, TYPE_MODE (types.first),
|
|
TYPE_MODE (types.second), opt_type)
|
|
!= CODE_FOR_nothing);
|
|
}
|
|
|
|
/* Return true if load/store lanes optab OPTAB is supported for
|
|
array type TYPES.first when the optimization type is OPT_TYPE. */
|
|
|
|
static bool
|
|
multi_vector_optab_supported_p (convert_optab optab, tree_pair types,
|
|
optimization_type opt_type)
|
|
{
|
|
gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE);
|
|
machine_mode imode = TYPE_MODE (types.first);
|
|
machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first));
|
|
return (convert_optab_handler (optab, imode, vmode, opt_type)
|
|
!= CODE_FOR_nothing);
|
|
}
|
|
|
|
#define direct_unary_optab_supported_p direct_optab_supported_p
|
|
#define direct_binary_optab_supported_p direct_optab_supported_p
|
|
#define direct_ternary_optab_supported_p direct_optab_supported_p
|
|
#define direct_cond_unary_optab_supported_p direct_optab_supported_p
|
|
#define direct_cond_binary_optab_supported_p direct_optab_supported_p
|
|
#define direct_cond_ternary_optab_supported_p direct_optab_supported_p
|
|
#define direct_mask_load_optab_supported_p direct_optab_supported_p
|
|
#define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p
|
|
#define direct_mask_load_lanes_optab_supported_p multi_vector_optab_supported_p
|
|
#define direct_gather_load_optab_supported_p direct_optab_supported_p
|
|
#define direct_mask_store_optab_supported_p direct_optab_supported_p
|
|
#define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p
|
|
#define direct_mask_store_lanes_optab_supported_p multi_vector_optab_supported_p
|
|
#define direct_scatter_store_optab_supported_p direct_optab_supported_p
|
|
#define direct_while_optab_supported_p convert_optab_supported_p
|
|
#define direct_fold_extract_optab_supported_p direct_optab_supported_p
|
|
#define direct_fold_left_optab_supported_p direct_optab_supported_p
|
|
#define direct_mask_fold_left_optab_supported_p direct_optab_supported_p
|
|
|
|
/* Return the optab used by internal function FN. */
|
|
|
|
static optab
|
|
direct_internal_fn_optab (internal_fn fn, tree_pair types)
|
|
{
|
|
switch (fn)
|
|
{
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
|
|
case IFN_##CODE: break;
|
|
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
|
|
case IFN_##CODE: return OPTAB##_optab;
|
|
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
|
|
UNSIGNED_OPTAB, TYPE) \
|
|
case IFN_##CODE: return (TYPE_UNSIGNED (types.SELECTOR) \
|
|
? UNSIGNED_OPTAB ## _optab \
|
|
: SIGNED_OPTAB ## _optab);
|
|
#include "internal-fn.def"
|
|
|
|
case IFN_LAST:
|
|
break;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return the optab used by internal function FN. */
|
|
|
|
static optab
|
|
direct_internal_fn_optab (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
|
|
case IFN_##CODE: break;
|
|
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
|
|
case IFN_##CODE: return OPTAB##_optab;
|
|
#include "internal-fn.def"
|
|
|
|
case IFN_LAST:
|
|
break;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return true if FN is supported for the types in TYPES when the
|
|
optimization type is OPT_TYPE. The types are those associated with
|
|
the "type0" and "type1" fields of FN's direct_internal_fn_info
|
|
structure. */
|
|
|
|
bool
|
|
direct_internal_fn_supported_p (internal_fn fn, tree_pair types,
|
|
optimization_type opt_type)
|
|
{
|
|
switch (fn)
|
|
{
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
|
|
case IFN_##CODE: break;
|
|
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
|
|
case IFN_##CODE: \
|
|
return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \
|
|
opt_type);
|
|
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
|
|
UNSIGNED_OPTAB, TYPE) \
|
|
case IFN_##CODE: \
|
|
{ \
|
|
optab which_optab = (TYPE_UNSIGNED (types.SELECTOR) \
|
|
? UNSIGNED_OPTAB ## _optab \
|
|
: SIGNED_OPTAB ## _optab); \
|
|
return direct_##TYPE##_optab_supported_p (which_optab, types, \
|
|
opt_type); \
|
|
}
|
|
#include "internal-fn.def"
|
|
|
|
case IFN_LAST:
|
|
break;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return true if FN is supported for type TYPE when the optimization
|
|
type is OPT_TYPE. The caller knows that the "type0" and "type1"
|
|
fields of FN's direct_internal_fn_info structure are the same. */
|
|
|
|
bool
|
|
direct_internal_fn_supported_p (internal_fn fn, tree type,
|
|
optimization_type opt_type)
|
|
{
|
|
const direct_internal_fn_info &info = direct_internal_fn (fn);
|
|
gcc_checking_assert (info.type0 == info.type1);
|
|
return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type);
|
|
}
|
|
|
|
/* Return true if the STMT is supported when the optimization type is OPT_TYPE,
|
|
given that STMT is a call to a direct internal function. */
|
|
|
|
bool
|
|
direct_internal_fn_supported_p (gcall *stmt, optimization_type opt_type)
|
|
{
|
|
internal_fn fn = gimple_call_internal_fn (stmt);
|
|
tree_pair types = direct_internal_fn_types (fn, stmt);
|
|
return direct_internal_fn_supported_p (fn, types, opt_type);
|
|
}
|
|
|
|
/* If FN is commutative in two consecutive arguments, return the
|
|
index of the first, otherwise return -1. */
|
|
|
|
int
|
|
first_commutative_argument (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case IFN_FMA:
|
|
case IFN_FMS:
|
|
case IFN_FNMA:
|
|
case IFN_FNMS:
|
|
case IFN_AVG_FLOOR:
|
|
case IFN_AVG_CEIL:
|
|
case IFN_MULHS:
|
|
case IFN_MULHRS:
|
|
case IFN_FMIN:
|
|
case IFN_FMAX:
|
|
return 0;
|
|
|
|
case IFN_COND_ADD:
|
|
case IFN_COND_MUL:
|
|
case IFN_COND_MIN:
|
|
case IFN_COND_MAX:
|
|
case IFN_COND_AND:
|
|
case IFN_COND_IOR:
|
|
case IFN_COND_XOR:
|
|
case IFN_COND_FMA:
|
|
case IFN_COND_FMS:
|
|
case IFN_COND_FNMA:
|
|
case IFN_COND_FNMS:
|
|
return 1;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Return true if IFN_SET_EDOM is supported. */
|
|
|
|
bool
|
|
set_edom_supported_p (void)
|
|
{
|
|
#ifdef TARGET_EDOM
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
|
|
static void \
|
|
expand_##CODE (internal_fn fn, gcall *stmt) \
|
|
{ \
|
|
expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab); \
|
|
}
|
|
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
|
|
UNSIGNED_OPTAB, TYPE) \
|
|
static void \
|
|
expand_##CODE (internal_fn fn, gcall *stmt) \
|
|
{ \
|
|
tree_pair types = direct_internal_fn_types (fn, stmt); \
|
|
optab which_optab = direct_internal_fn_optab (fn, types); \
|
|
expand_##TYPE##_optab_fn (fn, stmt, which_optab); \
|
|
}
|
|
#include "internal-fn.def"
|
|
|
|
/* Routines to expand each internal function, indexed by function number.
|
|
Each routine has the prototype:
|
|
|
|
expand_<NAME> (gcall *stmt)
|
|
|
|
where STMT is the statement that performs the call. */
|
|
static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = {
|
|
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE,
|
|
#include "internal-fn.def"
|
|
0
|
|
};
|
|
|
|
/* Invoke T(CODE, IFN) for each conditional function IFN that maps to a
|
|
tree code CODE. */
|
|
#define FOR_EACH_CODE_MAPPING(T) \
|
|
T (PLUS_EXPR, IFN_COND_ADD) \
|
|
T (MINUS_EXPR, IFN_COND_SUB) \
|
|
T (MULT_EXPR, IFN_COND_MUL) \
|
|
T (TRUNC_DIV_EXPR, IFN_COND_DIV) \
|
|
T (TRUNC_MOD_EXPR, IFN_COND_MOD) \
|
|
T (RDIV_EXPR, IFN_COND_RDIV) \
|
|
T (MIN_EXPR, IFN_COND_MIN) \
|
|
T (MAX_EXPR, IFN_COND_MAX) \
|
|
T (BIT_AND_EXPR, IFN_COND_AND) \
|
|
T (BIT_IOR_EXPR, IFN_COND_IOR) \
|
|
T (BIT_XOR_EXPR, IFN_COND_XOR) \
|
|
T (LSHIFT_EXPR, IFN_COND_SHL) \
|
|
T (RSHIFT_EXPR, IFN_COND_SHR)
|
|
|
|
/* Return a function that only performs CODE when a certain condition is met
|
|
and that uses a given fallback value otherwise. For example, if CODE is
|
|
a binary operation associated with conditional function FN:
|
|
|
|
LHS = FN (COND, A, B, ELSE)
|
|
|
|
is equivalent to the C expression:
|
|
|
|
LHS = COND ? A CODE B : ELSE;
|
|
|
|
operating elementwise if the operands are vectors.
|
|
|
|
Return IFN_LAST if no such function exists. */
|
|
|
|
internal_fn
|
|
get_conditional_internal_fn (tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
#define CASE(CODE, IFN) case CODE: return IFN;
|
|
FOR_EACH_CODE_MAPPING(CASE)
|
|
#undef CASE
|
|
default:
|
|
return IFN_LAST;
|
|
}
|
|
}
|
|
|
|
/* If IFN implements the conditional form of a tree code, return that
|
|
tree code, otherwise return ERROR_MARK. */
|
|
|
|
tree_code
|
|
conditional_internal_fn_code (internal_fn ifn)
|
|
{
|
|
switch (ifn)
|
|
{
|
|
#define CASE(CODE, IFN) case IFN: return CODE;
|
|
FOR_EACH_CODE_MAPPING(CASE)
|
|
#undef CASE
|
|
default:
|
|
return ERROR_MARK;
|
|
}
|
|
}
|
|
|
|
/* Invoke T(IFN) for each internal function IFN that also has an
|
|
IFN_COND_* form. */
|
|
#define FOR_EACH_COND_FN_PAIR(T) \
|
|
T (FMA) \
|
|
T (FMS) \
|
|
T (FNMA) \
|
|
T (FNMS)
|
|
|
|
/* Return a function that only performs internal function FN when a
|
|
certain condition is met and that uses a given fallback value otherwise.
|
|
In other words, the returned function FN' is such that:
|
|
|
|
LHS = FN' (COND, A1, ... An, ELSE)
|
|
|
|
is equivalent to the C expression:
|
|
|
|
LHS = COND ? FN (A1, ..., An) : ELSE;
|
|
|
|
operating elementwise if the operands are vectors.
|
|
|
|
Return IFN_LAST if no such function exists. */
|
|
|
|
internal_fn
|
|
get_conditional_internal_fn (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
#define CASE(NAME) case IFN_##NAME: return IFN_COND_##NAME;
|
|
FOR_EACH_COND_FN_PAIR(CASE)
|
|
#undef CASE
|
|
default:
|
|
return IFN_LAST;
|
|
}
|
|
}
|
|
|
|
/* If IFN implements the conditional form of an unconditional internal
|
|
function, return that unconditional function, otherwise return IFN_LAST. */
|
|
|
|
internal_fn
|
|
get_unconditional_internal_fn (internal_fn ifn)
|
|
{
|
|
switch (ifn)
|
|
{
|
|
#define CASE(NAME) case IFN_COND_##NAME: return IFN_##NAME;
|
|
FOR_EACH_COND_FN_PAIR(CASE)
|
|
#undef CASE
|
|
default:
|
|
return IFN_LAST;
|
|
}
|
|
}
|
|
|
|
/* Return true if STMT can be interpreted as a conditional tree code
|
|
operation of the form:
|
|
|
|
LHS = COND ? OP (RHS1, ...) : ELSE;
|
|
|
|
operating elementwise if the operands are vectors. This includes
|
|
the case of an all-true COND, so that the operation always happens.
|
|
|
|
When returning true, set:
|
|
|
|
- *COND_OUT to the condition COND, or to NULL_TREE if the condition
|
|
is known to be all-true
|
|
- *CODE_OUT to the tree code
|
|
- OPS[I] to operand I of *CODE_OUT
|
|
- *ELSE_OUT to the fallback value ELSE, or to NULL_TREE if the
|
|
condition is known to be all true. */
|
|
|
|
bool
|
|
can_interpret_as_conditional_op_p (gimple *stmt, tree *cond_out,
|
|
tree_code *code_out,
|
|
tree (&ops)[3], tree *else_out)
|
|
{
|
|
if (gassign *assign = dyn_cast <gassign *> (stmt))
|
|
{
|
|
*cond_out = NULL_TREE;
|
|
*code_out = gimple_assign_rhs_code (assign);
|
|
ops[0] = gimple_assign_rhs1 (assign);
|
|
ops[1] = gimple_assign_rhs2 (assign);
|
|
ops[2] = gimple_assign_rhs3 (assign);
|
|
*else_out = NULL_TREE;
|
|
return true;
|
|
}
|
|
if (gcall *call = dyn_cast <gcall *> (stmt))
|
|
if (gimple_call_internal_p (call))
|
|
{
|
|
internal_fn ifn = gimple_call_internal_fn (call);
|
|
tree_code code = conditional_internal_fn_code (ifn);
|
|
if (code != ERROR_MARK)
|
|
{
|
|
*cond_out = gimple_call_arg (call, 0);
|
|
*code_out = code;
|
|
unsigned int nops = gimple_call_num_args (call) - 2;
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
ops[i] = i < nops ? gimple_call_arg (call, i + 1) : NULL_TREE;
|
|
*else_out = gimple_call_arg (call, nops + 1);
|
|
if (integer_truep (*cond_out))
|
|
{
|
|
*cond_out = NULL_TREE;
|
|
*else_out = NULL_TREE;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return true if IFN is some form of load from memory. */
|
|
|
|
bool
|
|
internal_load_fn_p (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case IFN_MASK_LOAD:
|
|
case IFN_LOAD_LANES:
|
|
case IFN_MASK_LOAD_LANES:
|
|
case IFN_GATHER_LOAD:
|
|
case IFN_MASK_GATHER_LOAD:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return true if IFN is some form of store to memory. */
|
|
|
|
bool
|
|
internal_store_fn_p (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case IFN_MASK_STORE:
|
|
case IFN_STORE_LANES:
|
|
case IFN_MASK_STORE_LANES:
|
|
case IFN_SCATTER_STORE:
|
|
case IFN_MASK_SCATTER_STORE:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return true if IFN is some form of gather load or scatter store. */
|
|
|
|
bool
|
|
internal_gather_scatter_fn_p (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case IFN_GATHER_LOAD:
|
|
case IFN_MASK_GATHER_LOAD:
|
|
case IFN_SCATTER_STORE:
|
|
case IFN_MASK_SCATTER_STORE:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If FN takes a vector mask argument, return the index of that argument,
|
|
otherwise return -1. */
|
|
|
|
int
|
|
internal_fn_mask_index (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case IFN_MASK_LOAD:
|
|
case IFN_MASK_LOAD_LANES:
|
|
case IFN_MASK_STORE:
|
|
case IFN_MASK_STORE_LANES:
|
|
return 2;
|
|
|
|
case IFN_MASK_GATHER_LOAD:
|
|
return 3;
|
|
|
|
case IFN_MASK_SCATTER_STORE:
|
|
return 4;
|
|
|
|
default:
|
|
return (conditional_internal_fn_code (fn) != ERROR_MARK
|
|
|| get_unconditional_internal_fn (fn) != IFN_LAST ? 0 : -1);
|
|
}
|
|
}
|
|
|
|
/* If FN takes a value that should be stored to memory, return the index
|
|
of that argument, otherwise return -1. */
|
|
|
|
int
|
|
internal_fn_stored_value_index (internal_fn fn)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case IFN_MASK_STORE:
|
|
case IFN_SCATTER_STORE:
|
|
case IFN_MASK_SCATTER_STORE:
|
|
return 3;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Return true if the target supports gather load or scatter store function
|
|
IFN. For loads, VECTOR_TYPE is the vector type of the load result,
|
|
while for stores it is the vector type of the stored data argument.
|
|
MEMORY_ELEMENT_TYPE is the type of the memory elements being loaded
|
|
or stored. OFFSET_SIGN is the sign of the offset argument, which is
|
|
only relevant when the offset is narrower than an address. SCALE is
|
|
the amount by which the offset should be multiplied *after* it has
|
|
been extended to address width. */
|
|
|
|
bool
|
|
internal_gather_scatter_fn_supported_p (internal_fn ifn, tree vector_type,
|
|
tree memory_element_type,
|
|
signop offset_sign, int scale)
|
|
{
|
|
if (!tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (vector_type)),
|
|
TYPE_SIZE (memory_element_type)))
|
|
return false;
|
|
optab optab = direct_internal_fn_optab (ifn);
|
|
insn_code icode = direct_optab_handler (optab, TYPE_MODE (vector_type));
|
|
int output_ops = internal_load_fn_p (ifn) ? 1 : 0;
|
|
return (icode != CODE_FOR_nothing
|
|
&& insn_operand_matches (icode, 2 + output_ops,
|
|
GEN_INT (offset_sign == UNSIGNED))
|
|
&& insn_operand_matches (icode, 3 + output_ops,
|
|
GEN_INT (scale)));
|
|
}
|
|
|
|
/* Expand STMT as though it were a call to internal function FN. */
|
|
|
|
void
|
|
expand_internal_call (internal_fn fn, gcall *stmt)
|
|
{
|
|
internal_fn_expanders[fn] (fn, stmt);
|
|
}
|
|
|
|
/* Expand STMT, which is a call to internal function FN. */
|
|
|
|
void
|
|
expand_internal_call (gcall *stmt)
|
|
{
|
|
expand_internal_call (gimple_call_internal_fn (stmt), stmt);
|
|
}
|
|
|
|
/* If TYPE is a vector type, return true if IFN is a direct internal
|
|
function that is supported for that type. If TYPE is a scalar type,
|
|
return true if IFN is a direct internal function that is supported for
|
|
the target's preferred vector version of TYPE. */
|
|
|
|
bool
|
|
vectorized_internal_fn_supported_p (internal_fn ifn, tree type)
|
|
{
|
|
scalar_mode smode;
|
|
if (!VECTOR_TYPE_P (type) && is_a <scalar_mode> (TYPE_MODE (type), &smode))
|
|
{
|
|
machine_mode vmode = targetm.vectorize.preferred_simd_mode (smode);
|
|
if (VECTOR_MODE_P (vmode))
|
|
type = build_vector_type_for_mode (type, vmode);
|
|
}
|
|
|
|
return (VECTOR_MODE_P (TYPE_MODE (type))
|
|
&& direct_internal_fn_supported_p (ifn, type, OPTIMIZE_FOR_SPEED));
|
|
}
|
|
|
|
void
|
|
expand_PHI (internal_fn, gcall *)
|
|
{
|
|
gcc_unreachable ();
|
|
}
|