99b1c316ec
gcc/c/ChangeLog: PR c++/61339 * c-decl.c (xref_tag): Change class-key of PODs to struct and others to class. (field_decl_cmp): Same. * c-parser.c (c_parser_struct_or_union_specifier): Same. * c-tree.h: Same. * gimple-parser.c (c_parser_gimple_compound_statement): Same. gcc/c-family/ChangeLog: PR c++/61339 * c-opts.c (handle_deferred_opts): : Change class-key of PODs to struct and others to class. * c-pretty-print.h: Same. gcc/cp/ChangeLog: PR c++/61339 * cp-tree.h: Change class-key of PODs to struct and others to class. * search.c: Same. * semantics.c (finalize_nrv_r): Same. gcc/lto/ChangeLog: PR c++/61339 * lto-common.c (lto_splay_tree_new): : Change class-key of PODs to struct and others to class. (mentions_vars_p): Same. (register_resolution): Same. (lto_register_var_decl_in_symtab): Same. (lto_register_function_decl_in_symtab): Same. (cmp_tree): Same. (lto_read_decls): Same. gcc/ChangeLog: PR c++/61339 * auto-profile.c: Change class-key of PODs to struct and others to class. * basic-block.h: Same. * bitmap.c (bitmap_alloc): Same. * bitmap.h: Same. * builtins.c (expand_builtin_prefetch): Same. (expand_builtin_interclass_mathfn): Same. (expand_builtin_strlen): Same. (expand_builtin_mempcpy_args): Same. (expand_cmpstr): Same. (expand_builtin___clear_cache): Same. (expand_ifn_atomic_bit_test_and): Same. (expand_builtin_thread_pointer): Same. (expand_builtin_set_thread_pointer): Same. * caller-save.c (setup_save_areas): Same. (replace_reg_with_saved_mem): Same. (insert_restore): Same. (insert_save): Same. (add_used_regs): Same. * cfg.c (get_bb_copy): Same. (set_loop_copy): Same. * cfg.h: Same. * cfganal.h: Same. * cfgexpand.c (alloc_stack_frame_space): Same. (add_stack_var): Same. (add_stack_var_conflict): Same. (add_scope_conflicts_1): Same. (update_alias_info_with_stack_vars): Same. (expand_used_vars): Same. * cfghooks.c (redirect_edge_and_branch_force): Same. (delete_basic_block): Same. (split_edge): Same. (make_forwarder_block): Same. (force_nonfallthru): Same. (duplicate_block): Same. (lv_flush_pending_stmts): Same. * cfghooks.h: Same. * cfgloop.c (flow_loops_cfg_dump): Same. (flow_loop_nested_p): Same. (superloop_at_depth): Same. (get_loop_latch_edges): Same. (flow_loop_dump): Same. (flow_loops_dump): Same. (flow_loops_free): Same. (flow_loop_nodes_find): Same. (establish_preds): Same. (flow_loop_tree_node_add): Same. (flow_loop_tree_node_remove): Same. (flow_loops_find): Same. (find_subloop_latch_edge_by_profile): Same. (find_subloop_latch_edge_by_ivs): Same. (mfb_redirect_edges_in_set): Same. (form_subloop): Same. (merge_latch_edges): Same. (disambiguate_multiple_latches): Same. (disambiguate_loops_with_multiple_latches): Same. (flow_bb_inside_loop_p): Same. (glb_enum_p): Same. (get_loop_body_with_size): Same. (get_loop_body): Same. (fill_sons_in_loop): Same. (get_loop_body_in_dom_order): Same. (get_loop_body_in_custom_order): Same. (release_recorded_exits): Same. (get_loop_exit_edges): Same. (num_loop_branches): Same. (remove_bb_from_loops): Same. (find_common_loop): Same. (delete_loop): Same. (cancel_loop): Same. (verify_loop_structure): Same. (loop_preheader_edge): Same. (loop_exit_edge_p): Same. (single_exit): Same. (loop_exits_to_bb_p): Same. (loop_exits_from_bb_p): Same. (get_loop_location): Same. (record_niter_bound): Same. (get_estimated_loop_iterations_int): Same. (max_stmt_executions_int): Same. (likely_max_stmt_executions_int): Same. (get_estimated_loop_iterations): Same. (get_max_loop_iterations): Same. (get_max_loop_iterations_int): Same. (get_likely_max_loop_iterations): Same. * cfgloop.h (simple_loop_desc): Same. (get_loop): Same. (loop_depth): Same. (loop_outer): Same. (loop_iterator::next): Same. (loop_outermost): Same. * cfgloopanal.c (mark_irreducible_loops): Same. (num_loop_insns): Same. (average_num_loop_insns): Same. (expected_loop_iterations_unbounded): Same. (expected_loop_iterations): Same. (mark_loop_exit_edges): Same. (single_likely_exit): Same. * cfgloopmanip.c (fix_bb_placement): Same. (fix_bb_placements): Same. (remove_path): Same. (place_new_loop): Same. (add_loop): Same. (scale_loop_frequencies): Same. (scale_loop_profile): Same. (create_empty_if_region_on_edge): Same. (create_empty_loop_on_edge): Same. (loopify): Same. (unloop): Same. (fix_loop_placements): Same. (copy_loop_info): Same. (duplicate_loop): Same. (duplicate_subloops): Same. (loop_redirect_edge): Same. (can_duplicate_loop_p): Same. (duplicate_loop_to_header_edge): Same. (mfb_keep_just): Same. (has_preds_from_loop): Same. (create_preheader): Same. (create_preheaders): Same. (lv_adjust_loop_entry_edge): Same. (loop_version): Same. * cfgloopmanip.h: Same. * cgraph.h: Same. * cgraphbuild.c: Same. * combine.c (make_extraction): Same. * config/i386/i386-features.c: Same. * config/i386/i386-features.h: Same. * config/i386/i386.c (ix86_emit_outlined_ms2sysv_save): Same. (ix86_emit_outlined_ms2sysv_restore): Same. (ix86_noce_conversion_profitable_p): Same. (ix86_init_cost): Same. (ix86_simd_clone_usable): Same. * configure.ac: Same. * coretypes.h: Same. * data-streamer-in.c (string_for_index): Same. (streamer_read_indexed_string): Same. (streamer_read_string): Same. (bp_unpack_indexed_string): Same. (bp_unpack_string): Same. (streamer_read_uhwi): Same. (streamer_read_hwi): Same. (streamer_read_gcov_count): Same. (streamer_read_wide_int): Same. * data-streamer.h (streamer_write_bitpack): Same. (bp_unpack_value): Same. (streamer_write_char_stream): Same. (streamer_write_hwi_in_range): Same. (streamer_write_record_start): Same. * ddg.c (create_ddg_dep_from_intra_loop_link): Same. (add_cross_iteration_register_deps): Same. (build_intra_loop_deps): Same. * df-core.c (df_analyze): Same. (loop_post_order_compute): Same. (loop_inverted_post_order_compute): Same. * df-problems.c (df_rd_alloc): Same. (df_rd_simulate_one_insn): Same. (df_rd_local_compute): Same. (df_rd_init_solution): Same. (df_rd_confluence_n): Same. (df_rd_transfer_function): Same. (df_rd_free): Same. (df_rd_dump_defs_set): Same. (df_rd_top_dump): Same. (df_lr_alloc): Same. (df_lr_reset): Same. (df_lr_local_compute): Same. (df_lr_init): Same. (df_lr_confluence_n): Same. (df_lr_free): Same. (df_lr_top_dump): Same. (df_lr_verify_transfer_functions): Same. (df_live_alloc): Same. (df_live_reset): Same. (df_live_init): Same. (df_live_confluence_n): Same. (df_live_finalize): Same. (df_live_free): Same. (df_live_top_dump): Same. (df_live_verify_transfer_functions): Same. (df_mir_alloc): Same. (df_mir_reset): Same. (df_mir_init): Same. (df_mir_confluence_n): Same. (df_mir_free): Same. (df_mir_top_dump): Same. (df_word_lr_alloc): Same. (df_word_lr_reset): Same. (df_word_lr_init): Same. (df_word_lr_confluence_n): Same. (df_word_lr_free): Same. (df_word_lr_top_dump): Same. (df_md_alloc): Same. (df_md_simulate_one_insn): Same. (df_md_reset): Same. (df_md_init): Same. (df_md_free): Same. (df_md_top_dump): Same. * df-scan.c (df_insn_delete): Same. (df_insn_rescan): Same. (df_notes_rescan): Same. (df_sort_and_compress_mws): Same. (df_install_mws): Same. (df_refs_add_to_chains): Same. (df_ref_create_structure): Same. (df_ref_record): Same. (df_def_record_1): Same. (df_find_hard_reg_defs): Same. (df_uses_record): Same. (df_get_conditional_uses): Same. (df_get_call_refs): Same. (df_recompute_luids): Same. (df_get_entry_block_def_set): Same. (df_entry_block_defs_collect): Same. (df_get_exit_block_use_set): Same. (df_exit_block_uses_collect): Same. (df_mws_verify): Same. (df_bb_verify): Same. * df.h (df_scan_get_bb_info): Same. * doc/tm.texi: Same. * dse.c (record_store): Same. * dumpfile.h: Same. * emit-rtl.c (const_fixed_hasher::equal): Same. (set_mem_attributes_minus_bitpos): Same. (change_address): Same. (adjust_address_1): Same. (offset_address): Same. * emit-rtl.h: Same. * except.c (dw2_build_landing_pads): Same. (sjlj_emit_dispatch_table): Same. * explow.c (allocate_dynamic_stack_space): Same. (emit_stack_probe): Same. (probe_stack_range): Same. * expmed.c (store_bit_field_using_insv): Same. (store_bit_field_1): Same. (store_integral_bit_field): Same. (extract_bit_field_using_extv): Same. (extract_bit_field_1): Same. (emit_cstore): Same. * expr.c (emit_block_move_via_cpymem): Same. (expand_cmpstrn_or_cmpmem): Same. (set_storage_via_setmem): Same. (emit_single_push_insn_1): Same. (expand_assignment): Same. (store_constructor): Same. (expand_expr_real_2): Same. (expand_expr_real_1): Same. (try_casesi): Same. * flags.h: Same. * function.c (try_fit_stack_local): Same. (assign_stack_local_1): Same. (assign_stack_local): Same. (cut_slot_from_list): Same. (insert_slot_to_list): Same. (max_slot_level): Same. (move_slot_to_level): Same. (temp_address_hasher::equal): Same. (remove_unused_temp_slot_addresses): Same. (assign_temp): Same. (combine_temp_slots): Same. (update_temp_slot_address): Same. (preserve_temp_slots): Same. * function.h: Same. * fwprop.c: Same. * gcc-rich-location.h: Same. * gcov.c: Same. * genattrtab.c (check_attr_test): Same. (check_attr_value): Same. (convert_set_attr_alternative): Same. (convert_set_attr): Same. (check_defs): Same. (copy_boolean): Same. (get_attr_value): Same. (expand_delays): Same. (make_length_attrs): Same. (min_fn): Same. (make_alternative_compare): Same. (simplify_test_exp): Same. (tests_attr_p): Same. (get_attr_order): Same. (clear_struct_flag): Same. (gen_attr): Same. (compares_alternatives_p): Same. (gen_insn): Same. (gen_delay): Same. (find_attrs_to_cache): Same. (write_test_expr): Same. (walk_attr_value): Same. (write_attr_get): Same. (eliminate_known_true): Same. (write_insn_cases): Same. (write_attr_case): Same. (write_attr_valueq): Same. (write_attr_value): Same. (write_dummy_eligible_delay): Same. (next_comma_elt): Same. (find_attr): Same. (make_internal_attr): Same. (copy_rtx_unchanging): Same. (gen_insn_reserv): Same. (check_tune_attr): Same. (make_automaton_attrs): Same. (handle_arg): Same. * genextract.c (gen_insn): Same. (VEC_char_to_string): Same. * genmatch.c (print_operand): Same. (lower): Same. (parser::parse_operation): Same. (parser::parse_capture): Same. (parser::parse_c_expr): Same. (parser::parse_simplify): Same. (main): Same. * genoutput.c (output_operand_data): Same. (output_get_insn_name): Same. (compare_operands): Same. (place_operands): Same. (process_template): Same. (validate_insn_alternatives): Same. (validate_insn_operands): Same. (gen_expand): Same. (note_constraint): Same. * genpreds.c (write_one_predicate_function): Same. (add_constraint): Same. (process_define_register_constraint): Same. (write_lookup_constraint_1): Same. (write_lookup_constraint_array): Same. (write_insn_constraint_len): Same. (write_reg_class_for_constraint_1): Same. (write_constraint_satisfied_p_array): Same. * genrecog.c (optimize_subroutine_group): Same. * gensupport.c (process_define_predicate): Same. (queue_pattern): Same. (remove_from_queue): Same. (process_rtx): Same. (is_predicable): Same. (change_subst_attribute): Same. (subst_pattern_match): Same. (alter_constraints): Same. (alter_attrs_for_insn): Same. (shift_output_template): Same. (alter_output_for_subst_insn): Same. (process_one_cond_exec): Same. (subst_dup): Same. (process_define_cond_exec): Same. (mnemonic_htab_callback): Same. (gen_mnemonic_attr): Same. (read_md_rtx): Same. * ggc-page.c: Same. * gimple-loop-interchange.cc (dump_reduction): Same. (dump_induction): Same. (loop_cand::~loop_cand): Same. (free_data_refs_with_aux): Same. (tree_loop_interchange::interchange_loops): Same. (tree_loop_interchange::map_inductions_to_loop): Same. (tree_loop_interchange::move_code_to_inner_loop): Same. (compute_access_stride): Same. (compute_access_strides): Same. (proper_loop_form_for_interchange): Same. (tree_loop_interchange_compute_ddrs): Same. (prune_datarefs_not_in_loop): Same. (prepare_data_references): Same. (pass_linterchange::execute): Same. * gimple-loop-jam.c (bb_prevents_fusion_p): Same. (unroll_jam_possible_p): Same. (fuse_loops): Same. (adjust_unroll_factor): Same. (tree_loop_unroll_and_jam): Same. * gimple-loop-versioning.cc (loop_versioning::~loop_versioning): Same. (loop_versioning::expensive_stmt_p): Same. (loop_versioning::version_for_unity): Same. (loop_versioning::dump_inner_likelihood): Same. (loop_versioning::find_per_loop_multiplication): Same. (loop_versioning::analyze_term_using_scevs): Same. (loop_versioning::record_address_fragment): Same. (loop_versioning::analyze_expr): Same. (loop_versioning::analyze_blocks): Same. (loop_versioning::prune_conditions): Same. (loop_versioning::merge_loop_info): Same. (loop_versioning::add_loop_to_queue): Same. (loop_versioning::decide_whether_loop_is_versionable): Same. (loop_versioning::make_versioning_decisions): Same. (loop_versioning::implement_versioning_decisions): Same. * gimple-ssa-evrp-analyze.c (evrp_range_analyzer::record_ranges_from_phis): Same. * gimple-ssa-store-merging.c (split_store::split_store): Same. (count_multiple_uses): Same. (split_group): Same. (imm_store_chain_info::output_merged_store): Same. (pass_store_merging::process_store): Same. * gimple-ssa-strength-reduction.c (slsr_process_phi): Same. * gimple-ssa-warn-alloca.c (adjusted_warn_limit): Same. (is_max): Same. (alloca_call_type): Same. (pass_walloca::execute): Same. * gimple-streamer-in.c (input_phi): Same. (input_gimple_stmt): Same. * gimple-streamer.h: Same. * godump.c (go_force_record_alignment): Same. (go_format_type): Same. (go_output_type): Same. (go_output_fndecl): Same. (go_output_typedef): Same. (keyword_hash_init): Same. (find_dummy_types): Same. * graph.c (draw_cfg_nodes_no_loops): Same. (draw_cfg_nodes_for_loop): Same. * hard-reg-set.h (hard_reg_set_iter_next): Same. * hsa-brig.c: Same. * hsa-common.h (hsa_internal_fn_hasher::equal): Same. * hsa-dump.c (dump_hsa_cfun): Same. * hsa-gen.c (gen_function_def_parameters): Same. * hsa-regalloc.c (dump_hsa_cfun_regalloc): Same. * input.c (dump_line_table_statistics): Same. (test_lexer): Same. * input.h: Same. * internal-fn.c (get_multi_vector_move): Same. (expand_load_lanes_optab_fn): Same. (expand_GOMP_SIMT_ENTER_ALLOC): Same. (expand_GOMP_SIMT_EXIT): Same. (expand_GOMP_SIMT_LAST_LANE): Same. (expand_GOMP_SIMT_ORDERED_PRED): Same. (expand_GOMP_SIMT_VOTE_ANY): Same. (expand_GOMP_SIMT_XCHG_BFLY): Same. (expand_GOMP_SIMT_XCHG_IDX): Same. (expand_addsub_overflow): Same. (expand_neg_overflow): Same. (expand_mul_overflow): Same. (expand_call_mem_ref): Same. (expand_mask_load_optab_fn): Same. (expand_scatter_store_optab_fn): Same. (expand_gather_load_optab_fn): Same. * ipa-cp.c (ipa_get_parm_lattices): Same. (print_all_lattices): Same. (ignore_edge_p): Same. (build_toporder_info): Same. (free_toporder_info): Same. (push_node_to_stack): Same. (ipcp_lattice<valtype>::set_contains_variable): Same. (set_agg_lats_to_bottom): Same. (ipcp_bits_lattice::meet_with): Same. (set_single_call_flag): Same. (initialize_node_lattices): Same. (ipa_get_jf_ancestor_result): Same. (ipcp_verify_propagated_values): Same. (propagate_scalar_across_jump_function): Same. (propagate_context_across_jump_function): Same. (propagate_bits_across_jump_function): Same. (ipa_vr_operation_and_type_effects): Same. (propagate_vr_across_jump_function): Same. (set_check_aggs_by_ref): Same. (set_chain_of_aglats_contains_variable): Same. (merge_aggregate_lattices): Same. (agg_pass_through_permissible_p): Same. (propagate_aggs_across_jump_function): Same. (call_passes_through_thunk_p): Same. (propagate_constants_across_call): Same. (devirtualization_time_bonus): Same. (good_cloning_opportunity_p): Same. (context_independent_aggregate_values): Same. (gather_context_independent_values): Same. (perform_estimation_of_a_value): Same. (estimate_local_effects): Same. (value_topo_info<valtype>::add_val): Same. (add_all_node_vals_to_toposort): Same. (value_topo_info<valtype>::propagate_effects): Same. (ipcp_propagate_stage): Same. (ipcp_discover_new_direct_edges): Same. (same_node_or_its_all_contexts_clone_p): Same. (cgraph_edge_brings_value_p): Same. (gather_edges_for_value): Same. (create_specialized_node): Same. (find_more_scalar_values_for_callers_subset): Same. (find_more_contexts_for_caller_subset): Same. (copy_plats_to_inter): Same. (intersect_aggregates_with_edge): Same. (find_aggregate_values_for_callers_subset): Same. (cgraph_edge_brings_all_agg_vals_for_node): Same. (decide_about_value): Same. (decide_whether_version_node): Same. (spread_undeadness): Same. (identify_dead_nodes): Same. (ipcp_store_vr_results): Same. * ipa-devirt.c (final_warning_record::grow_type_warnings): Same. * ipa-fnsummary.c (ipa_fn_summary::account_size_time): Same. (redirect_to_unreachable): Same. (edge_set_predicate): Same. (evaluate_conditions_for_known_args): Same. (evaluate_properties_for_edge): Same. (ipa_fn_summary_t::duplicate): Same. (ipa_call_summary_t::duplicate): Same. (dump_ipa_call_summary): Same. (ipa_dump_fn_summary): Same. (eliminated_by_inlining_prob): Same. (set_cond_stmt_execution_predicate): Same. (set_switch_stmt_execution_predicate): Same. (compute_bb_predicates): Same. (will_be_nonconstant_expr_predicate): Same. (phi_result_unknown_predicate): Same. (analyze_function_body): Same. (compute_fn_summary): Same. (estimate_edge_devirt_benefit): Same. (estimate_edge_size_and_time): Same. (estimate_calls_size_and_time): Same. (estimate_node_size_and_time): Same. (remap_edge_change_prob): Same. (remap_edge_summaries): Same. (ipa_merge_fn_summary_after_inlining): Same. (ipa_fn_summary_generate): Same. (inline_read_section): Same. (ipa_fn_summary_read): Same. (ipa_fn_summary_write): Same. * ipa-fnsummary.h: Same. * ipa-hsa.c (ipa_hsa_read_section): Same. * ipa-icf-gimple.c (func_checker::compare_loops): Same. * ipa-icf.c (sem_function::param_used_p): Same. * ipa-inline-analysis.c (do_estimate_edge_time): Same. * ipa-inline.c (edge_badness): Same. (inline_small_functions): Same. * ipa-polymorphic-call.c (ipa_polymorphic_call_context::stream_out): Same. * ipa-predicate.c (predicate::remap_after_duplication): Same. (predicate::remap_after_inlining): Same. (predicate::stream_out): Same. * ipa-predicate.h: Same. * ipa-profile.c (ipa_profile_read_summary): Same. * ipa-prop.c (ipa_get_param_decl_index_1): Same. (count_formal_params): Same. (ipa_dump_param): Same. (ipa_alloc_node_params): Same. (ipa_print_node_jump_functions_for_edge): Same. (ipa_print_node_jump_functions): Same. (ipa_load_from_parm_agg): Same. (get_ancestor_addr_info): Same. (ipa_compute_jump_functions_for_edge): Same. (ipa_analyze_virtual_call_uses): Same. (ipa_analyze_stmt_uses): Same. (ipa_analyze_params_uses_in_bb): Same. (update_jump_functions_after_inlining): Same. (try_decrement_rdesc_refcount): Same. (ipa_impossible_devirt_target): Same. (update_indirect_edges_after_inlining): Same. (combine_controlled_uses_counters): Same. (ipa_edge_args_sum_t::duplicate): Same. (ipa_write_jump_function): Same. (ipa_write_indirect_edge_info): Same. (ipa_write_node_info): Same. (ipa_read_edge_info): Same. (ipa_prop_read_section): Same. (read_replacements_section): Same. * ipa-prop.h (ipa_get_param_count): Same. (ipa_get_param): Same. (ipa_get_type): Same. (ipa_get_param_move_cost): Same. (ipa_set_param_used): Same. (ipa_get_controlled_uses): Same. (ipa_set_controlled_uses): Same. (ipa_get_cs_argument_count): Same. * ipa-pure-const.c (analyze_function): Same. (pure_const_read_summary): Same. * ipa-ref.h: Same. * ipa-reference.c (ipa_reference_read_optimization_summary): Same. * ipa-split.c (test_nonssa_use): Same. (dump_split_point): Same. (dominated_by_forbidden): Same. (split_part_set_ssa_name_p): Same. (find_split_points): Same. * ira-build.c (finish_loop_tree_nodes): Same. (low_pressure_loop_node_p): Same. * ira-color.c (ira_reuse_stack_slot): Same. * ira-int.h: Same. * ira.c (setup_reg_equiv): Same. (print_insn_chain): Same. (ira): Same. * loop-doloop.c (doloop_condition_get): Same. (add_test): Same. (record_reg_sets): Same. (doloop_optimize): Same. * loop-init.c (loop_optimizer_init): Same. (fix_loop_structure): Same. * loop-invariant.c (merge_identical_invariants): Same. (compute_always_reached): Same. (find_exits): Same. (may_assign_reg_p): Same. (find_invariants_bb): Same. (find_invariants_body): Same. (replace_uses): Same. (can_move_invariant_reg): Same. (free_inv_motion_data): Same. (move_single_loop_invariants): Same. (change_pressure): Same. (mark_ref_regs): Same. (calculate_loop_reg_pressure): Same. * loop-iv.c (biv_entry_hasher::equal): Same. (iv_extend_to_rtx_code): Same. (check_iv_ref_table_size): Same. (clear_iv_info): Same. (latch_dominating_def): Same. (iv_get_reaching_def): Same. (iv_constant): Same. (iv_subreg): Same. (iv_extend): Same. (iv_neg): Same. (iv_add): Same. (iv_mult): Same. (get_biv_step): Same. (record_iv): Same. (analyzed_for_bivness_p): Same. (record_biv): Same. (iv_analyze_biv): Same. (iv_analyze_expr): Same. (iv_analyze_def): Same. (iv_analyze_op): Same. (iv_analyze): Same. (iv_analyze_result): Same. (biv_p): Same. (eliminate_implied_conditions): Same. (simplify_using_initial_values): Same. (shorten_into_mode): Same. (canonicalize_iv_subregs): Same. (determine_max_iter): Same. (check_simple_exit): Same. (find_simple_exit): Same. (get_simple_loop_desc): Same. * loop-unroll.c (report_unroll): Same. (decide_unrolling): Same. (unroll_loops): Same. (loop_exit_at_end_p): Same. (decide_unroll_constant_iterations): Same. (unroll_loop_constant_iterations): Same. (compare_and_jump_seq): Same. (unroll_loop_runtime_iterations): Same. (decide_unroll_stupid): Same. (unroll_loop_stupid): Same. (referenced_in_one_insn_in_loop_p): Same. (reset_debug_uses_in_loop): Same. (analyze_iv_to_split_insn): Same. * lra-eliminations.c (lra_debug_elim_table): Same. (setup_can_eliminate): Same. (form_sum): Same. (lra_get_elimination_hard_regno): Same. (lra_eliminate_regs_1): Same. (eliminate_regs_in_insn): Same. (update_reg_eliminate): Same. (init_elimination): Same. (lra_eliminate): Same. * lra-int.h: Same. * lra-lives.c (initiate_live_solver): Same. * lra-remat.c (create_remat_bb_data): Same. * lra-spills.c (lra_spill): Same. * lra.c (lra_set_insn_recog_data): Same. (lra_set_used_insn_alternative_by_uid): Same. (init_reg_info): Same. (expand_reg_info): Same. * lto-cgraph.c (output_symtab): Same. (read_identifier): Same. (get_alias_symbol): Same. (input_node): Same. (input_varpool_node): Same. (input_ref): Same. (input_edge): Same. (input_cgraph_1): Same. (input_refs): Same. (input_symtab): Same. (input_offload_tables): Same. (output_cgraph_opt_summary): Same. (input_edge_opt_summary): Same. (input_cgraph_opt_section): Same. * lto-section-in.c (lto_free_raw_section_data): Same. (lto_create_simple_input_block): Same. (lto_free_function_in_decl_state_for_node): Same. * lto-streamer-in.c (lto_tag_check_set): Same. (lto_location_cache::revert_location_cache): Same. (lto_location_cache::input_location): Same. (lto_input_location): Same. (stream_input_location_now): Same. (lto_input_tree_ref): Same. (lto_input_eh_catch_list): Same. (input_eh_region): Same. (lto_init_eh): Same. (make_new_block): Same. (input_cfg): Same. (fixup_call_stmt_edges): Same. (input_struct_function_base): Same. (input_function): Same. (lto_read_body_or_constructor): Same. (lto_read_tree_1): Same. (lto_read_tree): Same. (lto_input_scc): Same. (lto_input_tree_1): Same. (lto_input_toplevel_asms): Same. (lto_input_mode_table): Same. (lto_reader_init): Same. (lto_data_in_create): Same. * lto-streamer-out.c (output_cfg): Same. * lto-streamer.h: Same. * modulo-sched.c (duplicate_insns_of_cycles): Same. (generate_prolog_epilog): Same. (mark_loop_unsched): Same. (dump_insn_location): Same. (loop_canon_p): Same. (sms_schedule): Same. * omp-expand.c (expand_omp_for_ordered_loops): Same. (expand_omp_for_generic): Same. (expand_omp_for_static_nochunk): Same. (expand_omp_for_static_chunk): Same. (expand_omp_simd): Same. (expand_omp_taskloop_for_inner): Same. (expand_oacc_for): Same. (expand_omp_atomic_pipeline): Same. (mark_loops_in_oacc_kernels_region): Same. * omp-offload.c (oacc_xform_loop): Same. * omp-simd-clone.c (simd_clone_adjust): Same. * optabs-query.c (get_traditional_extraction_insn): Same. * optabs.c (expand_vector_broadcast): Same. (expand_binop_directly): Same. (expand_twoval_unop): Same. (expand_twoval_binop): Same. (expand_unop_direct): Same. (emit_indirect_jump): Same. (emit_conditional_move): Same. (emit_conditional_neg_or_complement): Same. (emit_conditional_add): Same. (vector_compare_rtx): Same. (expand_vec_perm_1): Same. (expand_vec_perm_const): Same. (expand_vec_cond_expr): Same. (expand_vec_series_expr): Same. (maybe_emit_atomic_exchange): Same. (maybe_emit_sync_lock_test_and_set): Same. (expand_atomic_compare_and_swap): Same. (expand_atomic_load): Same. (expand_atomic_store): Same. (maybe_emit_op): Same. (valid_multiword_target_p): Same. (create_integer_operand): Same. (maybe_legitimize_operand_same_code): Same. (maybe_legitimize_operand): Same. (create_convert_operand_from_type): Same. (can_reuse_operands_p): Same. (maybe_legitimize_operands): Same. (maybe_gen_insn): Same. (maybe_expand_insn): Same. (maybe_expand_jump_insn): Same. (expand_insn): Same. * optabs.h (create_expand_operand): Same. (create_fixed_operand): Same. (create_output_operand): Same. (create_input_operand): Same. (create_convert_operand_to): Same. (create_convert_operand_from): Same. * optinfo.h: Same. * poly-int.h: Same. * predict.c (optimize_insn_for_speed_p): Same. (optimize_loop_for_size_p): Same. (optimize_loop_for_speed_p): Same. (optimize_loop_nest_for_speed_p): Same. (get_base_value): Same. (predicted_by_loop_heuristics_p): Same. (predict_extra_loop_exits): Same. (predict_loops): Same. (predict_paths_for_bb): Same. (predict_paths_leading_to): Same. (propagate_freq): Same. (pass_profile::execute): Same. * predict.h: Same. * profile-count.c (profile_count::differs_from_p): Same. (profile_probability::differs_lot_from_p): Same. * profile-count.h: Same. * profile.c (branch_prob): Same. * regrename.c (free_chain_data): Same. (mark_conflict): Same. (create_new_chain): Same. (merge_overlapping_regs): Same. (init_rename_info): Same. (merge_chains): Same. (regrename_analyze): Same. (regrename_do_replace): Same. (scan_rtx_reg): Same. (record_out_operands): Same. (build_def_use): Same. * regrename.h: Same. * reload.h: Same. * reload1.c (init_reload): Same. (maybe_fix_stack_asms): Same. (copy_reloads): Same. (count_pseudo): Same. (count_spilled_pseudo): Same. (find_reg): Same. (find_reload_regs): Same. (select_reload_regs): Same. (spill_hard_reg): Same. (fixup_eh_region_note): Same. (set_reload_reg): Same. (allocate_reload_reg): Same. (compute_reload_subreg_offset): Same. (reload_adjust_reg_for_icode): Same. (emit_input_reload_insns): Same. (emit_output_reload_insns): Same. (do_input_reload): Same. (inherit_piecemeal_p): Same. * rtl.h: Same. * sanopt.c (maybe_get_dominating_check): Same. (maybe_optimize_ubsan_ptr_ifn): Same. (can_remove_asan_check): Same. (maybe_optimize_asan_check_ifn): Same. (sanopt_optimize_walker): Same. * sched-deps.c (add_dependence_list): Same. (chain_to_prev_insn): Same. (add_insn_mem_dependence): Same. (create_insn_reg_set): Same. (maybe_extend_reg_info_p): Same. (sched_analyze_reg): Same. (sched_analyze_1): Same. (get_implicit_reg_pending_clobbers): Same. (chain_to_prev_insn_p): Same. (deps_analyze_insn): Same. (deps_start_bb): Same. (sched_free_deps): Same. (init_deps): Same. (init_deps_reg_last): Same. (free_deps): Same. * sched-ebb.c: Same. * sched-int.h: Same. * sched-rgn.c (add_branch_dependences): Same. (concat_insn_mem_list): Same. (deps_join): Same. (sched_rgn_compute_dependencies): Same. * sel-sched-ir.c (reset_target_context): Same. (copy_deps_context): Same. (init_id_from_df): Same. (has_dependence_p): Same. (change_loops_latches): Same. (bb_top_order_comparator): Same. (make_region_from_loop_preheader): Same. (sel_init_pipelining): Same. (get_loop_nest_for_rgn): Same. (make_regions_from_the_rest): Same. (sel_is_loop_preheader_p): Same. * sel-sched-ir.h (inner_loop_header_p): Same. (get_all_loop_exits): Same. * selftest.h: Same. * sese.c (sese_build_liveouts): Same. (sese_insert_phis_for_liveouts): Same. * sese.h (defined_in_sese_p): Same. * sreal.c (sreal::stream_out): Same. * sreal.h: Same. * streamer-hooks.h: Same. * target-globals.c (save_target_globals): Same. * target-globals.h: Same. * target.def: Same. * target.h: Same. * targhooks.c (default_has_ifunc_p): Same. (default_empty_mask_is_expensive): Same. (default_init_cost): Same. * targhooks.h: Same. * toplev.c: Same. * tree-affine.c (aff_combination_mult): Same. (aff_combination_expand): Same. (aff_combination_constant_multiple_p): Same. * tree-affine.h: Same. * tree-cfg.c (build_gimple_cfg): Same. (replace_loop_annotate_in_block): Same. (replace_uses_by): Same. (remove_bb): Same. (dump_cfg_stats): Same. (gimple_duplicate_sese_region): Same. (gimple_duplicate_sese_tail): Same. (move_block_to_fn): Same. (replace_block_vars_by_duplicates): Same. (move_sese_region_to_fn): Same. (print_loops_bb): Same. (print_loop): Same. (print_loops): Same. (debug): Same. (debug_loops): Same. * tree-cfg.h: Same. * tree-chrec.c (chrec_fold_plus_poly_poly): Same. (chrec_fold_multiply_poly_poly): Same. (chrec_evaluate): Same. (chrec_component_in_loop_num): Same. (reset_evolution_in_loop): Same. (is_multivariate_chrec): Same. (chrec_contains_symbols): Same. (nb_vars_in_chrec): Same. (chrec_convert_1): Same. (chrec_convert_aggressive): Same. * tree-chrec.h: Same. * tree-core.h: Same. * tree-data-ref.c (dump_data_dependence_relation): Same. (canonicalize_base_object_address): Same. (data_ref_compare_tree): Same. (prune_runtime_alias_test_list): Same. (get_segment_min_max): Same. (create_intersect_range_checks): Same. (conflict_fn_no_dependence): Same. (object_address_invariant_in_loop_p): Same. (analyze_ziv_subscript): Same. (analyze_siv_subscript_cst_affine): Same. (analyze_miv_subscript): Same. (analyze_overlapping_iterations): Same. (build_classic_dist_vector_1): Same. (add_other_self_distances): Same. (same_access_functions): Same. (build_classic_dir_vector): Same. (subscript_dependence_tester_1): Same. (subscript_dependence_tester): Same. (access_functions_are_affine_or_constant_p): Same. (get_references_in_stmt): Same. (loop_nest_has_data_refs): Same. (graphite_find_data_references_in_stmt): Same. (find_data_references_in_bb): Same. (get_base_for_alignment): Same. (find_loop_nest_1): Same. (find_loop_nest): Same. * tree-data-ref.h (dr_alignment): Same. (ddr_dependence_level): Same. * tree-if-conv.c (fold_build_cond_expr): Same. (add_to_predicate_list): Same. (add_to_dst_predicate_list): Same. (phi_convertible_by_degenerating_args): Same. (idx_within_array_bound): Same. (all_preds_critical_p): Same. (pred_blocks_visited_p): Same. (predicate_bbs): Same. (build_region): Same. (if_convertible_loop_p_1): Same. (is_cond_scalar_reduction): Same. (predicate_scalar_phi): Same. (remove_conditions_and_labels): Same. (combine_blocks): Same. (version_loop_for_if_conversion): Same. (versionable_outer_loop_p): Same. (ifcvt_local_dce): Same. (tree_if_conversion): Same. (pass_if_conversion::gate): Same. * tree-if-conv.h: Same. * tree-inline.c (maybe_move_debug_stmts_to_successors): Same. * tree-loop-distribution.c (bb_top_order_cmp): Same. (free_rdg): Same. (stmt_has_scalar_dependences_outside_loop): Same. (copy_loop_before): Same. (create_bb_after_loop): Same. (const_with_all_bytes_same): Same. (generate_memset_builtin): Same. (generate_memcpy_builtin): Same. (destroy_loop): Same. (build_rdg_partition_for_vertex): Same. (compute_access_range): Same. (data_ref_segment_size): Same. (latch_dominated_by_data_ref): Same. (compute_alias_check_pairs): Same. (fuse_memset_builtins): Same. (finalize_partitions): Same. (find_seed_stmts_for_distribution): Same. (prepare_perfect_loop_nest): Same. * tree-parloops.c (lambda_transform_legal_p): Same. (loop_parallel_p): Same. (reduc_stmt_res): Same. (add_field_for_name): Same. (create_call_for_reduction_1): Same. (replace_uses_in_bb_by): Same. (transform_to_exit_first_loop_alt): Same. (try_transform_to_exit_first_loop_alt): Same. (transform_to_exit_first_loop): Same. (num_phis): Same. (gen_parallel_loop): Same. (gather_scalar_reductions): Same. (get_omp_data_i_param): Same. (try_create_reduction_list): Same. (oacc_entry_exit_single_gang): Same. (parallelize_loops): Same. * tree-pass.h: Same. * tree-predcom.c (determine_offset): Same. (last_always_executed_block): Same. (split_data_refs_to_components): Same. (suitable_component_p): Same. (valid_initializer_p): Same. (find_looparound_phi): Same. (insert_looparound_copy): Same. (add_looparound_copies): Same. (determine_roots_comp): Same. (predcom_tmp_var): Same. (initialize_root_vars): Same. (initialize_root_vars_store_elim_1): Same. (initialize_root_vars_store_elim_2): Same. (finalize_eliminated_stores): Same. (initialize_root_vars_lm): Same. (remove_stmt): Same. (determine_unroll_factor): Same. (execute_pred_commoning_cbck): Same. (base_names_in_chain_on): Same. (combine_chains): Same. (pcom_stmt_dominates_stmt_p): Same. (try_combine_chains): Same. (prepare_initializers_chain_store_elim): Same. (prepare_initializers_chain): Same. (prepare_initializers): Same. (prepare_finalizers_chain): Same. (prepare_finalizers): Same. (insert_init_seqs): Same. * tree-scalar-evolution.c (loop_phi_node_p): Same. (compute_overall_effect_of_inner_loop): Same. (add_to_evolution_1): Same. (add_to_evolution): Same. (follow_ssa_edge_binary): Same. (follow_ssa_edge_expr): Same. (backedge_phi_arg_p): Same. (follow_ssa_edge_in_condition_phi_branch): Same. (follow_ssa_edge_in_condition_phi): Same. (follow_ssa_edge_inner_loop_phi): Same. (follow_ssa_edge): Same. (analyze_evolution_in_loop): Same. (analyze_initial_condition): Same. (interpret_loop_phi): Same. (interpret_condition_phi): Same. (interpret_rhs_expr): Same. (interpret_expr): Same. (interpret_gimple_assign): Same. (analyze_scalar_evolution_1): Same. (analyze_scalar_evolution): Same. (analyze_scalar_evolution_for_address_of): Same. (get_instantiated_value_entry): Same. (loop_closed_phi_def): Same. (instantiate_scev_name): Same. (instantiate_scev_poly): Same. (instantiate_scev_binary): Same. (instantiate_scev_convert): Same. (instantiate_scev_not): Same. (instantiate_scev_r): Same. (instantiate_scev): Same. (resolve_mixers): Same. (initialize_scalar_evolutions_analyzer): Same. (scev_reset_htab): Same. (scev_reset): Same. (derive_simple_iv_with_niters): Same. (simple_iv_with_niters): Same. (expression_expensive_p): Same. (final_value_replacement_loop): Same. * tree-scalar-evolution.h (block_before_loop): Same. * tree-ssa-address.h: Same. * tree-ssa-dce.c (find_obviously_necessary_stmts): Same. * tree-ssa-dom.c (edge_info::record_simple_equiv): Same. (record_edge_info): Same. * tree-ssa-live.c (var_map_base_fini): Same. (remove_unused_locals): Same. * tree-ssa-live.h: Same. * tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Same. (pass_ch_vect::execute): Same. (pass_ch::process_loop_p): Same. * tree-ssa-loop-im.c (mem_ref_hasher::hash): Same. (movement_possibility): Same. (outermost_invariant_loop): Same. (stmt_cost): Same. (determine_max_movement): Same. (invariantness_dom_walker::before_dom_children): Same. (move_computations): Same. (may_move_till): Same. (force_move_till_op): Same. (force_move_till): Same. (memref_free): Same. (record_mem_ref_loc): Same. (set_ref_stored_in_loop): Same. (mark_ref_stored): Same. (sort_bbs_in_loop_postorder_cmp): Same. (sort_locs_in_loop_postorder_cmp): Same. (analyze_memory_references): Same. (mem_refs_may_alias_p): Same. (find_ref_loc_in_loop_cmp): Same. (rewrite_mem_ref_loc::operator): Same. (first_mem_ref_loc_1::operator): Same. (sm_set_flag_if_changed::operator): Same. (execute_sm_if_changed_flag_set): Same. (execute_sm): Same. (hoist_memory_references): Same. (ref_always_accessed::operator): Same. (refs_independent_p): Same. (record_dep_loop): Same. (ref_indep_loop_p_1): Same. (ref_indep_loop_p): Same. (can_sm_ref_p): Same. (find_refs_for_sm): Same. (loop_suitable_for_sm): Same. (store_motion_loop): Same. (store_motion): Same. (fill_always_executed_in): Same. * tree-ssa-loop-ivcanon.c (constant_after_peeling): Same. (estimated_unrolled_size): Same. (loop_edge_to_cancel): Same. (remove_exits_and_undefined_stmts): Same. (remove_redundant_iv_tests): Same. (unloop_loops): Same. (estimated_peeled_sequence_size): Same. (try_peel_loop): Same. (canonicalize_loop_induction_variables): Same. (canonicalize_induction_variables): Same. * tree-ssa-loop-ivopts.c (iv_inv_expr_hasher::equal): Same. (name_info): Same. (stmt_after_inc_pos): Same. (contains_abnormal_ssa_name_p): Same. (niter_for_exit): Same. (find_bivs): Same. (mark_bivs): Same. (find_givs_in_bb): Same. (find_induction_variables): Same. (find_interesting_uses_cond): Same. (outermost_invariant_loop_for_expr): Same. (idx_find_step): Same. (add_candidate_1): Same. (add_iv_candidate_derived_from_uses): Same. (alloc_use_cost_map): Same. (prepare_decl_rtl): Same. (generic_predict_doloop_p): Same. (computation_cost): Same. (determine_common_wider_type): Same. (get_computation_aff_1): Same. (get_use_type): Same. (determine_group_iv_cost_address): Same. (iv_period): Same. (difference_cannot_overflow_p): Same. (may_eliminate_iv): Same. (determine_set_costs): Same. (cheaper_cost_pair): Same. (compare_cost_pair): Same. (iv_ca_cand_for_group): Same. (iv_ca_recount_cost): Same. (iv_ca_set_remove_invs): Same. (iv_ca_set_no_cp): Same. (iv_ca_set_add_invs): Same. (iv_ca_set_cp): Same. (iv_ca_add_group): Same. (iv_ca_cost): Same. (iv_ca_compare_deps): Same. (iv_ca_delta_reverse): Same. (iv_ca_delta_commit): Same. (iv_ca_cand_used_p): Same. (iv_ca_delta_free): Same. (iv_ca_new): Same. (iv_ca_free): Same. (iv_ca_dump): Same. (iv_ca_extend): Same. (iv_ca_narrow): Same. (iv_ca_prune): Same. (cheaper_cost_with_cand): Same. (iv_ca_replace): Same. (try_add_cand_for): Same. (get_initial_solution): Same. (try_improve_iv_set): Same. (find_optimal_iv_set_1): Same. (create_new_iv): Same. (rewrite_use_compare): Same. (remove_unused_ivs): Same. (determine_scaling_factor): Same. * tree-ssa-loop-ivopts.h: Same. * tree-ssa-loop-manip.c (create_iv): Same. (compute_live_loop_exits): Same. (add_exit_phi): Same. (add_exit_phis): Same. (find_uses_to_rename_use): Same. (find_uses_to_rename_def): Same. (find_uses_to_rename_in_loop): Same. (rewrite_into_loop_closed_ssa): Same. (check_loop_closed_ssa_bb): Same. (split_loop_exit_edge): Same. (ip_end_pos): Same. (ip_normal_pos): Same. (copy_phi_node_args): Same. (gimple_duplicate_loop_to_header_edge): Same. (can_unroll_loop_p): Same. (determine_exit_conditions): Same. (scale_dominated_blocks_in_loop): Same. (niter_for_unrolled_loop): Same. (tree_transform_and_unroll_loop): Same. (rewrite_all_phi_nodes_with_iv): Same. * tree-ssa-loop-manip.h: Same. * tree-ssa-loop-niter.c (number_of_iterations_ne_max): Same. (number_of_iterations_ne): Same. (assert_no_overflow_lt): Same. (assert_loop_rolls_lt): Same. (number_of_iterations_lt): Same. (adjust_cond_for_loop_until_wrap): Same. (tree_simplify_using_condition): Same. (simplify_using_initial_conditions): Same. (simplify_using_outer_evolutions): Same. (loop_only_exit_p): Same. (ssa_defined_by_minus_one_stmt_p): Same. (number_of_iterations_popcount): Same. (number_of_iterations_exit): Same. (find_loop_niter): Same. (finite_loop_p): Same. (chain_of_csts_start): Same. (get_val_for): Same. (loop_niter_by_eval): Same. (derive_constant_upper_bound_ops): Same. (do_warn_aggressive_loop_optimizations): Same. (record_estimate): Same. (get_cst_init_from_scev): Same. (record_nonwrapping_iv): Same. (idx_infer_loop_bounds): Same. (infer_loop_bounds_from_ref): Same. (infer_loop_bounds_from_array): Same. (infer_loop_bounds_from_pointer_arith): Same. (infer_loop_bounds_from_signedness): Same. (bound_index): Same. (discover_iteration_bound_by_body_walk): Same. (maybe_lower_iteration_bound): Same. (estimate_numbers_of_iterations): Same. (estimated_loop_iterations): Same. (estimated_loop_iterations_int): Same. (max_loop_iterations): Same. (max_loop_iterations_int): Same. (likely_max_loop_iterations): Same. (likely_max_loop_iterations_int): Same. (estimated_stmt_executions_int): Same. (max_stmt_executions): Same. (likely_max_stmt_executions): Same. (estimated_stmt_executions): Same. (stmt_dominates_stmt_p): Same. (nowrap_type_p): Same. (loop_exits_before_overflow): Same. (scev_var_range_cant_overflow): Same. (scev_probably_wraps_p): Same. (free_numbers_of_iterations_estimates): Same. * tree-ssa-loop-niter.h: Same. * tree-ssa-loop-prefetch.c (release_mem_refs): Same. (idx_analyze_ref): Same. (analyze_ref): Same. (gather_memory_references_ref): Same. (mark_nontemporal_store): Same. (emit_mfence_after_loop): Same. (may_use_storent_in_loop_p): Same. (mark_nontemporal_stores): Same. (should_unroll_loop_p): Same. (volume_of_dist_vector): Same. (add_subscript_strides): Same. (self_reuse_distance): Same. (insn_to_prefetch_ratio_too_small_p): Same. * tree-ssa-loop-split.c (split_at_bb_p): Same. (patch_loop_exit): Same. (find_or_create_guard_phi): Same. (easy_exit_values): Same. (connect_loop_phis): Same. (connect_loops): Same. (compute_new_first_bound): Same. (split_loop): Same. (tree_ssa_split_loops): Same. * tree-ssa-loop-unswitch.c (tree_ssa_unswitch_loops): Same. (is_maybe_undefined): Same. (tree_may_unswitch_on): Same. (simplify_using_entry_checks): Same. (tree_unswitch_single_loop): Same. (tree_unswitch_loop): Same. (tree_unswitch_outer_loop): Same. (empty_bb_without_guard_p): Same. (used_outside_loop_p): Same. (get_vop_from_header): Same. (hoist_guard): Same. * tree-ssa-loop.c (gate_oacc_kernels): Same. (get_lsm_tmp_name): Same. * tree-ssa-loop.h: Same. * tree-ssa-reassoc.c (add_repeat_to_ops_vec): Same. (build_and_add_sum): Same. (no_side_effect_bb): Same. (get_ops): Same. (linearize_expr): Same. (should_break_up_subtract): Same. (linearize_expr_tree): Same. * tree-ssa-scopedtables.c: Same. * tree-ssa-scopedtables.h: Same. * tree-ssa-structalias.c (condense_visit): Same. (label_visit): Same. (dump_pred_graph): Same. (perform_var_substitution): Same. (move_complex_constraints): Same. (remove_preds_and_fake_succs): Same. * tree-ssa-threadupdate.c (dbds_continue_enumeration_p): Same. (determine_bb_domination_status): Same. (duplicate_thread_path): Same. (thread_through_all_blocks): Same. * tree-ssa-threadupdate.h: Same. * tree-streamer-in.c (streamer_read_string_cst): Same. (input_identifier): Same. (unpack_ts_type_common_value_fields): Same. (unpack_ts_block_value_fields): Same. (unpack_ts_translation_unit_decl_value_fields): Same. (unpack_ts_omp_clause_value_fields): Same. (streamer_read_tree_bitfields): Same. (streamer_alloc_tree): Same. (lto_input_ts_common_tree_pointers): Same. (lto_input_ts_vector_tree_pointers): Same. (lto_input_ts_poly_tree_pointers): Same. (lto_input_ts_complex_tree_pointers): Same. (lto_input_ts_decl_minimal_tree_pointers): Same. (lto_input_ts_decl_common_tree_pointers): Same. (lto_input_ts_decl_non_common_tree_pointers): Same. (lto_input_ts_decl_with_vis_tree_pointers): Same. (lto_input_ts_field_decl_tree_pointers): Same. (lto_input_ts_function_decl_tree_pointers): Same. (lto_input_ts_type_common_tree_pointers): Same. (lto_input_ts_type_non_common_tree_pointers): Same. (lto_input_ts_list_tree_pointers): Same. (lto_input_ts_vec_tree_pointers): Same. (lto_input_ts_exp_tree_pointers): Same. (lto_input_ts_block_tree_pointers): Same. (lto_input_ts_binfo_tree_pointers): Same. (lto_input_ts_constructor_tree_pointers): Same. (lto_input_ts_omp_clause_tree_pointers): Same. (streamer_read_tree_body): Same. * tree-streamer.h: Same. * tree-switch-conversion.c (bit_test_cluster::is_beneficial): Same. * tree-vect-data-refs.c (vect_get_smallest_scalar_type): Same. (vect_analyze_possibly_independent_ddr): Same. (vect_analyze_data_ref_dependence): Same. (vect_compute_data_ref_alignment): Same. (vect_enhance_data_refs_alignment): Same. (vect_analyze_data_ref_access): Same. (vect_check_gather_scatter): Same. (vect_find_stmt_data_reference): Same. (vect_create_addr_base_for_vector_ref): Same. (vect_setup_realignment): Same. (vect_supportable_dr_alignment): Same. * tree-vect-loop-manip.c (rename_variables_in_bb): Same. (adjust_phi_and_debug_stmts): Same. (vect_set_loop_mask): Same. (add_preheader_seq): Same. (vect_maybe_permute_loop_masks): Same. (vect_set_loop_masks_directly): Same. (vect_set_loop_condition_masked): Same. (vect_set_loop_condition_unmasked): Same. (slpeel_duplicate_current_defs_from_edges): Same. (slpeel_add_loop_guard): Same. (slpeel_can_duplicate_loop_p): Same. (create_lcssa_for_virtual_phi): Same. (iv_phi_p): Same. (vect_update_ivs_after_vectorizer): Same. (vect_gen_vector_loop_niters_mult_vf): Same. (slpeel_update_phi_nodes_for_loops): Same. (slpeel_update_phi_nodes_for_guard1): Same. (find_guard_arg): Same. (slpeel_update_phi_nodes_for_guard2): Same. (slpeel_update_phi_nodes_for_lcssa): Same. (vect_do_peeling): Same. (vect_create_cond_for_alias_checks): Same. (vect_loop_versioning): Same. * tree-vect-loop.c (vect_determine_vf_for_stmt): Same. (vect_inner_phi_in_double_reduction_p): Same. (vect_analyze_scalar_cycles_1): Same. (vect_fixup_scalar_cycles_with_patterns): Same. (vect_get_loop_niters): Same. (bb_in_loop_p): Same. (vect_get_max_nscalars_per_iter): Same. (vect_verify_full_masking): Same. (vect_compute_single_scalar_iteration_cost): Same. (vect_analyze_loop_form_1): Same. (vect_analyze_loop_form): Same. (vect_active_double_reduction_p): Same. (vect_analyze_loop_operations): Same. (neutral_op_for_slp_reduction): Same. (vect_is_simple_reduction): Same. (vect_model_reduction_cost): Same. (get_initial_def_for_reduction): Same. (get_initial_defs_for_reduction): Same. (vect_create_epilog_for_reduction): Same. (vectorize_fold_left_reduction): Same. (vectorizable_reduction): Same. (vectorizable_induction): Same. (vectorizable_live_operation): Same. (loop_niters_no_overflow): Same. (vect_get_loop_mask): Same. (vect_transform_loop_stmt): Same. (vect_transform_loop): Same. * tree-vect-patterns.c (vect_reassociating_reduction_p): Same. (vect_determine_precisions): Same. (vect_pattern_recog_1): Same. * tree-vect-slp.c (vect_analyze_slp_instance): Same. * tree-vect-stmts.c (stmt_vectype): Same. (process_use): Same. (vect_init_vector_1): Same. (vect_truncate_gather_scatter_offset): Same. (get_group_load_store_type): Same. (vect_build_gather_load_calls): Same. (vect_get_strided_load_store_ops): Same. (vectorizable_simd_clone_call): Same. (vectorizable_store): Same. (permute_vec_elements): Same. (vectorizable_load): Same. (vect_transform_stmt): Same. (supportable_widening_operation): Same. * tree-vectorizer.c (vec_info::replace_stmt): Same. (vec_info::free_stmt_vec_info): Same. (vect_free_loop_info_assumptions): Same. (vect_loop_vectorized_call): Same. (set_uid_loop_bbs): Same. (vectorize_loops): Same. * tree-vectorizer.h (STMT_VINFO_BB_VINFO): Same. * tree.c (add_tree_to_fld_list): Same. (fld_type_variant_equal_p): Same. (fld_decl_context): Same. (fld_incomplete_type_of): Same. (free_lang_data_in_binfo): Same. (need_assembler_name_p): Same. (find_decls_types_r): Same. (get_eh_types_for_runtime): Same. (find_decls_types_in_eh_region): Same. (find_decls_types_in_node): Same. (assign_assembler_name_if_needed): Same. * value-prof.c (stream_out_histogram_value): Same. * value-prof.h: Same. * var-tracking.c (use_narrower_mode): Same. (prepare_call_arguments): Same. (vt_expand_loc_callback): Same. (resolve_expansions_pending_recursion): Same. (vt_expand_loc): Same. * varasm.c (const_hash_1): Same. (compare_constant): Same. (tree_output_constant_def): Same. (simplify_subtraction): Same. (get_pool_constant): Same. (output_constant_pool_2): Same. (output_constant_pool_1): Same. (mark_constants_in_pattern): Same. (mark_constant_pool): Same. (get_section_anchor): Same. * vr-values.c (compare_range_with_value): Same. (vr_values::extract_range_from_phi_node): Same. * vr-values.h: Same. * web.c (unionfind_union): Same. * wide-int.h: Same. From-SVN: r273311
2656 lines
77 KiB
C++
2656 lines
77 KiB
C++
/* Polynomial integer classes.
|
|
Copyright (C) 2014-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This file provides a representation of sizes and offsets whose exact
|
|
values depend on certain runtime properties. The motivating example
|
|
is the Arm SVE ISA, in which the number of vector elements is only
|
|
known at runtime. See doc/poly-int.texi for more details.
|
|
|
|
Tests for poly-int.h are located in testsuite/gcc.dg/plugin,
|
|
since they are too expensive (in terms of binary size) to be
|
|
included as selftests. */
|
|
|
|
#ifndef HAVE_POLY_INT_H
|
|
#define HAVE_POLY_INT_H
|
|
|
|
template<unsigned int N, typename T> struct poly_int_pod;
|
|
template<unsigned int N, typename T> class poly_int;
|
|
|
|
/* poly_coeff_traiits<T> describes the properties of a poly_int
|
|
coefficient type T:
|
|
|
|
- poly_coeff_traits<T1>::rank is less than poly_coeff_traits<T2>::rank
|
|
if T1 can promote to T2. For C-like types the rank is:
|
|
|
|
(2 * number of bytes) + (unsigned ? 1 : 0)
|
|
|
|
wide_ints don't have a normal rank and so use a value of INT_MAX.
|
|
Any fixed-width integer should be promoted to wide_int if possible
|
|
and lead to an error otherwise.
|
|
|
|
- poly_coeff_traits<T>::int_type is the type to which an integer
|
|
literal should be cast before comparing it with T.
|
|
|
|
- poly_coeff_traits<T>::precision is the number of bits that T can hold.
|
|
|
|
- poly_coeff_traits<T>::signedness is:
|
|
0 if T is unsigned
|
|
1 if T is signed
|
|
-1 if T has no inherent sign (as for wide_int).
|
|
|
|
- poly_coeff_traits<T>::max_value, if defined, is the maximum value of T.
|
|
|
|
- poly_coeff_traits<T>::result is a type that can hold results of
|
|
operations on T. This is different from T itself in cases where T
|
|
is the result of an accessor like wi::to_offset. */
|
|
template<typename T, wi::precision_type = wi::int_traits<T>::precision_type>
|
|
struct poly_coeff_traits;
|
|
|
|
template<typename T>
|
|
struct poly_coeff_traits<T, wi::FLEXIBLE_PRECISION>
|
|
{
|
|
typedef T result;
|
|
typedef T int_type;
|
|
static const int signedness = (T (0) >= T (-1));
|
|
static const int precision = sizeof (T) * CHAR_BIT;
|
|
static const T max_value = (signedness
|
|
? ((T (1) << (precision - 2))
|
|
+ ((T (1) << (precision - 2)) - 1))
|
|
: T (-1));
|
|
static const int rank = sizeof (T) * 2 + !signedness;
|
|
};
|
|
|
|
template<typename T>
|
|
struct poly_coeff_traits<T, wi::VAR_PRECISION>
|
|
{
|
|
typedef T result;
|
|
typedef int int_type;
|
|
static const int signedness = -1;
|
|
static const int precision = WIDE_INT_MAX_PRECISION;
|
|
static const int rank = INT_MAX;
|
|
};
|
|
|
|
template<typename T>
|
|
struct poly_coeff_traits<T, wi::CONST_PRECISION>
|
|
{
|
|
typedef WI_UNARY_RESULT (T) result;
|
|
typedef int int_type;
|
|
/* These types are always signed. */
|
|
static const int signedness = 1;
|
|
static const int precision = wi::int_traits<T>::precision;
|
|
static const int rank = precision * 2 / CHAR_BIT;
|
|
};
|
|
|
|
/* Information about a pair of coefficient types. */
|
|
template<typename T1, typename T2>
|
|
struct poly_coeff_pair_traits
|
|
{
|
|
/* True if T1 can represent all the values of T2.
|
|
|
|
Either:
|
|
|
|
- T1 should be a type with the same signedness as T2 and no less
|
|
precision. This allows things like int16_t -> int16_t and
|
|
uint32_t -> uint64_t.
|
|
|
|
- T1 should be signed, T2 should be unsigned, and T1 should be
|
|
wider than T2. This allows things like uint16_t -> int32_t.
|
|
|
|
This rules out cases in which T1 has less precision than T2 or where
|
|
the conversion would reinterpret the top bit. E.g. int16_t -> uint32_t
|
|
can be dangerous and should have an explicit cast if deliberate. */
|
|
static const bool lossless_p = (poly_coeff_traits<T1>::signedness
|
|
== poly_coeff_traits<T2>::signedness
|
|
? (poly_coeff_traits<T1>::precision
|
|
>= poly_coeff_traits<T2>::precision)
|
|
: (poly_coeff_traits<T1>::signedness == 1
|
|
&& poly_coeff_traits<T2>::signedness == 0
|
|
&& (poly_coeff_traits<T1>::precision
|
|
> poly_coeff_traits<T2>::precision)));
|
|
|
|
/* 0 if T1 op T2 should promote to HOST_WIDE_INT,
|
|
1 if T1 op T2 should promote to unsigned HOST_WIDE_INT,
|
|
2 if T1 op T2 should use wide-int rules. */
|
|
#define RANK(X) poly_coeff_traits<X>::rank
|
|
static const int result_kind
|
|
= ((RANK (T1) <= RANK (HOST_WIDE_INT)
|
|
&& RANK (T2) <= RANK (HOST_WIDE_INT))
|
|
? 0
|
|
: (RANK (T1) <= RANK (unsigned HOST_WIDE_INT)
|
|
&& RANK (T2) <= RANK (unsigned HOST_WIDE_INT))
|
|
? 1 : 2);
|
|
#undef RANK
|
|
};
|
|
|
|
/* SFINAE class that makes T3 available as "type" if T2 can represent all the
|
|
values in T1. */
|
|
template<typename T1, typename T2, typename T3,
|
|
bool lossless_p = poly_coeff_pair_traits<T1, T2>::lossless_p>
|
|
struct if_lossless;
|
|
template<typename T1, typename T2, typename T3>
|
|
struct if_lossless<T1, T2, T3, true>
|
|
{
|
|
typedef T3 type;
|
|
};
|
|
|
|
/* poly_int_traits<T> describes an integer type T that might be polynomial
|
|
or non-polynomial:
|
|
|
|
- poly_int_traits<T>::is_poly is true if T is a poly_int-based type
|
|
and false otherwise.
|
|
|
|
- poly_int_traits<T>::num_coeffs gives the number of coefficients in T
|
|
if T is a poly_int and 1 otherwise.
|
|
|
|
- poly_int_traits<T>::coeff_type gives the coefficent type of T if T
|
|
is a poly_int and T itself otherwise
|
|
|
|
- poly_int_traits<T>::int_type is a shorthand for
|
|
typename poly_coeff_traits<coeff_type>::int_type. */
|
|
template<typename T>
|
|
struct poly_int_traits
|
|
{
|
|
static const bool is_poly = false;
|
|
static const unsigned int num_coeffs = 1;
|
|
typedef T coeff_type;
|
|
typedef typename poly_coeff_traits<T>::int_type int_type;
|
|
};
|
|
template<unsigned int N, typename C>
|
|
struct poly_int_traits<poly_int_pod<N, C> >
|
|
{
|
|
static const bool is_poly = true;
|
|
static const unsigned int num_coeffs = N;
|
|
typedef C coeff_type;
|
|
typedef typename poly_coeff_traits<C>::int_type int_type;
|
|
};
|
|
template<unsigned int N, typename C>
|
|
struct poly_int_traits<poly_int<N, C> > : poly_int_traits<poly_int_pod<N, C> >
|
|
{
|
|
};
|
|
|
|
/* SFINAE class that makes T2 available as "type" if T1 is a non-polynomial
|
|
type. */
|
|
template<typename T1, typename T2 = T1,
|
|
bool is_poly = poly_int_traits<T1>::is_poly>
|
|
struct if_nonpoly {};
|
|
template<typename T1, typename T2>
|
|
struct if_nonpoly<T1, T2, false>
|
|
{
|
|
typedef T2 type;
|
|
};
|
|
|
|
/* SFINAE class that makes T3 available as "type" if both T1 and T2 are
|
|
non-polynomial types. */
|
|
template<typename T1, typename T2, typename T3,
|
|
bool is_poly1 = poly_int_traits<T1>::is_poly,
|
|
bool is_poly2 = poly_int_traits<T2>::is_poly>
|
|
struct if_nonpoly2 {};
|
|
template<typename T1, typename T2, typename T3>
|
|
struct if_nonpoly2<T1, T2, T3, false, false>
|
|
{
|
|
typedef T3 type;
|
|
};
|
|
|
|
/* SFINAE class that makes T2 available as "type" if T1 is a polynomial
|
|
type. */
|
|
template<typename T1, typename T2 = T1,
|
|
bool is_poly = poly_int_traits<T1>::is_poly>
|
|
struct if_poly {};
|
|
template<typename T1, typename T2>
|
|
struct if_poly<T1, T2, true>
|
|
{
|
|
typedef T2 type;
|
|
};
|
|
|
|
/* poly_result<T1, T2> describes the result of an operation on two
|
|
types T1 and T2, where at least one of the types is polynomial:
|
|
|
|
- poly_result<T1, T2>::type gives the result type for the operation.
|
|
The intention is to provide normal C-like rules for integer ranks,
|
|
except that everything smaller than HOST_WIDE_INT promotes to
|
|
HOST_WIDE_INT.
|
|
|
|
- poly_result<T1, T2>::cast is the type to which an operand of type
|
|
T1 should be cast before doing the operation, to ensure that
|
|
the operation is done at the right precision. Casting to
|
|
poly_result<T1, T2>::type would also work, but casting to this
|
|
type is more efficient. */
|
|
template<typename T1, typename T2 = T1,
|
|
int result_kind = poly_coeff_pair_traits<T1, T2>::result_kind>
|
|
struct poly_result;
|
|
|
|
/* Promote pair to HOST_WIDE_INT. */
|
|
template<typename T1, typename T2>
|
|
struct poly_result<T1, T2, 0>
|
|
{
|
|
typedef HOST_WIDE_INT type;
|
|
/* T1 and T2 are primitive types, so cast values to T before operating
|
|
on them. */
|
|
typedef type cast;
|
|
};
|
|
|
|
/* Promote pair to unsigned HOST_WIDE_INT. */
|
|
template<typename T1, typename T2>
|
|
struct poly_result<T1, T2, 1>
|
|
{
|
|
typedef unsigned HOST_WIDE_INT type;
|
|
/* T1 and T2 are primitive types, so cast values to T before operating
|
|
on them. */
|
|
typedef type cast;
|
|
};
|
|
|
|
/* Use normal wide-int rules. */
|
|
template<typename T1, typename T2>
|
|
struct poly_result<T1, T2, 2>
|
|
{
|
|
typedef WI_BINARY_RESULT (T1, T2) type;
|
|
/* Don't cast values before operating on them; leave the wi:: routines
|
|
to handle promotion as necessary. */
|
|
typedef const T1 &cast;
|
|
};
|
|
|
|
/* The coefficient type for the result of a binary operation on two
|
|
poly_ints, the first of which has coefficients of type C1 and the
|
|
second of which has coefficients of type C2. */
|
|
#define POLY_POLY_COEFF(C1, C2) typename poly_result<C1, C2>::type
|
|
|
|
/* Enforce that T2 is non-polynomial and provide the cofficient type of
|
|
the result of a binary operation in which the first operand is a
|
|
poly_int with coefficients of type C1 and the second operand is
|
|
a constant of type T2. */
|
|
#define POLY_CONST_COEFF(C1, T2) \
|
|
POLY_POLY_COEFF (C1, typename if_nonpoly<T2>::type)
|
|
|
|
/* Likewise in reverse. */
|
|
#define CONST_POLY_COEFF(T1, C2) \
|
|
POLY_POLY_COEFF (typename if_nonpoly<T1>::type, C2)
|
|
|
|
/* The result type for a binary operation on poly_int<N, C1> and
|
|
poly_int<N, C2>. */
|
|
#define POLY_POLY_RESULT(N, C1, C2) poly_int<N, POLY_POLY_COEFF (C1, C2)>
|
|
|
|
/* Enforce that T2 is non-polynomial and provide the result type
|
|
for a binary operation on poly_int<N, C1> and T2. */
|
|
#define POLY_CONST_RESULT(N, C1, T2) poly_int<N, POLY_CONST_COEFF (C1, T2)>
|
|
|
|
/* Enforce that T1 is non-polynomial and provide the result type
|
|
for a binary operation on T1 and poly_int<N, C2>. */
|
|
#define CONST_POLY_RESULT(N, T1, C2) poly_int<N, CONST_POLY_COEFF (T1, C2)>
|
|
|
|
/* Enforce that T1 and T2 are non-polynomial and provide the result type
|
|
for a binary operation on T1 and T2. */
|
|
#define CONST_CONST_RESULT(N, T1, T2) \
|
|
POLY_POLY_COEFF (typename if_nonpoly<T1>::type, \
|
|
typename if_nonpoly<T2>::type)
|
|
|
|
/* The type to which a coefficient of type C1 should be cast before
|
|
using it in a binary operation with a coefficient of type C2. */
|
|
#define POLY_CAST(C1, C2) typename poly_result<C1, C2>::cast
|
|
|
|
/* Provide the coefficient type for the result of T1 op T2, where T1
|
|
and T2 can be polynomial or non-polynomial. */
|
|
#define POLY_BINARY_COEFF(T1, T2) \
|
|
typename poly_result<typename poly_int_traits<T1>::coeff_type, \
|
|
typename poly_int_traits<T2>::coeff_type>::type
|
|
|
|
/* The type to which an integer constant should be cast before
|
|
comparing it with T. */
|
|
#define POLY_INT_TYPE(T) typename poly_int_traits<T>::int_type
|
|
|
|
/* RES is a poly_int result that has coefficients of type C and that
|
|
is being built up a coefficient at a time. Set coefficient number I
|
|
to VALUE in the most efficient way possible.
|
|
|
|
For primitive C it is better to assign directly, since it avoids
|
|
any further calls and so is more efficient when the compiler is
|
|
built at -O0. But for wide-int based C it is better to construct
|
|
the value in-place. This means that calls out to a wide-int.cc
|
|
routine can take the address of RES rather than the address of
|
|
a temporary.
|
|
|
|
The dummy comparison against a null C * is just a way of checking
|
|
that C gives the right type. */
|
|
#define POLY_SET_COEFF(C, RES, I, VALUE) \
|
|
((void) (&(RES).coeffs[0] == (C *) 0), \
|
|
wi::int_traits<C>::precision_type == wi::FLEXIBLE_PRECISION \
|
|
? (void) ((RES).coeffs[I] = VALUE) \
|
|
: (void) ((RES).coeffs[I].~C (), new (&(RES).coeffs[I]) C (VALUE)))
|
|
|
|
/* A base POD class for polynomial integers. The polynomial has N
|
|
coefficients of type C. */
|
|
template<unsigned int N, typename C>
|
|
struct poly_int_pod
|
|
{
|
|
public:
|
|
template<typename Ca>
|
|
poly_int_pod &operator = (const poly_int_pod<N, Ca> &);
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int_pod>::type &operator = (const Ca &);
|
|
|
|
template<typename Ca>
|
|
poly_int_pod &operator += (const poly_int_pod<N, Ca> &);
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int_pod>::type &operator += (const Ca &);
|
|
|
|
template<typename Ca>
|
|
poly_int_pod &operator -= (const poly_int_pod<N, Ca> &);
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int_pod>::type &operator -= (const Ca &);
|
|
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int_pod>::type &operator *= (const Ca &);
|
|
|
|
poly_int_pod &operator <<= (unsigned int);
|
|
|
|
bool is_constant () const;
|
|
|
|
template<typename T>
|
|
typename if_lossless<T, C, bool>::type is_constant (T *) const;
|
|
|
|
C to_constant () const;
|
|
|
|
template<typename Ca>
|
|
static poly_int<N, C> from (const poly_int_pod<N, Ca> &, unsigned int,
|
|
signop);
|
|
template<typename Ca>
|
|
static poly_int<N, C> from (const poly_int_pod<N, Ca> &, signop);
|
|
|
|
bool to_shwi (poly_int_pod<N, HOST_WIDE_INT> *) const;
|
|
bool to_uhwi (poly_int_pod<N, unsigned HOST_WIDE_INT> *) const;
|
|
poly_int<N, HOST_WIDE_INT> force_shwi () const;
|
|
poly_int<N, unsigned HOST_WIDE_INT> force_uhwi () const;
|
|
|
|
#if POLY_INT_CONVERSION
|
|
operator C () const;
|
|
#endif
|
|
|
|
C coeffs[N];
|
|
};
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int_pod<N, C>&
|
|
poly_int_pod<N, C>::operator = (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, *this, i, a.coeffs[i]);
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type &
|
|
poly_int_pod<N, C>::operator = (const Ca &a)
|
|
{
|
|
POLY_SET_COEFF (C, *this, 0, a);
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0]));
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int_pod<N, C>&
|
|
poly_int_pod<N, C>::operator += (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] += a.coeffs[i];
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type &
|
|
poly_int_pod<N, C>::operator += (const Ca &a)
|
|
{
|
|
this->coeffs[0] += a;
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int_pod<N, C>&
|
|
poly_int_pod<N, C>::operator -= (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] -= a.coeffs[i];
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type &
|
|
poly_int_pod<N, C>::operator -= (const Ca &a)
|
|
{
|
|
this->coeffs[0] -= a;
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type &
|
|
poly_int_pod<N, C>::operator *= (const Ca &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] *= a;
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
inline poly_int_pod<N, C>&
|
|
poly_int_pod<N, C>::operator <<= (unsigned int a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] <<= a;
|
|
return *this;
|
|
}
|
|
|
|
/* Return true if the polynomial value is a compile-time constant. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline bool
|
|
poly_int_pod<N, C>::is_constant () const
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (this->coeffs[i] != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if the polynomial value is a compile-time constant,
|
|
storing its value in CONST_VALUE if so. */
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename T>
|
|
inline typename if_lossless<T, C, bool>::type
|
|
poly_int_pod<N, C>::is_constant (T *const_value) const
|
|
{
|
|
if (is_constant ())
|
|
{
|
|
*const_value = this->coeffs[0];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return the value of a polynomial that is already known to be a
|
|
compile-time constant.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the value is constant in that context. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline C
|
|
poly_int_pod<N, C>::to_constant () const
|
|
{
|
|
gcc_checking_assert (is_constant ());
|
|
return this->coeffs[0];
|
|
}
|
|
|
|
/* Convert X to a wide_int-based polynomial in which each coefficient
|
|
has BITSIZE bits. If X's coefficients are smaller than BITSIZE,
|
|
extend them according to SGN. */
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int<N, C>
|
|
poly_int_pod<N, C>::from (const poly_int_pod<N, Ca> &a,
|
|
unsigned int bitsize, signop sgn)
|
|
{
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], bitsize, sgn));
|
|
return r;
|
|
}
|
|
|
|
/* Convert X to a fixed_wide_int-based polynomial, extending according
|
|
to SGN. */
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int<N, C>
|
|
poly_int_pod<N, C>::from (const poly_int_pod<N, Ca> &a, signop sgn)
|
|
{
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], sgn));
|
|
return r;
|
|
}
|
|
|
|
/* Return true if the coefficients of this generic_wide_int-based
|
|
polynomial can be represented as signed HOST_WIDE_INTs without loss
|
|
of precision. Store the HOST_WIDE_INT representation in *R if so. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline bool
|
|
poly_int_pod<N, C>::to_shwi (poly_int_pod<N, HOST_WIDE_INT> *r) const
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
if (!wi::fits_shwi_p (this->coeffs[i]))
|
|
return false;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
r->coeffs[i] = this->coeffs[i].to_shwi ();
|
|
return true;
|
|
}
|
|
|
|
/* Return true if the coefficients of this generic_wide_int-based
|
|
polynomial can be represented as unsigned HOST_WIDE_INTs without
|
|
loss of precision. Store the unsigned HOST_WIDE_INT representation
|
|
in *R if so. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline bool
|
|
poly_int_pod<N, C>::to_uhwi (poly_int_pod<N, unsigned HOST_WIDE_INT> *r) const
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
if (!wi::fits_uhwi_p (this->coeffs[i]))
|
|
return false;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
r->coeffs[i] = this->coeffs[i].to_uhwi ();
|
|
return true;
|
|
}
|
|
|
|
/* Force a generic_wide_int-based constant to HOST_WIDE_INT precision,
|
|
truncating if necessary. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline poly_int<N, HOST_WIDE_INT>
|
|
poly_int_pod<N, C>::force_shwi () const
|
|
{
|
|
poly_int_pod<N, HOST_WIDE_INT> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
r.coeffs[i] = this->coeffs[i].to_shwi ();
|
|
return r;
|
|
}
|
|
|
|
/* Force a generic_wide_int-based constant to unsigned HOST_WIDE_INT precision,
|
|
truncating if necessary. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline poly_int<N, unsigned HOST_WIDE_INT>
|
|
poly_int_pod<N, C>::force_uhwi () const
|
|
{
|
|
poly_int_pod<N, unsigned HOST_WIDE_INT> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
r.coeffs[i] = this->coeffs[i].to_uhwi ();
|
|
return r;
|
|
}
|
|
|
|
#if POLY_INT_CONVERSION
|
|
/* Provide a conversion operator to constants. */
|
|
|
|
template<unsigned int N, typename C>
|
|
inline
|
|
poly_int_pod<N, C>::operator C () const
|
|
{
|
|
gcc_checking_assert (this->is_constant ());
|
|
return this->coeffs[0];
|
|
}
|
|
#endif
|
|
|
|
/* The main class for polynomial integers. The class provides
|
|
constructors that are necessarily missing from the POD base. */
|
|
template<unsigned int N, typename C>
|
|
class poly_int : public poly_int_pod<N, C>
|
|
{
|
|
public:
|
|
poly_int () {}
|
|
|
|
template<typename Ca>
|
|
poly_int (const poly_int<N, Ca> &);
|
|
template<typename Ca>
|
|
poly_int (const poly_int_pod<N, Ca> &);
|
|
template<typename C0>
|
|
poly_int (const C0 &);
|
|
template<typename C0, typename C1>
|
|
poly_int (const C0 &, const C1 &);
|
|
|
|
template<typename Ca>
|
|
poly_int &operator = (const poly_int_pod<N, Ca> &);
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int>::type &operator = (const Ca &);
|
|
|
|
template<typename Ca>
|
|
poly_int &operator += (const poly_int_pod<N, Ca> &);
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int>::type &operator += (const Ca &);
|
|
|
|
template<typename Ca>
|
|
poly_int &operator -= (const poly_int_pod<N, Ca> &);
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int>::type &operator -= (const Ca &);
|
|
|
|
template<typename Ca>
|
|
typename if_nonpoly<Ca, poly_int>::type &operator *= (const Ca &);
|
|
|
|
poly_int &operator <<= (unsigned int);
|
|
};
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline
|
|
poly_int<N, C>::poly_int (const poly_int<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, *this, i, a.coeffs[i]);
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline
|
|
poly_int<N, C>::poly_int (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, *this, i, a.coeffs[i]);
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename C0>
|
|
inline
|
|
poly_int<N, C>::poly_int (const C0 &c0)
|
|
{
|
|
POLY_SET_COEFF (C, *this, 0, c0);
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0]));
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename C0, typename C1>
|
|
inline
|
|
poly_int<N, C>::poly_int (const C0 &c0, const C1 &c1)
|
|
{
|
|
STATIC_ASSERT (N >= 2);
|
|
POLY_SET_COEFF (C, *this, 0, c0);
|
|
POLY_SET_COEFF (C, *this, 1, c1);
|
|
for (unsigned int i = 2; i < N; i++)
|
|
POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0]));
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int<N, C>&
|
|
poly_int<N, C>::operator = (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] = a.coeffs[i];
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
|
|
poly_int<N, C>::operator = (const Ca &a)
|
|
{
|
|
this->coeffs[0] = a;
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
this->coeffs[i] = wi::ints_for<C>::zero (this->coeffs[0]);
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int<N, C>&
|
|
poly_int<N, C>::operator += (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] += a.coeffs[i];
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
|
|
poly_int<N, C>::operator += (const Ca &a)
|
|
{
|
|
this->coeffs[0] += a;
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline poly_int<N, C>&
|
|
poly_int<N, C>::operator -= (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] -= a.coeffs[i];
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
|
|
poly_int<N, C>::operator -= (const Ca &a)
|
|
{
|
|
this->coeffs[0] -= a;
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
template<typename Ca>
|
|
inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
|
|
poly_int<N, C>::operator *= (const Ca &a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] *= a;
|
|
return *this;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
inline poly_int<N, C>&
|
|
poly_int<N, C>::operator <<= (unsigned int a)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
this->coeffs[i] <<= a;
|
|
return *this;
|
|
}
|
|
|
|
/* Return true if every coefficient of A is in the inclusive range [B, C]. */
|
|
|
|
template<typename Ca, typename Cb, typename Cc>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
coeffs_in_range_p (const Ca &a, const Cb &b, const Cc &c)
|
|
{
|
|
return a >= b && a <= c;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cc>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
coeffs_in_range_p (const poly_int_pod<N, Ca> &a, const Cb &b, const Cc &c)
|
|
{
|
|
for (unsigned int i = 0; i < N; i++)
|
|
if (a.coeffs[i] < b || a.coeffs[i] > c)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
namespace wi {
|
|
/* Poly version of wi::shwi, with the same interface. */
|
|
|
|
template<unsigned int N>
|
|
inline poly_int<N, hwi_with_prec>
|
|
shwi (const poly_int_pod<N, HOST_WIDE_INT> &a, unsigned int precision)
|
|
{
|
|
poly_int<N, hwi_with_prec> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (hwi_with_prec, r, i, wi::shwi (a.coeffs[i], precision));
|
|
return r;
|
|
}
|
|
|
|
/* Poly version of wi::uhwi, with the same interface. */
|
|
|
|
template<unsigned int N>
|
|
inline poly_int<N, hwi_with_prec>
|
|
uhwi (const poly_int_pod<N, unsigned HOST_WIDE_INT> &a, unsigned int precision)
|
|
{
|
|
poly_int<N, hwi_with_prec> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (hwi_with_prec, r, i, wi::uhwi (a.coeffs[i], precision));
|
|
return r;
|
|
}
|
|
|
|
/* Poly version of wi::sext, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline POLY_POLY_RESULT (N, Ca, Ca)
|
|
sext (const poly_int_pod<N, Ca> &a, unsigned int precision)
|
|
{
|
|
typedef POLY_POLY_COEFF (Ca, Ca) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::sext (a.coeffs[i], precision));
|
|
return r;
|
|
}
|
|
|
|
/* Poly version of wi::zext, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline POLY_POLY_RESULT (N, Ca, Ca)
|
|
zext (const poly_int_pod<N, Ca> &a, unsigned int precision)
|
|
{
|
|
typedef POLY_POLY_COEFF (Ca, Ca) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::zext (a.coeffs[i], precision));
|
|
return r;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
operator + (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_POLY_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) + b.coeffs[i]);
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
operator + (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CONST_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) + b);
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
operator + (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef CONST_POLY_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, a + NCb (b.coeffs[0]));
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCb (b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
namespace wi {
|
|
/* Poly versions of wi::add, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
add (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
add (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i],
|
|
wi::ints_for<Cb>::zero (b)));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
add (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::add (a, b.coeffs[0]));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::add (wi::ints_for<Ca>::zero (a),
|
|
b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
add (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b,
|
|
signop sgn, wi::overflow_type *overflow)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b.coeffs[0], sgn, overflow));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
{
|
|
wi::overflow_type suboverflow;
|
|
POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i], sgn,
|
|
&suboverflow));
|
|
wi::accumulate_overflow (*overflow, suboverflow);
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
operator - (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_POLY_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) - b.coeffs[i]);
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
operator - (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CONST_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) - b);
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
operator - (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef CONST_POLY_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, a - NCb (b.coeffs[0]));
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, -NCb (b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
namespace wi {
|
|
/* Poly versions of wi::sub, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
sub (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
sub (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i],
|
|
wi::ints_for<Cb>::zero (b)));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
sub (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::sub (a, b.coeffs[0]));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::sub (wi::ints_for<Ca>::zero (a),
|
|
b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
sub (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b,
|
|
signop sgn, wi::overflow_type *overflow)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b.coeffs[0], sgn, overflow));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
{
|
|
wi::overflow_type suboverflow;
|
|
POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i], sgn,
|
|
&suboverflow));
|
|
wi::accumulate_overflow (*overflow, suboverflow);
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline POLY_POLY_RESULT (N, Ca, Ca)
|
|
operator - (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
typedef POLY_CAST (Ca, Ca) NCa;
|
|
typedef POLY_POLY_COEFF (Ca, Ca) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, -NCa (a.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
namespace wi {
|
|
/* Poly version of wi::neg, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline poly_int<N, WI_UNARY_RESULT (Ca)>
|
|
neg (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
typedef WI_UNARY_RESULT (Ca) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline poly_int<N, WI_UNARY_RESULT (Ca)>
|
|
neg (const poly_int_pod<N, Ca> &a, wi::overflow_type *overflow)
|
|
{
|
|
typedef WI_UNARY_RESULT (Ca) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::neg (a.coeffs[0], overflow));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
{
|
|
wi::overflow_type suboverflow;
|
|
POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i], &suboverflow));
|
|
wi::accumulate_overflow (*overflow, suboverflow);
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline POLY_POLY_RESULT (N, Ca, Ca)
|
|
operator ~ (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
if (N >= 2)
|
|
return -1 - a;
|
|
return ~a.coeffs[0];
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
operator * (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CONST_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) * b);
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
operator * (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef CONST_POLY_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a) * b.coeffs[i]);
|
|
return r;
|
|
}
|
|
|
|
namespace wi {
|
|
/* Poly versions of wi::mul, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
mul (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
mul (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::mul (a, b.coeffs[i]));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
|
|
mul (const poly_int_pod<N, Ca> &a, const Cb &b,
|
|
signop sgn, wi::overflow_type *overflow)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, wi::mul (a.coeffs[0], b, sgn, overflow));
|
|
for (unsigned int i = 1; i < N; i++)
|
|
{
|
|
wi::overflow_type suboverflow;
|
|
POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b, sgn, &suboverflow));
|
|
wi::accumulate_overflow (*overflow, suboverflow);
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Ca)
|
|
operator << (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Ca) NCa;
|
|
typedef POLY_POLY_COEFF (Ca, Ca) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) << b);
|
|
return r;
|
|
}
|
|
|
|
namespace wi {
|
|
/* Poly version of wi::lshift, with the same interface. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, WI_BINARY_RESULT (Ca, Ca)>
|
|
lshift (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef WI_BINARY_RESULT (Ca, Ca) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, wi::lshift (a.coeffs[i], b));
|
|
return r;
|
|
}
|
|
}
|
|
|
|
/* Return true if a0 + a1 * x might equal b0 + b1 * x for some nonnegative
|
|
integer x. */
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline bool
|
|
maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b0, const Cb &b1)
|
|
{
|
|
if (a1 != b1)
|
|
/* a0 + a1 * x == b0 + b1 * x
|
|
==> (a1 - b1) * x == b0 - a0
|
|
==> x == (b0 - a0) / (a1 - b1)
|
|
|
|
We need to test whether that's a valid value of x.
|
|
(b0 - a0) and (a1 - b1) must not have opposite signs
|
|
and the result must be integral. */
|
|
return (a1 < b1
|
|
? b0 <= a0 && (a0 - b0) % (b1 - a1) == 0
|
|
: b0 >= a0 && (b0 - a0) % (a1 - b1) == 0);
|
|
return a0 == b0;
|
|
}
|
|
|
|
/* Return true if a0 + a1 * x might equal b for some nonnegative
|
|
integer x. */
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline bool
|
|
maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b)
|
|
{
|
|
if (a1 != 0)
|
|
/* a0 + a1 * x == b
|
|
==> x == (b - a0) / a1
|
|
|
|
We need to test whether that's a valid value of x.
|
|
(b - a0) and a1 must not have opposite signs and the
|
|
result must be integral. */
|
|
return (a1 < 0
|
|
? b <= a0 && (a0 - b) % a1 == 0
|
|
: b >= a0 && (b - a0) % a1 == 0);
|
|
return a0 == b;
|
|
}
|
|
|
|
/* Return true if A might equal B for some indeterminate values. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
maybe_eq (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
STATIC_ASSERT (N <= 2);
|
|
if (N == 2)
|
|
return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b.coeffs[0], b.coeffs[1]);
|
|
return a.coeffs[0] == b.coeffs[0];
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
maybe_eq (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
STATIC_ASSERT (N <= 2);
|
|
if (N == 2)
|
|
return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b);
|
|
return a.coeffs[0] == b;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
maybe_eq (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
STATIC_ASSERT (N <= 2);
|
|
if (N == 2)
|
|
return maybe_eq_2 (b.coeffs[0], b.coeffs[1], a);
|
|
return a == b.coeffs[0];
|
|
}
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline typename if_nonpoly2<Ca, Cb, bool>::type
|
|
maybe_eq (const Ca &a, const Cb &b)
|
|
{
|
|
return a == b;
|
|
}
|
|
|
|
/* Return true if A might not equal B for some indeterminate values. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
maybe_ne (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (a.coeffs[i] != b.coeffs[i])
|
|
return true;
|
|
return a.coeffs[0] != b.coeffs[0];
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
maybe_ne (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (a.coeffs[i] != 0)
|
|
return true;
|
|
return a.coeffs[0] != b;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
maybe_ne (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (b.coeffs[i] != 0)
|
|
return true;
|
|
return a != b.coeffs[0];
|
|
}
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline typename if_nonpoly2<Ca, Cb, bool>::type
|
|
maybe_ne (const Ca &a, const Cb &b)
|
|
{
|
|
return a != b;
|
|
}
|
|
|
|
/* Return true if A is known to be equal to B. */
|
|
#define known_eq(A, B) (!maybe_ne (A, B))
|
|
|
|
/* Return true if A is known to be unequal to B. */
|
|
#define known_ne(A, B) (!maybe_eq (A, B))
|
|
|
|
/* Return true if A might be less than or equal to B for some
|
|
indeterminate values. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
maybe_le (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (a.coeffs[i] < b.coeffs[i])
|
|
return true;
|
|
return a.coeffs[0] <= b.coeffs[0];
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
maybe_le (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (a.coeffs[i] < 0)
|
|
return true;
|
|
return a.coeffs[0] <= b;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
maybe_le (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (b.coeffs[i] > 0)
|
|
return true;
|
|
return a <= b.coeffs[0];
|
|
}
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline typename if_nonpoly2<Ca, Cb, bool>::type
|
|
maybe_le (const Ca &a, const Cb &b)
|
|
{
|
|
return a <= b;
|
|
}
|
|
|
|
/* Return true if A might be less than B for some indeterminate values. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
maybe_lt (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (a.coeffs[i] < b.coeffs[i])
|
|
return true;
|
|
return a.coeffs[0] < b.coeffs[0];
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
maybe_lt (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (a.coeffs[i] < 0)
|
|
return true;
|
|
return a.coeffs[0] < b;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
maybe_lt (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if (b.coeffs[i] > 0)
|
|
return true;
|
|
return a < b.coeffs[0];
|
|
}
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline typename if_nonpoly2<Ca, Cb, bool>::type
|
|
maybe_lt (const Ca &a, const Cb &b)
|
|
{
|
|
return a < b;
|
|
}
|
|
|
|
/* Return true if A may be greater than or equal to B. */
|
|
#define maybe_ge(A, B) maybe_le (B, A)
|
|
|
|
/* Return true if A may be greater than B. */
|
|
#define maybe_gt(A, B) maybe_lt (B, A)
|
|
|
|
/* Return true if A is known to be less than or equal to B. */
|
|
#define known_le(A, B) (!maybe_gt (A, B))
|
|
|
|
/* Return true if A is known to be less than B. */
|
|
#define known_lt(A, B) (!maybe_ge (A, B))
|
|
|
|
/* Return true if A is known to be greater than B. */
|
|
#define known_gt(A, B) (!maybe_le (A, B))
|
|
|
|
/* Return true if A is known to be greater than or equal to B. */
|
|
#define known_ge(A, B) (!maybe_lt (A, B))
|
|
|
|
/* Return true if A and B are ordered by the partial ordering known_le. */
|
|
|
|
template<typename T1, typename T2>
|
|
inline bool
|
|
ordered_p (const T1 &a, const T2 &b)
|
|
{
|
|
return ((poly_int_traits<T1>::num_coeffs == 1
|
|
&& poly_int_traits<T2>::num_coeffs == 1)
|
|
|| known_le (a, b)
|
|
|| known_le (b, a));
|
|
}
|
|
|
|
/* Assert that A and B are known to be ordered and return the minimum
|
|
of the two.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the values are ordered in that context. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
ordered_min (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (known_le (a, b))
|
|
return a;
|
|
else
|
|
{
|
|
if (N > 1)
|
|
gcc_checking_assert (known_le (b, a));
|
|
return b;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
ordered_min (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (known_le (a, b))
|
|
return a;
|
|
else
|
|
{
|
|
if (N > 1)
|
|
gcc_checking_assert (known_le (b, a));
|
|
return b;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
ordered_min (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
if (known_le (a, b))
|
|
return a;
|
|
else
|
|
{
|
|
if (N > 1)
|
|
gcc_checking_assert (known_le (b, a));
|
|
return b;
|
|
}
|
|
}
|
|
|
|
/* Assert that A and B are known to be ordered and return the maximum
|
|
of the two.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the values are ordered in that context. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
ordered_max (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (known_le (a, b))
|
|
return b;
|
|
else
|
|
{
|
|
if (N > 1)
|
|
gcc_checking_assert (known_le (b, a));
|
|
return a;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
ordered_max (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (known_le (a, b))
|
|
return b;
|
|
else
|
|
{
|
|
if (N > 1)
|
|
gcc_checking_assert (known_le (b, a));
|
|
return a;
|
|
}
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
ordered_max (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
if (known_le (a, b))
|
|
return b;
|
|
else
|
|
{
|
|
if (N > 1)
|
|
gcc_checking_assert (known_le (b, a));
|
|
return a;
|
|
}
|
|
}
|
|
|
|
/* Return a constant lower bound on the value of A, which is known
|
|
to be nonnegative. */
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline Ca
|
|
constant_lower_bound (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
gcc_checking_assert (known_ge (a, POLY_INT_TYPE (Ca) (0)));
|
|
return a.coeffs[0];
|
|
}
|
|
|
|
/* Return a value that is known to be no greater than A and B. This
|
|
will be the greatest lower bound for some indeterminate values but
|
|
not necessarily for all. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
lower_bound (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_INT_TYPE (Cb) ICb;
|
|
typedef POLY_CONST_COEFF (Ca, Cb) C;
|
|
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, MIN (NCa (a.coeffs[0]), NCb (b)));
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), ICb (0)));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
lower_bound (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
return lower_bound (b, a);
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
lower_bound (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_POLY_COEFF (Ca, Cb) C;
|
|
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), NCb (b.coeffs[i])));
|
|
return r;
|
|
}
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline CONST_CONST_RESULT (N, Ca, Cb)
|
|
lower_bound (const Ca &a, const Cb &b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
/* Return a value that is known to be no less than A and B. This will
|
|
be the least upper bound for some indeterminate values but not
|
|
necessarily for all. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
upper_bound (const poly_int_pod<N, Ca> &a, const Cb &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_INT_TYPE (Cb) ICb;
|
|
typedef POLY_CONST_COEFF (Ca, Cb) C;
|
|
|
|
poly_int<N, C> r;
|
|
POLY_SET_COEFF (C, r, 0, MAX (NCa (a.coeffs[0]), NCb (b)));
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), ICb (0)));
|
|
return r;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
upper_bound (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
return upper_bound (b, a);
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
upper_bound (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_POLY_COEFF (Ca, Cb) C;
|
|
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), NCb (b.coeffs[i])));
|
|
return r;
|
|
}
|
|
|
|
/* Return the greatest common divisor of all nonzero coefficients, or zero
|
|
if all coefficients are zero. */
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline POLY_BINARY_COEFF (Ca, Ca)
|
|
coeff_gcd (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
/* Find the first nonzero coefficient, stopping at 0 whatever happens. */
|
|
unsigned int i;
|
|
for (i = N - 1; i > 0; --i)
|
|
if (a.coeffs[i] != 0)
|
|
break;
|
|
typedef POLY_BINARY_COEFF (Ca, Ca) C;
|
|
C r = a.coeffs[i];
|
|
for (unsigned int j = 0; j < i; ++j)
|
|
if (a.coeffs[j] != 0)
|
|
r = gcd (r, C (a.coeffs[j]));
|
|
return r;
|
|
}
|
|
|
|
/* Return a value that is a multiple of both A and B. This will be the
|
|
least common multiple for some indeterminate values but necessarily
|
|
for all. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
POLY_CONST_RESULT (N, Ca, Cb)
|
|
common_multiple (const poly_int_pod<N, Ca> &a, Cb b)
|
|
{
|
|
POLY_BINARY_COEFF (Ca, Ca) xgcd = coeff_gcd (a);
|
|
return a * (least_common_multiple (xgcd, b) / xgcd);
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline CONST_POLY_RESULT (N, Ca, Cb)
|
|
common_multiple (const Ca &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
return common_multiple (b, a);
|
|
}
|
|
|
|
/* Return a value that is a multiple of both A and B, asserting that
|
|
such a value exists. The result will be the least common multiple
|
|
for some indeterminate values but necessarily for all.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the values have a common multiple (which might
|
|
for example be because we know A / B is rational). */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
POLY_POLY_RESULT (N, Ca, Cb)
|
|
force_common_multiple (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (b.is_constant ())
|
|
return common_multiple (a, b.coeffs[0]);
|
|
if (a.is_constant ())
|
|
return common_multiple (a.coeffs[0], b);
|
|
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_BINARY_COEFF (Ca, Cb) C;
|
|
typedef POLY_INT_TYPE (Ca) ICa;
|
|
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
if (a.coeffs[i] != ICa (0))
|
|
{
|
|
C lcm = least_common_multiple (NCa (a.coeffs[i]), NCb (b.coeffs[i]));
|
|
C amul = lcm / a.coeffs[i];
|
|
C bmul = lcm / b.coeffs[i];
|
|
for (unsigned int j = 0; j < N; ++j)
|
|
gcc_checking_assert (a.coeffs[j] * amul == b.coeffs[j] * bmul);
|
|
return a * amul;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Compare A and B for sorting purposes, returning -1 if A should come
|
|
before B, 0 if A and B are identical, and 1 if A should come after B.
|
|
This is a lexicographical compare of the coefficients in reverse order.
|
|
|
|
A consequence of this is that all constant sizes come before all
|
|
non-constant ones, regardless of magnitude (since a size is never
|
|
negative). This is what most callers want. For example, when laying
|
|
data out on the stack, it's better to keep all the constant-sized
|
|
data together so that it can be accessed as a constant offset from a
|
|
single base. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline int
|
|
compare_sizes_for_sort (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b)
|
|
{
|
|
for (unsigned int i = N; i-- > 0; )
|
|
if (a.coeffs[i] != b.coeffs[i])
|
|
return a.coeffs[i] < b.coeffs[i] ? -1 : 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Return true if we can calculate VALUE & (ALIGN - 1) at compile time. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
can_align_p (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if ((value.coeffs[i] & (align - 1)) != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if we can align VALUE up to the smallest multiple of
|
|
ALIGN that is >= VALUE. Store the aligned value in *ALIGNED if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
can_align_up (const poly_int_pod<N, Ca> &value, Cb align,
|
|
poly_int_pod<N, Ca> *aligned)
|
|
{
|
|
if (!can_align_p (value, align))
|
|
return false;
|
|
*aligned = value + (-value.coeffs[0] & (align - 1));
|
|
return true;
|
|
}
|
|
|
|
/* Return true if we can align VALUE down to the largest multiple of
|
|
ALIGN that is <= VALUE. Store the aligned value in *ALIGNED if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
can_align_down (const poly_int_pod<N, Ca> &value, Cb align,
|
|
poly_int_pod<N, Ca> *aligned)
|
|
{
|
|
if (!can_align_p (value, align))
|
|
return false;
|
|
*aligned = value - (value.coeffs[0] & (align - 1));
|
|
return true;
|
|
}
|
|
|
|
/* Return true if we can align A and B up to the smallest multiples of
|
|
ALIGN that are >= A and B respectively, and if doing so gives the
|
|
same value. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cc>
|
|
inline bool
|
|
known_equal_after_align_up (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b,
|
|
Cc align)
|
|
{
|
|
poly_int<N, Ca> aligned_a;
|
|
poly_int<N, Cb> aligned_b;
|
|
return (can_align_up (a, align, &aligned_a)
|
|
&& can_align_up (b, align, &aligned_b)
|
|
&& known_eq (aligned_a, aligned_b));
|
|
}
|
|
|
|
/* Return true if we can align A and B down to the largest multiples of
|
|
ALIGN that are <= A and B respectively, and if doing so gives the
|
|
same value. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cc>
|
|
inline bool
|
|
known_equal_after_align_down (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b,
|
|
Cc align)
|
|
{
|
|
poly_int<N, Ca> aligned_a;
|
|
poly_int<N, Cb> aligned_b;
|
|
return (can_align_down (a, align, &aligned_a)
|
|
&& can_align_down (b, align, &aligned_b)
|
|
&& known_eq (aligned_a, aligned_b));
|
|
}
|
|
|
|
/* Assert that we can align VALUE to ALIGN at compile time and return
|
|
the smallest multiple of ALIGN that is >= VALUE.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the non-constant coefficients must already
|
|
be a multiple of ALIGN. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, Ca>
|
|
force_align_up (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
gcc_checking_assert (can_align_p (value, align));
|
|
return value + (-value.coeffs[0] & (align - 1));
|
|
}
|
|
|
|
/* Assert that we can align VALUE to ALIGN at compile time and return
|
|
the largest multiple of ALIGN that is <= VALUE.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the non-constant coefficients must already
|
|
be a multiple of ALIGN. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, Ca>
|
|
force_align_down (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
gcc_checking_assert (can_align_p (value, align));
|
|
return value - (value.coeffs[0] & (align - 1));
|
|
}
|
|
|
|
/* Return a value <= VALUE that is a multiple of ALIGN. It will be the
|
|
greatest such value for some indeterminate values but not necessarily
|
|
for all. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, Ca>
|
|
aligned_lower_bound (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
poly_int<N, Ca> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
/* This form copes correctly with more type combinations than
|
|
value.coeffs[i] & -align would. */
|
|
POLY_SET_COEFF (Ca, r, i, (value.coeffs[i]
|
|
- (value.coeffs[i] & (align - 1))));
|
|
return r;
|
|
}
|
|
|
|
/* Return a value >= VALUE that is a multiple of ALIGN. It will be the
|
|
least such value for some indeterminate values but not necessarily
|
|
for all. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, Ca>
|
|
aligned_upper_bound (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
poly_int<N, Ca> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
POLY_SET_COEFF (Ca, r, i, (value.coeffs[i]
|
|
+ (-value.coeffs[i] & (align - 1))));
|
|
return r;
|
|
}
|
|
|
|
/* Assert that we can align VALUE to ALIGN at compile time. Align VALUE
|
|
down to the largest multiple of ALIGN that is <= VALUE, then divide by
|
|
ALIGN.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the non-constant coefficients must already
|
|
be a multiple of ALIGN. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, Ca>
|
|
force_align_down_and_div (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
gcc_checking_assert (can_align_p (value, align));
|
|
|
|
poly_int<N, Ca> r;
|
|
POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0]
|
|
- (value.coeffs[0] & (align - 1)))
|
|
/ align));
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align);
|
|
return r;
|
|
}
|
|
|
|
/* Assert that we can align VALUE to ALIGN at compile time. Align VALUE
|
|
up to the smallest multiple of ALIGN that is >= VALUE, then divide by
|
|
ALIGN.
|
|
|
|
NOTE: When using this function, please add a comment above the call
|
|
explaining why we know the non-constant coefficients must already
|
|
be a multiple of ALIGN. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline poly_int<N, Ca>
|
|
force_align_up_and_div (const poly_int_pod<N, Ca> &value, Cb align)
|
|
{
|
|
gcc_checking_assert (can_align_p (value, align));
|
|
|
|
poly_int<N, Ca> r;
|
|
POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0]
|
|
+ (-value.coeffs[0] & (align - 1)))
|
|
/ align));
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align);
|
|
return r;
|
|
}
|
|
|
|
/* Return true if we know at compile time the difference between VALUE
|
|
and the equal or preceding multiple of ALIGN. Store the value in
|
|
*MISALIGN if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline bool
|
|
known_misalignment (const poly_int_pod<N, Ca> &value, Cb align, Cm *misalign)
|
|
{
|
|
gcc_checking_assert (align != 0);
|
|
if (!can_align_p (value, align))
|
|
return false;
|
|
*misalign = value.coeffs[0] & (align - 1);
|
|
return true;
|
|
}
|
|
|
|
/* Return X & (Y - 1), asserting that this value is known. Please add
|
|
an a comment above callers to this function to explain why the condition
|
|
is known to hold. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_BINARY_COEFF (Ca, Ca)
|
|
force_get_misalignment (const poly_int_pod<N, Ca> &a, Cb align)
|
|
{
|
|
gcc_checking_assert (can_align_p (a, align));
|
|
return a.coeffs[0] & (align - 1);
|
|
}
|
|
|
|
/* Return the maximum alignment that A is known to have. Return 0
|
|
if A is known to be zero. */
|
|
|
|
template<unsigned int N, typename Ca>
|
|
inline POLY_BINARY_COEFF (Ca, Ca)
|
|
known_alignment (const poly_int_pod<N, Ca> &a)
|
|
{
|
|
typedef POLY_BINARY_COEFF (Ca, Ca) C;
|
|
C r = a.coeffs[0];
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
r |= a.coeffs[i];
|
|
return r & -r;
|
|
}
|
|
|
|
/* Return true if we can compute A | B at compile time, storing the
|
|
result in RES if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cr>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
can_ior_p (const poly_int_pod<N, Ca> &a, Cb b, Cr *result)
|
|
{
|
|
/* Coefficients 1 and above must be a multiple of something greater
|
|
than B. */
|
|
typedef POLY_INT_TYPE (Ca) int_type;
|
|
if (N >= 2)
|
|
for (unsigned int i = 1; i < N; i++)
|
|
if ((-(a.coeffs[i] & -a.coeffs[i]) & b) != int_type (0))
|
|
return false;
|
|
*result = a;
|
|
result->coeffs[0] |= b;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if A is a constant multiple of B, storing the
|
|
multiple in *MULTIPLE if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
constant_multiple_p (const poly_int_pod<N, Ca> &a, Cb b, Cm *multiple)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
|
|
/* Do the modulus before the constant check, to catch divide by
|
|
zero errors. */
|
|
if (NCa (a.coeffs[0]) % NCb (b) != 0 || !a.is_constant ())
|
|
return false;
|
|
*multiple = NCa (a.coeffs[0]) / NCb (b);
|
|
return true;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
constant_multiple_p (Ca a, const poly_int_pod<N, Cb> &b, Cm *multiple)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_INT_TYPE (Ca) int_type;
|
|
|
|
/* Do the modulus before the constant check, to catch divide by
|
|
zero errors. */
|
|
if (NCa (a) % NCb (b.coeffs[0]) != 0
|
|
|| (a != int_type (0) && !b.is_constant ()))
|
|
return false;
|
|
*multiple = NCa (a) / NCb (b.coeffs[0]);
|
|
return true;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline bool
|
|
constant_multiple_p (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b, Cm *multiple)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_INT_TYPE (Ca) ICa;
|
|
typedef POLY_INT_TYPE (Cb) ICb;
|
|
typedef POLY_BINARY_COEFF (Ca, Cb) C;
|
|
|
|
if (NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0)
|
|
return false;
|
|
|
|
C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
if (b.coeffs[i] == ICb (0)
|
|
? a.coeffs[i] != ICa (0)
|
|
: (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0
|
|
|| NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != r))
|
|
return false;
|
|
|
|
*multiple = r;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if A is a multiple of B. */
|
|
|
|
template<typename Ca, typename Cb>
|
|
inline typename if_nonpoly2<Ca, Cb, bool>::type
|
|
multiple_p (Ca a, Cb b)
|
|
{
|
|
return a % b == 0;
|
|
}
|
|
|
|
/* Return true if A is a (polynomial) multiple of B. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
multiple_p (const poly_int_pod<N, Ca> &a, Cb b)
|
|
{
|
|
for (unsigned int i = 0; i < N; ++i)
|
|
if (a.coeffs[i] % b != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if A is a (constant) multiple of B. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
multiple_p (Ca a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
typedef POLY_INT_TYPE (Ca) int_type;
|
|
|
|
/* Do the modulus before the constant check, to catch divide by
|
|
potential zeros. */
|
|
return a % b.coeffs[0] == 0 && (a == int_type (0) || b.is_constant ());
|
|
}
|
|
|
|
/* Return true if A is a (polynomial) multiple of B. This handles cases
|
|
where either B is constant or the multiple is constant. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline bool
|
|
multiple_p (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (b.is_constant ())
|
|
return multiple_p (a, b.coeffs[0]);
|
|
POLY_BINARY_COEFF (Ca, Ca) tmp;
|
|
return constant_multiple_p (a, b, &tmp);
|
|
}
|
|
|
|
/* Return true if A is a (constant) multiple of B, storing the
|
|
multiple in *MULTIPLE if so. */
|
|
|
|
template<typename Ca, typename Cb, typename Cm>
|
|
inline typename if_nonpoly2<Ca, Cb, bool>::type
|
|
multiple_p (Ca a, Cb b, Cm *multiple)
|
|
{
|
|
if (a % b != 0)
|
|
return false;
|
|
*multiple = a / b;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if A is a (polynomial) multiple of B, storing the
|
|
multiple in *MULTIPLE if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
multiple_p (const poly_int_pod<N, Ca> &a, Cb b, poly_int_pod<N, Cm> *multiple)
|
|
{
|
|
if (!multiple_p (a, b))
|
|
return false;
|
|
for (unsigned int i = 0; i < N; ++i)
|
|
multiple->coeffs[i] = a.coeffs[i] / b;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if B is a constant and A is a (constant) multiple of B,
|
|
storing the multiple in *MULTIPLE if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline typename if_nonpoly<Ca, bool>::type
|
|
multiple_p (Ca a, const poly_int_pod<N, Cb> &b, Cm *multiple)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
|
|
/* Do the modulus before the constant check, to catch divide by
|
|
potential zeros. */
|
|
if (a % b.coeffs[0] != 0 || (NCa (a) != 0 && !b.is_constant ()))
|
|
return false;
|
|
*multiple = a / b.coeffs[0];
|
|
return true;
|
|
}
|
|
|
|
/* Return true if A is a (polynomial) multiple of B, storing the
|
|
multiple in *MULTIPLE if so. This handles cases where either
|
|
B is constant or the multiple is constant. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cm>
|
|
inline bool
|
|
multiple_p (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b,
|
|
poly_int_pod<N, Cm> *multiple)
|
|
{
|
|
if (b.is_constant ())
|
|
return multiple_p (a, b.coeffs[0], multiple);
|
|
return constant_multiple_p (a, b, multiple);
|
|
}
|
|
|
|
/* Return A / B, given that A is known to be a multiple of B. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_CONST_RESULT (N, Ca, Cb)
|
|
exact_div (const poly_int_pod<N, Ca> &a, Cb b)
|
|
{
|
|
typedef POLY_CONST_COEFF (Ca, Cb) C;
|
|
poly_int<N, C> r;
|
|
for (unsigned int i = 0; i < N; i++)
|
|
{
|
|
gcc_checking_assert (a.coeffs[i] % b == 0);
|
|
POLY_SET_COEFF (C, r, i, a.coeffs[i] / b);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/* Return A / B, given that A is known to be a multiple of B. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb>
|
|
inline POLY_POLY_RESULT (N, Ca, Cb)
|
|
exact_div (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b)
|
|
{
|
|
if (b.is_constant ())
|
|
return exact_div (a, b.coeffs[0]);
|
|
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_BINARY_COEFF (Ca, Cb) C;
|
|
typedef POLY_INT_TYPE (Cb) int_type;
|
|
|
|
gcc_checking_assert (a.coeffs[0] % b.coeffs[0] == 0);
|
|
C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
gcc_checking_assert (b.coeffs[i] == int_type (0)
|
|
? a.coeffs[i] == int_type (0)
|
|
: (a.coeffs[i] % b.coeffs[i] == 0
|
|
&& NCa (a.coeffs[i]) / NCb (b.coeffs[i]) == r));
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Return true if there is some constant Q and polynomial r such that:
|
|
|
|
(1) a = b * Q + r
|
|
(2) |b * Q| <= |a|
|
|
(3) |r| < |b|
|
|
|
|
Store the value Q in *QUOTIENT if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq>
|
|
inline typename if_nonpoly2<Cb, Cq, bool>::type
|
|
can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, Cq *quotient)
|
|
{
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
|
|
/* Do the division before the constant check, to catch divide by
|
|
zero errors. */
|
|
Cq q = NCa (a.coeffs[0]) / NCb (b);
|
|
if (!a.is_constant ())
|
|
return false;
|
|
*quotient = q;
|
|
return true;
|
|
}
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq>
|
|
inline typename if_nonpoly<Cq, bool>::type
|
|
can_div_trunc_p (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b,
|
|
Cq *quotient)
|
|
{
|
|
/* We can calculate Q from the case in which the indeterminates
|
|
are zero. */
|
|
typedef POLY_CAST (Ca, Cb) NCa;
|
|
typedef POLY_CAST (Cb, Ca) NCb;
|
|
typedef POLY_INT_TYPE (Ca) ICa;
|
|
typedef POLY_INT_TYPE (Cb) ICb;
|
|
typedef POLY_BINARY_COEFF (Ca, Cb) C;
|
|
C q = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
|
|
|
|
/* Check the other coefficients and record whether the division is exact.
|
|
The only difficult case is when it isn't. If we require a and b to
|
|
ordered wrt zero, there can be no two coefficients of the same value
|
|
that have opposite signs. This means that:
|
|
|
|
|a| = |a0| + |a1 * x1| + |a2 * x2| + ...
|
|
|b| = |b0| + |b1 * x1| + |b2 * x2| + ...
|
|
|
|
The Q we've just calculated guarantees:
|
|
|
|
|b0 * Q| <= |a0|
|
|
|a0 - b0 * Q| < |b0|
|
|
|
|
and so:
|
|
|
|
(2) |b * Q| <= |a|
|
|
|
|
is satisfied if:
|
|
|
|
|bi * xi * Q| <= |ai * xi|
|
|
|
|
for each i in [1, N]. This is trivially true when xi is zero.
|
|
When it isn't we need:
|
|
|
|
(2') |bi * Q| <= |ai|
|
|
|
|
r is calculated as:
|
|
|
|
r = r0 + r1 * x1 + r2 * x2 + ...
|
|
where ri = ai - bi * Q
|
|
|
|
Restricting to ordered a and b also guarantees that no two ris
|
|
have opposite signs, so we have:
|
|
|
|
|r| = |r0| + |r1 * x1| + |r2 * x2| + ...
|
|
|
|
We know from the calculation of Q that |r0| < |b0|, so:
|
|
|
|
(3) |r| < |b|
|
|
|
|
is satisfied if:
|
|
|
|
(3') |ai - bi * Q| <= |bi|
|
|
|
|
for each i in [1, N]. */
|
|
bool rem_p = NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0;
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
{
|
|
if (b.coeffs[i] == ICb (0))
|
|
{
|
|
/* For bi == 0 we simply need: (3') |ai| == 0. */
|
|
if (a.coeffs[i] != ICa (0))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (q == 0)
|
|
{
|
|
/* For Q == 0 we simply need: (3') |ai| <= |bi|. */
|
|
if (a.coeffs[i] != ICa (0))
|
|
{
|
|
/* Use negative absolute to avoid overflow, i.e.
|
|
-|ai| >= -|bi|. */
|
|
C neg_abs_a = (a.coeffs[i] < 0 ? a.coeffs[i] : -a.coeffs[i]);
|
|
C neg_abs_b = (b.coeffs[i] < 0 ? b.coeffs[i] : -b.coeffs[i]);
|
|
if (neg_abs_a < neg_abs_b)
|
|
return false;
|
|
rem_p = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise just check for the case in which ai / bi == Q. */
|
|
if (NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != q)
|
|
return false;
|
|
if (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0)
|
|
rem_p = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If the division isn't exact, require both values to be ordered wrt 0,
|
|
so that we can guarantee conditions (2) and (3) for all indeterminate
|
|
values. */
|
|
if (rem_p && (!ordered_p (a, ICa (0)) || !ordered_p (b, ICb (0))))
|
|
return false;
|
|
|
|
*quotient = q;
|
|
return true;
|
|
}
|
|
|
|
/* Likewise, but also store r in *REMAINDER. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr>
|
|
inline typename if_nonpoly<Cq, bool>::type
|
|
can_div_trunc_p (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b,
|
|
Cq *quotient, Cr *remainder)
|
|
{
|
|
if (!can_div_trunc_p (a, b, quotient))
|
|
return false;
|
|
*remainder = a - *quotient * b;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if there is some polynomial q and constant R such that:
|
|
|
|
(1) a = B * q + R
|
|
(2) |B * q| <= |a|
|
|
(3) |R| < |B|
|
|
|
|
Store the value q in *QUOTIENT if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b,
|
|
poly_int_pod<N, Cq> *quotient)
|
|
{
|
|
/* The remainder must be constant. */
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
if (a.coeffs[i] % b != 0)
|
|
return false;
|
|
for (unsigned int i = 0; i < N; ++i)
|
|
quotient->coeffs[i] = a.coeffs[i] / b;
|
|
return true;
|
|
}
|
|
|
|
/* Likewise, but also store R in *REMAINDER. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr>
|
|
inline typename if_nonpoly<Cb, bool>::type
|
|
can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b,
|
|
poly_int_pod<N, Cq> *quotient, Cr *remainder)
|
|
{
|
|
if (!can_div_trunc_p (a, b, quotient))
|
|
return false;
|
|
*remainder = a.coeffs[0] % b;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if we can compute A / B at compile time, rounding towards zero.
|
|
Store the result in QUOTIENT if so.
|
|
|
|
This handles cases in which either B is constant or the result is
|
|
constant. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq>
|
|
inline bool
|
|
can_div_trunc_p (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b,
|
|
poly_int_pod<N, Cq> *quotient)
|
|
{
|
|
if (b.is_constant ())
|
|
return can_div_trunc_p (a, b.coeffs[0], quotient);
|
|
if (!can_div_trunc_p (a, b, "ient->coeffs[0]))
|
|
return false;
|
|
for (unsigned int i = 1; i < N; ++i)
|
|
quotient->coeffs[i] = 0;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if there is some constant Q and polynomial r such that:
|
|
|
|
(1) a = b * Q + r
|
|
(2) |a| <= |b * Q|
|
|
(3) |r| < |b|
|
|
|
|
Store the value Q in *QUOTIENT if so. */
|
|
|
|
template<unsigned int N, typename Ca, typename Cb, typename Cq>
|
|
inline typename if_nonpoly<Cq, bool>::type
|
|
can_div_away_from_zero_p (const poly_int_pod<N, Ca> &a,
|
|
const poly_int_pod<N, Cb> &b,
|
|
Cq *quotient)
|
|
{
|
|
if (!can_div_trunc_p (a, b, quotient))
|
|
return false;
|
|
if (maybe_ne (*quotient * b, a))
|
|
*quotient += (*quotient < 0 ? -1 : 1);
|
|
return true;
|
|
}
|
|
|
|
/* Use print_dec to print VALUE to FILE, where SGN is the sign
|
|
of the values. */
|
|
|
|
template<unsigned int N, typename C>
|
|
void
|
|
print_dec (const poly_int_pod<N, C> &value, FILE *file, signop sgn)
|
|
{
|
|
if (value.is_constant ())
|
|
print_dec (value.coeffs[0], file, sgn);
|
|
else
|
|
{
|
|
fprintf (file, "[");
|
|
for (unsigned int i = 0; i < N; ++i)
|
|
{
|
|
print_dec (value.coeffs[i], file, sgn);
|
|
fputc (i == N - 1 ? ']' : ',', file);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Likewise without the signop argument, for coefficients that have an
|
|
inherent signedness. */
|
|
|
|
template<unsigned int N, typename C>
|
|
void
|
|
print_dec (const poly_int_pod<N, C> &value, FILE *file)
|
|
{
|
|
STATIC_ASSERT (poly_coeff_traits<C>::signedness >= 0);
|
|
print_dec (value, file,
|
|
poly_coeff_traits<C>::signedness ? SIGNED : UNSIGNED);
|
|
}
|
|
|
|
/* Use print_hex to print VALUE to FILE. */
|
|
|
|
template<unsigned int N, typename C>
|
|
void
|
|
print_hex (const poly_int_pod<N, C> &value, FILE *file)
|
|
{
|
|
if (value.is_constant ())
|
|
print_hex (value.coeffs[0], file);
|
|
else
|
|
{
|
|
fprintf (file, "[");
|
|
for (unsigned int i = 0; i < N; ++i)
|
|
{
|
|
print_hex (value.coeffs[i], file);
|
|
fputc (i == N - 1 ? ']' : ',', file);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Helper for calculating the distance between two points P1 and P2,
|
|
in cases where known_le (P1, P2). T1 and T2 are the types of the
|
|
two positions, in either order. The coefficients of P2 - P1 have
|
|
type unsigned HOST_WIDE_INT if the coefficients of both T1 and T2
|
|
have C++ primitive type, otherwise P2 - P1 has its usual
|
|
wide-int-based type.
|
|
|
|
The actual subtraction should look something like this:
|
|
|
|
typedef poly_span_traits<T1, T2> span_traits;
|
|
span_traits::cast (P2) - span_traits::cast (P1)
|
|
|
|
Applying the cast before the subtraction avoids undefined overflow
|
|
for signed T1 and T2.
|
|
|
|
The implementation of the cast tries to avoid unnecessary arithmetic
|
|
or copying. */
|
|
template<typename T1, typename T2,
|
|
typename Res = POLY_BINARY_COEFF (POLY_BINARY_COEFF (T1, T2),
|
|
unsigned HOST_WIDE_INT)>
|
|
struct poly_span_traits
|
|
{
|
|
template<typename T>
|
|
static const T &cast (const T &x) { return x; }
|
|
};
|
|
|
|
template<typename T1, typename T2>
|
|
struct poly_span_traits<T1, T2, unsigned HOST_WIDE_INT>
|
|
{
|
|
template<typename T>
|
|
static typename if_nonpoly<T, unsigned HOST_WIDE_INT>::type
|
|
cast (const T &x) { return x; }
|
|
|
|
template<unsigned int N, typename T>
|
|
static poly_int<N, unsigned HOST_WIDE_INT>
|
|
cast (const poly_int_pod<N, T> &x) { return x; }
|
|
};
|
|
|
|
/* Return true if SIZE represents a known size, assuming that all-ones
|
|
indicates an unknown size. */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
known_size_p (const T &a)
|
|
{
|
|
return maybe_ne (a, POLY_INT_TYPE (T) (-1));
|
|
}
|
|
|
|
/* Return true if range [POS, POS + SIZE) might include VAL.
|
|
SIZE can be the special value -1, in which case the range is
|
|
open-ended. */
|
|
|
|
template<typename T1, typename T2, typename T3>
|
|
inline bool
|
|
maybe_in_range_p (const T1 &val, const T2 &pos, const T3 &size)
|
|
{
|
|
typedef poly_span_traits<T1, T2> start_span;
|
|
typedef poly_span_traits<T3, T3> size_span;
|
|
if (known_lt (val, pos))
|
|
return false;
|
|
if (!known_size_p (size))
|
|
return true;
|
|
if ((poly_int_traits<T1>::num_coeffs > 1
|
|
|| poly_int_traits<T2>::num_coeffs > 1)
|
|
&& maybe_lt (val, pos))
|
|
/* In this case we don't know whether VAL >= POS is true at compile
|
|
time, so we can't prove that VAL >= POS + SIZE. */
|
|
return true;
|
|
return maybe_lt (start_span::cast (val) - start_span::cast (pos),
|
|
size_span::cast (size));
|
|
}
|
|
|
|
/* Return true if range [POS, POS + SIZE) is known to include VAL.
|
|
SIZE can be the special value -1, in which case the range is
|
|
open-ended. */
|
|
|
|
template<typename T1, typename T2, typename T3>
|
|
inline bool
|
|
known_in_range_p (const T1 &val, const T2 &pos, const T3 &size)
|
|
{
|
|
typedef poly_span_traits<T1, T2> start_span;
|
|
typedef poly_span_traits<T3, T3> size_span;
|
|
return (known_size_p (size)
|
|
&& known_ge (val, pos)
|
|
&& known_lt (start_span::cast (val) - start_span::cast (pos),
|
|
size_span::cast (size)));
|
|
}
|
|
|
|
/* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2)
|
|
might overlap. SIZE1 and/or SIZE2 can be the special value -1, in which
|
|
case the range is open-ended. */
|
|
|
|
template<typename T1, typename T2, typename T3, typename T4>
|
|
inline bool
|
|
ranges_maybe_overlap_p (const T1 &pos1, const T2 &size1,
|
|
const T3 &pos2, const T4 &size2)
|
|
{
|
|
if (maybe_in_range_p (pos2, pos1, size1))
|
|
return maybe_ne (size2, POLY_INT_TYPE (T4) (0));
|
|
if (maybe_in_range_p (pos1, pos2, size2))
|
|
return maybe_ne (size1, POLY_INT_TYPE (T2) (0));
|
|
return false;
|
|
}
|
|
|
|
/* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2)
|
|
are known to overlap. SIZE1 and/or SIZE2 can be the special value -1,
|
|
in which case the range is open-ended. */
|
|
|
|
template<typename T1, typename T2, typename T3, typename T4>
|
|
inline bool
|
|
ranges_known_overlap_p (const T1 &pos1, const T2 &size1,
|
|
const T3 &pos2, const T4 &size2)
|
|
{
|
|
typedef poly_span_traits<T1, T3> start_span;
|
|
typedef poly_span_traits<T2, T2> size1_span;
|
|
typedef poly_span_traits<T4, T4> size2_span;
|
|
/* known_gt (POS1 + SIZE1, POS2) [infinite precision]
|
|
--> known_gt (SIZE1, POS2 - POS1) [infinite precision]
|
|
--> known_gt (SIZE1, POS2 - lower_bound (POS1, POS2)) [infinite precision]
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ always nonnegative
|
|
--> known_gt (SIZE1, span1::cast (POS2 - lower_bound (POS1, POS2))).
|
|
|
|
Using the saturating subtraction enforces that SIZE1 must be
|
|
nonzero, since known_gt (0, x) is false for all nonnegative x.
|
|
If POS2.coeff[I] < POS1.coeff[I] for some I > 0, increasing
|
|
indeterminate number I makes the unsaturated condition easier to
|
|
satisfy, so using a saturated coefficient of zero tests the case in
|
|
which the indeterminate is zero (the minimum value). */
|
|
return (known_size_p (size1)
|
|
&& known_size_p (size2)
|
|
&& known_lt (start_span::cast (pos2)
|
|
- start_span::cast (lower_bound (pos1, pos2)),
|
|
size1_span::cast (size1))
|
|
&& known_lt (start_span::cast (pos1)
|
|
- start_span::cast (lower_bound (pos1, pos2)),
|
|
size2_span::cast (size2)));
|
|
}
|
|
|
|
/* Return true if range [POS1, POS1 + SIZE1) is known to be a subrange of
|
|
[POS2, POS2 + SIZE2). SIZE1 and/or SIZE2 can be the special value -1,
|
|
in which case the range is open-ended. */
|
|
|
|
template<typename T1, typename T2, typename T3, typename T4>
|
|
inline bool
|
|
known_subrange_p (const T1 &pos1, const T2 &size1,
|
|
const T3 &pos2, const T4 &size2)
|
|
{
|
|
typedef typename poly_int_traits<T2>::coeff_type C2;
|
|
typedef poly_span_traits<T1, T3> start_span;
|
|
typedef poly_span_traits<T2, T4> size_span;
|
|
return (known_gt (size1, POLY_INT_TYPE (T2) (0))
|
|
&& (poly_coeff_traits<C2>::signedness > 0
|
|
|| known_size_p (size1))
|
|
&& known_size_p (size2)
|
|
&& known_ge (pos1, pos2)
|
|
&& known_le (size1, size2)
|
|
&& known_le (start_span::cast (pos1) - start_span::cast (pos2),
|
|
size_span::cast (size2) - size_span::cast (size1)));
|
|
}
|
|
|
|
/* Return true if the endpoint of the range [POS, POS + SIZE) can be
|
|
stored in a T, or if SIZE is the special value -1, which makes the
|
|
range open-ended. */
|
|
|
|
template<typename T>
|
|
inline typename if_nonpoly<T, bool>::type
|
|
endpoint_representable_p (const T &pos, const T &size)
|
|
{
|
|
return (!known_size_p (size)
|
|
|| pos <= poly_coeff_traits<T>::max_value - size);
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
inline bool
|
|
endpoint_representable_p (const poly_int_pod<N, C> &pos,
|
|
const poly_int_pod<N, C> &size)
|
|
{
|
|
if (known_size_p (size))
|
|
for (unsigned int i = 0; i < N; ++i)
|
|
if (pos.coeffs[i] > poly_coeff_traits<C>::max_value - size.coeffs[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
void
|
|
gt_ggc_mx (poly_int_pod<N, C> *)
|
|
{
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
void
|
|
gt_pch_nx (poly_int_pod<N, C> *)
|
|
{
|
|
}
|
|
|
|
template<unsigned int N, typename C>
|
|
void
|
|
gt_pch_nx (poly_int_pod<N, C> *, void (*) (void *, void *), void *)
|
|
{
|
|
}
|
|
|
|
#undef POLY_SET_COEFF
|
|
#undef POLY_INT_TYPE
|
|
#undef POLY_BINARY_COEFF
|
|
#undef CONST_CONST_RESULT
|
|
#undef POLY_CONST_RESULT
|
|
#undef CONST_POLY_RESULT
|
|
#undef POLY_POLY_RESULT
|
|
#undef POLY_CONST_COEFF
|
|
#undef CONST_POLY_COEFF
|
|
#undef POLY_POLY_COEFF
|
|
|
|
#endif
|