gcc/libgo/runtime/malloc.goc
Ian Lance Taylor 08a680a887 libgo: Update to Go 1.0.2 release.
From-SVN: r188943
2012-06-25 16:20:03 +00:00

502 lines
14 KiB
Plaintext

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See malloc.h for overview.
//
// TODO(rsc): double-check stats.
package runtime
#include <stddef.h>
#include <errno.h>
#include <stdlib.h>
#include "go-alloc.h"
#include "runtime.h"
#include "arch.h"
#include "malloc.h"
#include "go-string.h"
#include "interface.h"
#include "go-type.h"
MHeap runtime_mheap;
extern MStats mstats; // defined in extern.go
extern volatile int32 runtime_MemProfileRate
__asm__ ("runtime.MemProfileRate");
// Allocate an object of at least size bytes.
// Small objects are allocated from the per-thread cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
void*
runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed)
{
M *m;
G *g;
int32 sizeclass, rate;
MCache *c;
uintptr npages;
MSpan *s;
void *v;
m = runtime_m();
g = runtime_g();
if(g->status == Gsyscall)
dogc = 0;
if(runtime_gcwaiting && g != m->g0 && m->locks == 0 && g->status != Gsyscall) {
runtime_gosched();
m = runtime_m();
}
if(m->mallocing)
runtime_throw("malloc/free - deadlock");
m->mallocing = 1;
if(size == 0)
size = 1;
c = m->mcache;
c->local_nmalloc++;
if(size <= MaxSmallSize) {
// Allocate from mcache free lists.
sizeclass = runtime_SizeToClass(size);
size = runtime_class_to_size[sizeclass];
v = runtime_MCache_Alloc(c, sizeclass, size, zeroed);
if(v == nil)
runtime_throw("out of memory");
c->local_alloc += size;
c->local_total_alloc += size;
c->local_by_size[sizeclass].nmalloc++;
} else {
// TODO(rsc): Report tracebacks for very large allocations.
// Allocate directly from heap.
npages = size >> PageShift;
if((size & PageMask) != 0)
npages++;
s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, 1);
if(s == nil)
runtime_throw("out of memory");
size = npages<<PageShift;
c->local_alloc += size;
c->local_total_alloc += size;
v = (void*)(s->start << PageShift);
// setup for mark sweep
runtime_markspan(v, 0, 0, true);
}
if(!(flag & FlagNoGC))
runtime_markallocated(v, size, (flag&FlagNoPointers) != 0);
m->mallocing = 0;
if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) {
if(size >= (uint32) rate)
goto profile;
if((uint32) m->mcache->next_sample > size)
m->mcache->next_sample -= size;
else {
// pick next profile time
// If you change this, also change allocmcache.
if(rate > 0x3fffffff) // make 2*rate not overflow
rate = 0x3fffffff;
m->mcache->next_sample = runtime_fastrand1() % (2*rate);
profile:
runtime_setblockspecial(v, true);
runtime_MProf_Malloc(v, size);
}
}
if(dogc && mstats.heap_alloc >= mstats.next_gc)
runtime_gc(0);
return v;
}
void*
__go_alloc(uintptr size)
{
return runtime_mallocgc(size, 0, 0, 1);
}
// Free the object whose base pointer is v.
void
__go_free(void *v)
{
M *m;
int32 sizeclass;
MSpan *s;
MCache *c;
uint32 prof;
uintptr size;
if(v == nil)
return;
// If you change this also change mgc0.c:/^sweep,
// which has a copy of the guts of free.
m = runtime_m();
if(m->mallocing)
runtime_throw("malloc/free - deadlock");
m->mallocing = 1;
if(!runtime_mlookup(v, nil, nil, &s)) {
runtime_printf("free %p: not an allocated block\n", v);
runtime_throw("free runtime_mlookup");
}
prof = runtime_blockspecial(v);
// Find size class for v.
sizeclass = s->sizeclass;
c = m->mcache;
if(sizeclass == 0) {
// Large object.
size = s->npages<<PageShift;
*(uintptr*)(s->start<<PageShift) = 1; // mark as "needs to be zeroed"
// Must mark v freed before calling unmarkspan and MHeap_Free:
// they might coalesce v into other spans and change the bitmap further.
runtime_markfreed(v, size);
runtime_unmarkspan(v, 1<<PageShift);
runtime_MHeap_Free(&runtime_mheap, s, 1);
} else {
// Small object.
size = runtime_class_to_size[sizeclass];
if(size > sizeof(uintptr))
((uintptr*)v)[1] = 1; // mark as "needs to be zeroed"
// Must mark v freed before calling MCache_Free:
// it might coalesce v and other blocks into a bigger span
// and change the bitmap further.
runtime_markfreed(v, size);
c->local_by_size[sizeclass].nfree++;
runtime_MCache_Free(c, v, sizeclass, size);
}
c->local_nfree++;
c->local_alloc -= size;
if(prof)
runtime_MProf_Free(v, size);
m->mallocing = 0;
}
int32
runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
uintptr n, i;
byte *p;
MSpan *s;
runtime_m()->mcache->local_nlookup++;
s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
if(sp)
*sp = s;
if(s == nil) {
runtime_checkfreed(v, 1);
if(base)
*base = nil;
if(size)
*size = 0;
return 0;
}
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
// Large object.
if(base)
*base = p;
if(size)
*size = s->npages<<PageShift;
return 1;
}
if((byte*)v >= (byte*)s->limit) {
// pointers past the last block do not count as pointers.
return 0;
}
n = runtime_class_to_size[s->sizeclass];
if(base) {
i = ((byte*)v - p)/n;
*base = p + i*n;
}
if(size)
*size = n;
return 1;
}
MCache*
runtime_allocmcache(void)
{
int32 rate;
MCache *c;
runtime_lock(&runtime_mheap);
c = runtime_FixAlloc_Alloc(&runtime_mheap.cachealloc);
mstats.mcache_inuse = runtime_mheap.cachealloc.inuse;
mstats.mcache_sys = runtime_mheap.cachealloc.sys;
runtime_unlock(&runtime_mheap);
// Set first allocation sample size.
rate = runtime_MemProfileRate;
if(rate > 0x3fffffff) // make 2*rate not overflow
rate = 0x3fffffff;
if(rate != 0)
c->next_sample = runtime_fastrand1() % (2*rate);
return c;
}
void
runtime_purgecachedstats(M* m)
{
MCache *c;
// Protected by either heap or GC lock.
c = m->mcache;
mstats.heap_alloc += c->local_cachealloc;
c->local_cachealloc = 0;
mstats.heap_objects += c->local_objects;
c->local_objects = 0;
mstats.nmalloc += c->local_nmalloc;
c->local_nmalloc = 0;
mstats.nfree += c->local_nfree;
c->local_nfree = 0;
mstats.nlookup += c->local_nlookup;
c->local_nlookup = 0;
mstats.alloc += c->local_alloc;
c->local_alloc= 0;
mstats.total_alloc += c->local_total_alloc;
c->local_total_alloc= 0;
}
extern uintptr runtime_sizeof_C_MStats
__asm__ ("runtime.Sizeof_C_MStats");
#define MaxArena32 (2U<<30)
void
runtime_mallocinit(void)
{
byte *p;
uintptr arena_size, bitmap_size;
extern byte end[];
byte *want;
uintptr limit;
runtime_sizeof_C_MStats = sizeof(MStats);
p = nil;
arena_size = 0;
bitmap_size = 0;
// for 64-bit build
USED(p);
USED(arena_size);
USED(bitmap_size);
runtime_InitSizes();
limit = runtime_memlimit();
// Set up the allocation arena, a contiguous area of memory where
// allocated data will be found. The arena begins with a bitmap large
// enough to hold 4 bits per allocated word.
if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
// On a 64-bit machine, allocate from a single contiguous reservation.
// 16 GB should be big enough for now.
//
// The code will work with the reservation at any address, but ask
// SysReserve to use 0x000000f800000000 if possible.
// Allocating a 16 GB region takes away 36 bits, and the amd64
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
// in the middle of 0x00f8 for us to choose. Choosing 0x00f8 means
// that the valid memory addresses will begin 0x00f8, 0x00f9, 0x00fa, 0x00fb.
// None of the bytes f8 f9 fa fb can appear in valid UTF-8, and
// they are otherwise as far from ff (likely a common byte) as possible.
// Choosing 0x00 for the leading 6 bits was more arbitrary, but it
// is not a common ASCII code point either. Using 0x11f8 instead
// caused out of memory errors on OS X during thread allocations.
// These choices are both for debuggability and to reduce the
// odds of the conservative garbage collector not collecting memory
// because some non-pointer block of memory had a bit pattern
// that matched a memory address.
//
// Actually we reserve 17 GB (because the bitmap ends up being 1 GB)
// but it hardly matters: fc is not valid UTF-8 either, and we have to
// allocate 15 GB before we get that far.
//
// If this fails we fall back to the 32 bit memory mechanism
arena_size = (uintptr)(16LL<<30);
bitmap_size = arena_size / (sizeof(void*)*8/4);
p = runtime_SysReserve((void*)(0x00f8ULL<<32), bitmap_size + arena_size);
}
if (p == nil) {
// On a 32-bit machine, we can't typically get away
// with a giant virtual address space reservation.
// Instead we map the memory information bitmap
// immediately after the data segment, large enough
// to handle another 2GB of mappings (256 MB),
// along with a reservation for another 512 MB of memory.
// When that gets used up, we'll start asking the kernel
// for any memory anywhere and hope it's in the 2GB
// following the bitmap (presumably the executable begins
// near the bottom of memory, so we'll have to use up
// most of memory before the kernel resorts to giving out
// memory before the beginning of the text segment).
//
// Alternatively we could reserve 512 MB bitmap, enough
// for 4GB of mappings, and then accept any memory the
// kernel threw at us, but normally that's a waste of 512 MB
// of address space, which is probably too much in a 32-bit world.
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
arena_size = 512<<20;
if(limit > 0 && arena_size+bitmap_size > limit) {
bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
arena_size = bitmap_size * 8;
}
// SysReserve treats the address we ask for, end, as a hint,
// not as an absolute requirement. If we ask for the end
// of the data segment but the operating system requires
// a little more space before we can start allocating, it will
// give out a slightly higher pointer. Except QEMU, which
// is buggy, as usual: it won't adjust the pointer upward.
// So adjust it upward a little bit ourselves: 1/4 MB to get
// away from the running binary image and then round up
// to a MB boundary.
want = (byte*)(((uintptr)end + (1<<18) + (1<<20) - 1)&~((1<<20)-1));
if(0xffffffff - (uintptr)want <= bitmap_size + arena_size)
want = 0;
p = runtime_SysReserve(want, bitmap_size + arena_size);
if(p == nil)
runtime_throw("runtime: cannot reserve arena virtual address space");
if((uintptr)p & (((uintptr)1<<PageShift)-1))
runtime_printf("runtime: SysReserve returned unaligned address %p; asked for %p", p, bitmap_size+arena_size);
}
if((uintptr)p & (((uintptr)1<<PageShift)-1))
runtime_throw("runtime: SysReserve returned unaligned address");
runtime_mheap.bitmap = p;
runtime_mheap.arena_start = p + bitmap_size;
runtime_mheap.arena_used = runtime_mheap.arena_start;
runtime_mheap.arena_end = runtime_mheap.arena_start + arena_size;
// Initialize the rest of the allocator.
runtime_MHeap_Init(&runtime_mheap, runtime_SysAlloc);
runtime_m()->mcache = runtime_allocmcache();
// See if it works.
runtime_free(runtime_malloc(1));
}
void*
runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
{
byte *p;
if(n > (uintptr)(h->arena_end - h->arena_used)) {
// We are in 32-bit mode, maybe we didn't use all possible address space yet.
// Reserve some more space.
byte *new_end;
uintptr needed;
needed = (uintptr)h->arena_used + n - (uintptr)h->arena_end;
// Round wanted arena size to a multiple of 256MB.
needed = (needed + (256<<20) - 1) & ~((256<<20)-1);
new_end = h->arena_end + needed;
if(new_end <= h->arena_start + MaxArena32) {
p = runtime_SysReserve(h->arena_end, new_end - h->arena_end);
if(p == h->arena_end)
h->arena_end = new_end;
}
}
if(n <= (uintptr)(h->arena_end - h->arena_used)) {
// Keep taking from our reservation.
p = h->arena_used;
runtime_SysMap(p, n);
h->arena_used += n;
runtime_MHeap_MapBits(h);
return p;
}
// If using 64-bit, our reservation is all we have.
if(sizeof(void*) == 8 && (uintptr)h->bitmap >= 0xffffffffU)
return nil;
// On 32-bit, once the reservation is gone we can
// try to get memory at a location chosen by the OS
// and hope that it is in the range we allocated bitmap for.
p = runtime_SysAlloc(n);
if(p == nil)
return nil;
if(p < h->arena_start || (uintptr)(p+n - h->arena_start) >= MaxArena32) {
runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
p, h->arena_start, h->arena_start+MaxArena32);
runtime_SysFree(p, n);
return nil;
}
if(p+n > h->arena_used) {
h->arena_used = p+n;
if(h->arena_used > h->arena_end)
h->arena_end = h->arena_used;
runtime_MHeap_MapBits(h);
}
return p;
}
// Runtime stubs.
void*
runtime_mal(uintptr n)
{
return runtime_mallocgc(n, 0, 1, 1);
}
func new(typ *Type) (ret *uint8) {
uint32 flag = typ->__code&GO_NO_POINTERS ? FlagNoPointers : 0;
ret = runtime_mallocgc(typ->__size, flag, 1, 1);
}
func GC() {
runtime_gc(1);
}
func SetFinalizer(obj Eface, finalizer Eface) {
byte *base;
uintptr size;
const FuncType *ft;
if(obj.__type_descriptor == nil) {
runtime_printf("runtime.SetFinalizer: first argument is nil interface\n");
goto throw;
}
if(obj.__type_descriptor->__code != GO_PTR) {
runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.__type_descriptor->__reflection);
goto throw;
}
if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) {
runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n");
goto throw;
}
ft = nil;
if(finalizer.__type_descriptor != nil) {
if(finalizer.__type_descriptor->__code != GO_FUNC)
goto badfunc;
ft = (const FuncType*)finalizer.__type_descriptor;
if(ft->__dotdotdot || ft->__in.__count != 1 || !__go_type_descriptors_equal(*(Type**)ft->__in.__values, obj.__type_descriptor))
goto badfunc;
}
if(!runtime_addfinalizer(obj.__object, finalizer.__type_descriptor != nil ? *(void**)finalizer.__object : nil, ft)) {
runtime_printf("runtime.SetFinalizer: finalizer already set\n");
goto throw;
}
return;
badfunc:
runtime_printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.__type_descriptor->__reflection, *obj.__type_descriptor->__reflection);
throw:
runtime_throw("runtime.SetFinalizer");
}