gcc/libgcc/libgcov-util.c
Martin Liska 5fc312a98e
gcov: fix gcov-tool merge for TOPN counters
libgcc/ChangeLog:

	* libgcov-util.c (read_gcda_finalize): Remove const operator.
	(merge_wrapper): Add both counts and use them properly.
	(topn_to_memory_representation): New function.
	(gcov_merge): Covert on disk representation to in memory
	representation.
	* libgcov.h: Remove const operator.
2020-06-17 08:32:27 +02:00

1374 lines
36 KiB
C

/* Utility functions for reading gcda files into in-memory
gcov_info structures and offline profile processing. */
/* Copyright (C) 2014-2020 Free Software Foundation, Inc.
Contributed by Rong Xu <xur@google.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#define IN_GCOV_TOOL 1
#include "libgcov.h"
#include "intl.h"
#include "diagnostic.h"
#include "version.h"
#include "demangle.h"
#include "gcov-io.h"
/* Borrowed from basic-block.h. */
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
extern gcov_position_t gcov_position();
extern int gcov_is_error();
/* Verbose mode for debug. */
static int verbose;
/* Set verbose flag. */
void gcov_set_verbose (void)
{
verbose = 1;
}
/* The following part is to read Gcda and reconstruct GCOV_INFO. */
#include "obstack.h"
#include <unistd.h>
#ifdef HAVE_FTW_H
#include <ftw.h>
#endif
static void tag_function (unsigned, unsigned);
static void tag_blocks (unsigned, unsigned);
static void tag_arcs (unsigned, unsigned);
static void tag_lines (unsigned, unsigned);
static void tag_counters (unsigned, unsigned);
static void tag_summary (unsigned, unsigned);
/* The gcov_info for the first module. */
static struct gcov_info *curr_gcov_info;
/* The gcov_info being processed. */
static struct gcov_info *gcov_info_head;
/* This variable contains all the functions in current module. */
static struct obstack fn_info;
/* The function being processed. */
static struct gcov_fn_info *curr_fn_info;
/* The number of functions seen so far. */
static unsigned num_fn_info;
/* This variable contains all the counters for current module. */
static int k_ctrs_mask[GCOV_COUNTERS];
/* The kind of counters that have been seen. */
static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS];
/* Number of kind of counters that have been seen. */
static int k_ctrs_types;
/* The object summary being processed. */
static struct gcov_summary *curr_object_summary;
/* Merge functions for counters. */
#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE,
static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = {
#include "gcov-counter.def"
};
#undef DEF_GCOV_COUNTER
/* Set the ctrs field in gcov_fn_info object FN_INFO. */
static void
set_fn_ctrs (struct gcov_fn_info *fn_info)
{
int j = 0, i;
for (i = 0; i < GCOV_COUNTERS; i++)
{
if (k_ctrs_mask[i] == 0)
continue;
fn_info->ctrs[j].num = k_ctrs[i].num;
fn_info->ctrs[j].values = k_ctrs[i].values;
j++;
}
if (k_ctrs_types == 0)
k_ctrs_types = j;
else
gcc_assert (j == k_ctrs_types);
}
/* For each tag in gcda file, we have an entry here.
TAG is the tag value; NAME is the tag name; and
PROC is the handler function. */
typedef struct tag_format
{
unsigned tag;
char const *name;
void (*proc) (unsigned, unsigned);
} tag_format_t;
/* Handler table for various Tags. */
static const tag_format_t tag_table[] =
{
{0, "NOP", NULL},
{0, "UNKNOWN", NULL},
{0, "COUNTERS", tag_counters},
{GCOV_TAG_FUNCTION, "FUNCTION", tag_function},
{GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks},
{GCOV_TAG_ARCS, "ARCS", tag_arcs},
{GCOV_TAG_LINES, "LINES", tag_lines},
{GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary},
{0, NULL, NULL}
};
/* Handler for reading function tag. */
static void
tag_function (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
int i;
/* write out previous fn_info. */
if (num_fn_info)
{
set_fn_ctrs (curr_fn_info);
obstack_ptr_grow (&fn_info, curr_fn_info);
}
/* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active
counter types. */
curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info)
+ GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1);
for (i = 0; i < GCOV_COUNTERS; i++)
k_ctrs[i].num = 0;
k_ctrs_types = 0;
curr_fn_info->key = curr_gcov_info;
curr_fn_info->ident = gcov_read_unsigned ();
curr_fn_info->lineno_checksum = gcov_read_unsigned ();
curr_fn_info->cfg_checksum = gcov_read_unsigned ();
num_fn_info++;
if (verbose)
fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident);
}
/* Handler for reading block tag. */
static void
tag_blocks (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
/* TBD: gcov-tool currently does not handle gcno files. Assert here. */
gcc_unreachable ();
}
/* Handler for reading flow arc tag. */
static void
tag_arcs (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
/* TBD: gcov-tool currently does not handle gcno files. Assert here. */
gcc_unreachable ();
}
/* Handler for reading line tag. */
static void
tag_lines (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
/* TBD: gcov-tool currently does not handle gcno files. Assert here. */
gcc_unreachable ();
}
/* Handler for reading counters array tag with value as TAG and length of LENGTH. */
static void
tag_counters (unsigned tag, unsigned length)
{
unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
gcov_type *values;
unsigned ix;
unsigned tag_ix;
tag_ix = GCOV_COUNTER_FOR_TAG (tag);
gcc_assert (tag_ix < GCOV_COUNTERS);
k_ctrs_mask [tag_ix] = 1;
gcc_assert (k_ctrs[tag_ix].num == 0);
k_ctrs[tag_ix].num = n_counts;
k_ctrs[tag_ix].values = values = (gcov_type *) xmalloc (n_counts * sizeof (gcov_type));
gcc_assert (values);
for (ix = 0; ix != n_counts; ix++)
values[ix] = gcov_read_counter ();
}
/* Handler for reading summary tag. */
static void
tag_summary (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
curr_object_summary = (gcov_summary *) xcalloc (sizeof (gcov_summary), 1);
gcov_read_summary (curr_object_summary);
}
/* This function is called at the end of reading a gcda file.
It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO. */
static void
read_gcda_finalize (struct gcov_info *obj_info)
{
int i;
set_fn_ctrs (curr_fn_info);
obstack_ptr_grow (&fn_info, curr_fn_info);
/* We set the following fields: merge, n_functions, functions
and summary. */
obj_info->n_functions = num_fn_info;
obj_info->functions = (struct gcov_fn_info**) obstack_finish (&fn_info);
/* wrap all the counter array. */
for (i=0; i< GCOV_COUNTERS; i++)
{
if (k_ctrs_mask[i])
obj_info->merge[i] = ctr_merge_functions[i];
}
}
/* Read the content of a gcda file FILENAME, and return a gcov_info data structure.
Program level summary CURRENT_SUMMARY will also be updated. */
static struct gcov_info *
read_gcda_file (const char *filename)
{
unsigned tags[4];
unsigned depth = 0;
unsigned version;
struct gcov_info *obj_info;
int i;
for (i=0; i< GCOV_COUNTERS; i++)
k_ctrs_mask[i] = 0;
k_ctrs_types = 0;
if (!gcov_open (filename))
{
fnotice (stderr, "%s:cannot open\n", filename);
return NULL;
}
/* Read magic. */
if (!gcov_magic (gcov_read_unsigned (), GCOV_DATA_MAGIC))
{
fnotice (stderr, "%s:not a gcov data file\n", filename);
gcov_close ();
return NULL;
}
/* Read version. */
version = gcov_read_unsigned ();
if (version != GCOV_VERSION)
{
fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION);
gcov_close ();
return NULL;
}
/* Instantiate a gcov_info object. */
curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) +
sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1);
obj_info->version = version;
obstack_init (&fn_info);
num_fn_info = 0;
curr_fn_info = 0;
curr_object_summary = NULL;
{
size_t len = strlen (filename) + 1;
char *str_dup = (char*) xmalloc (len);
memcpy (str_dup, filename, len);
obj_info->filename = str_dup;
}
/* Read stamp. */
obj_info->stamp = gcov_read_unsigned ();
while (1)
{
gcov_position_t base;
unsigned tag, length;
tag_format_t const *format;
unsigned tag_depth;
int error;
unsigned mask;
tag = gcov_read_unsigned ();
if (!tag)
break;
length = gcov_read_unsigned ();
base = gcov_position ();
mask = GCOV_TAG_MASK (tag) >> 1;
for (tag_depth = 4; mask; mask >>= 8)
{
if (((mask & 0xff) != 0xff))
{
warning (0, "%s:tag %qx is invalid", filename, tag);
break;
}
tag_depth--;
}
for (format = tag_table; format->name; format++)
if (format->tag == tag)
goto found;
format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1];
found:;
if (tag)
{
if (depth && depth < tag_depth)
{
if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag))
warning (0, "%s:tag %qx is incorrectly nested",
filename, tag);
}
depth = tag_depth;
tags[depth - 1] = tag;
}
if (format->proc)
{
unsigned long actual_length;
(*format->proc) (tag, length);
actual_length = gcov_position () - base;
if (actual_length > length)
warning (0, "%s:record size mismatch %lu bytes overread",
filename, actual_length - length);
else if (length > actual_length)
warning (0, "%s:record size mismatch %lu bytes unread",
filename, length - actual_length);
}
gcov_sync (base, length);
if ((error = gcov_is_error ()))
{
warning (0, error < 0 ? "%s:counter overflow at %lu" :
"%s:read error at %lu", filename,
(long unsigned) gcov_position ());
break;
}
}
read_gcda_finalize (obj_info);
gcov_close ();
return obj_info;
}
#ifdef HAVE_FTW_H
/* This will be called by ftw(). It opens and read a gcda file FILENAME.
Return a non-zero value to stop the tree walk. */
static int
ftw_read_file (const char *filename,
const struct stat *status ATTRIBUTE_UNUSED,
int type)
{
int filename_len;
int suffix_len;
struct gcov_info *obj_info;
/* Only read regular files. */
if (type != FTW_F)
return 0;
filename_len = strlen (filename);
suffix_len = strlen (GCOV_DATA_SUFFIX);
if (filename_len <= suffix_len)
return 0;
if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX))
return 0;
if (verbose)
fnotice (stderr, "reading file: %s\n", filename);
obj_info = read_gcda_file (filename);
if (!obj_info)
return 0;
obj_info->next = gcov_info_head;
gcov_info_head = obj_info;
return 0;
}
#endif
/* Initializer for reading a profile dir. */
static inline void
read_profile_dir_init (void)
{
gcov_info_head = 0;
}
/* Driver for read a profile directory and convert into gcov_info list in memory.
Return NULL on error,
Return the head of gcov_info list on success. */
struct gcov_info *
gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED)
{
char *pwd;
int ret;
read_profile_dir_init ();
if (access (dir_name, R_OK) != 0)
{
fnotice (stderr, "cannot access directory %s\n", dir_name);
return NULL;
}
pwd = getcwd (NULL, 0);
gcc_assert (pwd);
ret = chdir (dir_name);
if (ret !=0)
{
fnotice (stderr, "%s is not a directory\n", dir_name);
return NULL;
}
#ifdef HAVE_FTW_H
ftw (".", ftw_read_file, 50);
#endif
chdir (pwd);
free (pwd);
return gcov_info_head;;
}
/* This part of the code is to merge profile counters. These
variables are set in merge_wrapper and to be used by
global function gcov_read_counter_mem() and gcov_get_merge_weight. */
/* We save the counter value address to this variable. */
static gcov_type *gcov_value_buf;
/* The number of counter values to be read by current merging. */
static gcov_unsigned_t gcov_value_buf_size;
/* The index of counter values being read. */
static gcov_unsigned_t gcov_value_buf_pos;
/* The weight of current merging. */
static unsigned gcov_merge_weight;
/* Read a counter value from gcov_value_buf array. */
gcov_type
gcov_read_counter_mem (void)
{
gcov_type ret;
gcc_assert (gcov_value_buf_pos < gcov_value_buf_size);
ret = *(gcov_value_buf + gcov_value_buf_pos);
++gcov_value_buf_pos;
return ret;
}
/* Return the recorded merge weight. */
unsigned
gcov_get_merge_weight (void)
{
return gcov_merge_weight;
}
/* A wrapper function for merge functions. It sets up the
value buffer and weights and then calls the merge function. */
static void
merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n1,
gcov_type *v2, gcov_unsigned_t n2, unsigned w)
{
gcov_value_buf = v2;
gcov_value_buf_pos = 0;
gcov_value_buf_size = n2;
gcov_merge_weight = w;
(*f) (v1, n1);
}
/* Convert on disk representation of a TOPN counter to in memory representation
that is expected from __gcov_merge_topn function. */
static void
topn_to_memory_representation (struct gcov_ctr_info *info)
{
auto_vec<gcov_type> output;
gcov_type *values = info->values;
int count = info->num;
while (count > 0)
{
output.safe_push (values[0]);
gcov_type n = values[1];
output.safe_push (n);
if (n > 0)
{
struct gcov_kvp *tuples
= (struct gcov_kvp *)xcalloc (sizeof (struct gcov_kvp), n);
for (unsigned i = 0; i < n - 1; i++)
tuples[i].next = &tuples[i + 1];
for (unsigned i = 0; i < n; i++)
{
tuples[i].value = values[2 + 2 * i];
tuples[i].count = values[2 + 2 * i + 1];
}
output.safe_push ((intptr_t)&tuples[0]);
}
else
output.safe_push (0);
unsigned len = 2 * n + 2;
values += len;
count -= len;
}
gcc_assert (count == 0);
/* Allocate new buffer and copy it there. */
info->num = output.length ();
info->values = (gcov_type *)xmalloc (sizeof (gcov_type) * info->num);
for (unsigned i = 0; i < info->num; i++)
info->values[i] = output[i];
}
/* Offline tool to manipulate profile data.
This tool targets on matched profiles. But it has some tolerance on
unmatched profiles.
When merging p1 to p2 (p2 is the dst),
* m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight;
emit warning
* m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by
specified weight; emit warning.
* m.gcda in both p1 and p2:
** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge.
** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep
p2->m.gcda->f and
drop p1->m.gcda->f. A warning is emitted. */
/* Add INFO2's counter to INFO1, multiplying by weight W. */
static int
gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w)
{
unsigned f_ix;
unsigned n_functions = info1->n_functions;
int has_mismatch = 0;
gcc_assert (info2->n_functions == n_functions);
for (f_ix = 0; f_ix < n_functions; f_ix++)
{
unsigned t_ix;
struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix];
struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix];
struct gcov_ctr_info *ci_ptr1, *ci_ptr2;
if (!gfi_ptr1 || gfi_ptr1->key != info1)
continue;
if (!gfi_ptr2 || gfi_ptr2->key != info2)
continue;
if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum)
{
fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n",
info1->filename);
has_mismatch = 1;
continue;
}
ci_ptr1 = gfi_ptr1->ctrs;
ci_ptr2 = gfi_ptr2->ctrs;
for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
{
gcov_merge_fn merge1 = info1->merge[t_ix];
gcov_merge_fn merge2 = info2->merge[t_ix];
gcc_assert (merge1 == merge2);
if (!merge1)
continue;
if (merge1 == __gcov_merge_topn)
topn_to_memory_representation (ci_ptr1);
else
gcc_assert (ci_ptr1->num == ci_ptr2->num);
merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num,
ci_ptr2->values, ci_ptr2->num, w);
ci_ptr1++;
ci_ptr2++;
}
}
return has_mismatch;
}
/* Find and return the match gcov_info object for INFO from ARRAY.
SIZE is the length of ARRAY.
Return NULL if there is no match. */
static struct gcov_info *
find_match_gcov_info (struct gcov_info **array, int size,
struct gcov_info *info)
{
struct gcov_info *gi_ptr;
struct gcov_info *ret = NULL;
int i;
for (i = 0; i < size; i++)
{
gi_ptr = array[i];
if (gi_ptr == 0)
continue;
if (!strcmp (gi_ptr->filename, info->filename))
{
ret = gi_ptr;
array[i] = 0;
break;
}
}
if (ret && ret->n_functions != info->n_functions)
{
fnotice (stderr, "mismatched profiles in %s (%d functions"
" vs %d functions)\n",
ret->filename,
ret->n_functions,
info->n_functions);
ret = NULL;
}
return ret;
}
/* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE.
Return 0 on success: without mismatch.
Reutrn 1 on error. */
int
gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile,
int w1, int w2)
{
struct gcov_info *gi_ptr;
struct gcov_info **tgt_infos;
struct gcov_info *tgt_tail;
struct gcov_info **in_src_not_tgt;
unsigned tgt_cnt = 0, src_cnt = 0;
unsigned unmatch_info_cnt = 0;
unsigned int i;
for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next)
tgt_cnt++;
for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
src_cnt++;
tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
* tgt_cnt);
gcc_assert (tgt_infos);
in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
* src_cnt);
gcc_assert (in_src_not_tgt);
for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++)
tgt_infos[i] = gi_ptr;
tgt_tail = tgt_infos[tgt_cnt - 1];
/* First pass on tgt_profile, we multiply w1 to all counters. */
if (w1 > 1)
{
for (i = 0; i < tgt_cnt; i++)
gcov_merge (tgt_infos[i], tgt_infos[i], w1-1);
}
/* Second pass, add src_profile to the tgt_profile. */
for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
{
struct gcov_info *gi_ptr1;
gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr);
if (gi_ptr1 == NULL)
{
in_src_not_tgt[unmatch_info_cnt++] = gi_ptr;
continue;
}
gcov_merge (gi_ptr1, gi_ptr, w2);
}
/* For modules in src but not in tgt. We adjust the counter and append. */
for (i = 0; i < unmatch_info_cnt; i++)
{
gi_ptr = in_src_not_tgt[i];
gcov_merge (gi_ptr, gi_ptr, w2 - 1);
gi_ptr->next = NULL;
tgt_tail->next = gi_ptr;
tgt_tail = gi_ptr;
}
free (in_src_not_tgt);
free (tgt_infos);
return 0;
}
typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*);
/* Performing FN upon arc counters. */
static void
__gcov_add_counter_op (gcov_type *counters, unsigned n_counters,
counter_op_fn fn, void *data1, void *data2)
{
for (; n_counters; counters++, n_counters--)
{
gcov_type val = *counters;
*counters = fn(val, data1, data2);
}
}
/* Performing FN upon ior counters. */
static void
__gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
unsigned n_counters ATTRIBUTE_UNUSED,
counter_op_fn fn ATTRIBUTE_UNUSED,
void *data1 ATTRIBUTE_UNUSED,
void *data2 ATTRIBUTE_UNUSED)
{
/* Do nothing. */
}
/* Performing FN upon time-profile counters. */
static void
__gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
unsigned n_counters ATTRIBUTE_UNUSED,
counter_op_fn fn ATTRIBUTE_UNUSED,
void *data1 ATTRIBUTE_UNUSED,
void *data2 ATTRIBUTE_UNUSED)
{
/* Do nothing. */
}
/* Performing FN upon TOP N counters. */
static void
__gcov_topn_counter_op (gcov_type *counters, unsigned n_counters,
counter_op_fn fn, void *data1, void *data2)
{
unsigned i, n_measures;
gcc_assert (!(n_counters % 3));
n_measures = n_counters / 3;
for (i = 0; i < n_measures; i++, counters += 3)
{
counters[1] = fn (counters[1], data1, data2);
counters[2] = fn (counters[2], data1, data2);
}
}
/* Scaling the counter value V by multiplying *(float*) DATA1. */
static gcov_type
fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED)
{
float f = *(float *) data1;
return (gcov_type) (v * f);
}
/* Scaling the counter value V by multiplying DATA2/DATA1. */
static gcov_type
int_scale (gcov_type v, void *data1, void *data2)
{
int n = *(int *) data1;
int d = *(int *) data2;
return (gcov_type) ( RDIV (v,d) * n);
}
/* Type of function used to process counters. */
typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t,
counter_op_fn, void *, void *);
/* Function array to process profile counters. */
#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \
__gcov ## FN_TYPE ## _counter_op,
static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = {
#include "gcov-counter.def"
};
#undef DEF_GCOV_COUNTER
/* Driver for scaling profile counters. */
int
gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d)
{
struct gcov_info *gi_ptr;
unsigned f_ix;
if (verbose)
fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d);
/* Scaling the counters. */
for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
{
unsigned t_ix;
const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
const struct gcov_ctr_info *ci_ptr;
if (!gfi_ptr || gfi_ptr->key != gi_ptr)
continue;
ci_ptr = gfi_ptr->ctrs;
for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
{
gcov_merge_fn merge = gi_ptr->merge[t_ix];
if (!merge)
continue;
if (d == 0)
(*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
fp_scale, &scale_factor, NULL);
else
(*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
int_scale, &n, &d);
ci_ptr++;
}
}
return 0;
}
/* Driver to normalize profile counters. */
int
gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val)
{
struct gcov_info *gi_ptr;
gcov_type curr_max_val = 0;
unsigned f_ix;
unsigned int i;
float scale_factor;
/* Find the largest count value. */
for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
{
unsigned t_ix;
const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
const struct gcov_ctr_info *ci_ptr;
if (!gfi_ptr || gfi_ptr->key != gi_ptr)
continue;
ci_ptr = gfi_ptr->ctrs;
for (t_ix = 0; t_ix < 1; t_ix++)
{
for (i = 0; i < ci_ptr->num; i++)
if (ci_ptr->values[i] > curr_max_val)
curr_max_val = ci_ptr->values[i];
ci_ptr++;
}
}
scale_factor = (float)max_val / curr_max_val;
if (verbose)
fnotice (stdout, "max_val is %" PRId64 "\n", curr_max_val);
return gcov_profile_scale (profile, scale_factor, 0, 0);
}
/* The following variables are defined in gcc/gcov-tool.c. */
extern int overlap_func_level;
extern int overlap_obj_level;
extern int overlap_hot_only;
extern int overlap_use_fullname;
extern double overlap_hot_threshold;
/* Compute the overlap score of two values. The score is defined as:
min (V1/SUM_1, V2/SUM_2) */
static double
calculate_2_entries (const unsigned long v1, const unsigned long v2,
const double sum_1, const double sum_2)
{
double val1 = (sum_1 == 0.0 ? 0.0 : v1/sum_1);
double val2 = (sum_2 == 0.0 ? 0.0 : v2/sum_2);
if (val2 < val1)
val1 = val2;
return val1;
}
/* Compute the overlap score between GCOV_INFO1 and GCOV_INFO2.
This function also updates cumulative score CUM_1_RESULT and
CUM_2_RESULT. */
static double
compute_one_gcov (const struct gcov_info *gcov_info1,
const struct gcov_info *gcov_info2,
const double sum_1, const double sum_2,
double *cum_1_result, double *cum_2_result)
{
unsigned f_ix;
double ret = 0;
double cum_1 = 0, cum_2 = 0;
const struct gcov_info *gcov_info = 0;
double *cum_p;
double sum;
gcc_assert (gcov_info1 || gcov_info2);
if (!gcov_info1)
{
gcov_info = gcov_info2;
cum_p = cum_2_result;
sum = sum_2;
*cum_1_result = 0;
} else
if (!gcov_info2)
{
gcov_info = gcov_info1;
cum_p = cum_1_result;
sum = sum_1;
*cum_2_result = 0;
}
if (gcov_info)
{
for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
{
const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
if (!gfi_ptr || gfi_ptr->key != gcov_info)
continue;
const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
unsigned c_num;
for (c_num = 0; c_num < ci_ptr->num; c_num++)
cum_1 += ci_ptr->values[c_num] / sum;
}
*cum_p = cum_1;
return 0.0;
}
for (f_ix = 0; f_ix < gcov_info1->n_functions; f_ix++)
{
double func_cum_1 = 0.0;
double func_cum_2 = 0.0;
double func_val = 0.0;
int nonzero = 0;
int hot = 0;
const struct gcov_fn_info *gfi_ptr1 = gcov_info1->functions[f_ix];
const struct gcov_fn_info *gfi_ptr2 = gcov_info2->functions[f_ix];
if (!gfi_ptr1 || gfi_ptr1->key != gcov_info1)
continue;
if (!gfi_ptr2 || gfi_ptr2->key != gcov_info2)
continue;
const struct gcov_ctr_info *ci_ptr1 = gfi_ptr1->ctrs;
const struct gcov_ctr_info *ci_ptr2 = gfi_ptr2->ctrs;
unsigned c_num;
for (c_num = 0; c_num < ci_ptr1->num; c_num++)
{
if (ci_ptr1->values[c_num] | ci_ptr2->values[c_num])
{
func_val += calculate_2_entries (ci_ptr1->values[c_num],
ci_ptr2->values[c_num],
sum_1, sum_2);
func_cum_1 += ci_ptr1->values[c_num] / sum_1;
func_cum_2 += ci_ptr2->values[c_num] / sum_2;
nonzero = 1;
if (ci_ptr1->values[c_num] / sum_1 >= overlap_hot_threshold
|| ci_ptr2->values[c_num] / sum_2 >= overlap_hot_threshold)
hot = 1;
}
}
ret += func_val;
cum_1 += func_cum_1;
cum_2 += func_cum_2;
if (overlap_func_level && nonzero && (!overlap_hot_only || hot))
{
printf(" \tfunc_id=%10d \toverlap =%6.5f%% (%5.5f%% %5.5f%%)\n",
gfi_ptr1->ident, func_val*100, func_cum_1*100, func_cum_2*100);
}
}
*cum_1_result = cum_1;
*cum_2_result = cum_2;
return ret;
}
/* Test if all counter values in this GCOV_INFO are cold.
"Cold" is defined as the counter value being less than
or equal to THRESHOLD. */
static bool
gcov_info_count_all_cold (const struct gcov_info *gcov_info,
gcov_type threshold)
{
unsigned f_ix;
for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
{
const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
if (!gfi_ptr || gfi_ptr->key != gcov_info)
continue;
const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
for (unsigned c_num = 0; c_num < ci_ptr->num; c_num++)
if (ci_ptr->values[c_num] > threshold)
return false;
}
return true;
}
/* Test if all counter values in this GCOV_INFO are 0. */
static bool
gcov_info_count_all_zero (const struct gcov_info *gcov_info)
{
return gcov_info_count_all_cold (gcov_info, 0);
}
/* A pair of matched GCOV_INFO.
The flag is a bitvector:
b0: obj1's all counts are 0;
b1: obj1's all counts are cold (but no 0);
b2: obj1 is hot;
b3: no obj1 to match obj2;
b4: obj2's all counts are 0;
b5: obj2's all counts are cold (but no 0);
b6: obj2 is hot;
b7: no obj2 to match obj1;
*/
struct overlap_t {
const struct gcov_info *obj1;
const struct gcov_info *obj2;
char flag;
};
#define FLAG_BOTH_ZERO(flag) ((flag & 0x1) && (flag & 0x10))
#define FLAG_BOTH_COLD(flag) ((flag & 0x2) && (flag & 0x20))
#define FLAG_ONE_HOT(flag) ((flag & 0x4) || (flag & 0x40))
/* Cumlative overlap dscore for profile1 and profile2. */
static double overlap_sum_1, overlap_sum_2;
/* The number of gcda files in the profiles. */
static unsigned gcda_files[2];
/* The number of unique gcda files in the profiles
(not existing in the other profile). */
static unsigned unique_gcda_files[2];
/* The number of gcda files that all counter values are 0. */
static unsigned zero_gcda_files[2];
/* The number of gcda files that all counter values are cold (but not 0). */
static unsigned cold_gcda_files[2];
/* The number of gcda files that includes hot counter values. */
static unsigned hot_gcda_files[2];
/* The number of gcda files with hot count value in either profiles. */
static unsigned both_hot_cnt;
/* The number of gcda files with all counts cold (but not 0) in
both profiles. */
static unsigned both_cold_cnt;
/* The number of gcda files with all counts 0 in both profiles. */
static unsigned both_zero_cnt;
/* Extract the basename of the filename NAME. */
static char *
extract_file_basename (const char *name)
{
char *str;
int len = 0;
char *path = xstrdup (name);
char sep_str[2];
sep_str[0] = DIR_SEPARATOR;
sep_str[1] = 0;
str = strstr(path, sep_str);
do{
len = strlen(str) + 1;
path = &path[strlen(path) - len + 2];
str = strstr(path, sep_str);
} while(str);
return path;
}
/* Utility function to get the filename. */
static const char *
get_file_basename (const char *name)
{
if (overlap_use_fullname)
return name;
return extract_file_basename (name);
}
/* A utility function to set the flag for the gcda files. */
static void
set_flag (struct overlap_t *e)
{
char flag = 0;
if (!e->obj1)
{
unique_gcda_files[1]++;
flag = 0x8;
}
else
{
gcda_files[0]++;
if (gcov_info_count_all_zero (e->obj1))
{
zero_gcda_files[0]++;
flag = 0x1;
}
else
if (gcov_info_count_all_cold (e->obj1, overlap_sum_1
* overlap_hot_threshold))
{
cold_gcda_files[0]++;
flag = 0x2;
}
else
{
hot_gcda_files[0]++;
flag = 0x4;
}
}
if (!e->obj2)
{
unique_gcda_files[0]++;
flag |= (0x8 << 4);
}
else
{
gcda_files[1]++;
if (gcov_info_count_all_zero (e->obj2))
{
zero_gcda_files[1]++;
flag |= (0x1 << 4);
}
else
if (gcov_info_count_all_cold (e->obj2, overlap_sum_2
* overlap_hot_threshold))
{
cold_gcda_files[1]++;
flag |= (0x2 << 4);
}
else
{
hot_gcda_files[1]++;
flag |= (0x4 << 4);
}
}
gcc_assert (flag);
e->flag = flag;
}
/* Test if INFO1 and INFO2 are from the matched source file.
Return 1 if they match; return 0 otherwise. */
static int
matched_gcov_info (const struct gcov_info *info1, const struct gcov_info *info2)
{
/* For FDO, we have to match the name. This can be expensive.
Maybe we should use hash here. */
if (strcmp (info1->filename, info2->filename))
return 0;
if (info1->n_functions != info2->n_functions)
{
fnotice (stderr, "mismatched profiles in %s (%d functions"
" vs %d functions)\n",
info1->filename,
info1->n_functions,
info2->n_functions);
return 0;
}
return 1;
}
/* Compute the overlap score of two profiles with the head of GCOV_LIST1 and
GCOV_LIST1. Return a number ranging from [0.0, 1.0], with 0.0 meaning no
match and 1.0 meaning a perfect match. */
static double
calculate_overlap (struct gcov_info *gcov_list1,
struct gcov_info *gcov_list2)
{
unsigned list1_cnt = 0, list2_cnt= 0, all_cnt;
unsigned int i, j;
const struct gcov_info *gi_ptr;
struct overlap_t *all_infos;
for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next)
list1_cnt++;
for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next)
list2_cnt++;
all_cnt = list1_cnt + list2_cnt;
all_infos = (struct overlap_t *) xmalloc (sizeof (struct overlap_t)
* all_cnt * 2);
gcc_assert (all_infos);
i = 0;
for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next, i++)
{
all_infos[i].obj1 = gi_ptr;
all_infos[i].obj2 = 0;
}
for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next, i++)
{
all_infos[i].obj1 = 0;
all_infos[i].obj2 = gi_ptr;
}
for (i = list1_cnt; i < all_cnt; i++)
{
if (all_infos[i].obj2 == 0)
continue;
for (j = 0; j < list1_cnt; j++)
{
if (all_infos[j].obj2 != 0)
continue;
if (matched_gcov_info (all_infos[i].obj2, all_infos[j].obj1))
{
all_infos[j].obj2 = all_infos[i].obj2;
all_infos[i].obj2 = 0;
break;
}
}
}
for (i = 0; i < all_cnt; i++)
if (all_infos[i].obj1 || all_infos[i].obj2)
{
set_flag (all_infos + i);
if (FLAG_ONE_HOT (all_infos[i].flag))
both_hot_cnt++;
if (FLAG_BOTH_COLD(all_infos[i].flag))
both_cold_cnt++;
if (FLAG_BOTH_ZERO(all_infos[i].flag))
both_zero_cnt++;
}
double prg_val = 0;
double sum_val = 0;
double sum_cum_1 = 0;
double sum_cum_2 = 0;
for (i = 0; i < all_cnt; i++)
{
double val;
double cum_1, cum_2;
const char *filename;
if (all_infos[i].obj1 == 0 && all_infos[i].obj2 == 0)
continue;
if (FLAG_BOTH_ZERO (all_infos[i].flag))
continue;
if (all_infos[i].obj1)
filename = get_file_basename (all_infos[i].obj1->filename);
else
filename = get_file_basename (all_infos[i].obj2->filename);
if (overlap_func_level)
printf("\n processing %36s:\n", filename);
val = compute_one_gcov (all_infos[i].obj1, all_infos[i].obj2,
overlap_sum_1, overlap_sum_2, &cum_1, &cum_2);
if (overlap_obj_level && (!overlap_hot_only || FLAG_ONE_HOT (all_infos[i].flag)))
{
printf(" obj=%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
filename, val*100, cum_1*100, cum_2*100);
sum_val += val;
sum_cum_1 += cum_1;
sum_cum_2 += cum_2;
}
prg_val += val;
}
free (all_infos);
if (overlap_obj_level)
printf(" SUM:%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
"", sum_val*100, sum_cum_1*100, sum_cum_2*100);
printf (" Statistics:\n"
" profile1_# profile2_# overlap_#\n");
printf (" gcda files: %12u\t%12u\t%12u\n", gcda_files[0], gcda_files[1],
gcda_files[0]-unique_gcda_files[0]);
printf (" unique files: %12u\t%12u\n", unique_gcda_files[0],
unique_gcda_files[1]);
printf (" hot files: %12u\t%12u\t%12u\n", hot_gcda_files[0],
hot_gcda_files[1], both_hot_cnt);
printf (" cold files: %12u\t%12u\t%12u\n", cold_gcda_files[0],
cold_gcda_files[1], both_cold_cnt);
printf (" zero files: %12u\t%12u\t%12u\n", zero_gcda_files[0],
zero_gcda_files[1], both_zero_cnt);
return prg_val;
}
/* Compute the overlap score of two lists of gcov_info objects PROFILE1 and
PROFILE2.
Return 0 on success: without mismatch. Reutrn 1 on error. */
int
gcov_profile_overlap (struct gcov_info *profile1, struct gcov_info *profile2)
{
double result;
result = calculate_overlap (profile1, profile2);
if (result > 0)
{
printf("\nProgram level overlap result is %3.2f%%\n\n", result*100);
return 0;
}
return 1;
}