gcc/libstdc++-v3/include/std/limits
Benjamin Kosnik 94a86be0dd libstdc++: N3126 draft support.
* include/std/chrono: Extend constexpr application.
	* testsuite/util/testsuite_common_types.h
	(constexpr_default_constructible, constexpr_single_value_constructible)
	: Add comments about implied constraints.
	* testsuite/20_util/duration/cons/constexpr.cc: Activate all tests.
	* testsuite/20_util/time_point/cons/constexpr.cc: Same.
	* testsuite/20_util/time_point/requirements/constexpr_functions.cc:
	Same.
	* testsuite/20_util/ratio/cons/cons_overflow_neg.cc: Adjust line
	numbers.
	* testsuite/20_util/time_point_cast/constexpr.cc: New.

	* include/std/bitset: Use __SIZEOF_* macros to re-create original
	logic instead of slipshod application of
	std::numeric_limits<T>::max() macros.
	* testsuite/util/testsuite_common_types.h
	(constexpr_default_constructible): Modify.

	* include/std/chrono: Tested constexpr.
	* testsuite/20_util/duration_cast/constexpr.cc: New.
	* testsuite/20_util/time_point/cons/constexpr.cc: New.

	* testsuite/20_util/duration/cons/constexpr.cc: Add single_value tests.
	* testsuite/20_util/duration/requirements/typedefs_neg1.cc: Adjust
	line numbers.
	* testsuite/20_util/duration/requirements/typedefs_neg2.cc: Same.
	* testsuite/20_util/duration/requirements/typedefs_neg3.cc: Same.
	* testsuite/20_util/time_point/cons/constexpr.cc: Add single_value
	tests.
	* testsuite/20_util/time_point/requirements/constexpr_functions.cc: Add.

	* testsuite/util/testsuite_common_types.h: Adjust init.

	* include/std/chrono (duration): Remove defaulted constructor,
	replace with mem-init list.
	* testsuite/20_util/duration/cons/constexpr.cc: Add single value.
	* testsuite/20_util/duration/requirements/constexpr_functions.cc:
	Add non-static member functions.

	* testsuite/20_util/default_delete/cons/constexpr.cc: New, xfail.
	* testsuite/20_util/enable_shared_from_this/cons/constexpr.cc: Same.
	* testsuite/20_util/shared_ptr/cons/constexpr.cc: Same.
	* testsuite/20_util/time_point/requirements/constexpr_functions.cc:
	Same.
	* testsuite/20_util/unique_ptr/cons/constexpr.cc: Same.
	* testsuite/20_util/weak_ptr/cons/constexpr.cc: Same.

	* include/std/bitset: Add constexpr as per N3126 draft.
	* testsuite/23_containers/bitset/cons/constexpr.cc: New.
	* testsuite/23_containers/bitset/requirements/constexpr_functions.cc:
	New.

	* testsuite/util/testsuite_common_types.h: Reset condition.

	* include/bits/random.h: Remove misleading comments.
	* include/bits/regex.h: Add constexpr.
	* testsuite/28_regex/05_constants/syntax_option_type.cc: Add tests.
	* testsuite/28_regex/08_basic_regex/requirements/constexpr_data.cc: New.

	PR libstdc++/46134
	* include/std/chrono: Use default constructor.
	* testsuite/util/testsuite_common_types.h
	(constexpr_default_constructible): Adjust condition.

	PR libstdc++/46133
	* include/std/complex: Adjust complex specialization default
	constructors for constexpr.
	* testsuite/26_numerics/complex/cons/constexpr.cc: Enable tests.

	* include/bits/random.h: Adjust for constexpr as per N3126 draft.
	* testsuite/26_numerics/random/discard_block_engine/requirements/
	constexpr_data.cc: New.
	* testsuite/26_numerics/random/discard_block_engine/requirements/
	constexpr_functions.cc: New.
	* testsuite/26_numerics/random/independent_bits_engine/requirements/
	constexpr_functions.cc: New.
	* testsuite/26_numerics/random/linear_congruential_engine/requirements/
	constexpr_data.cc: New.
	* testsuite/26_numerics/random/linear_congruential_engine/requirements/
	constexpr_functions.cc: New.
	* testsuite/26_numerics/random/mersenne_twister_engine/requirements/
	constexpr_data.cc: New.
	* testsuite/26_numerics/random/mersenne_twister_engine/requirements/
	constexpr_functions.cc: New.
	* testsuite/26_numerics/random/shuffle_order_engine/requirements/
	constexpr_data.cc: New.
	* testsuite/26_numerics/random/shuffle_order_engine/requirements/
	constexpr_functions.cc: New.
	* testsuite/26_numerics/random/subtract_with_carry_engine/requirements/
	constexpr_data.cc: New.
	* testsuite/26_numerics/random/subtract_with_carry_engine/requirements/
	constexpr_functions.cc: New.

	* include/bits/stream_iterator.h: Add constexpr as per N3126 draft.
	* include/bits/streambuf_iterator.h: Same.
	* include/std/complex: Same.
	* testsuite/24_iterators/istream_iterator/cons/constexpr.cc: New.
	* testsuite/24_iterators/istreambuf_iterator/cons/constexpr.cc: New.
	* testsuite/26_numerics/complex/cons/constexpr.cc: New.
	* testsuite/26_numerics/complex/requirements/constexpr_functions.cc:
	New.

	* include/bits/char_traits.h: Add constexpr as per N3126 draft.
	* testsuite/21_strings/char_traits/requirements/constexpr_functions.cc:
	New.

	* include/tr1_impl/array: Add constexpr as per N3126 draft.
	* testsuite/23_containers/array/requirements/
	constexpr_functions.cc: New.

	* include/bits/shared_ptr.h: Revert changes.
	* include/bits/unique_ptr.h: Same.

	* include/std/chrono: Adjust.
	* include/tr1_impl/type_traits: Same.

	* testsuite/util/testsuite_common_types.h: Add test functors.
	* testsuite/20_util/duration/cons/constexpr.cc: New.
	* testsuite/20_util/duration/requirements/constexpr_functions.cc: Same.
	* testsuite/20_util/pair/cons/constexpr.cc: Same.
	* testsuite/20_util/ratio/requirements/constexpr_data.cc: Same.
	* testsuite/27_io/ios_base/types/fmtflags/constexpr_operators.cc: Same.
	* testsuite/27_io/ios_base/types/iostate/constexpr_operators.cc: Same.
	* testsuite/27_io/ios_base/types/openmode/constexpr_operators.cc: Same.
	* testsuite/30_threads/call_once/constexpr.cc: Same.
	* testsuite/30_threads/mutex/cons/constexpr.cc: Same.
	* testsuite/30_threads/once_flag/cons/constexpr.cc: Same.
	* testsuite/tr1/4_metaprogramming/integral_constant/requirements/
	constexpr_data.cc: Same.

	* testsuite/29_atomics/atomic/cons/assign_neg.cc: Adjust line numbers.
	* testsuite/29_atomics/atomic/cons/copy_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/assign_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/copy_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/operators/bitwise_neg.cc: Same.

	* include/bits/allocator.h: Add constexpr as per N3126 draft.
	* include/bits/ios_base.h: Same.
	* include/bits/shared_ptr.h: Same.
	* include/bits/unique_ptr.h: Same.
	* include/bits/stl_iterator.h: Same.
	* include/bits/stl_pair.h: Same.
	* include/std/tuple: Same.
	* include/tr1_impl/type_traits: Same.
	* include/std/chrono: Same.
	* include/std/ratio: Same.
	* include/std/mutex: Same.
	* src/mutex.cc: Same.
	* testsuite/20_util/duration/requirements/typedefs_neg1.cc: Adjust.
	* testsuite/20_util/duration/requirements/typedefs_neg2.cc: Same.
	* testsuite/20_util/duration/requirements/typedefs_neg3.cc: Same.
	* testsuite/20_util/weak_ptr/comparison/cmp_neg.cc: Same.
	* testsuite/27_io/ios_base/cons/assign_neg.cc: Same.
	* testsuite/27_io/ios_base/cons/copy_neg.cc: Same.

	* doc/doxygen/user.cfg.in: Replace _GLIBCXX_USE_CONSTEXPR,
	_GLIBCXX_CONSTEXPR for doxygen generation.

	* src/limits.cc: Undef.
	* testsuite/29_atomics/atomic/cons/constexpr.cc: Adjust.
	* testsuite/29_atomics/atomic_address/cons/constexpr.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/constexpr.cc: Same.
	* testsuite/29_atomics/atomic_integral/operators/bitwise_neg.c: Same.
	* testsuite/18_support/numeric_limits/constexpr.cc: To...
	* testsuite/18_support/numeric_limits/requirements/
	constexpr_data.cc, constexpr_functions.cc: ...this

	* testsuite/util/testsuite_common_types.h
	(constexpr_single_value_constructible): Add.
	* testsuite/29_atomics/atomic/cons/constexpr.cc: Adjust name.
	* testsuite/29_atomics/atomic_integral/cons/constexpr.cc: Same.
	* testsuite/29_atomics/atomic_address/cons/constexpr.cc: New.
	* testsuite/18_support/numeric_limits/constexpr.cc: New.

	* testsuite/29_atomics/atomic/cons/assign_neg.cc: Adjust line numbers.
	* testsuite/29_atomics/atomic/cons/constexpr.cc: Same.
	* testsuite/29_atomics/atomic/cons/copy_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/assign_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/constexpr.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/copy_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/operators/bitwise_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/operators/decrement_neg.cc: Same.
	* testsuite/29_atomics/atomic_integral/operators/increment_neg.cc: Same.

	* include/bits/c++config (_GLIBCXX_CONSTEXPR): Add.
	(_GLIBCXX_USE_CONSTEXPR): Add.
	* include/std/limits: Use it.
	* src/limits.cc: Adjust.
	* testsuite/ext/profile/mutex_extensions.cc: Change line number.

	* include/bits/atomic_0.h: Rework for N3126 draft, add constexpr.
	* include/bits/atomic_2.h: Same.
	* include/bits/atomic_base.h: Same.
	* include/std/atomic: Same.
	* src/atomic.cc: Same.
	* include/bits/atomicfwd_c.h: Remove.
	* include/bits/atomicfwd_cxx.h: Remove.
	* include/c_compatibility/stdatomic.h: Remove.
	* include/Makefile.am: Remove atomicfwd_c.h, atomicfwd_cxx.h,
	stdatomic.h.
	* include/Makefile.in: Regenerate.
	* doc/xml/manual/using.xml: Update list of header files for changes.
	* testsuite/util/testsuite_common_types.h
	(constexpr_constructible): Add.
	* testsuite/29_atomics/atomic/cons/constexpr.cc: New.
	* testsuite/29_atomics/atomic_integral/cons/constexpr.cc: New.
	* testsuite/17_intro/headers/c++200x/stdc++.cc: Modify.
	* testsuite/29_atomics/atomic/cons/assign_neg.cc: Same.
	* testsuite/29_atomics/atomic_address/cons/assign_neg.cc: Same.
	* testsuite/29_atomics/atomic_flag/cons/1.cc: Same.
	* testsuite/29_atomics/atomic_integral/cons/assign_neg.cc: Same.
	* testsuite/29_atomics/headers/atomic/macros.cc: Same.
	* testsuite/29_atomics/headers/atomic/types_std_c++0x.cc: Same.
	* testsuite/29_atomics/headers/atomic/types_std_c++0x_neg.cc: Same.
	* testsuite/29_atomics/atomic_flag/test_and_set/implicit.c: Remove.
	* testsuite/29_atomics/atomic_flag/test_and_set/explicit.c: Same.
	* testsuite/29_atomics/atomic_flag/clear/1.c: Same.
	* testsuite/29_atomics/headers/stdatomic.h/debug_mode.c: Same.
	* testsuite/29_atomics/headers/stdatomic.h/functions.c: Same.
	* testsuite/29_atomics/headers/stdatomic.h/macros.c: Same.
	* testsuite/29_atomics/headers/stdatomic.h/types.c: Same.

	* testsuite/util/testsuite_abi.cc: Add GLIBCXX_3.4.16.

From-SVN: r166171
2010-11-01 22:35:28 -04:00

1630 lines
60 KiB
C++

// The template and inlines for the numeric_limits classes. -*- C++ -*-
// Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
// 2008, 2009, 2010 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file limits
* This is a Standard C++ Library header.
*/
// Note: this is not a conforming implementation.
// Written by Gabriel Dos Reis <gdr@codesourcery.com>
//
// ISO 14882:1998
// 18.2.1
//
#ifndef _GLIBCXX_NUMERIC_LIMITS
#define _GLIBCXX_NUMERIC_LIMITS 1
#pragma GCC system_header
#include <bits/c++config.h>
//
// The numeric_limits<> traits document implementation-defined aspects
// of fundamental arithmetic data types (integers and floating points).
// From Standard C++ point of view, there are 14 such types:
// * integers
// bool (1)
// char, signed char, unsigned char, wchar_t (4)
// short, unsigned short (2)
// int, unsigned (2)
// long, unsigned long (2)
//
// * floating points
// float (1)
// double (1)
// long double (1)
//
// GNU C++ understands (where supported by the host C-library)
// * integer
// long long, unsigned long long (2)
//
// which brings us to 16 fundamental arithmetic data types in GNU C++.
//
//
// Since a numeric_limits<> is a bit tricky to get right, we rely on
// an interface composed of macros which should be defined in config/os
// or config/cpu when they differ from the generic (read arbitrary)
// definitions given here.
//
// These values can be overridden in the target configuration file.
// The default values are appropriate for many 32-bit targets.
// GCC only intrinsically supports modulo integral types. The only remaining
// integral exceptional values is division by zero. Only targets that do not
// signal division by zero in some "hard to ignore" way should use false.
#ifndef __glibcxx_integral_traps
# define __glibcxx_integral_traps true
#endif
// float
//
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_float_has_denorm_loss
# define __glibcxx_float_has_denorm_loss false
#endif
#ifndef __glibcxx_float_traps
# define __glibcxx_float_traps false
#endif
#ifndef __glibcxx_float_tinyness_before
# define __glibcxx_float_tinyness_before false
#endif
// double
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_double_has_denorm_loss
# define __glibcxx_double_has_denorm_loss false
#endif
#ifndef __glibcxx_double_traps
# define __glibcxx_double_traps false
#endif
#ifndef __glibcxx_double_tinyness_before
# define __glibcxx_double_tinyness_before false
#endif
// long double
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_long_double_has_denorm_loss
# define __glibcxx_long_double_has_denorm_loss false
#endif
#ifndef __glibcxx_long_double_traps
# define __glibcxx_long_double_traps false
#endif
#ifndef __glibcxx_long_double_tinyness_before
# define __glibcxx_long_double_tinyness_before false
#endif
// You should not need to define any macros below this point.
#define __glibcxx_signed(T) ((T)(-1) < 0)
#define __glibcxx_min(T) \
(__glibcxx_signed (T) ? (T)1 << __glibcxx_digits (T) : (T)0)
#define __glibcxx_max(T) \
(__glibcxx_signed (T) ? \
(((((T)1 << (__glibcxx_digits (T) - 1)) - 1) << 1) + 1) : ~(T)0)
#define __glibcxx_digits(T) \
(sizeof(T) * __CHAR_BIT__ - __glibcxx_signed (T))
// The fraction 643/2136 approximates log10(2) to 7 significant digits.
#define __glibcxx_digits10(T) \
(__glibcxx_digits (T) * 643 / 2136)
#define __glibcxx_max_digits10(T) \
(2 + (T) * 643 / 2136)
_GLIBCXX_BEGIN_NAMESPACE(std)
/**
* @brief Describes the rounding style for floating-point types.
*
* This is used in the std::numeric_limits class.
*/
enum float_round_style
{
round_indeterminate = -1, ///< Self-explanatory.
round_toward_zero = 0, ///< Self-explanatory.
round_to_nearest = 1, ///< To the nearest representable value.
round_toward_infinity = 2, ///< Self-explanatory.
round_toward_neg_infinity = 3 ///< Self-explanatory.
};
/**
* @brief Describes the denormalization for floating-point types.
*
* These values represent the presence or absence of a variable number
* of exponent bits. This type is used in the std::numeric_limits class.
*/
enum float_denorm_style
{
/// Indeterminate at compile time whether denormalized values are allowed.
denorm_indeterminate = -1,
/// The type does not allow denormalized values.
denorm_absent = 0,
/// The type allows denormalized values.
denorm_present = 1
};
/**
* @brief Part of std::numeric_limits.
*
* The @c static @c const members are usable as integral constant
* expressions.
*
* @note This is a separate class for purposes of efficiency; you
* should only access these members as part of an instantiation
* of the std::numeric_limits class.
*/
struct __numeric_limits_base
{
/** This will be true for all fundamental types (which have
specializations), and false for everything else. */
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = false;
/** The number of @c radix digits that be represented without change: for
integer types, the number of non-sign bits in the mantissa; for
floating types, the number of @c radix digits in the mantissa. */
static _GLIBCXX_USE_CONSTEXPR int digits = 0;
/** The number of base 10 digits that can be represented without change. */
static _GLIBCXX_USE_CONSTEXPR int digits10 = 0;
#ifdef __GXX_EXPERIMENTAL_CXX0X__
/** The number of base 10 digits required to ensure that values which
differ are always differentiated. */
static constexpr int max_digits10 = 0;
#endif
/** True if the type is signed. */
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
/** True if the type is integer.
* Is this supposed to be <em>if the type is integral?</em> */
static _GLIBCXX_USE_CONSTEXPR bool is_integer = false;
/** True if the type uses an exact representation. <em>All integer types are
exact, but not all exact types are integer. For example, rational and
fixed-exponent representations are exact but not integer.</em>
[18.2.1.2]/15 */
static _GLIBCXX_USE_CONSTEXPR bool is_exact = false;
/** For integer types, specifies the base of the representation. For
floating types, specifies the base of the exponent representation. */
static _GLIBCXX_USE_CONSTEXPR int radix = 0;
/** The minimum negative integer such that @c radix raised to the power of
(one less than that integer) is a normalized floating point number. */
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
/** The minimum negative integer such that 10 raised to that power is in
the range of normalized floating point numbers. */
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
/** The maximum positive integer such that @c radix raised to the power of
(one less than that integer) is a representable finite floating point
number. */
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
/** The maximum positive integer such that 10 raised to that power is in
the range of representable finite floating point numbers. */
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
/** True if the type has a representation for positive infinity. */
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
/** True if the type has a representation for a quiet (non-signaling)
<em>Not a Number</em>. */
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
/** True if the type has a representation for a signaling
<em>Not a Number</em>. */
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
/** See std::float_denorm_style for more information. */
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
/** <em>True if loss of accuracy is detected as a denormalization loss,
rather than as an inexact result.</em> [18.2.1.2]/42 */
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
/** True if-and-only-if the type adheres to the IEC 559 standard, also
known as IEEE 754. (Only makes sense for floating point types.) */
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
/** <em>True if the set of values representable by the type is
finite. All built-in types are bounded, this member would be
false for arbitrary precision types.</em> [18.2.1.2]/54 */
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = false;
/** True if the type is @e modulo, that is, if it is possible to add two
positive numbers and have a result that wraps around to a third number
that is less. Typically false for floating types, true for unsigned
integers, and true for signed integers. */
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = false;
/** True if trapping is implemented for this type. */
static _GLIBCXX_USE_CONSTEXPR bool traps = false;
/** True if tininess is detected before rounding. (see IEC 559) */
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
/** See std::float_round_style for more information. This is only
meaningful for floating types; integer types will all be
round_toward_zero. */
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style =
round_toward_zero;
};
/**
* @brief Properties of fundamental types.
*
* This class allows a program to obtain information about the
* representation of a fundamental type on a given platform. For
* non-fundamental types, the functions will return 0 and the data
* members will all be @c false.
*
* _GLIBCXX_RESOLVE_LIB_DEFECTS: DRs 201 and 184 (hi Gaby!) are
* noted, but not incorporated in this documented (yet).
*/
template<typename _Tp>
struct numeric_limits : public __numeric_limits_base
{
/** The minimum finite value, or for floating types with
denormalization, the minimum positive normalized value. */
static _GLIBCXX_CONSTEXPR _Tp
min() throw() { return static_cast<_Tp>(0); }
/** The maximum finite value. */
static _GLIBCXX_CONSTEXPR _Tp
max() throw() { return static_cast<_Tp>(0); }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
/** A finite value x such that there is no other finite value y
* where y < x. */
static constexpr _Tp
lowest() throw() { return static_cast<_Tp>(0); }
#endif
/** The @e machine @e epsilon: the difference between 1 and the least
value greater than 1 that is representable. */
static _GLIBCXX_CONSTEXPR _Tp
epsilon() throw() { return static_cast<_Tp>(0); }
/** The maximum rounding error measurement (see LIA-1). */
static _GLIBCXX_CONSTEXPR _Tp
round_error() throw() { return static_cast<_Tp>(0); }
/** The representation of positive infinity, if @c has_infinity. */
static _GLIBCXX_CONSTEXPR _Tp
infinity() throw() { return static_cast<_Tp>(0); }
/** The representation of a quiet <em>Not a Number</em>,
if @c has_quiet_NaN. */
static _GLIBCXX_CONSTEXPR _Tp
quiet_NaN() throw() { return static_cast<_Tp>(0); }
/** The representation of a signaling <em>Not a Number</em>, if
@c has_signaling_NaN. */
static _GLIBCXX_CONSTEXPR _Tp
signaling_NaN() throw() { return static_cast<_Tp>(0); }
/** The minimum positive denormalized value. For types where
@c has_denorm is false, this is the minimum positive normalized
value. */
static _GLIBCXX_CONSTEXPR _Tp
denorm_min() throw() { return static_cast<_Tp>(0); }
};
#ifdef __GXX_EXPERIMENTAL_CXX0X__
template<typename _Tp>
struct numeric_limits<const _Tp>
: public numeric_limits<_Tp> { };
template<typename _Tp>
struct numeric_limits<volatile _Tp>
: public numeric_limits<_Tp> { };
template<typename _Tp>
struct numeric_limits<const volatile _Tp>
: public numeric_limits<_Tp> { };
#endif
// Now there follow 16 explicit specializations. Yes, 16. Make sure
// you get the count right. (18 in c++0x mode)
/// numeric_limits<bool> specialization.
template<>
struct numeric_limits<bool>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR bool
min() throw() { return false; }
static _GLIBCXX_CONSTEXPR bool
max() throw() { return true; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr bool
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = 1;
static _GLIBCXX_USE_CONSTEXPR int digits10 = 0;
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR bool
epsilon() throw() { return false; }
static _GLIBCXX_CONSTEXPR bool
round_error() throw() { return false; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR bool
infinity() throw() { return false; }
static _GLIBCXX_CONSTEXPR bool
quiet_NaN() throw() { return false; }
static _GLIBCXX_CONSTEXPR bool
signaling_NaN() throw() { return false; }
static _GLIBCXX_CONSTEXPR bool
denorm_min() throw() { return false; }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = false;
// It is not clear what it means for a boolean type to trap.
// This is a DR on the LWG issue list. Here, I use integer
// promotion semantics.
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<char> specialization.
template<>
struct numeric_limits<char>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR char
min() throw() { return __glibcxx_min(char); }
static _GLIBCXX_CONSTEXPR char
max() throw() { return __glibcxx_max(char); }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr char
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (char);
static _GLIBCXX_USE_CONSTEXPR int digits10 = __glibcxx_digits10 (char);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = __glibcxx_signed (char);
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR char
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR char
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR
char infinity() throw() { return char(); }
static _GLIBCXX_CONSTEXPR char
quiet_NaN() throw() { return char(); }
static _GLIBCXX_CONSTEXPR char
signaling_NaN() throw() { return char(); }
static _GLIBCXX_CONSTEXPR char
denorm_min() throw() { return static_cast<char>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<signed char> specialization.
template<>
struct numeric_limits<signed char>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR signed char
min() throw() { return -__SCHAR_MAX__ - 1; }
static _GLIBCXX_CONSTEXPR signed char
max() throw() { return __SCHAR_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr signed char
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (signed char);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (signed char);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR signed char
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR signed char
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR signed char
infinity() throw() { return static_cast<signed char>(0); }
static _GLIBCXX_CONSTEXPR signed char
quiet_NaN() throw() { return static_cast<signed char>(0); }
static _GLIBCXX_CONSTEXPR signed char
signaling_NaN() throw() { return static_cast<signed char>(0); }
static _GLIBCXX_CONSTEXPR signed char
denorm_min() throw() { return static_cast<signed char>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<unsigned char> specialization.
template<>
struct numeric_limits<unsigned char>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR unsigned char
min() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned char
max() throw() { return __SCHAR_MAX__ * 2U + 1; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr unsigned char
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (unsigned char);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (unsigned char);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR unsigned char
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned char
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR unsigned char
infinity() throw() { return static_cast<unsigned char>(0); }
static _GLIBCXX_CONSTEXPR unsigned char
quiet_NaN() throw() { return static_cast<unsigned char>(0); }
static _GLIBCXX_CONSTEXPR unsigned char
signaling_NaN() throw() { return static_cast<unsigned char>(0); }
static _GLIBCXX_CONSTEXPR unsigned char
denorm_min() throw() { return static_cast<unsigned char>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<wchar_t> specialization.
template<>
struct numeric_limits<wchar_t>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR wchar_t
min() throw() { return __glibcxx_min (wchar_t); }
static _GLIBCXX_CONSTEXPR wchar_t
max() throw() { return __glibcxx_max (wchar_t); }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr wchar_t
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (wchar_t);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (wchar_t);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = __glibcxx_signed (wchar_t);
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR wchar_t
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR wchar_t
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR wchar_t
infinity() throw() { return wchar_t(); }
static _GLIBCXX_CONSTEXPR wchar_t
quiet_NaN() throw() { return wchar_t(); }
static _GLIBCXX_CONSTEXPR wchar_t
signaling_NaN() throw() { return wchar_t(); }
static _GLIBCXX_CONSTEXPR wchar_t
denorm_min() throw() { return wchar_t(); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
#ifdef __GXX_EXPERIMENTAL_CXX0X__
/// numeric_limits<char16_t> specialization.
template<>
struct numeric_limits<char16_t>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR char16_t
min() throw() { return __glibcxx_min (char16_t); }
static _GLIBCXX_CONSTEXPR char16_t
max() throw() { return __glibcxx_max (char16_t); }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr char16_t
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (char16_t);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (char16_t);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed
= __glibcxx_signed (char16_t);
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR char16_t
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR char16_t
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR char16_t
infinity() throw() { return char16_t(); }
static _GLIBCXX_CONSTEXPR char16_t
quiet_NaN() throw() { return char16_t(); }
static _GLIBCXX_CONSTEXPR char16_t
signaling_NaN() throw() { return char16_t(); }
static _GLIBCXX_CONSTEXPR char16_t
denorm_min() throw() { return char16_t(); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<char32_t> specialization.
template<>
struct numeric_limits<char32_t>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR char32_t
min() throw() { return __glibcxx_min (char32_t); }
static _GLIBCXX_CONSTEXPR char32_t
max() throw() { return __glibcxx_max (char32_t); }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr char32_t
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (char32_t);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (char32_t);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed
= __glibcxx_signed (char32_t);
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR char32_t
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR char32_t
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR char32_t
infinity() throw() { return char32_t(); }
static _GLIBCXX_CONSTEXPR char32_t
quiet_NaN() throw() { return char32_t(); }
static _GLIBCXX_CONSTEXPR char32_t
signaling_NaN() throw() { return char32_t(); }
static _GLIBCXX_CONSTEXPR char32_t
denorm_min() throw() { return char32_t(); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
#endif
/// numeric_limits<short> specialization.
template<>
struct numeric_limits<short>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR short
min() throw() { return -__SHRT_MAX__ - 1; }
static _GLIBCXX_CONSTEXPR short
max() throw() { return __SHRT_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr short
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (short);
static _GLIBCXX_USE_CONSTEXPR int digits10 = __glibcxx_digits10 (short);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR short
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR short
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR short
infinity() throw() { return short(); }
static _GLIBCXX_CONSTEXPR short
quiet_NaN() throw() { return short(); }
static _GLIBCXX_CONSTEXPR short
signaling_NaN() throw() { return short(); }
static _GLIBCXX_CONSTEXPR short
denorm_min() throw() { return short(); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<unsigned short> specialization.
template<>
struct numeric_limits<unsigned short>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR unsigned short
min() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned short
max() throw() { return __SHRT_MAX__ * 2U + 1; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr unsigned short
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (unsigned short);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (unsigned short);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR unsigned short
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned short
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR unsigned short
infinity() throw() { return static_cast<unsigned short>(0); }
static _GLIBCXX_CONSTEXPR unsigned short
quiet_NaN() throw() { return static_cast<unsigned short>(0); }
static _GLIBCXX_CONSTEXPR unsigned short
signaling_NaN() throw() { return static_cast<unsigned short>(0); }
static _GLIBCXX_CONSTEXPR unsigned short
denorm_min() throw() { return static_cast<unsigned short>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<int> specialization.
template<>
struct numeric_limits<int>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR int
min() throw() { return -__INT_MAX__ - 1; }
static _GLIBCXX_CONSTEXPR int
max() throw() { return __INT_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (int);
static _GLIBCXX_USE_CONSTEXPR int digits10 = __glibcxx_digits10 (int);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR int
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR int
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR int
infinity() throw() { return static_cast<int>(0); }
static _GLIBCXX_CONSTEXPR int
quiet_NaN() throw() { return static_cast<int>(0); }
static _GLIBCXX_CONSTEXPR int
signaling_NaN() throw() { return static_cast<int>(0); }
static _GLIBCXX_CONSTEXPR int
denorm_min() throw() { return static_cast<int>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<unsigned int> specialization.
template<>
struct numeric_limits<unsigned int>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR unsigned int
min() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned int
max() throw() { return __INT_MAX__ * 2U + 1; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr unsigned int
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (unsigned int);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (unsigned int);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR unsigned int
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned int
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR unsigned int
infinity() throw() { return static_cast<unsigned int>(0); }
static _GLIBCXX_CONSTEXPR unsigned int
quiet_NaN() throw() { return static_cast<unsigned int>(0); }
static _GLIBCXX_CONSTEXPR unsigned int
signaling_NaN() throw() { return static_cast<unsigned int>(0); }
static _GLIBCXX_CONSTEXPR unsigned int
denorm_min() throw() { return static_cast<unsigned int>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<long> specialization.
template<>
struct numeric_limits<long>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR long
min() throw() { return -__LONG_MAX__ - 1; }
static _GLIBCXX_CONSTEXPR long
max() throw() { return __LONG_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr long
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __glibcxx_digits (long);
static _GLIBCXX_USE_CONSTEXPR int digits10 = __glibcxx_digits10 (long);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR long
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR long
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR long
infinity() throw() { return static_cast<long>(0); }
static _GLIBCXX_CONSTEXPR long
quiet_NaN() throw() { return static_cast<long>(0); }
static _GLIBCXX_CONSTEXPR long
signaling_NaN() throw() { return static_cast<long>(0); }
static _GLIBCXX_CONSTEXPR long
denorm_min() throw() { return static_cast<long>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<unsigned long> specialization.
template<>
struct numeric_limits<unsigned long>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR unsigned long
min() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned long
max() throw() { return __LONG_MAX__ * 2UL + 1; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr unsigned long
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (unsigned long);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (unsigned long);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR unsigned long
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned long
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR unsigned long
infinity() throw() { return static_cast<unsigned long>(0); }
static _GLIBCXX_CONSTEXPR unsigned long
quiet_NaN() throw() { return static_cast<unsigned long>(0); }
static _GLIBCXX_CONSTEXPR unsigned long
signaling_NaN() throw() { return static_cast<unsigned long>(0); }
static _GLIBCXX_CONSTEXPR unsigned long
denorm_min() throw() { return static_cast<unsigned long>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<long long> specialization.
template<>
struct numeric_limits<long long>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR long long
min() throw() { return -__LONG_LONG_MAX__ - 1; }
static _GLIBCXX_CONSTEXPR long long
max() throw() { return __LONG_LONG_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr long long
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (long long);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (long long);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR long long
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR long long
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR long long
infinity() throw() { return static_cast<long long>(0); }
static _GLIBCXX_CONSTEXPR long long
quiet_NaN() throw() { return static_cast<long long>(0); }
static _GLIBCXX_CONSTEXPR long long
signaling_NaN() throw() { return static_cast<long long>(0); }
static _GLIBCXX_CONSTEXPR long long
denorm_min() throw() { return static_cast<long long>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<unsigned long long> specialization.
template<>
struct numeric_limits<unsigned long long>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR unsigned long long
min() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned long long
max() throw() { return __LONG_LONG_MAX__ * 2ULL + 1; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr unsigned long long
lowest() throw() { return min(); }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits
= __glibcxx_digits (unsigned long long);
static _GLIBCXX_USE_CONSTEXPR int digits10
= __glibcxx_digits10 (unsigned long long);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10 = 0;
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = false;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = true;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = true;
static _GLIBCXX_USE_CONSTEXPR int radix = 2;
static _GLIBCXX_CONSTEXPR unsigned long long
epsilon() throw() { return 0; }
static _GLIBCXX_CONSTEXPR unsigned long long
round_error() throw() { return 0; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = 0;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = 0;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = false;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = false;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = false;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss = false;
static _GLIBCXX_CONSTEXPR unsigned long long
infinity() throw() { return static_cast<unsigned long long>(0); }
static _GLIBCXX_CONSTEXPR unsigned long long
quiet_NaN() throw() { return static_cast<unsigned long long>(0); }
static _GLIBCXX_CONSTEXPR unsigned long long
signaling_NaN() throw() { return static_cast<unsigned long long>(0); }
static _GLIBCXX_CONSTEXPR unsigned long long
denorm_min() throw() { return static_cast<unsigned long long>(0); }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559 = false;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = true;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_integral_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before = false;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_toward_zero;
};
/// numeric_limits<float> specialization.
template<>
struct numeric_limits<float>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR float
min() throw() { return __FLT_MIN__; }
static _GLIBCXX_CONSTEXPR float
max() throw() { return __FLT_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr float
lowest() throw() { return -__FLT_MAX__; }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __FLT_MANT_DIG__;
static _GLIBCXX_USE_CONSTEXPR int digits10 = __FLT_DIG__;
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10
= __glibcxx_max_digits10 (__FLT_MANT_DIG__);
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = false;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = false;
static _GLIBCXX_USE_CONSTEXPR int radix = __FLT_RADIX__;
static _GLIBCXX_CONSTEXPR float
epsilon() throw() { return __FLT_EPSILON__; }
static _GLIBCXX_CONSTEXPR float
round_error() throw() { return 0.5F; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = __FLT_MIN_EXP__;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = __FLT_MIN_10_EXP__;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = __FLT_MAX_EXP__;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = __FLT_MAX_10_EXP__;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = __FLT_HAS_INFINITY__;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = __FLT_HAS_QUIET_NAN__;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = has_quiet_NaN;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= bool(__FLT_HAS_DENORM__) ? denorm_present : denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss
= __glibcxx_float_has_denorm_loss;
static _GLIBCXX_CONSTEXPR float
infinity() throw() { return __builtin_huge_valf (); }
static _GLIBCXX_CONSTEXPR float
quiet_NaN() throw() { return __builtin_nanf (""); }
static _GLIBCXX_CONSTEXPR float
signaling_NaN() throw() { return __builtin_nansf (""); }
static _GLIBCXX_CONSTEXPR float
denorm_min() throw() { return __FLT_DENORM_MIN__; }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = false;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_float_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before
= __glibcxx_float_tinyness_before;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_to_nearest;
};
#undef __glibcxx_float_has_denorm_loss
#undef __glibcxx_float_traps
#undef __glibcxx_float_tinyness_before
/// numeric_limits<double> specialization.
template<>
struct numeric_limits<double>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR double
min() throw() { return __DBL_MIN__; }
static _GLIBCXX_CONSTEXPR double
max() throw() { return __DBL_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr double
lowest() throw() { return -__DBL_MAX__; }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __DBL_MANT_DIG__;
static _GLIBCXX_USE_CONSTEXPR int digits10 = __DBL_DIG__;
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr int max_digits10
= __glibcxx_max_digits10 (__DBL_MANT_DIG__);
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = false;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = false;
static _GLIBCXX_USE_CONSTEXPR int radix = __FLT_RADIX__;
static _GLIBCXX_CONSTEXPR double
epsilon() throw() { return __DBL_EPSILON__; }
static _GLIBCXX_CONSTEXPR double
round_error() throw() { return 0.5; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = __DBL_MIN_EXP__;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = __DBL_MIN_10_EXP__;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = __DBL_MAX_EXP__;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = __DBL_MAX_10_EXP__;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = __DBL_HAS_INFINITY__;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = __DBL_HAS_QUIET_NAN__;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = has_quiet_NaN;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= bool(__DBL_HAS_DENORM__) ? denorm_present : denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss
= __glibcxx_double_has_denorm_loss;
static _GLIBCXX_CONSTEXPR double
infinity() throw() { return __builtin_huge_val(); }
static _GLIBCXX_CONSTEXPR double
quiet_NaN() throw() { return __builtin_nan (""); }
static _GLIBCXX_CONSTEXPR double
signaling_NaN() throw() { return __builtin_nans (""); }
static _GLIBCXX_CONSTEXPR double
denorm_min() throw() { return __DBL_DENORM_MIN__; }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = false;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_double_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before
= __glibcxx_double_tinyness_before;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style
= round_to_nearest;
};
#undef __glibcxx_double_has_denorm_loss
#undef __glibcxx_double_traps
#undef __glibcxx_double_tinyness_before
/// numeric_limits<long double> specialization.
template<>
struct numeric_limits<long double>
{
static _GLIBCXX_USE_CONSTEXPR bool is_specialized = true;
static _GLIBCXX_CONSTEXPR long double
min() throw() { return __LDBL_MIN__; }
static _GLIBCXX_CONSTEXPR long double
max() throw() { return __LDBL_MAX__; }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static constexpr long double
lowest() throw() { return -__LDBL_MAX__; }
#endif
static _GLIBCXX_USE_CONSTEXPR int digits = __LDBL_MANT_DIG__;
static _GLIBCXX_USE_CONSTEXPR int digits10 = __LDBL_DIG__;
#ifdef __GXX_EXPERIMENTAL_CXX0X__
static _GLIBCXX_USE_CONSTEXPR int max_digits10
= __glibcxx_max_digits10 (__LDBL_MANT_DIG__);
#endif
static _GLIBCXX_USE_CONSTEXPR bool is_signed = true;
static _GLIBCXX_USE_CONSTEXPR bool is_integer = false;
static _GLIBCXX_USE_CONSTEXPR bool is_exact = false;
static _GLIBCXX_USE_CONSTEXPR int radix = __FLT_RADIX__;
static _GLIBCXX_CONSTEXPR long double
epsilon() throw() { return __LDBL_EPSILON__; }
static _GLIBCXX_CONSTEXPR long double
round_error() throw() { return 0.5L; }
static _GLIBCXX_USE_CONSTEXPR int min_exponent = __LDBL_MIN_EXP__;
static _GLIBCXX_USE_CONSTEXPR int min_exponent10 = __LDBL_MIN_10_EXP__;
static _GLIBCXX_USE_CONSTEXPR int max_exponent = __LDBL_MAX_EXP__;
static _GLIBCXX_USE_CONSTEXPR int max_exponent10 = __LDBL_MAX_10_EXP__;
static _GLIBCXX_USE_CONSTEXPR bool has_infinity = __LDBL_HAS_INFINITY__;
static _GLIBCXX_USE_CONSTEXPR bool has_quiet_NaN = __LDBL_HAS_QUIET_NAN__;
static _GLIBCXX_USE_CONSTEXPR bool has_signaling_NaN = has_quiet_NaN;
static _GLIBCXX_USE_CONSTEXPR float_denorm_style has_denorm
= bool(__LDBL_HAS_DENORM__) ? denorm_present : denorm_absent;
static _GLIBCXX_USE_CONSTEXPR bool has_denorm_loss
= __glibcxx_long_double_has_denorm_loss;
static _GLIBCXX_CONSTEXPR long double
infinity() throw() { return __builtin_huge_vall (); }
static _GLIBCXX_CONSTEXPR long double
quiet_NaN() throw() { return __builtin_nanl (""); }
static _GLIBCXX_CONSTEXPR long double
signaling_NaN() throw() { return __builtin_nansl (""); }
static _GLIBCXX_CONSTEXPR long double
denorm_min() throw() { return __LDBL_DENORM_MIN__; }
static _GLIBCXX_USE_CONSTEXPR bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static _GLIBCXX_USE_CONSTEXPR bool is_bounded = true;
static _GLIBCXX_USE_CONSTEXPR bool is_modulo = false;
static _GLIBCXX_USE_CONSTEXPR bool traps = __glibcxx_long_double_traps;
static _GLIBCXX_USE_CONSTEXPR bool tinyness_before =
__glibcxx_long_double_tinyness_before;
static _GLIBCXX_USE_CONSTEXPR float_round_style round_style =
round_to_nearest;
};
#undef __glibcxx_long_double_has_denorm_loss
#undef __glibcxx_long_double_traps
#undef __glibcxx_long_double_tinyness_before
_GLIBCXX_END_NAMESPACE
#undef __glibcxx_signed
#undef __glibcxx_min
#undef __glibcxx_max
#undef __glibcxx_digits
#undef __glibcxx_digits10
#undef __glibcxx_max_digits10
#endif // _GLIBCXX_NUMERIC_LIMITS