0a35513e4e
From-SVN: r181154
5263 lines
143 KiB
C
5263 lines
143 KiB
C
/* Analyze RTL for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
||
2011 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "diagnostic-core.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "target.h"
|
||
#include "output.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "function.h"
|
||
#include "df.h"
|
||
#include "tree.h"
|
||
#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
|
||
|
||
/* Forward declarations */
|
||
static void set_of_1 (rtx, const_rtx, void *);
|
||
static bool covers_regno_p (const_rtx, unsigned int);
|
||
static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
|
||
static int rtx_referenced_p_1 (rtx *, void *);
|
||
static int computed_jump_p_1 (const_rtx);
|
||
static void parms_set (rtx, const_rtx, void *);
|
||
|
||
static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
|
||
const_rtx, enum machine_mode,
|
||
unsigned HOST_WIDE_INT);
|
||
static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
|
||
const_rtx, enum machine_mode,
|
||
unsigned HOST_WIDE_INT);
|
||
static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
|
||
enum machine_mode,
|
||
unsigned int);
|
||
static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
|
||
enum machine_mode, unsigned int);
|
||
|
||
/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
|
||
-1 if a code has no such operand. */
|
||
static int non_rtx_starting_operands[NUM_RTX_CODE];
|
||
|
||
/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
|
||
If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
|
||
SIGN_EXTEND then while narrowing we also have to enforce the
|
||
representation and sign-extend the value to mode DESTINATION_REP.
|
||
|
||
If the value is already sign-extended to DESTINATION_REP mode we
|
||
can just switch to DESTINATION mode on it. For each pair of
|
||
integral modes SOURCE and DESTINATION, when truncating from SOURCE
|
||
to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
|
||
contains the number of high-order bits in SOURCE that have to be
|
||
copies of the sign-bit so that we can do this mode-switch to
|
||
DESTINATION. */
|
||
|
||
static unsigned int
|
||
num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
|
||
|
||
/* Return 1 if the value of X is unstable
|
||
(would be different at a different point in the program).
|
||
The frame pointer, arg pointer, etc. are considered stable
|
||
(within one function) and so is anything marked `unchanging'. */
|
||
|
||
int
|
||
rtx_unstable_p (const_rtx x)
|
||
{
|
||
const RTX_CODE code = GET_CODE (x);
|
||
int i;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
|
||
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case REG:
|
||
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
|
||
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|
||
/* The arg pointer varies if it is not a fixed register. */
|
||
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
|
||
return 0;
|
||
/* ??? When call-clobbered, the value is stable modulo the restore
|
||
that must happen after a call. This currently screws up local-alloc
|
||
into believing that the restore is not needed. */
|
||
if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
|
||
return 0;
|
||
return 1;
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (rtx_unstable_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (rtx_unstable_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if X has a value that can vary even between two
|
||
executions of the program. 0 means X can be compared reliably
|
||
against certain constants or near-constants.
|
||
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
|
||
zero, we are slightly more conservative.
|
||
The frame pointer and the arg pointer are considered constant. */
|
||
|
||
bool
|
||
rtx_varies_p (const_rtx x, bool for_alias)
|
||
{
|
||
RTX_CODE code;
|
||
int i;
|
||
const char *fmt;
|
||
|
||
if (!x)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
|
||
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case REG:
|
||
/* Note that we have to test for the actual rtx used for the frame
|
||
and arg pointers and not just the register number in case we have
|
||
eliminated the frame and/or arg pointer and are using it
|
||
for pseudos. */
|
||
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|
||
/* The arg pointer varies if it is not a fixed register. */
|
||
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
|
||
return 0;
|
||
if (x == pic_offset_table_rtx
|
||
/* ??? When call-clobbered, the value is stable modulo the restore
|
||
that must happen after a call. This currently screws up
|
||
local-alloc into believing that the restore is not needed, so we
|
||
must return 0 only if we are called from alias analysis. */
|
||
&& (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
|
||
return 0;
|
||
return 1;
|
||
|
||
case LO_SUM:
|
||
/* The operand 0 of a LO_SUM is considered constant
|
||
(in fact it is related specifically to operand 1)
|
||
during alias analysis. */
|
||
return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
|
||
|| rtx_varies_p (XEXP (x, 1), for_alias);
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (rtx_varies_p (XEXP (x, i), for_alias))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if the use of X as an address in a MEM can cause a trap.
|
||
MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
|
||
whether nonzero is returned for unaligned memory accesses on strict
|
||
alignment machines. */
|
||
|
||
static int
|
||
rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
|
||
enum machine_mode mode, bool unaligned_mems)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
if (STRICT_ALIGNMENT
|
||
&& unaligned_mems
|
||
&& GET_MODE_SIZE (mode) != 0)
|
||
{
|
||
HOST_WIDE_INT actual_offset = offset;
|
||
#ifdef SPARC_STACK_BOUNDARY_HACK
|
||
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
|
||
the real alignment of %sp. However, when it does this, the
|
||
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
|
||
if (SPARC_STACK_BOUNDARY_HACK
|
||
&& (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
|
||
actual_offset -= STACK_POINTER_OFFSET;
|
||
#endif
|
||
|
||
if (actual_offset % GET_MODE_SIZE (mode) != 0)
|
||
return 1;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case SYMBOL_REF:
|
||
if (SYMBOL_REF_WEAK (x))
|
||
return 1;
|
||
if (!CONSTANT_POOL_ADDRESS_P (x))
|
||
{
|
||
tree decl;
|
||
HOST_WIDE_INT decl_size;
|
||
|
||
if (offset < 0)
|
||
return 1;
|
||
if (size == 0)
|
||
size = GET_MODE_SIZE (mode);
|
||
if (size == 0)
|
||
return offset != 0;
|
||
|
||
/* If the size of the access or of the symbol is unknown,
|
||
assume the worst. */
|
||
decl = SYMBOL_REF_DECL (x);
|
||
|
||
/* Else check that the access is in bounds. TODO: restructure
|
||
expr_size/tree_expr_size/int_expr_size and just use the latter. */
|
||
if (!decl)
|
||
decl_size = -1;
|
||
else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
|
||
decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
|
||
? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
|
||
: -1);
|
||
else if (TREE_CODE (decl) == STRING_CST)
|
||
decl_size = TREE_STRING_LENGTH (decl);
|
||
else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
|
||
decl_size = int_size_in_bytes (TREE_TYPE (decl));
|
||
else
|
||
decl_size = -1;
|
||
|
||
return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
|
||
}
|
||
|
||
return 0;
|
||
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case REG:
|
||
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
|
||
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|
||
|| x == stack_pointer_rtx
|
||
/* The arg pointer varies if it is not a fixed register. */
|
||
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
|
||
return 0;
|
||
/* All of the virtual frame registers are stack references. */
|
||
if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (x) <= LAST_VIRTUAL_REGISTER)
|
||
return 0;
|
||
return 1;
|
||
|
||
case CONST:
|
||
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
|
||
mode, unaligned_mems);
|
||
|
||
case PLUS:
|
||
/* An address is assumed not to trap if:
|
||
- it is the pic register plus a constant. */
|
||
if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
|
||
return 0;
|
||
|
||
/* - or it is an address that can't trap plus a constant integer,
|
||
with the proper remainder modulo the mode size if we are
|
||
considering unaligned memory references. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
|
||
size, mode, unaligned_mems))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case LO_SUM:
|
||
case PRE_MODIFY:
|
||
return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
|
||
mode, unaligned_mems);
|
||
|
||
case PRE_DEC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case POST_INC:
|
||
case POST_MODIFY:
|
||
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
|
||
mode, unaligned_mems);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If it isn't one of the case above, it can cause a trap. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
|
||
|
||
int
|
||
rtx_addr_can_trap_p (const_rtx x)
|
||
{
|
||
return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
|
||
}
|
||
|
||
/* Return true if X is an address that is known to not be zero. */
|
||
|
||
bool
|
||
nonzero_address_p (const_rtx x)
|
||
{
|
||
const enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case SYMBOL_REF:
|
||
return !SYMBOL_REF_WEAK (x);
|
||
|
||
case LABEL_REF:
|
||
return true;
|
||
|
||
case REG:
|
||
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
|
||
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|
||
|| x == stack_pointer_rtx
|
||
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
|
||
return true;
|
||
/* All of the virtual frame registers are stack references. */
|
||
if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (x) <= LAST_VIRTUAL_REGISTER)
|
||
return true;
|
||
return false;
|
||
|
||
case CONST:
|
||
return nonzero_address_p (XEXP (x, 0));
|
||
|
||
case PLUS:
|
||
if (CONST_INT_P (XEXP (x, 1)))
|
||
return nonzero_address_p (XEXP (x, 0));
|
||
/* Handle PIC references. */
|
||
else if (XEXP (x, 0) == pic_offset_table_rtx
|
||
&& CONSTANT_P (XEXP (x, 1)))
|
||
return true;
|
||
return false;
|
||
|
||
case PRE_MODIFY:
|
||
/* Similar to the above; allow positive offsets. Further, since
|
||
auto-inc is only allowed in memories, the register must be a
|
||
pointer. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) > 0)
|
||
return true;
|
||
return nonzero_address_p (XEXP (x, 0));
|
||
|
||
case PRE_INC:
|
||
/* Similarly. Further, the offset is always positive. */
|
||
return true;
|
||
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
case POST_INC:
|
||
case POST_MODIFY:
|
||
return nonzero_address_p (XEXP (x, 0));
|
||
|
||
case LO_SUM:
|
||
return nonzero_address_p (XEXP (x, 1));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If it isn't one of the case above, might be zero. */
|
||
return false;
|
||
}
|
||
|
||
/* Return 1 if X refers to a memory location whose address
|
||
cannot be compared reliably with constant addresses,
|
||
or if X refers to a BLKmode memory object.
|
||
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
|
||
zero, we are slightly more conservative. */
|
||
|
||
bool
|
||
rtx_addr_varies_p (const_rtx x, bool for_alias)
|
||
{
|
||
enum rtx_code code;
|
||
int i;
|
||
const char *fmt;
|
||
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
if (code == MEM)
|
||
return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (rtx_addr_varies_p (XEXP (x, i), for_alias))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return the value of the integer term in X, if one is apparent;
|
||
otherwise return 0.
|
||
Only obvious integer terms are detected.
|
||
This is used in cse.c with the `related_value' field. */
|
||
|
||
HOST_WIDE_INT
|
||
get_integer_term (const_rtx x)
|
||
{
|
||
if (GET_CODE (x) == CONST)
|
||
x = XEXP (x, 0);
|
||
|
||
if (GET_CODE (x) == MINUS
|
||
&& CONST_INT_P (XEXP (x, 1)))
|
||
return - INTVAL (XEXP (x, 1));
|
||
if (GET_CODE (x) == PLUS
|
||
&& CONST_INT_P (XEXP (x, 1)))
|
||
return INTVAL (XEXP (x, 1));
|
||
return 0;
|
||
}
|
||
|
||
/* If X is a constant, return the value sans apparent integer term;
|
||
otherwise return 0.
|
||
Only obvious integer terms are detected. */
|
||
|
||
rtx
|
||
get_related_value (const_rtx x)
|
||
{
|
||
if (GET_CODE (x) != CONST)
|
||
return 0;
|
||
x = XEXP (x, 0);
|
||
if (GET_CODE (x) == PLUS
|
||
&& CONST_INT_P (XEXP (x, 1)))
|
||
return XEXP (x, 0);
|
||
else if (GET_CODE (x) == MINUS
|
||
&& CONST_INT_P (XEXP (x, 1)))
|
||
return XEXP (x, 0);
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
|
||
to somewhere in the same object or object_block as SYMBOL. */
|
||
|
||
bool
|
||
offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
|
||
{
|
||
tree decl;
|
||
|
||
if (GET_CODE (symbol) != SYMBOL_REF)
|
||
return false;
|
||
|
||
if (offset == 0)
|
||
return true;
|
||
|
||
if (offset > 0)
|
||
{
|
||
if (CONSTANT_POOL_ADDRESS_P (symbol)
|
||
&& offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
|
||
return true;
|
||
|
||
decl = SYMBOL_REF_DECL (symbol);
|
||
if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
|
||
return true;
|
||
}
|
||
|
||
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
|
||
&& SYMBOL_REF_BLOCK (symbol)
|
||
&& SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
|
||
&& ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
|
||
< (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Split X into a base and a constant offset, storing them in *BASE_OUT
|
||
and *OFFSET_OUT respectively. */
|
||
|
||
void
|
||
split_const (rtx x, rtx *base_out, rtx *offset_out)
|
||
{
|
||
if (GET_CODE (x) == CONST)
|
||
{
|
||
x = XEXP (x, 0);
|
||
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
|
||
{
|
||
*base_out = XEXP (x, 0);
|
||
*offset_out = XEXP (x, 1);
|
||
return;
|
||
}
|
||
}
|
||
*base_out = x;
|
||
*offset_out = const0_rtx;
|
||
}
|
||
|
||
/* Return the number of places FIND appears within X. If COUNT_DEST is
|
||
zero, we do not count occurrences inside the destination of a SET. */
|
||
|
||
int
|
||
count_occurrences (const_rtx x, const_rtx find, int count_dest)
|
||
{
|
||
int i, j;
|
||
enum rtx_code code;
|
||
const char *format_ptr;
|
||
int count;
|
||
|
||
if (x == find)
|
||
return 1;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
return 0;
|
||
|
||
case EXPR_LIST:
|
||
count = count_occurrences (XEXP (x, 0), find, count_dest);
|
||
if (XEXP (x, 1))
|
||
count += count_occurrences (XEXP (x, 1), find, count_dest);
|
||
return count;
|
||
|
||
case MEM:
|
||
if (MEM_P (find) && rtx_equal_p (x, find))
|
||
return 1;
|
||
break;
|
||
|
||
case SET:
|
||
if (SET_DEST (x) == find && ! count_dest)
|
||
return count_occurrences (SET_SRC (x), find, count_dest);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
count = 0;
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
count += count_occurrences (XEXP (x, i), find, count_dest);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
|
||
break;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
|
||
/* Nonzero if register REG appears somewhere within IN.
|
||
Also works if REG is not a register; in this case it checks
|
||
for a subexpression of IN that is Lisp "equal" to REG. */
|
||
|
||
int
|
||
reg_mentioned_p (const_rtx reg, const_rtx in)
|
||
{
|
||
const char *fmt;
|
||
int i;
|
||
enum rtx_code code;
|
||
|
||
if (in == 0)
|
||
return 0;
|
||
|
||
if (reg == in)
|
||
return 1;
|
||
|
||
if (GET_CODE (in) == LABEL_REF)
|
||
return reg == XEXP (in, 0);
|
||
|
||
code = GET_CODE (in);
|
||
|
||
switch (code)
|
||
{
|
||
/* Compare registers by number. */
|
||
case REG:
|
||
return REG_P (reg) && REGNO (in) == REGNO (reg);
|
||
|
||
/* These codes have no constituent expressions
|
||
and are unique. */
|
||
case SCRATCH:
|
||
case CC0:
|
||
case PC:
|
||
return 0;
|
||
|
||
case CONST_INT:
|
||
case CONST_VECTOR:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
/* These are kept unique for a given value. */
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
|
||
return 1;
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
|
||
if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'e'
|
||
&& reg_mentioned_p (reg, XEXP (in, i)))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
|
||
no CODE_LABEL insn. */
|
||
|
||
int
|
||
no_labels_between_p (const_rtx beg, const_rtx end)
|
||
{
|
||
rtx p;
|
||
if (beg == end)
|
||
return 0;
|
||
for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
|
||
if (LABEL_P (p))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Nonzero if register REG is used in an insn between
|
||
FROM_INSN and TO_INSN (exclusive of those two). */
|
||
|
||
int
|
||
reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
|
||
{
|
||
rtx insn;
|
||
|
||
if (from_insn == to_insn)
|
||
return 0;
|
||
|
||
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
|
||
if (NONDEBUG_INSN_P (insn)
|
||
&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
|
||
|| (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if the old value of X, a register, is referenced in BODY. If X
|
||
is entirely replaced by a new value and the only use is as a SET_DEST,
|
||
we do not consider it a reference. */
|
||
|
||
int
|
||
reg_referenced_p (const_rtx x, const_rtx body)
|
||
{
|
||
int i;
|
||
|
||
switch (GET_CODE (body))
|
||
{
|
||
case SET:
|
||
if (reg_overlap_mentioned_p (x, SET_SRC (body)))
|
||
return 1;
|
||
|
||
/* If the destination is anything other than CC0, PC, a REG or a SUBREG
|
||
of a REG that occupies all of the REG, the insn references X if
|
||
it is mentioned in the destination. */
|
||
if (GET_CODE (SET_DEST (body)) != CC0
|
||
&& GET_CODE (SET_DEST (body)) != PC
|
||
&& !REG_P (SET_DEST (body))
|
||
&& ! (GET_CODE (SET_DEST (body)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (body)))
|
||
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
||
== ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
|
||
&& reg_overlap_mentioned_p (x, SET_DEST (body)))
|
||
return 1;
|
||
return 0;
|
||
|
||
case ASM_OPERANDS:
|
||
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
|
||
if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
|
||
return 1;
|
||
return 0;
|
||
|
||
case CALL:
|
||
case USE:
|
||
case IF_THEN_ELSE:
|
||
return reg_overlap_mentioned_p (x, body);
|
||
|
||
case TRAP_IF:
|
||
return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
|
||
|
||
case PREFETCH:
|
||
return reg_overlap_mentioned_p (x, XEXP (body, 0));
|
||
|
||
case UNSPEC:
|
||
case UNSPEC_VOLATILE:
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
|
||
return 1;
|
||
return 0;
|
||
|
||
case PARALLEL:
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
if (reg_referenced_p (x, XVECEXP (body, 0, i)))
|
||
return 1;
|
||
return 0;
|
||
|
||
case CLOBBER:
|
||
if (MEM_P (XEXP (body, 0)))
|
||
if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
|
||
return 1;
|
||
return 0;
|
||
|
||
case COND_EXEC:
|
||
if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
|
||
return 1;
|
||
return reg_referenced_p (x, COND_EXEC_CODE (body));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Nonzero if register REG is set or clobbered in an insn between
|
||
FROM_INSN and TO_INSN (exclusive of those two). */
|
||
|
||
int
|
||
reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
|
||
{
|
||
const_rtx insn;
|
||
|
||
if (from_insn == to_insn)
|
||
return 0;
|
||
|
||
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn) && reg_set_p (reg, insn))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Internals of reg_set_between_p. */
|
||
int
|
||
reg_set_p (const_rtx reg, const_rtx insn)
|
||
{
|
||
/* We can be passed an insn or part of one. If we are passed an insn,
|
||
check if a side-effect of the insn clobbers REG. */
|
||
if (INSN_P (insn)
|
||
&& (FIND_REG_INC_NOTE (insn, reg)
|
||
|| (CALL_P (insn)
|
||
&& ((REG_P (reg)
|
||
&& REGNO (reg) < FIRST_PSEUDO_REGISTER
|
||
&& overlaps_hard_reg_set_p (regs_invalidated_by_call,
|
||
GET_MODE (reg), REGNO (reg)))
|
||
|| MEM_P (reg)
|
||
|| find_reg_fusage (insn, CLOBBER, reg)))))
|
||
return 1;
|
||
|
||
return set_of (reg, insn) != NULL_RTX;
|
||
}
|
||
|
||
/* Similar to reg_set_between_p, but check all registers in X. Return 0
|
||
only if none of them are modified between START and END. Return 1 if
|
||
X contains a MEM; this routine does use memory aliasing. */
|
||
|
||
int
|
||
modified_between_p (const_rtx x, const_rtx start, const_rtx end)
|
||
{
|
||
const enum rtx_code code = GET_CODE (x);
|
||
const char *fmt;
|
||
int i, j;
|
||
rtx insn;
|
||
|
||
if (start == end)
|
||
return 0;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case PC:
|
||
case CC0:
|
||
return 1;
|
||
|
||
case MEM:
|
||
if (modified_between_p (XEXP (x, 0), start, end))
|
||
return 1;
|
||
if (MEM_READONLY_P (x))
|
||
return 0;
|
||
for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
|
||
if (memory_modified_in_insn_p (x, insn))
|
||
return 1;
|
||
return 0;
|
||
break;
|
||
|
||
case REG:
|
||
return reg_set_between_p (x, start, end);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
|
||
return 1;
|
||
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (modified_between_p (XVECEXP (x, i, j), start, end))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
|
||
of them are modified in INSN. Return 1 if X contains a MEM; this routine
|
||
does use memory aliasing. */
|
||
|
||
int
|
||
modified_in_p (const_rtx x, const_rtx insn)
|
||
{
|
||
const enum rtx_code code = GET_CODE (x);
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case PC:
|
||
case CC0:
|
||
return 1;
|
||
|
||
case MEM:
|
||
if (modified_in_p (XEXP (x, 0), insn))
|
||
return 1;
|
||
if (MEM_READONLY_P (x))
|
||
return 0;
|
||
if (memory_modified_in_insn_p (x, insn))
|
||
return 1;
|
||
return 0;
|
||
break;
|
||
|
||
case REG:
|
||
return reg_set_p (x, insn);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
|
||
return 1;
|
||
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (modified_in_p (XVECEXP (x, i, j), insn))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for set_of. */
|
||
struct set_of_data
|
||
{
|
||
const_rtx found;
|
||
const_rtx pat;
|
||
};
|
||
|
||
static void
|
||
set_of_1 (rtx x, const_rtx pat, void *data1)
|
||
{
|
||
struct set_of_data *const data = (struct set_of_data *) (data1);
|
||
if (rtx_equal_p (x, data->pat)
|
||
|| (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
|
||
data->found = pat;
|
||
}
|
||
|
||
/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
|
||
(either directly or via STRICT_LOW_PART and similar modifiers). */
|
||
const_rtx
|
||
set_of (const_rtx pat, const_rtx insn)
|
||
{
|
||
struct set_of_data data;
|
||
data.found = NULL_RTX;
|
||
data.pat = pat;
|
||
note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
|
||
return data.found;
|
||
}
|
||
|
||
/* This function, called through note_stores, collects sets and
|
||
clobbers of hard registers in a HARD_REG_SET, which is pointed to
|
||
by DATA. */
|
||
void
|
||
record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
|
||
{
|
||
HARD_REG_SET *pset = (HARD_REG_SET *)data;
|
||
if (REG_P (x) && HARD_REGISTER_P (x))
|
||
add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
|
||
}
|
||
|
||
/* Examine INSN, and compute the set of hard registers written by it.
|
||
Store it in *PSET. Should only be called after reload. */
|
||
void
|
||
find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
|
||
{
|
||
rtx link;
|
||
|
||
CLEAR_HARD_REG_SET (*pset);
|
||
note_stores (PATTERN (insn), record_hard_reg_sets, pset);
|
||
if (CALL_P (insn))
|
||
IOR_HARD_REG_SET (*pset, call_used_reg_set);
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC)
|
||
record_hard_reg_sets (XEXP (link, 0), NULL, pset);
|
||
}
|
||
|
||
/* A for_each_rtx subroutine of record_hard_reg_uses. */
|
||
static int
|
||
record_hard_reg_uses_1 (rtx *px, void *data)
|
||
{
|
||
rtx x = *px;
|
||
HARD_REG_SET *pused = (HARD_REG_SET *)data;
|
||
|
||
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
|
||
while (nregs-- > 0)
|
||
SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Like record_hard_reg_sets, but called through note_uses. */
|
||
void
|
||
record_hard_reg_uses (rtx *px, void *data)
|
||
{
|
||
for_each_rtx (px, record_hard_reg_uses_1, data);
|
||
}
|
||
|
||
/* Given an INSN, return a SET expression if this insn has only a single SET.
|
||
It may also have CLOBBERs, USEs, or SET whose output
|
||
will not be used, which we ignore. */
|
||
|
||
rtx
|
||
single_set_2 (const_rtx insn, const_rtx pat)
|
||
{
|
||
rtx set = NULL;
|
||
int set_verified = 1;
|
||
int i;
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx sub = XVECEXP (pat, 0, i);
|
||
switch (GET_CODE (sub))
|
||
{
|
||
case USE:
|
||
case CLOBBER:
|
||
break;
|
||
|
||
case SET:
|
||
/* We can consider insns having multiple sets, where all
|
||
but one are dead as single set insns. In common case
|
||
only single set is present in the pattern so we want
|
||
to avoid checking for REG_UNUSED notes unless necessary.
|
||
|
||
When we reach set first time, we just expect this is
|
||
the single set we are looking for and only when more
|
||
sets are found in the insn, we check them. */
|
||
if (!set_verified)
|
||
{
|
||
if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
|
||
&& !side_effects_p (set))
|
||
set = NULL;
|
||
else
|
||
set_verified = 1;
|
||
}
|
||
if (!set)
|
||
set = sub, set_verified = 0;
|
||
else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
|
||
|| side_effects_p (sub))
|
||
return NULL_RTX;
|
||
break;
|
||
|
||
default:
|
||
return NULL_RTX;
|
||
}
|
||
}
|
||
}
|
||
return set;
|
||
}
|
||
|
||
/* Given an INSN, return nonzero if it has more than one SET, else return
|
||
zero. */
|
||
|
||
int
|
||
multiple_sets (const_rtx insn)
|
||
{
|
||
int found;
|
||
int i;
|
||
|
||
/* INSN must be an insn. */
|
||
if (! INSN_P (insn))
|
||
return 0;
|
||
|
||
/* Only a PARALLEL can have multiple SETs. */
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
|
||
{
|
||
/* If we have already found a SET, then return now. */
|
||
if (found)
|
||
return 1;
|
||
else
|
||
found = 1;
|
||
}
|
||
}
|
||
|
||
/* Either zero or one SET. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if the destination of SET equals the source
|
||
and there are no side effects. */
|
||
|
||
int
|
||
set_noop_p (const_rtx set)
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
rtx dst = SET_DEST (set);
|
||
|
||
if (dst == pc_rtx && src == pc_rtx)
|
||
return 1;
|
||
|
||
if (MEM_P (dst) && MEM_P (src))
|
||
return rtx_equal_p (dst, src) && !side_effects_p (dst);
|
||
|
||
if (GET_CODE (dst) == ZERO_EXTRACT)
|
||
return rtx_equal_p (XEXP (dst, 0), src)
|
||
&& ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
|
||
&& !side_effects_p (src);
|
||
|
||
if (GET_CODE (dst) == STRICT_LOW_PART)
|
||
dst = XEXP (dst, 0);
|
||
|
||
if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
|
||
{
|
||
if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
|
||
return 0;
|
||
src = SUBREG_REG (src);
|
||
dst = SUBREG_REG (dst);
|
||
}
|
||
|
||
return (REG_P (src) && REG_P (dst)
|
||
&& REGNO (src) == REGNO (dst));
|
||
}
|
||
|
||
/* Return nonzero if an insn consists only of SETs, each of which only sets a
|
||
value to itself. */
|
||
|
||
int
|
||
noop_move_p (const_rtx insn)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
|
||
return 1;
|
||
|
||
/* Insns carrying these notes are useful later on. */
|
||
if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
|
||
return 0;
|
||
|
||
if (GET_CODE (pat) == SET && set_noop_p (pat))
|
||
return 1;
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int i;
|
||
/* If nothing but SETs of registers to themselves,
|
||
this insn can also be deleted. */
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx tem = XVECEXP (pat, 0, i);
|
||
|
||
if (GET_CODE (tem) == USE
|
||
|| GET_CODE (tem) == CLOBBER)
|
||
continue;
|
||
|
||
if (GET_CODE (tem) != SET || ! set_noop_p (tem))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return the last thing that X was assigned from before *PINSN. If VALID_TO
|
||
is not NULL_RTX then verify that the object is not modified up to VALID_TO.
|
||
If the object was modified, if we hit a partial assignment to X, or hit a
|
||
CODE_LABEL first, return X. If we found an assignment, update *PINSN to
|
||
point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
|
||
be the src. */
|
||
|
||
rtx
|
||
find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
|
||
{
|
||
rtx p;
|
||
|
||
for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
|
||
p = PREV_INSN (p))
|
||
if (INSN_P (p))
|
||
{
|
||
rtx set = single_set (p);
|
||
rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
|
||
|
||
if (set && rtx_equal_p (x, SET_DEST (set)))
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
|
||
if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
|
||
src = XEXP (note, 0);
|
||
|
||
if ((valid_to == NULL_RTX
|
||
|| ! modified_between_p (src, PREV_INSN (p), valid_to))
|
||
/* Reject hard registers because we don't usually want
|
||
to use them; we'd rather use a pseudo. */
|
||
&& (! (REG_P (src)
|
||
&& REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
|
||
{
|
||
*pinsn = p;
|
||
return src;
|
||
}
|
||
}
|
||
|
||
/* If set in non-simple way, we don't have a value. */
|
||
if (reg_set_p (x, p))
|
||
break;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Return nonzero if register in range [REGNO, ENDREGNO)
|
||
appears either explicitly or implicitly in X
|
||
other than being stored into.
|
||
|
||
References contained within the substructure at LOC do not count.
|
||
LOC may be zero, meaning don't ignore anything. */
|
||
|
||
int
|
||
refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
|
||
rtx *loc)
|
||
{
|
||
int i;
|
||
unsigned int x_regno;
|
||
RTX_CODE code;
|
||
const char *fmt;
|
||
|
||
repeat:
|
||
/* The contents of a REG_NONNEG note is always zero, so we must come here
|
||
upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
x_regno = REGNO (x);
|
||
|
||
/* If we modifying the stack, frame, or argument pointer, it will
|
||
clobber a virtual register. In fact, we could be more precise,
|
||
but it isn't worth it. */
|
||
if ((x_regno == STACK_POINTER_REGNUM
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
|| x_regno == ARG_POINTER_REGNUM
|
||
#endif
|
||
|| x_regno == FRAME_POINTER_REGNUM)
|
||
&& regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
|
||
return 1;
|
||
|
||
return endregno > x_regno && regno < END_REGNO (x);
|
||
|
||
case SUBREG:
|
||
/* If this is a SUBREG of a hard reg, we can see exactly which
|
||
registers are being modified. Otherwise, handle normally. */
|
||
if (REG_P (SUBREG_REG (x))
|
||
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
unsigned int inner_regno = subreg_regno (x);
|
||
unsigned int inner_endregno
|
||
= inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
|
||
? subreg_nregs (x) : 1);
|
||
|
||
return endregno > inner_regno && regno < inner_endregno;
|
||
}
|
||
break;
|
||
|
||
case CLOBBER:
|
||
case SET:
|
||
if (&SET_DEST (x) != loc
|
||
/* Note setting a SUBREG counts as referring to the REG it is in for
|
||
a pseudo but not for hard registers since we can
|
||
treat each word individually. */
|
||
&& ((GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& loc != &SUBREG_REG (SET_DEST (x))
|
||
&& REG_P (SUBREG_REG (SET_DEST (x)))
|
||
&& REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
|
||
&& refers_to_regno_p (regno, endregno,
|
||
SUBREG_REG (SET_DEST (x)), loc))
|
||
|| (!REG_P (SET_DEST (x))
|
||
&& refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
|
||
return 1;
|
||
|
||
if (code == CLOBBER || loc == &SET_SRC (x))
|
||
return 0;
|
||
x = SET_SRC (x);
|
||
goto repeat;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* X does not match, so try its subexpressions. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e' && loc != &XEXP (x, i))
|
||
{
|
||
if (i == 0)
|
||
{
|
||
x = XEXP (x, 0);
|
||
goto repeat;
|
||
}
|
||
else
|
||
if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (loc != &XVECEXP (x, i, j)
|
||
&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
|
||
we check if any register number in X conflicts with the relevant register
|
||
numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
|
||
contains a MEM (we don't bother checking for memory addresses that can't
|
||
conflict because we expect this to be a rare case. */
|
||
|
||
int
|
||
reg_overlap_mentioned_p (const_rtx x, const_rtx in)
|
||
{
|
||
unsigned int regno, endregno;
|
||
|
||
/* If either argument is a constant, then modifying X can not
|
||
affect IN. Here we look at IN, we can profitably combine
|
||
CONSTANT_P (x) with the switch statement below. */
|
||
if (CONSTANT_P (in))
|
||
return 0;
|
||
|
||
recurse:
|
||
switch (GET_CODE (x))
|
||
{
|
||
case STRICT_LOW_PART:
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
/* Overly conservative. */
|
||
x = XEXP (x, 0);
|
||
goto recurse;
|
||
|
||
case SUBREG:
|
||
regno = REGNO (SUBREG_REG (x));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
regno = subreg_regno (x);
|
||
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? subreg_nregs (x) : 1);
|
||
goto do_reg;
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
endregno = END_REGNO (x);
|
||
do_reg:
|
||
return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
|
||
|
||
case MEM:
|
||
{
|
||
const char *fmt;
|
||
int i;
|
||
|
||
if (MEM_P (in))
|
||
return 1;
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (in));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (reg_overlap_mentioned_p (x, XEXP (in, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (in, i) - 1; j >= 0; --j)
|
||
if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
case SCRATCH:
|
||
case PC:
|
||
case CC0:
|
||
return reg_mentioned_p (x, in);
|
||
|
||
case PARALLEL:
|
||
{
|
||
int i;
|
||
|
||
/* If any register in here refers to it we return true. */
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
if (XEXP (XVECEXP (x, 0, i), 0) != 0
|
||
&& reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
default:
|
||
gcc_assert (CONSTANT_P (x));
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Call FUN on each register or MEM that is stored into or clobbered by X.
|
||
(X would be the pattern of an insn). DATA is an arbitrary pointer,
|
||
ignored by note_stores, but passed to FUN.
|
||
|
||
FUN receives three arguments:
|
||
1. the REG, MEM, CC0 or PC being stored in or clobbered,
|
||
2. the SET or CLOBBER rtx that does the store,
|
||
3. the pointer DATA provided to note_stores.
|
||
|
||
If the item being stored in or clobbered is a SUBREG of a hard register,
|
||
the SUBREG will be passed. */
|
||
|
||
void
|
||
note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
|
||
{
|
||
int i;
|
||
|
||
if (GET_CODE (x) == COND_EXEC)
|
||
x = COND_EXEC_CODE (x);
|
||
|
||
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
|
||
{
|
||
rtx dest = SET_DEST (x);
|
||
|
||
while ((GET_CODE (dest) == SUBREG
|
||
&& (!REG_P (SUBREG_REG (dest))
|
||
|| REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
|
||
|| GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
|
||
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
|
||
each of whose first operand is a register. */
|
||
if (GET_CODE (dest) == PARALLEL)
|
||
{
|
||
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
|
||
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
|
||
(*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
|
||
}
|
||
else
|
||
(*fun) (dest, x, data);
|
||
}
|
||
|
||
else if (GET_CODE (x) == PARALLEL)
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
note_stores (XVECEXP (x, 0, i), fun, data);
|
||
}
|
||
|
||
/* Like notes_stores, but call FUN for each expression that is being
|
||
referenced in PBODY, a pointer to the PATTERN of an insn. We only call
|
||
FUN for each expression, not any interior subexpressions. FUN receives a
|
||
pointer to the expression and the DATA passed to this function.
|
||
|
||
Note that this is not quite the same test as that done in reg_referenced_p
|
||
since that considers something as being referenced if it is being
|
||
partially set, while we do not. */
|
||
|
||
void
|
||
note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
|
||
{
|
||
rtx body = *pbody;
|
||
int i;
|
||
|
||
switch (GET_CODE (body))
|
||
{
|
||
case COND_EXEC:
|
||
(*fun) (&COND_EXEC_TEST (body), data);
|
||
note_uses (&COND_EXEC_CODE (body), fun, data);
|
||
return;
|
||
|
||
case PARALLEL:
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
note_uses (&XVECEXP (body, 0, i), fun, data);
|
||
return;
|
||
|
||
case SEQUENCE:
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
|
||
return;
|
||
|
||
case USE:
|
||
(*fun) (&XEXP (body, 0), data);
|
||
return;
|
||
|
||
case ASM_OPERANDS:
|
||
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
|
||
(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
|
||
return;
|
||
|
||
case TRAP_IF:
|
||
(*fun) (&TRAP_CONDITION (body), data);
|
||
return;
|
||
|
||
case PREFETCH:
|
||
(*fun) (&XEXP (body, 0), data);
|
||
return;
|
||
|
||
case UNSPEC:
|
||
case UNSPEC_VOLATILE:
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
(*fun) (&XVECEXP (body, 0, i), data);
|
||
return;
|
||
|
||
case CLOBBER:
|
||
if (MEM_P (XEXP (body, 0)))
|
||
(*fun) (&XEXP (XEXP (body, 0), 0), data);
|
||
return;
|
||
|
||
case SET:
|
||
{
|
||
rtx dest = SET_DEST (body);
|
||
|
||
/* For sets we replace everything in source plus registers in memory
|
||
expression in store and operands of a ZERO_EXTRACT. */
|
||
(*fun) (&SET_SRC (body), data);
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT)
|
||
{
|
||
(*fun) (&XEXP (dest, 1), data);
|
||
(*fun) (&XEXP (dest, 2), data);
|
||
}
|
||
|
||
while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
|
||
if (MEM_P (dest))
|
||
(*fun) (&XEXP (dest, 0), data);
|
||
}
|
||
return;
|
||
|
||
default:
|
||
/* All the other possibilities never store. */
|
||
(*fun) (pbody, data);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if X's old contents don't survive after INSN.
|
||
This will be true if X is (cc0) or if X is a register and
|
||
X dies in INSN or because INSN entirely sets X.
|
||
|
||
"Entirely set" means set directly and not through a SUBREG, or
|
||
ZERO_EXTRACT, so no trace of the old contents remains.
|
||
Likewise, REG_INC does not count.
|
||
|
||
REG may be a hard or pseudo reg. Renumbering is not taken into account,
|
||
but for this use that makes no difference, since regs don't overlap
|
||
during their lifetimes. Therefore, this function may be used
|
||
at any time after deaths have been computed.
|
||
|
||
If REG is a hard reg that occupies multiple machine registers, this
|
||
function will only return 1 if each of those registers will be replaced
|
||
by INSN. */
|
||
|
||
int
|
||
dead_or_set_p (const_rtx insn, const_rtx x)
|
||
{
|
||
unsigned int regno, end_regno;
|
||
unsigned int i;
|
||
|
||
/* Can't use cc0_rtx below since this file is used by genattrtab.c. */
|
||
if (GET_CODE (x) == CC0)
|
||
return 1;
|
||
|
||
gcc_assert (REG_P (x));
|
||
|
||
regno = REGNO (x);
|
||
end_regno = END_REGNO (x);
|
||
for (i = regno; i < end_regno; i++)
|
||
if (! dead_or_set_regno_p (insn, i))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return TRUE iff DEST is a register or subreg of a register and
|
||
doesn't change the number of words of the inner register, and any
|
||
part of the register is TEST_REGNO. */
|
||
|
||
static bool
|
||
covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
|
||
{
|
||
unsigned int regno, endregno;
|
||
|
||
if (GET_CODE (dest) == SUBREG
|
||
&& (((GET_MODE_SIZE (GET_MODE (dest))
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (!REG_P (dest))
|
||
return false;
|
||
|
||
regno = REGNO (dest);
|
||
endregno = END_REGNO (dest);
|
||
return (test_regno >= regno && test_regno < endregno);
|
||
}
|
||
|
||
/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
|
||
any member matches the covers_regno_no_parallel_p criteria. */
|
||
|
||
static bool
|
||
covers_regno_p (const_rtx dest, unsigned int test_regno)
|
||
{
|
||
if (GET_CODE (dest) == PARALLEL)
|
||
{
|
||
/* Some targets place small structures in registers for return
|
||
values of functions, and those registers are wrapped in
|
||
PARALLELs that we may see as the destination of a SET. */
|
||
int i;
|
||
|
||
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
|
||
if (inner != NULL_RTX
|
||
&& covers_regno_no_parallel_p (inner, test_regno))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
else
|
||
return covers_regno_no_parallel_p (dest, test_regno);
|
||
}
|
||
|
||
/* Utility function for dead_or_set_p to check an individual register. */
|
||
|
||
int
|
||
dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
|
||
{
|
||
const_rtx pattern;
|
||
|
||
/* See if there is a death note for something that includes TEST_REGNO. */
|
||
if (find_regno_note (insn, REG_DEAD, test_regno))
|
||
return 1;
|
||
|
||
if (CALL_P (insn)
|
||
&& find_regno_fusage (insn, CLOBBER, test_regno))
|
||
return 1;
|
||
|
||
pattern = PATTERN (insn);
|
||
|
||
if (GET_CODE (pattern) == COND_EXEC)
|
||
pattern = COND_EXEC_CODE (pattern);
|
||
|
||
if (GET_CODE (pattern) == SET)
|
||
return covers_regno_p (SET_DEST (pattern), test_regno);
|
||
else if (GET_CODE (pattern) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx body = XVECEXP (pattern, 0, i);
|
||
|
||
if (GET_CODE (body) == COND_EXEC)
|
||
body = COND_EXEC_CODE (body);
|
||
|
||
if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
|
||
&& covers_regno_p (SET_DEST (body), test_regno))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the reg-note of kind KIND in insn INSN, if there is one.
|
||
If DATUM is nonzero, look for one whose datum is DATUM. */
|
||
|
||
rtx
|
||
find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
|
||
{
|
||
rtx link;
|
||
|
||
gcc_checking_assert (insn);
|
||
|
||
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
|
||
if (! INSN_P (insn))
|
||
return 0;
|
||
if (datum == 0)
|
||
{
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == kind)
|
||
return link;
|
||
return 0;
|
||
}
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
|
||
return link;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the reg-note of kind KIND in insn INSN which applies to register
|
||
number REGNO, if any. Return 0 if there is no such reg-note. Note that
|
||
the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
|
||
it might be the case that the note overlaps REGNO. */
|
||
|
||
rtx
|
||
find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
|
||
{
|
||
rtx link;
|
||
|
||
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
|
||
if (! INSN_P (insn))
|
||
return 0;
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == kind
|
||
/* Verify that it is a register, so that scratch and MEM won't cause a
|
||
problem here. */
|
||
&& REG_P (XEXP (link, 0))
|
||
&& REGNO (XEXP (link, 0)) <= regno
|
||
&& END_REGNO (XEXP (link, 0)) > regno)
|
||
return link;
|
||
return 0;
|
||
}
|
||
|
||
/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
|
||
has such a note. */
|
||
|
||
rtx
|
||
find_reg_equal_equiv_note (const_rtx insn)
|
||
{
|
||
rtx link;
|
||
|
||
if (!INSN_P (insn))
|
||
return 0;
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_EQUAL
|
||
|| REG_NOTE_KIND (link) == REG_EQUIV)
|
||
{
|
||
/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
|
||
insns that have multiple sets. Checking single_set to
|
||
make sure of this is not the proper check, as explained
|
||
in the comment in set_unique_reg_note.
|
||
|
||
This should be changed into an assert. */
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
|
||
return 0;
|
||
return link;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Check whether INSN is a single_set whose source is known to be
|
||
equivalent to a constant. Return that constant if so, otherwise
|
||
return null. */
|
||
|
||
rtx
|
||
find_constant_src (const_rtx insn)
|
||
{
|
||
rtx note, set, x;
|
||
|
||
set = single_set (insn);
|
||
if (set)
|
||
{
|
||
x = avoid_constant_pool_reference (SET_SRC (set));
|
||
if (CONSTANT_P (x))
|
||
return x;
|
||
}
|
||
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (note && CONSTANT_P (XEXP (note, 0)))
|
||
return XEXP (note, 0);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
|
||
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
|
||
|
||
int
|
||
find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
|
||
{
|
||
/* If it's not a CALL_INSN, it can't possibly have a
|
||
CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
|
||
if (!CALL_P (insn))
|
||
return 0;
|
||
|
||
gcc_assert (datum);
|
||
|
||
if (!REG_P (datum))
|
||
{
|
||
rtx link;
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn);
|
||
link;
|
||
link = XEXP (link, 1))
|
||
if (GET_CODE (XEXP (link, 0)) == code
|
||
&& rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
unsigned int regno = REGNO (datum);
|
||
|
||
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
|
||
to pseudo registers, so don't bother checking. */
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
unsigned int end_regno = END_HARD_REGNO (datum);
|
||
unsigned int i;
|
||
|
||
for (i = regno; i < end_regno; i++)
|
||
if (find_regno_fusage (insn, code, i))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
|
||
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
|
||
|
||
int
|
||
find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
|
||
{
|
||
rtx link;
|
||
|
||
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
|
||
to pseudo registers, so don't bother checking. */
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER
|
||
|| !CALL_P (insn) )
|
||
return 0;
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
|
||
{
|
||
rtx op, reg;
|
||
|
||
if (GET_CODE (op = XEXP (link, 0)) == code
|
||
&& REG_P (reg = XEXP (op, 0))
|
||
&& REGNO (reg) <= regno
|
||
&& END_HARD_REGNO (reg) > regno)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Allocate a register note with kind KIND and datum DATUM. LIST is
|
||
stored as the pointer to the next register note. */
|
||
|
||
rtx
|
||
alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
|
||
{
|
||
rtx note;
|
||
|
||
switch (kind)
|
||
{
|
||
case REG_CC_SETTER:
|
||
case REG_CC_USER:
|
||
case REG_LABEL_TARGET:
|
||
case REG_LABEL_OPERAND:
|
||
case REG_TM:
|
||
/* These types of register notes use an INSN_LIST rather than an
|
||
EXPR_LIST, so that copying is done right and dumps look
|
||
better. */
|
||
note = alloc_INSN_LIST (datum, list);
|
||
PUT_REG_NOTE_KIND (note, kind);
|
||
break;
|
||
|
||
default:
|
||
note = alloc_EXPR_LIST (kind, datum, list);
|
||
break;
|
||
}
|
||
|
||
return note;
|
||
}
|
||
|
||
/* Add register note with kind KIND and datum DATUM to INSN. */
|
||
|
||
void
|
||
add_reg_note (rtx insn, enum reg_note kind, rtx datum)
|
||
{
|
||
REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
|
||
}
|
||
|
||
/* Remove register note NOTE from the REG_NOTES of INSN. */
|
||
|
||
void
|
||
remove_note (rtx insn, const_rtx note)
|
||
{
|
||
rtx link;
|
||
|
||
if (note == NULL_RTX)
|
||
return;
|
||
|
||
if (REG_NOTES (insn) == note)
|
||
REG_NOTES (insn) = XEXP (note, 1);
|
||
else
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (XEXP (link, 1) == note)
|
||
{
|
||
XEXP (link, 1) = XEXP (note, 1);
|
||
break;
|
||
}
|
||
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_EQUAL:
|
||
case REG_EQUIV:
|
||
df_notes_rescan (insn);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
|
||
|
||
void
|
||
remove_reg_equal_equiv_notes (rtx insn)
|
||
{
|
||
rtx *loc;
|
||
|
||
loc = ®_NOTES (insn);
|
||
while (*loc)
|
||
{
|
||
enum reg_note kind = REG_NOTE_KIND (*loc);
|
||
if (kind == REG_EQUAL || kind == REG_EQUIV)
|
||
*loc = XEXP (*loc, 1);
|
||
else
|
||
loc = &XEXP (*loc, 1);
|
||
}
|
||
}
|
||
|
||
/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
|
||
|
||
void
|
||
remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
|
||
{
|
||
df_ref eq_use;
|
||
|
||
if (!df)
|
||
return;
|
||
|
||
/* This loop is a little tricky. We cannot just go down the chain because
|
||
it is being modified by some actions in the loop. So we just iterate
|
||
over the head. We plan to drain the list anyway. */
|
||
while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
|
||
{
|
||
rtx insn = DF_REF_INSN (eq_use);
|
||
rtx note = find_reg_equal_equiv_note (insn);
|
||
|
||
/* This assert is generally triggered when someone deletes a REG_EQUAL
|
||
or REG_EQUIV note by hacking the list manually rather than calling
|
||
remove_note. */
|
||
gcc_assert (note);
|
||
|
||
remove_note (insn, note);
|
||
}
|
||
}
|
||
|
||
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
|
||
return 1 if it is found. A simple equality test is used to determine if
|
||
NODE matches. */
|
||
|
||
int
|
||
in_expr_list_p (const_rtx listp, const_rtx node)
|
||
{
|
||
const_rtx x;
|
||
|
||
for (x = listp; x; x = XEXP (x, 1))
|
||
if (node == XEXP (x, 0))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
|
||
remove that entry from the list if it is found.
|
||
|
||
A simple equality test is used to determine if NODE matches. */
|
||
|
||
void
|
||
remove_node_from_expr_list (const_rtx node, rtx *listp)
|
||
{
|
||
rtx temp = *listp;
|
||
rtx prev = NULL_RTX;
|
||
|
||
while (temp)
|
||
{
|
||
if (node == XEXP (temp, 0))
|
||
{
|
||
/* Splice the node out of the list. */
|
||
if (prev)
|
||
XEXP (prev, 1) = XEXP (temp, 1);
|
||
else
|
||
*listp = XEXP (temp, 1);
|
||
|
||
return;
|
||
}
|
||
|
||
prev = temp;
|
||
temp = XEXP (temp, 1);
|
||
}
|
||
}
|
||
|
||
/* Nonzero if X contains any volatile instructions. These are instructions
|
||
which may cause unpredictable machine state instructions, and thus no
|
||
instructions should be moved or combined across them. This includes
|
||
only volatile asms and UNSPEC_VOLATILE instructions. */
|
||
|
||
int
|
||
volatile_insn_p (const_rtx x)
|
||
{
|
||
const RTX_CODE code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_INT:
|
||
case CONST:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case CC0:
|
||
case PC:
|
||
case REG:
|
||
case SCRATCH:
|
||
case CLOBBER:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case CALL:
|
||
case MEM:
|
||
return 0;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
/* case TRAP_IF: This isn't clear yet. */
|
||
return 1;
|
||
|
||
case ASM_INPUT:
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively scan the operands of this expression. */
|
||
|
||
{
|
||
const char *const fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (volatile_insn_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (volatile_insn_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if X contains any volatile memory references
|
||
UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
|
||
|
||
int
|
||
volatile_refs_p (const_rtx x)
|
||
{
|
||
const RTX_CODE code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_INT:
|
||
case CONST:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case CC0:
|
||
case PC:
|
||
case REG:
|
||
case SCRATCH:
|
||
case CLOBBER:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
return 0;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
return 1;
|
||
|
||
case MEM:
|
||
case ASM_INPUT:
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively scan the operands of this expression. */
|
||
|
||
{
|
||
const char *const fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (volatile_refs_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (volatile_refs_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Similar to above, except that it also rejects register pre- and post-
|
||
incrementing. */
|
||
|
||
int
|
||
side_effects_p (const_rtx x)
|
||
{
|
||
const RTX_CODE code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_INT:
|
||
case CONST:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case CC0:
|
||
case PC:
|
||
case REG:
|
||
case SCRATCH:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case VAR_LOCATION:
|
||
return 0;
|
||
|
||
case CLOBBER:
|
||
/* Reject CLOBBER with a non-VOID mode. These are made by combine.c
|
||
when some combination can't be done. If we see one, don't think
|
||
that we can simplify the expression. */
|
||
return (GET_MODE (x) != VOIDmode);
|
||
|
||
case PRE_INC:
|
||
case PRE_DEC:
|
||
case POST_INC:
|
||
case POST_DEC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
case CALL:
|
||
case UNSPEC_VOLATILE:
|
||
/* case TRAP_IF: This isn't clear yet. */
|
||
return 1;
|
||
|
||
case MEM:
|
||
case ASM_INPUT:
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively scan the operands of this expression. */
|
||
|
||
{
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (side_effects_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (side_effects_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if evaluating rtx X might cause a trap.
|
||
FLAGS controls how to consider MEMs. A nonzero means the context
|
||
of the access may have changed from the original, such that the
|
||
address may have become invalid. */
|
||
|
||
int
|
||
may_trap_p_1 (const_rtx x, unsigned flags)
|
||
{
|
||
int i;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
/* We make no distinction currently, but this function is part of
|
||
the internal target-hooks ABI so we keep the parameter as
|
||
"unsigned flags". */
|
||
bool code_changed = flags != 0;
|
||
|
||
if (x == 0)
|
||
return 0;
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
/* Handle these cases quickly. */
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST:
|
||
case PC:
|
||
case CC0:
|
||
case REG:
|
||
case SCRATCH:
|
||
return 0;
|
||
|
||
case UNSPEC:
|
||
case UNSPEC_VOLATILE:
|
||
return targetm.unspec_may_trap_p (x, flags);
|
||
|
||
case ASM_INPUT:
|
||
case TRAP_IF:
|
||
return 1;
|
||
|
||
case ASM_OPERANDS:
|
||
return MEM_VOLATILE_P (x);
|
||
|
||
/* Memory ref can trap unless it's a static var or a stack slot. */
|
||
case MEM:
|
||
/* Recognize specific pattern of stack checking probes. */
|
||
if (flag_stack_check
|
||
&& MEM_VOLATILE_P (x)
|
||
&& XEXP (x, 0) == stack_pointer_rtx)
|
||
return 1;
|
||
if (/* MEM_NOTRAP_P only relates to the actual position of the memory
|
||
reference; moving it out of context such as when moving code
|
||
when optimizing, might cause its address to become invalid. */
|
||
code_changed
|
||
|| !MEM_NOTRAP_P (x))
|
||
{
|
||
HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
|
||
return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
|
||
GET_MODE (x), code_changed);
|
||
}
|
||
|
||
return 0;
|
||
|
||
/* Division by a non-constant might trap. */
|
||
case DIV:
|
||
case MOD:
|
||
case UDIV:
|
||
case UMOD:
|
||
if (HONOR_SNANS (GET_MODE (x)))
|
||
return 1;
|
||
if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
|
||
return flag_trapping_math;
|
||
if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
|
||
return 1;
|
||
break;
|
||
|
||
case EXPR_LIST:
|
||
/* An EXPR_LIST is used to represent a function call. This
|
||
certainly may trap. */
|
||
return 1;
|
||
|
||
case GE:
|
||
case GT:
|
||
case LE:
|
||
case LT:
|
||
case LTGT:
|
||
case COMPARE:
|
||
/* Some floating point comparisons may trap. */
|
||
if (!flag_trapping_math)
|
||
break;
|
||
/* ??? There is no machine independent way to check for tests that trap
|
||
when COMPARE is used, though many targets do make this distinction.
|
||
For instance, sparc uses CCFPE for compares which generate exceptions
|
||
and CCFP for compares which do not generate exceptions. */
|
||
if (HONOR_NANS (GET_MODE (x)))
|
||
return 1;
|
||
/* But often the compare has some CC mode, so check operand
|
||
modes as well. */
|
||
if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
|
||
|| HONOR_NANS (GET_MODE (XEXP (x, 1))))
|
||
return 1;
|
||
break;
|
||
|
||
case EQ:
|
||
case NE:
|
||
if (HONOR_SNANS (GET_MODE (x)))
|
||
return 1;
|
||
/* Often comparison is CC mode, so check operand modes. */
|
||
if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
|
||
|| HONOR_SNANS (GET_MODE (XEXP (x, 1))))
|
||
return 1;
|
||
break;
|
||
|
||
case FIX:
|
||
/* Conversion of floating point might trap. */
|
||
if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
|
||
return 1;
|
||
break;
|
||
|
||
case NEG:
|
||
case ABS:
|
||
case SUBREG:
|
||
/* These operations don't trap even with floating point. */
|
||
break;
|
||
|
||
default:
|
||
/* Any floating arithmetic may trap. */
|
||
if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
|
||
&& flag_trapping_math)
|
||
return 1;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (may_trap_p_1 (XEXP (x, i), flags))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (may_trap_p_1 (XVECEXP (x, i, j), flags))
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if evaluating rtx X might cause a trap. */
|
||
|
||
int
|
||
may_trap_p (const_rtx x)
|
||
{
|
||
return may_trap_p_1 (x, 0);
|
||
}
|
||
|
||
/* Same as above, but additionally return nonzero if evaluating rtx X might
|
||
cause a fault. We define a fault for the purpose of this function as a
|
||
erroneous execution condition that cannot be encountered during the normal
|
||
execution of a valid program; the typical example is an unaligned memory
|
||
access on a strict alignment machine. The compiler guarantees that it
|
||
doesn't generate code that will fault from a valid program, but this
|
||
guarantee doesn't mean anything for individual instructions. Consider
|
||
the following example:
|
||
|
||
struct S { int d; union { char *cp; int *ip; }; };
|
||
|
||
int foo(struct S *s)
|
||
{
|
||
if (s->d == 1)
|
||
return *s->ip;
|
||
else
|
||
return *s->cp;
|
||
}
|
||
|
||
on a strict alignment machine. In a valid program, foo will never be
|
||
invoked on a structure for which d is equal to 1 and the underlying
|
||
unique field of the union not aligned on a 4-byte boundary, but the
|
||
expression *s->ip might cause a fault if considered individually.
|
||
|
||
At the RTL level, potentially problematic expressions will almost always
|
||
verify may_trap_p; for example, the above dereference can be emitted as
|
||
(mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
|
||
However, suppose that foo is inlined in a caller that causes s->cp to
|
||
point to a local character variable and guarantees that s->d is not set
|
||
to 1; foo may have been effectively translated into pseudo-RTL as:
|
||
|
||
if ((reg:SI) == 1)
|
||
(set (reg:SI) (mem:SI (%fp - 7)))
|
||
else
|
||
(set (reg:QI) (mem:QI (%fp - 7)))
|
||
|
||
Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
|
||
memory reference to a stack slot, but it will certainly cause a fault
|
||
on a strict alignment machine. */
|
||
|
||
int
|
||
may_trap_or_fault_p (const_rtx x)
|
||
{
|
||
return may_trap_p_1 (x, 1);
|
||
}
|
||
|
||
/* Return nonzero if X contains a comparison that is not either EQ or NE,
|
||
i.e., an inequality. */
|
||
|
||
int
|
||
inequality_comparisons_p (const_rtx x)
|
||
{
|
||
const char *fmt;
|
||
int len, i;
|
||
const enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case SCRATCH:
|
||
case PC:
|
||
case CC0:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
return 0;
|
||
|
||
case LT:
|
||
case LTU:
|
||
case GT:
|
||
case GTU:
|
||
case LE:
|
||
case LEU:
|
||
case GE:
|
||
case GEU:
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
len = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (inequality_comparisons_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (inequality_comparisons_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Replace any occurrence of FROM in X with TO. The function does
|
||
not enter into CONST_DOUBLE for the replace.
|
||
|
||
Note that copying is not done so X must not be shared unless all copies
|
||
are to be modified. */
|
||
|
||
rtx
|
||
replace_rtx (rtx x, rtx from, rtx to)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
/* The following prevents loops occurrence when we change MEM in
|
||
CONST_DOUBLE onto the same CONST_DOUBLE. */
|
||
if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
|
||
return x;
|
||
|
||
if (x == from)
|
||
return to;
|
||
|
||
/* Allow this function to make replacements in EXPR_LISTs. */
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
|
||
|
||
if (CONST_INT_P (new_rtx))
|
||
{
|
||
x = simplify_subreg (GET_MODE (x), new_rtx,
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
gcc_assert (x);
|
||
}
|
||
else
|
||
SUBREG_REG (x) = new_rtx;
|
||
|
||
return x;
|
||
}
|
||
else if (GET_CODE (x) == ZERO_EXTEND)
|
||
{
|
||
rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
|
||
|
||
if (CONST_INT_P (new_rtx))
|
||
{
|
||
x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
|
||
new_rtx, GET_MODE (XEXP (x, 0)));
|
||
gcc_assert (x);
|
||
}
|
||
else
|
||
XEXP (x, 0) = new_rtx;
|
||
|
||
return x;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Replace occurrences of the old label in *X with the new one.
|
||
DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
|
||
|
||
int
|
||
replace_label (rtx *x, void *data)
|
||
{
|
||
rtx l = *x;
|
||
rtx old_label = ((replace_label_data *) data)->r1;
|
||
rtx new_label = ((replace_label_data *) data)->r2;
|
||
bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
|
||
|
||
if (l == NULL_RTX)
|
||
return 0;
|
||
|
||
if (GET_CODE (l) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (l))
|
||
{
|
||
rtx c = get_pool_constant (l);
|
||
if (rtx_referenced_p (old_label, c))
|
||
{
|
||
rtx new_c, new_l;
|
||
replace_label_data *d = (replace_label_data *) data;
|
||
|
||
/* Create a copy of constant C; replace the label inside
|
||
but do not update LABEL_NUSES because uses in constant pool
|
||
are not counted. */
|
||
new_c = copy_rtx (c);
|
||
d->update_label_nuses = false;
|
||
for_each_rtx (&new_c, replace_label, data);
|
||
d->update_label_nuses = update_label_nuses;
|
||
|
||
/* Add the new constant NEW_C to constant pool and replace
|
||
the old reference to constant by new reference. */
|
||
new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
|
||
*x = replace_rtx (l, l, new_l);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
|
||
field. This is not handled by for_each_rtx because it doesn't
|
||
handle unprinted ('0') fields. */
|
||
if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
|
||
JUMP_LABEL (l) = new_label;
|
||
|
||
if ((GET_CODE (l) == LABEL_REF
|
||
|| GET_CODE (l) == INSN_LIST)
|
||
&& XEXP (l, 0) == old_label)
|
||
{
|
||
XEXP (l, 0) = new_label;
|
||
if (update_label_nuses)
|
||
{
|
||
++LABEL_NUSES (new_label);
|
||
--LABEL_NUSES (old_label);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* When *BODY is equal to X or X is directly referenced by *BODY
|
||
return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
|
||
too, otherwise FOR_EACH_RTX continues traversing *BODY. */
|
||
|
||
static int
|
||
rtx_referenced_p_1 (rtx *body, void *x)
|
||
{
|
||
rtx y = (rtx) x;
|
||
|
||
if (*body == NULL_RTX)
|
||
return y == NULL_RTX;
|
||
|
||
/* Return true if a label_ref *BODY refers to label Y. */
|
||
if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
|
||
return XEXP (*body, 0) == y;
|
||
|
||
/* If *BODY is a reference to pool constant traverse the constant. */
|
||
if (GET_CODE (*body) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (*body))
|
||
return rtx_referenced_p (y, get_pool_constant (*body));
|
||
|
||
/* By default, compare the RTL expressions. */
|
||
return rtx_equal_p (*body, y);
|
||
}
|
||
|
||
/* Return true if X is referenced in BODY. */
|
||
|
||
int
|
||
rtx_referenced_p (rtx x, rtx body)
|
||
{
|
||
return for_each_rtx (&body, rtx_referenced_p_1, x);
|
||
}
|
||
|
||
/* If INSN is a tablejump return true and store the label (before jump table) to
|
||
*LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
|
||
|
||
bool
|
||
tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
|
||
{
|
||
rtx label, table;
|
||
|
||
if (!JUMP_P (insn))
|
||
return false;
|
||
|
||
label = JUMP_LABEL (insn);
|
||
if (label != NULL_RTX && !ANY_RETURN_P (label)
|
||
&& (table = next_active_insn (label)) != NULL_RTX
|
||
&& JUMP_TABLE_DATA_P (table))
|
||
{
|
||
if (labelp)
|
||
*labelp = label;
|
||
if (tablep)
|
||
*tablep = table;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
|
||
constant that is not in the constant pool and not in the condition
|
||
of an IF_THEN_ELSE. */
|
||
|
||
static int
|
||
computed_jump_p_1 (const_rtx x)
|
||
{
|
||
const enum rtx_code code = GET_CODE (x);
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case PC:
|
||
return 0;
|
||
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case REG:
|
||
return 1;
|
||
|
||
case MEM:
|
||
return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
|
||
|
||
case IF_THEN_ELSE:
|
||
return (computed_jump_p_1 (XEXP (x, 1))
|
||
|| computed_jump_p_1 (XEXP (x, 2)));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e'
|
||
&& computed_jump_p_1 (XEXP (x, i)))
|
||
return 1;
|
||
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (computed_jump_p_1 (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if INSN is an indirect jump (aka computed jump).
|
||
|
||
Tablejumps and casesi insns are not considered indirect jumps;
|
||
we can recognize them by a (use (label_ref)). */
|
||
|
||
int
|
||
computed_jump_p (const_rtx insn)
|
||
{
|
||
int i;
|
||
if (JUMP_P (insn))
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
/* If we have a JUMP_LABEL set, we're not a computed jump. */
|
||
if (JUMP_LABEL (insn) != NULL)
|
||
return 0;
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int len = XVECLEN (pat, 0);
|
||
int has_use_labelref = 0;
|
||
|
||
for (i = len - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) == USE
|
||
&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
|
||
== LABEL_REF))
|
||
has_use_labelref = 1;
|
||
|
||
if (! has_use_labelref)
|
||
for (i = len - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) == SET
|
||
&& SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
|
||
&& computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
|
||
return 1;
|
||
}
|
||
else if (GET_CODE (pat) == SET
|
||
&& SET_DEST (pat) == pc_rtx
|
||
&& computed_jump_p_1 (SET_SRC (pat)))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Optimized loop of for_each_rtx, trying to avoid useless recursive
|
||
calls. Processes the subexpressions of EXP and passes them to F. */
|
||
static int
|
||
for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
|
||
{
|
||
int result, i, j;
|
||
const char *format = GET_RTX_FORMAT (GET_CODE (exp));
|
||
rtx *x;
|
||
|
||
for (; format[n] != '\0'; n++)
|
||
{
|
||
switch (format[n])
|
||
{
|
||
case 'e':
|
||
/* Call F on X. */
|
||
x = &XEXP (exp, n);
|
||
result = (*f) (x, data);
|
||
if (result == -1)
|
||
/* Do not traverse sub-expressions. */
|
||
continue;
|
||
else if (result != 0)
|
||
/* Stop the traversal. */
|
||
return result;
|
||
|
||
if (*x == NULL_RTX)
|
||
/* There are no sub-expressions. */
|
||
continue;
|
||
|
||
i = non_rtx_starting_operands[GET_CODE (*x)];
|
||
if (i >= 0)
|
||
{
|
||
result = for_each_rtx_1 (*x, i, f, data);
|
||
if (result != 0)
|
||
return result;
|
||
}
|
||
break;
|
||
|
||
case 'V':
|
||
case 'E':
|
||
if (XVEC (exp, n) == 0)
|
||
continue;
|
||
for (j = 0; j < XVECLEN (exp, n); ++j)
|
||
{
|
||
/* Call F on X. */
|
||
x = &XVECEXP (exp, n, j);
|
||
result = (*f) (x, data);
|
||
if (result == -1)
|
||
/* Do not traverse sub-expressions. */
|
||
continue;
|
||
else if (result != 0)
|
||
/* Stop the traversal. */
|
||
return result;
|
||
|
||
if (*x == NULL_RTX)
|
||
/* There are no sub-expressions. */
|
||
continue;
|
||
|
||
i = non_rtx_starting_operands[GET_CODE (*x)];
|
||
if (i >= 0)
|
||
{
|
||
result = for_each_rtx_1 (*x, i, f, data);
|
||
if (result != 0)
|
||
return result;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Nothing to do. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Traverse X via depth-first search, calling F for each
|
||
sub-expression (including X itself). F is also passed the DATA.
|
||
If F returns -1, do not traverse sub-expressions, but continue
|
||
traversing the rest of the tree. If F ever returns any other
|
||
nonzero value, stop the traversal, and return the value returned
|
||
by F. Otherwise, return 0. This function does not traverse inside
|
||
tree structure that contains RTX_EXPRs, or into sub-expressions
|
||
whose format code is `0' since it is not known whether or not those
|
||
codes are actually RTL.
|
||
|
||
This routine is very general, and could (should?) be used to
|
||
implement many of the other routines in this file. */
|
||
|
||
int
|
||
for_each_rtx (rtx *x, rtx_function f, void *data)
|
||
{
|
||
int result;
|
||
int i;
|
||
|
||
/* Call F on X. */
|
||
result = (*f) (x, data);
|
||
if (result == -1)
|
||
/* Do not traverse sub-expressions. */
|
||
return 0;
|
||
else if (result != 0)
|
||
/* Stop the traversal. */
|
||
return result;
|
||
|
||
if (*x == NULL_RTX)
|
||
/* There are no sub-expressions. */
|
||
return 0;
|
||
|
||
i = non_rtx_starting_operands[GET_CODE (*x)];
|
||
if (i < 0)
|
||
return 0;
|
||
|
||
return for_each_rtx_1 (*x, i, f, data);
|
||
}
|
||
|
||
|
||
|
||
/* Data structure that holds the internal state communicated between
|
||
for_each_inc_dec, for_each_inc_dec_find_mem and
|
||
for_each_inc_dec_find_inc_dec. */
|
||
|
||
struct for_each_inc_dec_ops {
|
||
/* The function to be called for each autoinc operation found. */
|
||
for_each_inc_dec_fn fn;
|
||
/* The opaque argument to be passed to it. */
|
||
void *arg;
|
||
/* The MEM we're visiting, if any. */
|
||
rtx mem;
|
||
};
|
||
|
||
static int for_each_inc_dec_find_mem (rtx *r, void *d);
|
||
|
||
/* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
|
||
operands of the equivalent add insn and pass the result to the
|
||
operator specified by *D. */
|
||
|
||
static int
|
||
for_each_inc_dec_find_inc_dec (rtx *r, void *d)
|
||
{
|
||
rtx x = *r;
|
||
struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
{
|
||
int size = GET_MODE_SIZE (GET_MODE (data->mem));
|
||
rtx r1 = XEXP (x, 0);
|
||
rtx c = gen_int_mode (size, GET_MODE (r1));
|
||
return data->fn (data->mem, x, r1, r1, c, data->arg);
|
||
}
|
||
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
{
|
||
int size = GET_MODE_SIZE (GET_MODE (data->mem));
|
||
rtx r1 = XEXP (x, 0);
|
||
rtx c = gen_int_mode (-size, GET_MODE (r1));
|
||
return data->fn (data->mem, x, r1, r1, c, data->arg);
|
||
}
|
||
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
{
|
||
rtx r1 = XEXP (x, 0);
|
||
rtx add = XEXP (x, 1);
|
||
return data->fn (data->mem, x, r1, add, NULL, data->arg);
|
||
}
|
||
|
||
case MEM:
|
||
{
|
||
rtx save = data->mem;
|
||
int ret = for_each_inc_dec_find_mem (r, d);
|
||
data->mem = save;
|
||
return ret;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
|
||
address, extract the operands of the equivalent add insn and pass
|
||
the result to the operator specified by *D. */
|
||
|
||
static int
|
||
for_each_inc_dec_find_mem (rtx *r, void *d)
|
||
{
|
||
rtx x = *r;
|
||
if (x != NULL_RTX && MEM_P (x))
|
||
{
|
||
struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
|
||
int result;
|
||
|
||
data->mem = x;
|
||
|
||
result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
|
||
data);
|
||
if (result)
|
||
return result;
|
||
|
||
return -1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Traverse *X looking for MEMs, and for autoinc operations within
|
||
them. For each such autoinc operation found, call FN, passing it
|
||
the innermost enclosing MEM, the operation itself, the RTX modified
|
||
by the operation, two RTXs (the second may be NULL) that, once
|
||
added, represent the value to be held by the modified RTX
|
||
afterwards, and ARG. FN is to return -1 to skip looking for other
|
||
autoinc operations within the visited operation, 0 to continue the
|
||
traversal, or any other value to have it returned to the caller of
|
||
for_each_inc_dec. */
|
||
|
||
int
|
||
for_each_inc_dec (rtx *x,
|
||
for_each_inc_dec_fn fn,
|
||
void *arg)
|
||
{
|
||
struct for_each_inc_dec_ops data;
|
||
|
||
data.fn = fn;
|
||
data.arg = arg;
|
||
data.mem = NULL;
|
||
|
||
return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
|
||
}
|
||
|
||
|
||
/* Searches X for any reference to REGNO, returning the rtx of the
|
||
reference found if any. Otherwise, returns NULL_RTX. */
|
||
|
||
rtx
|
||
regno_use_in (unsigned int regno, rtx x)
|
||
{
|
||
const char *fmt;
|
||
int i, j;
|
||
rtx tem;
|
||
|
||
if (REG_P (x) && REGNO (x) == regno)
|
||
return x;
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if ((tem = regno_use_in (regno, XEXP (x, i))))
|
||
return tem;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
|
||
return tem;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Return a value indicating whether OP, an operand of a commutative
|
||
operation, is preferred as the first or second operand. The higher
|
||
the value, the stronger the preference for being the first operand.
|
||
We use negative values to indicate a preference for the first operand
|
||
and positive values for the second operand. */
|
||
|
||
int
|
||
commutative_operand_precedence (rtx op)
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
/* Constants always come the second operand. Prefer "nice" constants. */
|
||
if (code == CONST_INT)
|
||
return -8;
|
||
if (code == CONST_DOUBLE)
|
||
return -7;
|
||
if (code == CONST_FIXED)
|
||
return -7;
|
||
op = avoid_constant_pool_reference (op);
|
||
code = GET_CODE (op);
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_CONST_OBJ:
|
||
if (code == CONST_INT)
|
||
return -6;
|
||
if (code == CONST_DOUBLE)
|
||
return -5;
|
||
if (code == CONST_FIXED)
|
||
return -5;
|
||
return -4;
|
||
|
||
case RTX_EXTRA:
|
||
/* SUBREGs of objects should come second. */
|
||
if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
|
||
return -3;
|
||
return 0;
|
||
|
||
case RTX_OBJ:
|
||
/* Complex expressions should be the first, so decrease priority
|
||
of objects. Prefer pointer objects over non pointer objects. */
|
||
if ((REG_P (op) && REG_POINTER (op))
|
||
|| (MEM_P (op) && MEM_POINTER (op)))
|
||
return -1;
|
||
return -2;
|
||
|
||
case RTX_COMM_ARITH:
|
||
/* Prefer operands that are themselves commutative to be first.
|
||
This helps to make things linear. In particular,
|
||
(and (and (reg) (reg)) (not (reg))) is canonical. */
|
||
return 4;
|
||
|
||
case RTX_BIN_ARITH:
|
||
/* If only one operand is a binary expression, it will be the first
|
||
operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
|
||
is canonical, although it will usually be further simplified. */
|
||
return 2;
|
||
|
||
case RTX_UNARY:
|
||
/* Then prefer NEG and NOT. */
|
||
if (code == NEG || code == NOT)
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 iff it is necessary to swap operands of commutative operation
|
||
in order to canonicalize expression. */
|
||
|
||
bool
|
||
swap_commutative_operands_p (rtx x, rtx y)
|
||
{
|
||
return (commutative_operand_precedence (x)
|
||
< commutative_operand_precedence (y));
|
||
}
|
||
|
||
/* Return 1 if X is an autoincrement side effect and the register is
|
||
not the stack pointer. */
|
||
int
|
||
auto_inc_p (const_rtx x)
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
/* There are no REG_INC notes for SP. */
|
||
if (XEXP (x, 0) != stack_pointer_rtx)
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
|
||
int
|
||
loc_mentioned_in_p (rtx *loc, const_rtx in)
|
||
{
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
if (!in)
|
||
return 0;
|
||
|
||
code = GET_CODE (in);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
|
||
if (loc == &XVECEXP (in, i, j)
|
||
|| loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
|
||
and SUBREG_BYTE, return the bit offset where the subreg begins
|
||
(counting from the least significant bit of the operand). */
|
||
|
||
unsigned int
|
||
subreg_lsb_1 (enum machine_mode outer_mode,
|
||
enum machine_mode inner_mode,
|
||
unsigned int subreg_byte)
|
||
{
|
||
unsigned int bitpos;
|
||
unsigned int byte;
|
||
unsigned int word;
|
||
|
||
/* A paradoxical subreg begins at bit position 0. */
|
||
if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
|
||
return 0;
|
||
|
||
if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
/* If the subreg crosses a word boundary ensure that
|
||
it also begins and ends on a word boundary. */
|
||
gcc_assert (!((subreg_byte % UNITS_PER_WORD
|
||
+ GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
|
||
&& (subreg_byte % UNITS_PER_WORD
|
||
|| GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
word = (GET_MODE_SIZE (inner_mode)
|
||
- (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
|
||
else
|
||
word = subreg_byte / UNITS_PER_WORD;
|
||
bitpos = word * BITS_PER_WORD;
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
byte = (GET_MODE_SIZE (inner_mode)
|
||
- (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
|
||
else
|
||
byte = subreg_byte % UNITS_PER_WORD;
|
||
bitpos += byte * BITS_PER_UNIT;
|
||
|
||
return bitpos;
|
||
}
|
||
|
||
/* Given a subreg X, return the bit offset where the subreg begins
|
||
(counting from the least significant bit of the reg). */
|
||
|
||
unsigned int
|
||
subreg_lsb (const_rtx x)
|
||
{
|
||
return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
}
|
||
|
||
/* Fill in information about a subreg of a hard register.
|
||
xregno - A regno of an inner hard subreg_reg (or what will become one).
|
||
xmode - The mode of xregno.
|
||
offset - The byte offset.
|
||
ymode - The mode of a top level SUBREG (or what may become one).
|
||
info - Pointer to structure to fill in. */
|
||
void
|
||
subreg_get_info (unsigned int xregno, enum machine_mode xmode,
|
||
unsigned int offset, enum machine_mode ymode,
|
||
struct subreg_info *info)
|
||
{
|
||
int nregs_xmode, nregs_ymode;
|
||
int mode_multiple, nregs_multiple;
|
||
int offset_adj, y_offset, y_offset_adj;
|
||
int regsize_xmode, regsize_ymode;
|
||
bool rknown;
|
||
|
||
gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
|
||
|
||
rknown = false;
|
||
|
||
/* If there are holes in a non-scalar mode in registers, we expect
|
||
that it is made up of its units concatenated together. */
|
||
if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
|
||
{
|
||
enum machine_mode xmode_unit;
|
||
|
||
nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
|
||
if (GET_MODE_INNER (xmode) == VOIDmode)
|
||
xmode_unit = xmode;
|
||
else
|
||
xmode_unit = GET_MODE_INNER (xmode);
|
||
gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
|
||
gcc_assert (nregs_xmode
|
||
== (GET_MODE_NUNITS (xmode)
|
||
* HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
|
||
gcc_assert (hard_regno_nregs[xregno][xmode]
|
||
== (hard_regno_nregs[xregno][xmode_unit]
|
||
* GET_MODE_NUNITS (xmode)));
|
||
|
||
/* You can only ask for a SUBREG of a value with holes in the middle
|
||
if you don't cross the holes. (Such a SUBREG should be done by
|
||
picking a different register class, or doing it in memory if
|
||
necessary.) An example of a value with holes is XCmode on 32-bit
|
||
x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
|
||
3 for each part, but in memory it's two 128-bit parts.
|
||
Padding is assumed to be at the end (not necessarily the 'high part')
|
||
of each unit. */
|
||
if ((offset / GET_MODE_SIZE (xmode_unit) + 1
|
||
< GET_MODE_NUNITS (xmode))
|
||
&& (offset / GET_MODE_SIZE (xmode_unit)
|
||
!= ((offset + GET_MODE_SIZE (ymode) - 1)
|
||
/ GET_MODE_SIZE (xmode_unit))))
|
||
{
|
||
info->representable_p = false;
|
||
rknown = true;
|
||
}
|
||
}
|
||
else
|
||
nregs_xmode = hard_regno_nregs[xregno][xmode];
|
||
|
||
nregs_ymode = hard_regno_nregs[xregno][ymode];
|
||
|
||
/* Paradoxical subregs are otherwise valid. */
|
||
if (!rknown
|
||
&& offset == 0
|
||
&& GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
|
||
{
|
||
info->representable_p = true;
|
||
/* If this is a big endian paradoxical subreg, which uses more
|
||
actual hard registers than the original register, we must
|
||
return a negative offset so that we find the proper highpart
|
||
of the register. */
|
||
if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
|
||
? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
|
||
info->offset = nregs_xmode - nregs_ymode;
|
||
else
|
||
info->offset = 0;
|
||
info->nregs = nregs_ymode;
|
||
return;
|
||
}
|
||
|
||
/* If registers store different numbers of bits in the different
|
||
modes, we cannot generally form this subreg. */
|
||
if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
|
||
&& !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
|
||
&& (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
|
||
&& (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
|
||
{
|
||
regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
|
||
regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
|
||
if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
|
||
{
|
||
info->representable_p = false;
|
||
info->nregs
|
||
= (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
|
||
info->offset = offset / regsize_xmode;
|
||
return;
|
||
}
|
||
if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
|
||
{
|
||
info->representable_p = false;
|
||
info->nregs
|
||
= (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
|
||
info->offset = offset / regsize_xmode;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Lowpart subregs are otherwise valid. */
|
||
if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
|
||
{
|
||
info->representable_p = true;
|
||
rknown = true;
|
||
|
||
if (offset == 0 || nregs_xmode == nregs_ymode)
|
||
{
|
||
info->offset = 0;
|
||
info->nregs = nregs_ymode;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* This should always pass, otherwise we don't know how to verify
|
||
the constraint. These conditions may be relaxed but
|
||
subreg_regno_offset would need to be redesigned. */
|
||
gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
|
||
gcc_assert ((nregs_xmode % nregs_ymode) == 0);
|
||
|
||
if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
|
||
{
|
||
HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
|
||
HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
|
||
HOST_WIDE_INT off_low = offset & (ysize - 1);
|
||
HOST_WIDE_INT off_high = offset & ~(ysize - 1);
|
||
offset = (xsize - ysize - off_high) | off_low;
|
||
}
|
||
/* The XMODE value can be seen as a vector of NREGS_XMODE
|
||
values. The subreg must represent a lowpart of given field.
|
||
Compute what field it is. */
|
||
offset_adj = offset;
|
||
offset_adj -= subreg_lowpart_offset (ymode,
|
||
mode_for_size (GET_MODE_BITSIZE (xmode)
|
||
/ nregs_xmode,
|
||
MODE_INT, 0));
|
||
|
||
/* Size of ymode must not be greater than the size of xmode. */
|
||
mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
|
||
gcc_assert (mode_multiple != 0);
|
||
|
||
y_offset = offset / GET_MODE_SIZE (ymode);
|
||
y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
|
||
nregs_multiple = nregs_xmode / nregs_ymode;
|
||
|
||
gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
|
||
gcc_assert ((mode_multiple % nregs_multiple) == 0);
|
||
|
||
if (!rknown)
|
||
{
|
||
info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
|
||
rknown = true;
|
||
}
|
||
info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
|
||
info->nregs = nregs_ymode;
|
||
}
|
||
|
||
/* This function returns the regno offset of a subreg expression.
|
||
xregno - A regno of an inner hard subreg_reg (or what will become one).
|
||
xmode - The mode of xregno.
|
||
offset - The byte offset.
|
||
ymode - The mode of a top level SUBREG (or what may become one).
|
||
RETURN - The regno offset which would be used. */
|
||
unsigned int
|
||
subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
|
||
unsigned int offset, enum machine_mode ymode)
|
||
{
|
||
struct subreg_info info;
|
||
subreg_get_info (xregno, xmode, offset, ymode, &info);
|
||
return info.offset;
|
||
}
|
||
|
||
/* This function returns true when the offset is representable via
|
||
subreg_offset in the given regno.
|
||
xregno - A regno of an inner hard subreg_reg (or what will become one).
|
||
xmode - The mode of xregno.
|
||
offset - The byte offset.
|
||
ymode - The mode of a top level SUBREG (or what may become one).
|
||
RETURN - Whether the offset is representable. */
|
||
bool
|
||
subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
|
||
unsigned int offset, enum machine_mode ymode)
|
||
{
|
||
struct subreg_info info;
|
||
subreg_get_info (xregno, xmode, offset, ymode, &info);
|
||
return info.representable_p;
|
||
}
|
||
|
||
/* Return the number of a YMODE register to which
|
||
|
||
(subreg:YMODE (reg:XMODE XREGNO) OFFSET)
|
||
|
||
can be simplified. Return -1 if the subreg can't be simplified.
|
||
|
||
XREGNO is a hard register number. */
|
||
|
||
int
|
||
simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
|
||
unsigned int offset, enum machine_mode ymode)
|
||
{
|
||
struct subreg_info info;
|
||
unsigned int yregno;
|
||
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
/* Give the backend a chance to disallow the mode change. */
|
||
if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
|
||
&& REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
|
||
return -1;
|
||
#endif
|
||
|
||
/* We shouldn't simplify stack-related registers. */
|
||
if ((!reload_completed || frame_pointer_needed)
|
||
&& xregno == FRAME_POINTER_REGNUM)
|
||
return -1;
|
||
|
||
if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& xregno == ARG_POINTER_REGNUM)
|
||
return -1;
|
||
|
||
if (xregno == STACK_POINTER_REGNUM)
|
||
return -1;
|
||
|
||
/* Try to get the register offset. */
|
||
subreg_get_info (xregno, xmode, offset, ymode, &info);
|
||
if (!info.representable_p)
|
||
return -1;
|
||
|
||
/* Make sure that the offsetted register value is in range. */
|
||
yregno = xregno + info.offset;
|
||
if (!HARD_REGISTER_NUM_P (yregno))
|
||
return -1;
|
||
|
||
/* See whether (reg:YMODE YREGNO) is valid.
|
||
|
||
??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
|
||
This is a kludge to work around how complex FP arguments are passed
|
||
on IA-64 and should be fixed. See PR target/49226. */
|
||
if (!HARD_REGNO_MODE_OK (yregno, ymode)
|
||
&& HARD_REGNO_MODE_OK (xregno, xmode))
|
||
return -1;
|
||
|
||
return (int) yregno;
|
||
}
|
||
|
||
/* Return the final regno that a subreg expression refers to. */
|
||
unsigned int
|
||
subreg_regno (const_rtx x)
|
||
{
|
||
unsigned int ret;
|
||
rtx subreg = SUBREG_REG (x);
|
||
int regno = REGNO (subreg);
|
||
|
||
ret = regno + subreg_regno_offset (regno,
|
||
GET_MODE (subreg),
|
||
SUBREG_BYTE (x),
|
||
GET_MODE (x));
|
||
return ret;
|
||
|
||
}
|
||
|
||
/* Return the number of registers that a subreg expression refers
|
||
to. */
|
||
unsigned int
|
||
subreg_nregs (const_rtx x)
|
||
{
|
||
return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
|
||
}
|
||
|
||
/* Return the number of registers that a subreg REG with REGNO
|
||
expression refers to. This is a copy of the rtlanal.c:subreg_nregs
|
||
changed so that the regno can be passed in. */
|
||
|
||
unsigned int
|
||
subreg_nregs_with_regno (unsigned int regno, const_rtx x)
|
||
{
|
||
struct subreg_info info;
|
||
rtx subreg = SUBREG_REG (x);
|
||
|
||
subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
|
||
&info);
|
||
return info.nregs;
|
||
}
|
||
|
||
|
||
struct parms_set_data
|
||
{
|
||
int nregs;
|
||
HARD_REG_SET regs;
|
||
};
|
||
|
||
/* Helper function for noticing stores to parameter registers. */
|
||
static void
|
||
parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
|
||
{
|
||
struct parms_set_data *const d = (struct parms_set_data *) data;
|
||
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
&& TEST_HARD_REG_BIT (d->regs, REGNO (x)))
|
||
{
|
||
CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
|
||
d->nregs--;
|
||
}
|
||
}
|
||
|
||
/* Look backward for first parameter to be loaded.
|
||
Note that loads of all parameters will not necessarily be
|
||
found if CSE has eliminated some of them (e.g., an argument
|
||
to the outer function is passed down as a parameter).
|
||
Do not skip BOUNDARY. */
|
||
rtx
|
||
find_first_parameter_load (rtx call_insn, rtx boundary)
|
||
{
|
||
struct parms_set_data parm;
|
||
rtx p, before, first_set;
|
||
|
||
/* Since different machines initialize their parameter registers
|
||
in different orders, assume nothing. Collect the set of all
|
||
parameter registers. */
|
||
CLEAR_HARD_REG_SET (parm.regs);
|
||
parm.nregs = 0;
|
||
for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
|
||
if (GET_CODE (XEXP (p, 0)) == USE
|
||
&& REG_P (XEXP (XEXP (p, 0), 0)))
|
||
{
|
||
gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
|
||
|
||
/* We only care about registers which can hold function
|
||
arguments. */
|
||
if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
|
||
continue;
|
||
|
||
SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
|
||
parm.nregs++;
|
||
}
|
||
before = call_insn;
|
||
first_set = call_insn;
|
||
|
||
/* Search backward for the first set of a register in this set. */
|
||
while (parm.nregs && before != boundary)
|
||
{
|
||
before = PREV_INSN (before);
|
||
|
||
/* It is possible that some loads got CSEed from one call to
|
||
another. Stop in that case. */
|
||
if (CALL_P (before))
|
||
break;
|
||
|
||
/* Our caller needs either ensure that we will find all sets
|
||
(in case code has not been optimized yet), or take care
|
||
for possible labels in a way by setting boundary to preceding
|
||
CODE_LABEL. */
|
||
if (LABEL_P (before))
|
||
{
|
||
gcc_assert (before == boundary);
|
||
break;
|
||
}
|
||
|
||
if (INSN_P (before))
|
||
{
|
||
int nregs_old = parm.nregs;
|
||
note_stores (PATTERN (before), parms_set, &parm);
|
||
/* If we found something that did not set a parameter reg,
|
||
we're done. Do not keep going, as that might result
|
||
in hoisting an insn before the setting of a pseudo
|
||
that is used by the hoisted insn. */
|
||
if (nregs_old != parm.nregs)
|
||
first_set = before;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
return first_set;
|
||
}
|
||
|
||
/* Return true if we should avoid inserting code between INSN and preceding
|
||
call instruction. */
|
||
|
||
bool
|
||
keep_with_call_p (const_rtx insn)
|
||
{
|
||
rtx set;
|
||
|
||
if (INSN_P (insn) && (set = single_set (insn)) != NULL)
|
||
{
|
||
if (REG_P (SET_DEST (set))
|
||
&& REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
|
||
&& fixed_regs[REGNO (SET_DEST (set))]
|
||
&& general_operand (SET_SRC (set), VOIDmode))
|
||
return true;
|
||
if (REG_P (SET_SRC (set))
|
||
&& targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
|
||
&& REG_P (SET_DEST (set))
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
||
return true;
|
||
/* There may be a stack pop just after the call and before the store
|
||
of the return register. Search for the actual store when deciding
|
||
if we can break or not. */
|
||
if (SET_DEST (set) == stack_pointer_rtx)
|
||
{
|
||
/* This CONST_CAST is okay because next_nonnote_insn just
|
||
returns its argument and we assign it to a const_rtx
|
||
variable. */
|
||
const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
|
||
if (i2 && keep_with_call_p (i2))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if LABEL is a target of JUMP_INSN. This applies only
|
||
to non-complex jumps. That is, direct unconditional, conditional,
|
||
and tablejumps, but not computed jumps or returns. It also does
|
||
not apply to the fallthru case of a conditional jump. */
|
||
|
||
bool
|
||
label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
|
||
{
|
||
rtx tmp = JUMP_LABEL (jump_insn);
|
||
|
||
if (label == tmp)
|
||
return true;
|
||
|
||
if (tablejump_p (jump_insn, NULL, &tmp))
|
||
{
|
||
rtvec vec = XVEC (PATTERN (tmp),
|
||
GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
|
||
int i, veclen = GET_NUM_ELEM (vec);
|
||
|
||
for (i = 0; i < veclen; ++i)
|
||
if (XEXP (RTVEC_ELT (vec, i), 0) == label)
|
||
return true;
|
||
}
|
||
|
||
if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return an estimate of the cost of computing rtx X.
|
||
One use is in cse, to decide which expression to keep in the hash table.
|
||
Another is in rtl generation, to pick the cheapest way to multiply.
|
||
Other uses like the latter are expected in the future.
|
||
|
||
X appears as operand OPNO in an expression with code OUTER_CODE.
|
||
SPEED specifies whether costs optimized for speed or size should
|
||
be returned. */
|
||
|
||
int
|
||
rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
|
||
{
|
||
int i, j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
int total;
|
||
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
/* Compute the default costs of certain things.
|
||
Note that targetm.rtx_costs can override the defaults. */
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case MULT:
|
||
total = COSTS_N_INSNS (5);
|
||
break;
|
||
case DIV:
|
||
case UDIV:
|
||
case MOD:
|
||
case UMOD:
|
||
total = COSTS_N_INSNS (7);
|
||
break;
|
||
case USE:
|
||
/* Used in combine.c as a marker. */
|
||
total = 0;
|
||
break;
|
||
default:
|
||
total = COSTS_N_INSNS (1);
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
return 0;
|
||
|
||
case SUBREG:
|
||
total = 0;
|
||
/* If we can't tie these modes, make this expensive. The larger
|
||
the mode, the more expensive it is. */
|
||
if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
|
||
return COSTS_N_INSNS (2
|
||
+ GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
|
||
break;
|
||
|
||
default:
|
||
if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
|
||
return total;
|
||
break;
|
||
}
|
||
|
||
/* Sum the costs of the sub-rtx's, plus cost of this operation,
|
||
which is already in total. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
total += rtx_cost (XEXP (x, i), code, i, speed);
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
|
||
|
||
return total;
|
||
}
|
||
|
||
/* Fill in the structure C with information about both speed and size rtx
|
||
costs for X, which is operand OPNO in an expression with code OUTER. */
|
||
|
||
void
|
||
get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
|
||
struct full_rtx_costs *c)
|
||
{
|
||
c->speed = rtx_cost (x, outer, opno, true);
|
||
c->size = rtx_cost (x, outer, opno, false);
|
||
}
|
||
|
||
|
||
/* Return cost of address expression X.
|
||
Expect that X is properly formed address reference.
|
||
|
||
SPEED parameter specify whether costs optimized for speed or size should
|
||
be returned. */
|
||
|
||
int
|
||
address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
|
||
{
|
||
/* We may be asked for cost of various unusual addresses, such as operands
|
||
of push instruction. It is not worthwhile to complicate writing
|
||
of the target hook by such cases. */
|
||
|
||
if (!memory_address_addr_space_p (mode, x, as))
|
||
return 1000;
|
||
|
||
return targetm.address_cost (x, speed);
|
||
}
|
||
|
||
/* If the target doesn't override, compute the cost as with arithmetic. */
|
||
|
||
int
|
||
default_address_cost (rtx x, bool speed)
|
||
{
|
||
return rtx_cost (x, MEM, 0, speed);
|
||
}
|
||
|
||
|
||
unsigned HOST_WIDE_INT
|
||
nonzero_bits (const_rtx x, enum machine_mode mode)
|
||
{
|
||
return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
|
||
}
|
||
|
||
unsigned int
|
||
num_sign_bit_copies (const_rtx x, enum machine_mode mode)
|
||
{
|
||
return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
|
||
}
|
||
|
||
/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
|
||
It avoids exponential behavior in nonzero_bits1 when X has
|
||
identical subexpressions on the first or the second level. */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
|
||
enum machine_mode known_mode,
|
||
unsigned HOST_WIDE_INT known_ret)
|
||
{
|
||
if (x == known_x && mode == known_mode)
|
||
return known_ret;
|
||
|
||
/* Try to find identical subexpressions. If found call
|
||
nonzero_bits1 on X with the subexpressions as KNOWN_X and the
|
||
precomputed value for the subexpression as KNOWN_RET. */
|
||
|
||
if (ARITHMETIC_P (x))
|
||
{
|
||
rtx x0 = XEXP (x, 0);
|
||
rtx x1 = XEXP (x, 1);
|
||
|
||
/* Check the first level. */
|
||
if (x0 == x1)
|
||
return nonzero_bits1 (x, mode, x0, mode,
|
||
cached_nonzero_bits (x0, mode, known_x,
|
||
known_mode, known_ret));
|
||
|
||
/* Check the second level. */
|
||
if (ARITHMETIC_P (x0)
|
||
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
|
||
return nonzero_bits1 (x, mode, x1, mode,
|
||
cached_nonzero_bits (x1, mode, known_x,
|
||
known_mode, known_ret));
|
||
|
||
if (ARITHMETIC_P (x1)
|
||
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
|
||
return nonzero_bits1 (x, mode, x0, mode,
|
||
cached_nonzero_bits (x0, mode, known_x,
|
||
known_mode, known_ret));
|
||
}
|
||
|
||
return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
|
||
}
|
||
|
||
/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
|
||
We don't let nonzero_bits recur into num_sign_bit_copies, because that
|
||
is less useful. We can't allow both, because that results in exponential
|
||
run time recursion. There is a nullstone testcase that triggered
|
||
this. This macro avoids accidental uses of num_sign_bit_copies. */
|
||
#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
|
||
|
||
/* Given an expression, X, compute which bits in X can be nonzero.
|
||
We don't care about bits outside of those defined in MODE.
|
||
|
||
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
|
||
an arithmetic operation, we can do better. */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
|
||
enum machine_mode known_mode,
|
||
unsigned HOST_WIDE_INT known_ret)
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
|
||
unsigned HOST_WIDE_INT inner_nz;
|
||
enum rtx_code code;
|
||
enum machine_mode inner_mode;
|
||
unsigned int mode_width = GET_MODE_PRECISION (mode);
|
||
|
||
/* For floating-point and vector values, assume all bits are needed. */
|
||
if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
|
||
|| VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
|
||
return nonzero;
|
||
|
||
/* If X is wider than MODE, use its mode instead. */
|
||
if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
|
||
{
|
||
mode = GET_MODE (x);
|
||
nonzero = GET_MODE_MASK (mode);
|
||
mode_width = GET_MODE_PRECISION (mode);
|
||
}
|
||
|
||
if (mode_width > HOST_BITS_PER_WIDE_INT)
|
||
/* Our only callers in this case look for single bit values. So
|
||
just return the mode mask. Those tests will then be false. */
|
||
return nonzero;
|
||
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
/* If MODE is wider than X, but both are a single word for both the host
|
||
and target machines, we can compute this from which bits of the
|
||
object might be nonzero in its own mode, taking into account the fact
|
||
that on many CISC machines, accessing an object in a wider mode
|
||
causes the high-order bits to become undefined. So they are
|
||
not known to be zero. */
|
||
|
||
if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
|
||
&& GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
|
||
&& GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
|
||
{
|
||
nonzero &= cached_nonzero_bits (x, GET_MODE (x),
|
||
known_x, known_mode, known_ret);
|
||
nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
|
||
return nonzero;
|
||
}
|
||
#endif
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
/* If pointers extend unsigned and this is a pointer in Pmode, say that
|
||
all the bits above ptr_mode are known to be zero. */
|
||
/* As we do not know which address space the pointer is refering to,
|
||
we can do this only if the target does not support different pointer
|
||
or address modes depending on the address space. */
|
||
if (target_default_pointer_address_modes_p ()
|
||
&& POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
|
||
&& REG_POINTER (x))
|
||
nonzero &= GET_MODE_MASK (ptr_mode);
|
||
#endif
|
||
|
||
/* Include declared information about alignment of pointers. */
|
||
/* ??? We don't properly preserve REG_POINTER changes across
|
||
pointer-to-integer casts, so we can't trust it except for
|
||
things that we know must be pointers. See execute/960116-1.c. */
|
||
if ((x == stack_pointer_rtx
|
||
|| x == frame_pointer_rtx
|
||
|| x == arg_pointer_rtx)
|
||
&& REGNO_POINTER_ALIGN (REGNO (x)))
|
||
{
|
||
unsigned HOST_WIDE_INT alignment
|
||
= REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
/* If PUSH_ROUNDING is defined, it is possible for the
|
||
stack to be momentarily aligned only to that amount,
|
||
so we pick the least alignment. */
|
||
if (x == stack_pointer_rtx && PUSH_ARGS)
|
||
alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
|
||
alignment);
|
||
#endif
|
||
|
||
nonzero &= ~(alignment - 1);
|
||
}
|
||
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
|
||
rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
|
||
known_mode, known_ret,
|
||
&nonzero_for_hook);
|
||
|
||
if (new_rtx)
|
||
nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
|
||
known_mode, known_ret);
|
||
|
||
return nonzero_for_hook;
|
||
}
|
||
|
||
case CONST_INT:
|
||
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
|
||
/* If X is negative in MODE, sign-extend the value. */
|
||
if (INTVAL (x) > 0
|
||
&& mode_width < BITS_PER_WORD
|
||
&& (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
|
||
!= 0)
|
||
return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
|
||
#endif
|
||
|
||
return UINTVAL (x);
|
||
|
||
case MEM:
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* In many, if not most, RISC machines, reading a byte from memory
|
||
zeros the rest of the register. Noticing that fact saves a lot
|
||
of extra zero-extends. */
|
||
if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
|
||
nonzero &= GET_MODE_MASK (GET_MODE (x));
|
||
#endif
|
||
break;
|
||
|
||
case EQ: case NE:
|
||
case UNEQ: case LTGT:
|
||
case GT: case GTU: case UNGT:
|
||
case LT: case LTU: case UNLT:
|
||
case GE: case GEU: case UNGE:
|
||
case LE: case LEU: case UNLE:
|
||
case UNORDERED: case ORDERED:
|
||
/* If this produces an integer result, we know which bits are set.
|
||
Code here used to clear bits outside the mode of X, but that is
|
||
now done above. */
|
||
/* Mind that MODE is the mode the caller wants to look at this
|
||
operation in, and not the actual operation mode. We can wind
|
||
up with (subreg:DI (gt:V4HI x y)), and we don't have anything
|
||
that describes the results of a vector compare. */
|
||
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
nonzero = STORE_FLAG_VALUE;
|
||
break;
|
||
|
||
case NEG:
|
||
#if 0
|
||
/* Disabled to avoid exponential mutual recursion between nonzero_bits
|
||
and num_sign_bit_copies. */
|
||
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
|
||
== GET_MODE_PRECISION (GET_MODE (x)))
|
||
nonzero = 1;
|
||
#endif
|
||
|
||
if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
|
||
nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
|
||
break;
|
||
|
||
case ABS:
|
||
#if 0
|
||
/* Disabled to avoid exponential mutual recursion between nonzero_bits
|
||
and num_sign_bit_copies. */
|
||
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
|
||
== GET_MODE_PRECISION (GET_MODE (x)))
|
||
nonzero = 1;
|
||
#endif
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret)
|
||
& GET_MODE_MASK (mode));
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
|
||
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
|
||
Otherwise, show all the bits in the outer mode but not the inner
|
||
may be nonzero. */
|
||
inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
|
||
{
|
||
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
|
||
if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
|
||
inner_nz |= (GET_MODE_MASK (mode)
|
||
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
|
||
}
|
||
|
||
nonzero &= inner_nz;
|
||
break;
|
||
|
||
case AND:
|
||
nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret)
|
||
& cached_nonzero_bits (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
break;
|
||
|
||
case XOR: case IOR:
|
||
case UMIN: case UMAX: case SMIN: case SMAX:
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero0
|
||
= cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
/* Don't call nonzero_bits for the second time if it cannot change
|
||
anything. */
|
||
if ((nonzero & nonzero0) != nonzero)
|
||
nonzero &= nonzero0
|
||
| cached_nonzero_bits (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
}
|
||
break;
|
||
|
||
case PLUS: case MINUS:
|
||
case MULT:
|
||
case DIV: case UDIV:
|
||
case MOD: case UMOD:
|
||
/* We can apply the rules of arithmetic to compute the number of
|
||
high- and low-order zero bits of these operations. We start by
|
||
computing the width (position of the highest-order nonzero bit)
|
||
and the number of low-order zero bits for each value. */
|
||
{
|
||
unsigned HOST_WIDE_INT nz0
|
||
= cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
unsigned HOST_WIDE_INT nz1
|
||
= cached_nonzero_bits (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
|
||
int width0 = floor_log2 (nz0) + 1;
|
||
int width1 = floor_log2 (nz1) + 1;
|
||
int low0 = floor_log2 (nz0 & -nz0);
|
||
int low1 = floor_log2 (nz1 & -nz1);
|
||
unsigned HOST_WIDE_INT op0_maybe_minusp
|
||
= nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
|
||
unsigned HOST_WIDE_INT op1_maybe_minusp
|
||
= nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
|
||
unsigned int result_width = mode_width;
|
||
int result_low = 0;
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
result_width = MAX (width0, width1) + 1;
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
case MINUS:
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
case MULT:
|
||
result_width = width0 + width1;
|
||
result_low = low0 + low1;
|
||
break;
|
||
case DIV:
|
||
if (width1 == 0)
|
||
break;
|
||
if (!op0_maybe_minusp && !op1_maybe_minusp)
|
||
result_width = width0;
|
||
break;
|
||
case UDIV:
|
||
if (width1 == 0)
|
||
break;
|
||
result_width = width0;
|
||
break;
|
||
case MOD:
|
||
if (width1 == 0)
|
||
break;
|
||
if (!op0_maybe_minusp && !op1_maybe_minusp)
|
||
result_width = MIN (width0, width1);
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
case UMOD:
|
||
if (width1 == 0)
|
||
break;
|
||
result_width = MIN (width0, width1);
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (result_width < mode_width)
|
||
nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
|
||
|
||
if (result_low > 0)
|
||
nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
|
||
}
|
||
break;
|
||
|
||
case ZERO_EXTRACT:
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* If this is a SUBREG formed for a promoted variable that has
|
||
been zero-extended, we know that at least the high-order bits
|
||
are zero, though others might be too. */
|
||
|
||
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
|
||
nonzero = GET_MODE_MASK (GET_MODE (x))
|
||
& cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
|
||
known_x, known_mode, known_ret);
|
||
|
||
inner_mode = GET_MODE (SUBREG_REG (x));
|
||
/* If the inner mode is a single word for both the host and target
|
||
machines, we can compute this from which bits of the inner
|
||
object might be nonzero. */
|
||
if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
|
||
&& (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
|
||
{
|
||
nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
|
||
/* If this is a typical RISC machine, we only have to worry
|
||
about the way loads are extended. */
|
||
if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
|
||
? val_signbit_known_set_p (inner_mode, nonzero)
|
||
: LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
|
||
|| !MEM_P (SUBREG_REG (x)))
|
||
#endif
|
||
{
|
||
/* On many CISC machines, accessing an object in a wider mode
|
||
causes the high-order bits to become undefined. So they are
|
||
not known to be zero. */
|
||
if (GET_MODE_PRECISION (GET_MODE (x))
|
||
> GET_MODE_PRECISION (inner_mode))
|
||
nonzero |= (GET_MODE_MASK (GET_MODE (x))
|
||
& ~GET_MODE_MASK (inner_mode));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
case LSHIFTRT:
|
||
case ASHIFT:
|
||
case ROTATE:
|
||
/* The nonzero bits are in two classes: any bits within MODE
|
||
that aren't in GET_MODE (x) are always significant. The rest of the
|
||
nonzero bits are those that are significant in the operand of
|
||
the shift when shifted the appropriate number of bits. This
|
||
shows that high-order bits are cleared by the right shift and
|
||
low-order bits by left shifts. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
|
||
{
|
||
enum machine_mode inner_mode = GET_MODE (x);
|
||
unsigned int width = GET_MODE_PRECISION (inner_mode);
|
||
int count = INTVAL (XEXP (x, 1));
|
||
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
|
||
unsigned HOST_WIDE_INT op_nonzero
|
||
= cached_nonzero_bits (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
|
||
unsigned HOST_WIDE_INT outer = 0;
|
||
|
||
if (mode_width > width)
|
||
outer = (op_nonzero & nonzero & ~mode_mask);
|
||
|
||
if (code == LSHIFTRT)
|
||
inner >>= count;
|
||
else if (code == ASHIFTRT)
|
||
{
|
||
inner >>= count;
|
||
|
||
/* If the sign bit may have been nonzero before the shift, we
|
||
need to mark all the places it could have been copied to
|
||
by the shift as possibly nonzero. */
|
||
if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
|
||
inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
|
||
<< (width - count);
|
||
}
|
||
else if (code == ASHIFT)
|
||
inner <<= count;
|
||
else
|
||
inner = ((inner << (count % width)
|
||
| (inner >> (width - (count % width)))) & mode_mask);
|
||
|
||
nonzero &= (outer | inner);
|
||
}
|
||
break;
|
||
|
||
case FFS:
|
||
case POPCOUNT:
|
||
/* This is at most the number of bits in the mode. */
|
||
nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
|
||
break;
|
||
|
||
case CLZ:
|
||
/* If CLZ has a known value at zero, then the nonzero bits are
|
||
that value, plus the number of bits in the mode minus one. */
|
||
if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
|
||
nonzero
|
||
|= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
|
||
else
|
||
nonzero = -1;
|
||
break;
|
||
|
||
case CTZ:
|
||
/* If CTZ has a known value at zero, then the nonzero bits are
|
||
that value, plus the number of bits in the mode minus one. */
|
||
if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
|
||
nonzero
|
||
|= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
|
||
else
|
||
nonzero = -1;
|
||
break;
|
||
|
||
case CLRSB:
|
||
/* This is at most the number of bits in the mode minus 1. */
|
||
nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
|
||
break;
|
||
|
||
case PARITY:
|
||
nonzero = 1;
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero_true
|
||
= cached_nonzero_bits (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
/* Don't call nonzero_bits for the second time if it cannot change
|
||
anything. */
|
||
if ((nonzero & nonzero_true) != nonzero)
|
||
nonzero &= nonzero_true
|
||
| cached_nonzero_bits (XEXP (x, 2), mode,
|
||
known_x, known_mode, known_ret);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return nonzero;
|
||
}
|
||
|
||
/* See the macro definition above. */
|
||
#undef cached_num_sign_bit_copies
|
||
|
||
|
||
/* The function cached_num_sign_bit_copies is a wrapper around
|
||
num_sign_bit_copies1. It avoids exponential behavior in
|
||
num_sign_bit_copies1 when X has identical subexpressions on the
|
||
first or the second level. */
|
||
|
||
static unsigned int
|
||
cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
|
||
enum machine_mode known_mode,
|
||
unsigned int known_ret)
|
||
{
|
||
if (x == known_x && mode == known_mode)
|
||
return known_ret;
|
||
|
||
/* Try to find identical subexpressions. If found call
|
||
num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
|
||
the precomputed value for the subexpression as KNOWN_RET. */
|
||
|
||
if (ARITHMETIC_P (x))
|
||
{
|
||
rtx x0 = XEXP (x, 0);
|
||
rtx x1 = XEXP (x, 1);
|
||
|
||
/* Check the first level. */
|
||
if (x0 == x1)
|
||
return
|
||
num_sign_bit_copies1 (x, mode, x0, mode,
|
||
cached_num_sign_bit_copies (x0, mode, known_x,
|
||
known_mode,
|
||
known_ret));
|
||
|
||
/* Check the second level. */
|
||
if (ARITHMETIC_P (x0)
|
||
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
|
||
return
|
||
num_sign_bit_copies1 (x, mode, x1, mode,
|
||
cached_num_sign_bit_copies (x1, mode, known_x,
|
||
known_mode,
|
||
known_ret));
|
||
|
||
if (ARITHMETIC_P (x1)
|
||
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
|
||
return
|
||
num_sign_bit_copies1 (x, mode, x0, mode,
|
||
cached_num_sign_bit_copies (x0, mode, known_x,
|
||
known_mode,
|
||
known_ret));
|
||
}
|
||
|
||
return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
|
||
}
|
||
|
||
/* Return the number of bits at the high-order end of X that are known to
|
||
be equal to the sign bit. X will be used in mode MODE; if MODE is
|
||
VOIDmode, X will be used in its own mode. The returned value will always
|
||
be between 1 and the number of bits in MODE. */
|
||
|
||
static unsigned int
|
||
num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
|
||
enum machine_mode known_mode,
|
||
unsigned int known_ret)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
unsigned int bitwidth = GET_MODE_PRECISION (mode);
|
||
int num0, num1, result;
|
||
unsigned HOST_WIDE_INT nonzero;
|
||
|
||
/* If we weren't given a mode, use the mode of X. If the mode is still
|
||
VOIDmode, we don't know anything. Likewise if one of the modes is
|
||
floating-point. */
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (x);
|
||
|
||
if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
|
||
|| VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
|
||
return 1;
|
||
|
||
/* For a smaller object, just ignore the high bits. */
|
||
if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
|
||
{
|
||
num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
|
||
known_x, known_mode, known_ret);
|
||
return MAX (1,
|
||
num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
|
||
}
|
||
|
||
if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
|
||
{
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
/* If this machine does not do all register operations on the entire
|
||
register and MODE is wider than the mode of X, we can say nothing
|
||
at all about the high-order bits. */
|
||
return 1;
|
||
#else
|
||
/* Likewise on machines that do, if the mode of the object is smaller
|
||
than a word and loads of that size don't sign extend, we can say
|
||
nothing about the high order bits. */
|
||
if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
|
||
#ifdef LOAD_EXTEND_OP
|
||
&& LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
|
||
#endif
|
||
)
|
||
return 1;
|
||
#endif
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
/* If pointers extend signed and this is a pointer in Pmode, say that
|
||
all the bits above ptr_mode are known to be sign bit copies. */
|
||
/* As we do not know which address space the pointer is refering to,
|
||
we can do this only if the target does not support different pointer
|
||
or address modes depending on the address space. */
|
||
if (target_default_pointer_address_modes_p ()
|
||
&& ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
|
||
&& mode == Pmode && REG_POINTER (x))
|
||
return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
|
||
#endif
|
||
|
||
{
|
||
unsigned int copies_for_hook = 1, copies = 1;
|
||
rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
|
||
known_mode, known_ret,
|
||
&copies_for_hook);
|
||
|
||
if (new_rtx)
|
||
copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
|
||
known_mode, known_ret);
|
||
|
||
if (copies > 1 || copies_for_hook > 1)
|
||
return MAX (copies, copies_for_hook);
|
||
|
||
/* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
|
||
}
|
||
break;
|
||
|
||
case MEM:
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* Some RISC machines sign-extend all loads of smaller than a word. */
|
||
if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
|
||
return MAX (1, ((int) bitwidth
|
||
- (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
|
||
#endif
|
||
break;
|
||
|
||
case CONST_INT:
|
||
/* If the constant is negative, take its 1's complement and remask.
|
||
Then see how many zero bits we have. */
|
||
nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
|
||
if (bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
nonzero = (~nonzero) & GET_MODE_MASK (mode);
|
||
|
||
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
|
||
|
||
case SUBREG:
|
||
/* If this is a SUBREG for a promoted object that is sign-extended
|
||
and we are looking at it in a wider mode, we know that at least the
|
||
high-order bits are known to be sign bit copies. */
|
||
|
||
if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
|
||
{
|
||
num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
|
||
known_x, known_mode, known_ret);
|
||
return MAX ((int) bitwidth
|
||
- (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
|
||
num0);
|
||
}
|
||
|
||
/* For a smaller object, just ignore the high bits. */
|
||
if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
|
||
{
|
||
num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
|
||
known_x, known_mode, known_ret);
|
||
return MAX (1, (num0
|
||
- (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
|
||
- bitwidth)));
|
||
}
|
||
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* For paradoxical SUBREGs on machines where all register operations
|
||
affect the entire register, just look inside. Note that we are
|
||
passing MODE to the recursive call, so the number of sign bit copies
|
||
will remain relative to that mode, not the inner mode. */
|
||
|
||
/* This works only if loads sign extend. Otherwise, if we get a
|
||
reload for the inner part, it may be loaded from the stack, and
|
||
then we lose all sign bit copies that existed before the store
|
||
to the stack. */
|
||
|
||
if (paradoxical_subreg_p (x)
|
||
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
|
||
&& MEM_P (SUBREG_REG (x)))
|
||
return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
|
||
known_x, known_mode, known_ret);
|
||
#endif
|
||
#endif
|
||
break;
|
||
|
||
case SIGN_EXTRACT:
|
||
if (CONST_INT_P (XEXP (x, 1)))
|
||
return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
|
||
+ cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
|
||
known_x, known_mode, known_ret));
|
||
|
||
case TRUNCATE:
|
||
/* For a smaller object, just ignore the high bits. */
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
|
||
known_x, known_mode, known_ret);
|
||
return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
|
||
- bitwidth)));
|
||
|
||
case NOT:
|
||
return cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
case ROTATE: case ROTATERT:
|
||
/* If we are rotating left by a number of bits less than the number
|
||
of sign bit copies, we can just subtract that amount from the
|
||
number. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < (int) bitwidth)
|
||
{
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
|
||
: (int) bitwidth - INTVAL (XEXP (x, 1))));
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* In general, this subtracts one sign bit copy. But if the value
|
||
is known to be positive, the number of sign bit copies is the
|
||
same as that of the input. Finally, if the input has just one bit
|
||
that might be nonzero, all the bits are copies of the sign bit. */
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
if (bitwidth > HOST_BITS_PER_WIDE_INT)
|
||
return num0 > 1 ? num0 - 1 : 1;
|
||
|
||
nonzero = nonzero_bits (XEXP (x, 0), mode);
|
||
if (nonzero == 1)
|
||
return bitwidth;
|
||
|
||
if (num0 > 1
|
||
&& (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
|
||
num0--;
|
||
|
||
return num0;
|
||
|
||
case IOR: case AND: case XOR:
|
||
case SMIN: case SMAX: case UMIN: case UMAX:
|
||
/* Logical operations will preserve the number of sign-bit copies.
|
||
MIN and MAX operations always return one of the operands. */
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
/* If num1 is clearing some of the top bits then regardless of
|
||
the other term, we are guaranteed to have at least that many
|
||
high-order zero bits. */
|
||
if (code == AND
|
||
&& num1 > 1
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& (UINTVAL (XEXP (x, 1))
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
|
||
return num1;
|
||
|
||
/* Similarly for IOR when setting high-order bits. */
|
||
if (code == IOR
|
||
&& num1 > 1
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& (UINTVAL (XEXP (x, 1))
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
return num1;
|
||
|
||
return MIN (num0, num1);
|
||
|
||
case PLUS: case MINUS:
|
||
/* For addition and subtraction, we can have a 1-bit carry. However,
|
||
if we are subtracting 1 from a positive number, there will not
|
||
be such a carry. Furthermore, if the positive number is known to
|
||
be 0 or 1, we know the result is either -1 or 0. */
|
||
|
||
if (code == PLUS && XEXP (x, 1) == constm1_rtx
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
nonzero = nonzero_bits (XEXP (x, 0), mode);
|
||
if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
|
||
return (nonzero == 1 || nonzero == 0 ? bitwidth
|
||
: bitwidth - floor_log2 (nonzero) - 1);
|
||
}
|
||
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
result = MAX (1, MIN (num0, num1) - 1);
|
||
|
||
return result;
|
||
|
||
case MULT:
|
||
/* The number of bits of the product is the sum of the number of
|
||
bits of both terms. However, unless one of the terms if known
|
||
to be positive, we must allow for an additional bit since negating
|
||
a negative number can remove one sign bit copy. */
|
||
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
|
||
if (result > 0
|
||
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|
||
|| (((nonzero_bits (XEXP (x, 0), mode)
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
&& ((nonzero_bits (XEXP (x, 1), mode)
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
|
||
!= 0))))
|
||
result--;
|
||
|
||
return MAX (1, result);
|
||
|
||
case UDIV:
|
||
/* The result must be <= the first operand. If the first operand
|
||
has the high bit set, we know nothing about the number of sign
|
||
bit copies. */
|
||
if (bitwidth > HOST_BITS_PER_WIDE_INT)
|
||
return 1;
|
||
else if ((nonzero_bits (XEXP (x, 0), mode)
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
return 1;
|
||
else
|
||
return cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
case UMOD:
|
||
/* The result must be <= the second operand. If the second operand
|
||
has (or just might have) the high bit set, we know nothing about
|
||
the number of sign bit copies. */
|
||
if (bitwidth > HOST_BITS_PER_WIDE_INT)
|
||
return 1;
|
||
else if ((nonzero_bits (XEXP (x, 1), mode)
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
return 1;
|
||
else
|
||
return cached_num_sign_bit_copies (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
|
||
case DIV:
|
||
/* Similar to unsigned division, except that we have to worry about
|
||
the case where the divisor is negative, in which case we have
|
||
to add 1. */
|
||
result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
if (result > 1
|
||
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|
||
|| (nonzero_bits (XEXP (x, 1), mode)
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
|
||
result--;
|
||
|
||
return result;
|
||
|
||
case MOD:
|
||
result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
if (result > 1
|
||
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|
||
|| (nonzero_bits (XEXP (x, 1), mode)
|
||
& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
|
||
result--;
|
||
|
||
return result;
|
||
|
||
case ASHIFTRT:
|
||
/* Shifts by a constant add to the number of bits equal to the
|
||
sign bit. */
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) > 0
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
|
||
num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
|
||
|
||
return num0;
|
||
|
||
case ASHIFT:
|
||
/* Left shifts destroy copies. */
|
||
if (!CONST_INT_P (XEXP (x, 1))
|
||
|| INTVAL (XEXP (x, 1)) < 0
|
||
|| INTVAL (XEXP (x, 1)) >= (int) bitwidth
|
||
|| INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
|
||
return 1;
|
||
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
|
||
known_x, known_mode, known_ret);
|
||
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
|
||
|
||
case IF_THEN_ELSE:
|
||
num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
|
||
known_x, known_mode, known_ret);
|
||
num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
|
||
known_x, known_mode, known_ret);
|
||
return MIN (num0, num1);
|
||
|
||
case EQ: case NE: case GE: case GT: case LE: case LT:
|
||
case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
|
||
case GEU: case GTU: case LEU: case LTU:
|
||
case UNORDERED: case ORDERED:
|
||
/* If the constant is negative, take its 1's complement and remask.
|
||
Then see how many zero bits we have. */
|
||
nonzero = STORE_FLAG_VALUE;
|
||
if (bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
nonzero = (~nonzero) & GET_MODE_MASK (mode);
|
||
|
||
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we haven't been able to figure it out by one of the above rules,
|
||
see if some of the high-order bits are known to be zero. If so,
|
||
count those bits and return one less than that amount. If we can't
|
||
safely compute the mask for this mode, always return BITWIDTH. */
|
||
|
||
bitwidth = GET_MODE_PRECISION (mode);
|
||
if (bitwidth > HOST_BITS_PER_WIDE_INT)
|
||
return 1;
|
||
|
||
nonzero = nonzero_bits (x, mode);
|
||
return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
|
||
? 1 : bitwidth - floor_log2 (nonzero) - 1;
|
||
}
|
||
|
||
/* Calculate the rtx_cost of a single instruction. A return value of
|
||
zero indicates an instruction pattern without a known cost. */
|
||
|
||
int
|
||
insn_rtx_cost (rtx pat, bool speed)
|
||
{
|
||
int i, cost;
|
||
rtx set;
|
||
|
||
/* Extract the single set rtx from the instruction pattern.
|
||
We can't use single_set since we only have the pattern. */
|
||
if (GET_CODE (pat) == SET)
|
||
set = pat;
|
||
else if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
set = NULL_RTX;
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx x = XVECEXP (pat, 0, i);
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
if (set)
|
||
return 0;
|
||
set = x;
|
||
}
|
||
}
|
||
if (!set)
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
cost = set_src_cost (SET_SRC (set), speed);
|
||
return cost > 0 ? cost : COSTS_N_INSNS (1);
|
||
}
|
||
|
||
/* Given an insn INSN and condition COND, return the condition in a
|
||
canonical form to simplify testing by callers. Specifically:
|
||
|
||
(1) The code will always be a comparison operation (EQ, NE, GT, etc.).
|
||
(2) Both operands will be machine operands; (cc0) will have been replaced.
|
||
(3) If an operand is a constant, it will be the second operand.
|
||
(4) (LE x const) will be replaced with (LT x <const+1>) and similarly
|
||
for GE, GEU, and LEU.
|
||
|
||
If the condition cannot be understood, or is an inequality floating-point
|
||
comparison which needs to be reversed, 0 will be returned.
|
||
|
||
If REVERSE is nonzero, then reverse the condition prior to canonizing it.
|
||
|
||
If EARLIEST is nonzero, it is a pointer to a place where the earliest
|
||
insn used in locating the condition was found. If a replacement test
|
||
of the condition is desired, it should be placed in front of that
|
||
insn and we will be sure that the inputs are still valid.
|
||
|
||
If WANT_REG is nonzero, we wish the condition to be relative to that
|
||
register, if possible. Therefore, do not canonicalize the condition
|
||
further. If ALLOW_CC_MODE is nonzero, allow the condition returned
|
||
to be a compare to a CC mode register.
|
||
|
||
If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
|
||
and at INSN. */
|
||
|
||
rtx
|
||
canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
|
||
rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
|
||
{
|
||
enum rtx_code code;
|
||
rtx prev = insn;
|
||
const_rtx set;
|
||
rtx tem;
|
||
rtx op0, op1;
|
||
int reverse_code = 0;
|
||
enum machine_mode mode;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
code = GET_CODE (cond);
|
||
mode = GET_MODE (cond);
|
||
op0 = XEXP (cond, 0);
|
||
op1 = XEXP (cond, 1);
|
||
|
||
if (reverse)
|
||
code = reversed_comparison_code (cond, insn);
|
||
if (code == UNKNOWN)
|
||
return 0;
|
||
|
||
if (earliest)
|
||
*earliest = insn;
|
||
|
||
/* If we are comparing a register with zero, see if the register is set
|
||
in the previous insn to a COMPARE or a comparison operation. Perform
|
||
the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
|
||
in cse.c */
|
||
|
||
while ((GET_RTX_CLASS (code) == RTX_COMPARE
|
||
|| GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
|
||
&& op1 == CONST0_RTX (GET_MODE (op0))
|
||
&& op0 != want_reg)
|
||
{
|
||
/* Set nonzero when we find something of interest. */
|
||
rtx x = 0;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If comparison with cc0, import actual comparison from compare
|
||
insn. */
|
||
if (op0 == cc0_rtx)
|
||
{
|
||
if ((prev = prev_nonnote_insn (prev)) == 0
|
||
|| !NONJUMP_INSN_P (prev)
|
||
|| (set = single_set (prev)) == 0
|
||
|| SET_DEST (set) != cc0_rtx)
|
||
return 0;
|
||
|
||
op0 = SET_SRC (set);
|
||
op1 = CONST0_RTX (GET_MODE (op0));
|
||
if (earliest)
|
||
*earliest = prev;
|
||
}
|
||
#endif
|
||
|
||
/* If this is a COMPARE, pick up the two things being compared. */
|
||
if (GET_CODE (op0) == COMPARE)
|
||
{
|
||
op1 = XEXP (op0, 1);
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
else if (!REG_P (op0))
|
||
break;
|
||
|
||
/* Go back to the previous insn. Stop if it is not an INSN. We also
|
||
stop if it isn't a single set or if it has a REG_INC note because
|
||
we don't want to bother dealing with it. */
|
||
|
||
prev = prev_nonnote_nondebug_insn (prev);
|
||
|
||
if (prev == 0
|
||
|| !NONJUMP_INSN_P (prev)
|
||
|| FIND_REG_INC_NOTE (prev, NULL_RTX)
|
||
/* In cfglayout mode, there do not have to be labels at the
|
||
beginning of a block, or jumps at the end, so the previous
|
||
conditions would not stop us when we reach bb boundary. */
|
||
|| BLOCK_FOR_INSN (prev) != bb)
|
||
break;
|
||
|
||
set = set_of (op0, prev);
|
||
|
||
if (set
|
||
&& (GET_CODE (set) != SET
|
||
|| !rtx_equal_p (SET_DEST (set), op0)))
|
||
break;
|
||
|
||
/* If this is setting OP0, get what it sets it to if it looks
|
||
relevant. */
|
||
if (set)
|
||
{
|
||
enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
|
||
#ifdef FLOAT_STORE_FLAG_VALUE
|
||
REAL_VALUE_TYPE fsfv;
|
||
#endif
|
||
|
||
/* ??? We may not combine comparisons done in a CCmode with
|
||
comparisons not done in a CCmode. This is to aid targets
|
||
like Alpha that have an IEEE compliant EQ instruction, and
|
||
a non-IEEE compliant BEQ instruction. The use of CCmode is
|
||
actually artificial, simply to prevent the combination, but
|
||
should not affect other platforms.
|
||
|
||
However, we must allow VOIDmode comparisons to match either
|
||
CCmode or non-CCmode comparison, because some ports have
|
||
modeless comparisons inside branch patterns.
|
||
|
||
??? This mode check should perhaps look more like the mode check
|
||
in simplify_comparison in combine. */
|
||
|
||
if ((GET_CODE (SET_SRC (set)) == COMPARE
|
||
|| (((code == NE
|
||
|| (code == LT
|
||
&& val_signbit_known_set_p (inner_mode,
|
||
STORE_FLAG_VALUE))
|
||
#ifdef FLOAT_STORE_FLAG_VALUE
|
||
|| (code == LT
|
||
&& SCALAR_FLOAT_MODE_P (inner_mode)
|
||
&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
|
||
REAL_VALUE_NEGATIVE (fsfv)))
|
||
#endif
|
||
))
|
||
&& COMPARISON_P (SET_SRC (set))))
|
||
&& (((GET_MODE_CLASS (mode) == MODE_CC)
|
||
== (GET_MODE_CLASS (inner_mode) == MODE_CC))
|
||
|| mode == VOIDmode || inner_mode == VOIDmode))
|
||
x = SET_SRC (set);
|
||
else if (((code == EQ
|
||
|| (code == GE
|
||
&& val_signbit_known_set_p (inner_mode,
|
||
STORE_FLAG_VALUE))
|
||
#ifdef FLOAT_STORE_FLAG_VALUE
|
||
|| (code == GE
|
||
&& SCALAR_FLOAT_MODE_P (inner_mode)
|
||
&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
|
||
REAL_VALUE_NEGATIVE (fsfv)))
|
||
#endif
|
||
))
|
||
&& COMPARISON_P (SET_SRC (set))
|
||
&& (((GET_MODE_CLASS (mode) == MODE_CC)
|
||
== (GET_MODE_CLASS (inner_mode) == MODE_CC))
|
||
|| mode == VOIDmode || inner_mode == VOIDmode))
|
||
|
||
{
|
||
reverse_code = 1;
|
||
x = SET_SRC (set);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
else if (reg_set_p (op0, prev))
|
||
/* If this sets OP0, but not directly, we have to give up. */
|
||
break;
|
||
|
||
if (x)
|
||
{
|
||
/* If the caller is expecting the condition to be valid at INSN,
|
||
make sure X doesn't change before INSN. */
|
||
if (valid_at_insn_p)
|
||
if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
|
||
break;
|
||
if (COMPARISON_P (x))
|
||
code = GET_CODE (x);
|
||
if (reverse_code)
|
||
{
|
||
code = reversed_comparison_code (x, prev);
|
||
if (code == UNKNOWN)
|
||
return 0;
|
||
reverse_code = 0;
|
||
}
|
||
|
||
op0 = XEXP (x, 0), op1 = XEXP (x, 1);
|
||
if (earliest)
|
||
*earliest = prev;
|
||
}
|
||
}
|
||
|
||
/* If constant is first, put it last. */
|
||
if (CONSTANT_P (op0))
|
||
code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
|
||
|
||
/* If OP0 is the result of a comparison, we weren't able to find what
|
||
was really being compared, so fail. */
|
||
if (!allow_cc_mode
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
|
||
return 0;
|
||
|
||
/* Canonicalize any ordered comparison with integers involving equality
|
||
if we can do computations in the relevant mode and we do not
|
||
overflow. */
|
||
|
||
if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
|
||
&& CONST_INT_P (op1)
|
||
&& GET_MODE (op0) != VOIDmode
|
||
&& GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
HOST_WIDE_INT const_val = INTVAL (op1);
|
||
unsigned HOST_WIDE_INT uconst_val = const_val;
|
||
unsigned HOST_WIDE_INT max_val
|
||
= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
|
||
|
||
switch (code)
|
||
{
|
||
case LE:
|
||
if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
|
||
code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
|
||
break;
|
||
|
||
/* When cross-compiling, const_val might be sign-extended from
|
||
BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
|
||
case GE:
|
||
if ((const_val & max_val)
|
||
!= ((unsigned HOST_WIDE_INT) 1
|
||
<< (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
|
||
code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
|
||
break;
|
||
|
||
case LEU:
|
||
if (uconst_val < max_val)
|
||
code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
|
||
break;
|
||
|
||
case GEU:
|
||
if (uconst_val != 0)
|
||
code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Never return CC0; return zero instead. */
|
||
if (CC0_P (op0))
|
||
return 0;
|
||
|
||
return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
|
||
}
|
||
|
||
/* Given a jump insn JUMP, return the condition that will cause it to branch
|
||
to its JUMP_LABEL. If the condition cannot be understood, or is an
|
||
inequality floating-point comparison which needs to be reversed, 0 will
|
||
be returned.
|
||
|
||
If EARLIEST is nonzero, it is a pointer to a place where the earliest
|
||
insn used in locating the condition was found. If a replacement test
|
||
of the condition is desired, it should be placed in front of that
|
||
insn and we will be sure that the inputs are still valid. If EARLIEST
|
||
is null, the returned condition will be valid at INSN.
|
||
|
||
If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
|
||
compare CC mode register.
|
||
|
||
VALID_AT_INSN_P is the same as for canonicalize_condition. */
|
||
|
||
rtx
|
||
get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
|
||
{
|
||
rtx cond;
|
||
int reverse;
|
||
rtx set;
|
||
|
||
/* If this is not a standard conditional jump, we can't parse it. */
|
||
if (!JUMP_P (jump)
|
||
|| ! any_condjump_p (jump))
|
||
return 0;
|
||
set = pc_set (jump);
|
||
|
||
cond = XEXP (SET_SRC (set), 0);
|
||
|
||
/* If this branches to JUMP_LABEL when the condition is false, reverse
|
||
the condition. */
|
||
reverse
|
||
= GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
|
||
&& XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
|
||
|
||
return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
|
||
allow_cc_mode, valid_at_insn_p);
|
||
}
|
||
|
||
/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
|
||
TARGET_MODE_REP_EXTENDED.
|
||
|
||
Note that we assume that the property of
|
||
TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
|
||
narrower than mode B. I.e., if A is a mode narrower than B then in
|
||
order to be able to operate on it in mode B, mode A needs to
|
||
satisfy the requirements set by the representation of mode B. */
|
||
|
||
static void
|
||
init_num_sign_bit_copies_in_rep (void)
|
||
{
|
||
enum machine_mode mode, in_mode;
|
||
|
||
for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
|
||
in_mode = GET_MODE_WIDER_MODE (mode))
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum machine_mode i;
|
||
|
||
/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
|
||
extends to the next widest mode. */
|
||
gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
|
||
|| GET_MODE_WIDER_MODE (mode) == in_mode);
|
||
|
||
/* We are in in_mode. Count how many bits outside of mode
|
||
have to be copies of the sign-bit. */
|
||
for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
|
||
{
|
||
enum machine_mode wider = GET_MODE_WIDER_MODE (i);
|
||
|
||
if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
|
||
/* We can only check sign-bit copies starting from the
|
||
top-bit. In order to be able to check the bits we
|
||
have already seen we pretend that subsequent bits
|
||
have to be sign-bit copies too. */
|
||
|| num_sign_bit_copies_in_rep [in_mode][mode])
|
||
num_sign_bit_copies_in_rep [in_mode][mode]
|
||
+= GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Suppose that truncation from the machine mode of X to MODE is not a
|
||
no-op. See if there is anything special about X so that we can
|
||
assume it already contains a truncated value of MODE. */
|
||
|
||
bool
|
||
truncated_to_mode (enum machine_mode mode, const_rtx x)
|
||
{
|
||
/* This register has already been used in MODE without explicit
|
||
truncation. */
|
||
if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
|
||
return true;
|
||
|
||
/* See if we already satisfy the requirements of MODE. If yes we
|
||
can just switch to MODE. */
|
||
if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
|
||
&& (num_sign_bit_copies (x, GET_MODE (x))
|
||
>= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Initialize non_rtx_starting_operands, which is used to speed up
|
||
for_each_rtx. */
|
||
void
|
||
init_rtlanal (void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
{
|
||
const char *format = GET_RTX_FORMAT (i);
|
||
const char *first = strpbrk (format, "eEV");
|
||
non_rtx_starting_operands[i] = first ? first - format : -1;
|
||
}
|
||
|
||
init_num_sign_bit_copies_in_rep ();
|
||
}
|
||
|
||
/* Check whether this is a constant pool constant. */
|
||
bool
|
||
constant_pool_constant_p (rtx x)
|
||
{
|
||
x = avoid_constant_pool_reference (x);
|
||
return GET_CODE (x) == CONST_DOUBLE;
|
||
}
|
||
|
||
/* If M is a bitmask that selects a field of low-order bits within an item but
|
||
not the entire word, return the length of the field. Return -1 otherwise.
|
||
M is used in machine mode MODE. */
|
||
|
||
int
|
||
low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
|
||
{
|
||
if (mode != VOIDmode)
|
||
{
|
||
if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
|
||
return -1;
|
||
m &= GET_MODE_MASK (mode);
|
||
}
|
||
|
||
return exact_log2 (m + 1);
|
||
}
|