gcc/gcc/tree-flow-inline.h
Richard Guenther 4075e7e8dc re PR tree-optimization/34011 (Memory load is not eliminated from tight vectorized loop)
2009-09-16  Richard Guenther  <rguenther@suse.de>

	PR middle-end/34011
	* tree-flow-inline.h (may_be_aliased): Compute readonly variables
	as non-aliased.

	* gcc.dg/tree-ssa/ssa-lim-7.c: New testcase.

From-SVN: r151740
2009-09-16 08:50:46 +00:00

1307 lines
33 KiB
C

/* Inline functions for tree-flow.h
Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software
Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef _TREE_FLOW_INLINE_H
#define _TREE_FLOW_INLINE_H 1
/* Inline functions for manipulating various data structures defined in
tree-flow.h. See tree-flow.h for documentation. */
/* Return true when gimple SSA form was built.
gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
infrastructure is initialized. Check for presence of the datastructures
at first place. */
static inline bool
gimple_in_ssa_p (const struct function *fun)
{
return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
}
/* Array of all variables referenced in the function. */
static inline htab_t
gimple_referenced_vars (const struct function *fun)
{
if (!fun->gimple_df)
return NULL;
return fun->gimple_df->referenced_vars;
}
/* Artificial variable used to model the effects of nonlocal
variables. */
static inline tree
gimple_nonlocal_all (const struct function *fun)
{
gcc_assert (fun && fun->gimple_df);
return fun->gimple_df->nonlocal_all;
}
/* Artificial variable used for the virtual operand FUD chain. */
static inline tree
gimple_vop (const struct function *fun)
{
gcc_assert (fun && fun->gimple_df);
return fun->gimple_df->vop;
}
/* Initialize the hashtable iterator HTI to point to hashtable TABLE */
static inline void *
first_htab_element (htab_iterator *hti, htab_t table)
{
hti->htab = table;
hti->slot = table->entries;
hti->limit = hti->slot + htab_size (table);
do
{
PTR x = *(hti->slot);
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
break;
} while (++(hti->slot) < hti->limit);
if (hti->slot < hti->limit)
return *(hti->slot);
return NULL;
}
/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
or NULL if we have reached the end. */
static inline bool
end_htab_p (const htab_iterator *hti)
{
if (hti->slot >= hti->limit)
return true;
return false;
}
/* Advance the hashtable iterator pointed to by HTI to the next element of the
hashtable. */
static inline void *
next_htab_element (htab_iterator *hti)
{
while (++(hti->slot) < hti->limit)
{
PTR x = *(hti->slot);
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
return x;
};
return NULL;
}
/* Initialize ITER to point to the first referenced variable in the
referenced_vars hashtable, and return that variable. */
static inline tree
first_referenced_var (referenced_var_iterator *iter)
{
return (tree) first_htab_element (&iter->hti,
gimple_referenced_vars (cfun));
}
/* Return true if we have hit the end of the referenced variables ITER is
iterating through. */
static inline bool
end_referenced_vars_p (const referenced_var_iterator *iter)
{
return end_htab_p (&iter->hti);
}
/* Make ITER point to the next referenced_var in the referenced_var hashtable,
and return that variable. */
static inline tree
next_referenced_var (referenced_var_iterator *iter)
{
return (tree) next_htab_element (&iter->hti);
}
/* Fill up VEC with the variables in the referenced vars hashtable. */
static inline void
fill_referenced_var_vec (VEC (tree, heap) **vec)
{
referenced_var_iterator rvi;
tree var;
*vec = NULL;
FOR_EACH_REFERENCED_VAR (var, rvi)
VEC_safe_push (tree, heap, *vec, var);
}
/* Return the variable annotation for T, which must be a _DECL node.
Return NULL if the variable annotation doesn't already exist. */
static inline var_ann_t
var_ann (const_tree t)
{
var_ann_t ann;
if (!t->base.ann)
return NULL;
ann = (var_ann_t) t->base.ann;
gcc_assert (ann->common.type == VAR_ANN);
return ann;
}
/* Return the variable annotation for T, which must be a _DECL node.
Create the variable annotation if it doesn't exist. */
static inline var_ann_t
get_var_ann (tree var)
{
var_ann_t ann = var_ann (var);
return (ann) ? ann : create_var_ann (var);
}
/* Get the number of the next statement uid to be allocated. */
static inline unsigned int
gimple_stmt_max_uid (struct function *fn)
{
return fn->last_stmt_uid;
}
/* Set the number of the next statement uid to be allocated. */
static inline void
set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
{
fn->last_stmt_uid = maxid;
}
/* Set the number of the next statement uid to be allocated. */
static inline unsigned int
inc_gimple_stmt_max_uid (struct function *fn)
{
return fn->last_stmt_uid++;
}
/* Return the annotation type for annotation ANN. */
static inline enum tree_ann_type
ann_type (tree_ann_t ann)
{
return ann->common.type;
}
/* Return the line number for EXPR, or return -1 if we have no line
number information for it. */
static inline int
get_lineno (const_gimple stmt)
{
location_t loc;
if (!stmt)
return -1;
loc = gimple_location (stmt);
if (loc == UNKNOWN_LOCATION)
return -1;
return LOCATION_LINE (loc);
}
/* Delink an immediate_uses node from its chain. */
static inline void
delink_imm_use (ssa_use_operand_t *linknode)
{
/* Return if this node is not in a list. */
if (linknode->prev == NULL)
return;
linknode->prev->next = linknode->next;
linknode->next->prev = linknode->prev;
linknode->prev = NULL;
linknode->next = NULL;
}
/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
static inline void
link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
{
/* Link the new node at the head of the list. If we are in the process of
traversing the list, we won't visit any new nodes added to it. */
linknode->prev = list;
linknode->next = list->next;
list->next->prev = linknode;
list->next = linknode;
}
/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
static inline void
link_imm_use (ssa_use_operand_t *linknode, tree def)
{
ssa_use_operand_t *root;
if (!def || TREE_CODE (def) != SSA_NAME)
linknode->prev = NULL;
else
{
root = &(SSA_NAME_IMM_USE_NODE (def));
#ifdef ENABLE_CHECKING
if (linknode->use)
gcc_assert (*(linknode->use) == def);
#endif
link_imm_use_to_list (linknode, root);
}
}
/* Set the value of a use pointed to by USE to VAL. */
static inline void
set_ssa_use_from_ptr (use_operand_p use, tree val)
{
delink_imm_use (use);
*(use->use) = val;
link_imm_use (use, val);
}
/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
in STMT. */
static inline void
link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
{
if (stmt)
link_imm_use (linknode, def);
else
link_imm_use (linknode, NULL);
linknode->loc.stmt = stmt;
}
/* Relink a new node in place of an old node in the list. */
static inline void
relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
{
/* The node one had better be in the same list. */
gcc_assert (*(old->use) == *(node->use));
node->prev = old->prev;
node->next = old->next;
if (old->prev)
{
old->prev->next = node;
old->next->prev = node;
/* Remove the old node from the list. */
old->prev = NULL;
}
}
/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
in STMT. */
static inline void
relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
gimple stmt)
{
if (stmt)
relink_imm_use (linknode, old);
else
link_imm_use (linknode, NULL);
linknode->loc.stmt = stmt;
}
/* Return true is IMM has reached the end of the immediate use list. */
static inline bool
end_readonly_imm_use_p (const imm_use_iterator *imm)
{
return (imm->imm_use == imm->end_p);
}
/* Initialize iterator IMM to process the list for VAR. */
static inline use_operand_p
first_readonly_imm_use (imm_use_iterator *imm, tree var)
{
gcc_assert (TREE_CODE (var) == SSA_NAME);
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
imm->imm_use = imm->end_p->next;
#ifdef ENABLE_CHECKING
imm->iter_node.next = imm->imm_use->next;
#endif
if (end_readonly_imm_use_p (imm))
return NULL_USE_OPERAND_P;
return imm->imm_use;
}
/* Bump IMM to the next use in the list. */
static inline use_operand_p
next_readonly_imm_use (imm_use_iterator *imm)
{
use_operand_p old = imm->imm_use;
#ifdef ENABLE_CHECKING
/* If this assertion fails, it indicates the 'next' pointer has changed
since the last bump. This indicates that the list is being modified
via stmt changes, or SET_USE, or somesuch thing, and you need to be
using the SAFE version of the iterator. */
gcc_assert (imm->iter_node.next == old->next);
imm->iter_node.next = old->next->next;
#endif
imm->imm_use = old->next;
if (end_readonly_imm_use_p (imm))
return NULL_USE_OPERAND_P;
return imm->imm_use;
}
/* tree-cfg.c */
extern bool has_zero_uses_1 (const ssa_use_operand_t *head);
extern bool single_imm_use_1 (const ssa_use_operand_t *head,
use_operand_p *use_p, gimple *stmt);
/* Return true if VAR has no nondebug uses. */
static inline bool
has_zero_uses (const_tree var)
{
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
/* A single use_operand means there is no items in the list. */
if (ptr == ptr->next)
return true;
/* If there are debug stmts, we have to look at each use and see
whether there are any nondebug uses. */
if (!MAY_HAVE_DEBUG_STMTS)
return false;
return has_zero_uses_1 (ptr);
}
/* Return true if VAR has a single nondebug use. */
static inline bool
has_single_use (const_tree var)
{
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
/* If there aren't any uses whatsoever, we're done. */
if (ptr == ptr->next)
return false;
/* If there's a single use, check that it's not a debug stmt. */
if (ptr == ptr->next->next)
return !is_gimple_debug (USE_STMT (ptr->next));
/* If there are debug stmts, we have to look at each of them. */
if (!MAY_HAVE_DEBUG_STMTS)
return false;
return single_imm_use_1 (ptr, NULL, NULL);
}
/* If VAR has only a single immediate nondebug use, return true, and
set USE_P and STMT to the use pointer and stmt of occurrence. */
static inline bool
single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
{
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
/* If there aren't any uses whatsoever, we're done. */
if (ptr == ptr->next)
{
return_false:
*use_p = NULL_USE_OPERAND_P;
*stmt = NULL;
return false;
}
/* If there's a single use, check that it's not a debug stmt. */
if (ptr == ptr->next->next)
{
if (!is_gimple_debug (USE_STMT (ptr->next)))
{
*use_p = ptr->next;
*stmt = ptr->next->loc.stmt;
return true;
}
else
goto return_false;
}
/* If there are debug stmts, we have to look at each of them. */
if (!MAY_HAVE_DEBUG_STMTS)
goto return_false;
return single_imm_use_1 (ptr, use_p, stmt);
}
/* Return the number of nondebug immediate uses of VAR. */
static inline unsigned int
num_imm_uses (const_tree var)
{
const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
const ssa_use_operand_t *ptr;
unsigned int num = 0;
if (!MAY_HAVE_DEBUG_STMTS)
for (ptr = start->next; ptr != start; ptr = ptr->next)
num++;
else
for (ptr = start->next; ptr != start; ptr = ptr->next)
if (!is_gimple_debug (USE_STMT (ptr)))
num++;
return num;
}
/* Return the tree pointed-to by USE. */
static inline tree
get_use_from_ptr (use_operand_p use)
{
return *(use->use);
}
/* Return the tree pointed-to by DEF. */
static inline tree
get_def_from_ptr (def_operand_p def)
{
return *def;
}
/* Return a use_operand_p pointer for argument I of PHI node GS. */
static inline use_operand_p
gimple_phi_arg_imm_use_ptr (gimple gs, int i)
{
return &gimple_phi_arg (gs, i)->imm_use;
}
/* Return the tree operand for argument I of PHI node GS. */
static inline tree
gimple_phi_arg_def (gimple gs, size_t index)
{
struct phi_arg_d *pd = gimple_phi_arg (gs, index);
return get_use_from_ptr (&pd->imm_use);
}
/* Return a pointer to the tree operand for argument I of PHI node GS. */
static inline tree *
gimple_phi_arg_def_ptr (gimple gs, size_t index)
{
return &gimple_phi_arg (gs, index)->def;
}
/* Return the edge associated with argument I of phi node GS. */
static inline edge
gimple_phi_arg_edge (gimple gs, size_t i)
{
return EDGE_PRED (gimple_bb (gs), i);
}
/* Return the source location of gimple argument I of phi node GS. */
static inline source_location
gimple_phi_arg_location (gimple gs, size_t i)
{
return gimple_phi_arg (gs, i)->locus;
}
/* Return the source location of the argument on edge E of phi node GS. */
static inline source_location
gimple_phi_arg_location_from_edge (gimple gs, edge e)
{
return gimple_phi_arg (gs, e->dest_idx)->locus;
}
/* Set the source location of gimple argument I of phi node GS to LOC. */
static inline void
gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
{
gimple_phi_arg (gs, i)->locus = loc;
}
/* Return TRUE if argument I of phi node GS has a location record. */
static inline bool
gimple_phi_arg_has_location (gimple gs, size_t i)
{
return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
}
/* Return the PHI nodes for basic block BB, or NULL if there are no
PHI nodes. */
static inline gimple_seq
phi_nodes (const_basic_block bb)
{
gcc_assert (!(bb->flags & BB_RTL));
if (!bb->il.gimple)
return NULL;
return bb->il.gimple->phi_nodes;
}
/* Set PHI nodes of a basic block BB to SEQ. */
static inline void
set_phi_nodes (basic_block bb, gimple_seq seq)
{
gimple_stmt_iterator i;
gcc_assert (!(bb->flags & BB_RTL));
bb->il.gimple->phi_nodes = seq;
if (seq)
for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
gimple_set_bb (gsi_stmt (i), bb);
}
/* Return the phi argument which contains the specified use. */
static inline int
phi_arg_index_from_use (use_operand_p use)
{
struct phi_arg_d *element, *root;
size_t index;
gimple phi;
/* Since the use is the first thing in a PHI argument element, we can
calculate its index based on casting it to an argument, and performing
pointer arithmetic. */
phi = USE_STMT (use);
gcc_assert (gimple_code (phi) == GIMPLE_PHI);
element = (struct phi_arg_d *)use;
root = gimple_phi_arg (phi, 0);
index = element - root;
#ifdef ENABLE_CHECKING
/* Make sure the calculation doesn't have any leftover bytes. If it does,
then imm_use is likely not the first element in phi_arg_d. */
gcc_assert (
(((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
gcc_assert (index < gimple_phi_capacity (phi));
#endif
return index;
}
/* Mark VAR as used, so that it'll be preserved during rtl expansion. */
static inline void
set_is_used (tree var)
{
var_ann_t ann = get_var_ann (var);
ann->used = 1;
}
/* Return true if T (assumed to be a DECL) is a global variable.
A variable is considered global if its storage is not automatic. */
static inline bool
is_global_var (const_tree t)
{
return (TREE_STATIC (t) || DECL_EXTERNAL (t));
}
/* Return true if VAR may be aliased. A variable is considered as
maybe aliased if it has its address taken by the local TU
or possibly by another TU and might be modified through a pointer. */
static inline bool
may_be_aliased (const_tree var)
{
return (TREE_CODE (var) != CONST_DECL
&& !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var))
&& TREE_READONLY (var)
&& !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var)))
&& (TREE_PUBLIC (var)
|| DECL_EXTERNAL (var)
|| TREE_ADDRESSABLE (var)));
}
/* PHI nodes should contain only ssa_names and invariants. A test
for ssa_name is definitely simpler; don't let invalid contents
slip in in the meantime. */
static inline bool
phi_ssa_name_p (const_tree t)
{
if (TREE_CODE (t) == SSA_NAME)
return true;
#ifdef ENABLE_CHECKING
gcc_assert (is_gimple_min_invariant (t));
#endif
return false;
}
/* Returns the loop of the statement STMT. */
static inline struct loop *
loop_containing_stmt (gimple stmt)
{
basic_block bb = gimple_bb (stmt);
if (!bb)
return NULL;
return bb->loop_father;
}
/* Return true if VAR is clobbered by function calls. */
static inline bool
is_call_clobbered (const_tree var)
{
return (is_global_var (var)
|| (may_be_aliased (var)
&& pt_solution_includes (&cfun->gimple_df->escaped, var)));
}
/* Return true if VAR is used by function calls. */
static inline bool
is_call_used (const_tree var)
{
return (is_call_clobbered (var)
|| (may_be_aliased (var)
&& pt_solution_includes (&cfun->gimple_df->callused, var)));
}
/* Return the common annotation for T. Return NULL if the annotation
doesn't already exist. */
static inline tree_ann_common_t
tree_common_ann (const_tree t)
{
/* Watch out static variables with unshared annotations. */
if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
return &var_ann (t)->common;
return &t->base.ann->common;
}
/* Return a common annotation for T. Create the constant annotation if it
doesn't exist. */
static inline tree_ann_common_t
get_tree_common_ann (tree t)
{
tree_ann_common_t ann = tree_common_ann (t);
return (ann) ? ann : create_tree_common_ann (t);
}
/* ----------------------------------------------------------------------- */
/* The following set of routines are used to iterator over various type of
SSA operands. */
/* Return true if PTR is finished iterating. */
static inline bool
op_iter_done (const ssa_op_iter *ptr)
{
return ptr->done;
}
/* Get the next iterator use value for PTR. */
static inline use_operand_p
op_iter_next_use (ssa_op_iter *ptr)
{
use_operand_p use_p;
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_use);
#endif
if (ptr->uses)
{
use_p = USE_OP_PTR (ptr->uses);
ptr->uses = ptr->uses->next;
return use_p;
}
if (ptr->phi_i < ptr->num_phi)
{
return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
}
ptr->done = true;
return NULL_USE_OPERAND_P;
}
/* Get the next iterator def value for PTR. */
static inline def_operand_p
op_iter_next_def (ssa_op_iter *ptr)
{
def_operand_p def_p;
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_def);
#endif
if (ptr->defs)
{
def_p = DEF_OP_PTR (ptr->defs);
ptr->defs = ptr->defs->next;
return def_p;
}
ptr->done = true;
return NULL_DEF_OPERAND_P;
}
/* Get the next iterator tree value for PTR. */
static inline tree
op_iter_next_tree (ssa_op_iter *ptr)
{
tree val;
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_tree);
#endif
if (ptr->uses)
{
val = USE_OP (ptr->uses);
ptr->uses = ptr->uses->next;
return val;
}
if (ptr->defs)
{
val = DEF_OP (ptr->defs);
ptr->defs = ptr->defs->next;
return val;
}
ptr->done = true;
return NULL_TREE;
}
/* This functions clears the iterator PTR, and marks it done. This is normally
used to prevent warnings in the compile about might be uninitialized
components. */
static inline void
clear_and_done_ssa_iter (ssa_op_iter *ptr)
{
ptr->defs = NULL;
ptr->uses = NULL;
ptr->iter_type = ssa_op_iter_none;
ptr->phi_i = 0;
ptr->num_phi = 0;
ptr->phi_stmt = NULL;
ptr->done = true;
}
/* Initialize the iterator PTR to the virtual defs in STMT. */
static inline void
op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
{
/* We do not support iterating over virtual defs or uses without
iterating over defs or uses at the same time. */
gcc_assert ((!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
&& (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL;
if (!(flags & SSA_OP_VDEF)
&& ptr->defs
&& gimple_vdef (stmt) != NULL_TREE)
ptr->defs = ptr->defs->next;
ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
if (!(flags & SSA_OP_VUSE)
&& ptr->uses
&& gimple_vuse (stmt) != NULL_TREE)
ptr->uses = ptr->uses->next;
ptr->done = false;
ptr->phi_i = 0;
ptr->num_phi = 0;
ptr->phi_stmt = NULL;
}
/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
the first use. */
static inline use_operand_p
op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
{
gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0
&& (flags & SSA_OP_USE));
op_iter_init (ptr, stmt, flags);
ptr->iter_type = ssa_op_iter_use;
return op_iter_next_use (ptr);
}
/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
the first def. */
static inline def_operand_p
op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
{
gcc_assert ((flags & SSA_OP_ALL_USES) == 0
&& (flags & SSA_OP_DEF));
op_iter_init (ptr, stmt, flags);
ptr->iter_type = ssa_op_iter_def;
return op_iter_next_def (ptr);
}
/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
the first operand as a tree. */
static inline tree
op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
{
op_iter_init (ptr, stmt, flags);
ptr->iter_type = ssa_op_iter_tree;
return op_iter_next_tree (ptr);
}
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
return NULL. */
static inline tree
single_ssa_tree_operand (gimple stmt, int flags)
{
tree var;
ssa_op_iter iter;
var = op_iter_init_tree (&iter, stmt, flags);
if (op_iter_done (&iter))
return NULL_TREE;
op_iter_next_tree (&iter);
if (op_iter_done (&iter))
return var;
return NULL_TREE;
}
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
return NULL. */
static inline use_operand_p
single_ssa_use_operand (gimple stmt, int flags)
{
use_operand_p var;
ssa_op_iter iter;
var = op_iter_init_use (&iter, stmt, flags);
if (op_iter_done (&iter))
return NULL_USE_OPERAND_P;
op_iter_next_use (&iter);
if (op_iter_done (&iter))
return var;
return NULL_USE_OPERAND_P;
}
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
return NULL. */
static inline def_operand_p
single_ssa_def_operand (gimple stmt, int flags)
{
def_operand_p var;
ssa_op_iter iter;
var = op_iter_init_def (&iter, stmt, flags);
if (op_iter_done (&iter))
return NULL_DEF_OPERAND_P;
op_iter_next_def (&iter);
if (op_iter_done (&iter))
return var;
return NULL_DEF_OPERAND_P;
}
/* Return true if there are zero operands in STMT matching the type
given in FLAGS. */
static inline bool
zero_ssa_operands (gimple stmt, int flags)
{
ssa_op_iter iter;
op_iter_init_tree (&iter, stmt, flags);
return op_iter_done (&iter);
}
/* Return the number of operands matching FLAGS in STMT. */
static inline int
num_ssa_operands (gimple stmt, int flags)
{
ssa_op_iter iter;
tree t;
int num = 0;
FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
num++;
return num;
}
/* Delink all immediate_use information for STMT. */
static inline void
delink_stmt_imm_use (gimple stmt)
{
ssa_op_iter iter;
use_operand_p use_p;
if (ssa_operands_active ())
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
delink_imm_use (use_p);
}
/* If there is a single DEF in the PHI node which matches FLAG, return it.
Otherwise return NULL_DEF_OPERAND_P. */
static inline tree
single_phi_def (gimple stmt, int flags)
{
tree def = PHI_RESULT (stmt);
if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
return def;
if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
return def;
return NULL_TREE;
}
/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
static inline use_operand_p
op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
{
tree phi_def = gimple_phi_result (phi);
int comp;
clear_and_done_ssa_iter (ptr);
ptr->done = false;
gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
/* If the PHI node doesn't the operand type we care about, we're done. */
if ((flags & comp) == 0)
{
ptr->done = true;
return NULL_USE_OPERAND_P;
}
ptr->phi_stmt = phi;
ptr->num_phi = gimple_phi_num_args (phi);
ptr->iter_type = ssa_op_iter_use;
return op_iter_next_use (ptr);
}
/* Start an iterator for a PHI definition. */
static inline def_operand_p
op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
{
tree phi_def = PHI_RESULT (phi);
int comp;
clear_and_done_ssa_iter (ptr);
ptr->done = false;
gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
/* If the PHI node doesn't have the operand type we care about,
we're done. */
if ((flags & comp) == 0)
{
ptr->done = true;
return NULL_DEF_OPERAND_P;
}
ptr->iter_type = ssa_op_iter_def;
/* The first call to op_iter_next_def will terminate the iterator since
all the fields are NULL. Simply return the result here as the first and
therefore only result. */
return PHI_RESULT_PTR (phi);
}
/* Return true is IMM has reached the end of the immediate use stmt list. */
static inline bool
end_imm_use_stmt_p (const imm_use_iterator *imm)
{
return (imm->imm_use == imm->end_p);
}
/* Finished the traverse of an immediate use stmt list IMM by removing the
placeholder node from the list. */
static inline void
end_imm_use_stmt_traverse (imm_use_iterator *imm)
{
delink_imm_use (&(imm->iter_node));
}
/* Immediate use traversal of uses within a stmt require that all the
uses on a stmt be sequentially listed. This routine is used to build up
this sequential list by adding USE_P to the end of the current list
currently delimited by HEAD and LAST_P. The new LAST_P value is
returned. */
static inline use_operand_p
move_use_after_head (use_operand_p use_p, use_operand_p head,
use_operand_p last_p)
{
gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
/* Skip head when we find it. */
if (use_p != head)
{
/* If use_p is already linked in after last_p, continue. */
if (last_p->next == use_p)
last_p = use_p;
else
{
/* Delink from current location, and link in at last_p. */
delink_imm_use (use_p);
link_imm_use_to_list (use_p, last_p);
last_p = use_p;
}
}
return last_p;
}
/* This routine will relink all uses with the same stmt as HEAD into the list
immediately following HEAD for iterator IMM. */
static inline void
link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
{
use_operand_p use_p;
use_operand_p last_p = head;
gimple head_stmt = USE_STMT (head);
tree use = USE_FROM_PTR (head);
ssa_op_iter op_iter;
int flag;
/* Only look at virtual or real uses, depending on the type of HEAD. */
flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
if (gimple_code (head_stmt) == GIMPLE_PHI)
{
FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
if (USE_FROM_PTR (use_p) == use)
last_p = move_use_after_head (use_p, head, last_p);
}
else
{
if (flag == SSA_OP_USE)
{
FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
if (USE_FROM_PTR (use_p) == use)
last_p = move_use_after_head (use_p, head, last_p);
}
else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
{
if (USE_FROM_PTR (use_p) == use)
last_p = move_use_after_head (use_p, head, last_p);
}
}
/* Link iter node in after last_p. */
if (imm->iter_node.prev != NULL)
delink_imm_use (&imm->iter_node);
link_imm_use_to_list (&(imm->iter_node), last_p);
}
/* Initialize IMM to traverse over uses of VAR. Return the first statement. */
static inline gimple
first_imm_use_stmt (imm_use_iterator *imm, tree var)
{
gcc_assert (TREE_CODE (var) == SSA_NAME);
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
imm->imm_use = imm->end_p->next;
imm->next_imm_name = NULL_USE_OPERAND_P;
/* iter_node is used as a marker within the immediate use list to indicate
where the end of the current stmt's uses are. Initialize it to NULL
stmt and use, which indicates a marker node. */
imm->iter_node.prev = NULL_USE_OPERAND_P;
imm->iter_node.next = NULL_USE_OPERAND_P;
imm->iter_node.loc.stmt = NULL;
imm->iter_node.use = NULL;
if (end_imm_use_stmt_p (imm))
return NULL;
link_use_stmts_after (imm->imm_use, imm);
return USE_STMT (imm->imm_use);
}
/* Bump IMM to the next stmt which has a use of var. */
static inline gimple
next_imm_use_stmt (imm_use_iterator *imm)
{
imm->imm_use = imm->iter_node.next;
if (end_imm_use_stmt_p (imm))
{
if (imm->iter_node.prev != NULL)
delink_imm_use (&imm->iter_node);
return NULL;
}
link_use_stmts_after (imm->imm_use, imm);
return USE_STMT (imm->imm_use);
}
/* This routine will return the first use on the stmt IMM currently refers
to. */
static inline use_operand_p
first_imm_use_on_stmt (imm_use_iterator *imm)
{
imm->next_imm_name = imm->imm_use->next;
return imm->imm_use;
}
/* Return TRUE if the last use on the stmt IMM refers to has been visited. */
static inline bool
end_imm_use_on_stmt_p (const imm_use_iterator *imm)
{
return (imm->imm_use == &(imm->iter_node));
}
/* Bump to the next use on the stmt IMM refers to, return NULL if done. */
static inline use_operand_p
next_imm_use_on_stmt (imm_use_iterator *imm)
{
imm->imm_use = imm->next_imm_name;
if (end_imm_use_on_stmt_p (imm))
return NULL_USE_OPERAND_P;
else
{
imm->next_imm_name = imm->imm_use->next;
return imm->imm_use;
}
}
/* Return true if VAR cannot be modified by the program. */
static inline bool
unmodifiable_var_p (const_tree var)
{
if (TREE_CODE (var) == SSA_NAME)
var = SSA_NAME_VAR (var);
return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
}
/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
static inline bool
array_ref_contains_indirect_ref (const_tree ref)
{
gcc_assert (TREE_CODE (ref) == ARRAY_REF);
do {
ref = TREE_OPERAND (ref, 0);
} while (handled_component_p (ref));
return TREE_CODE (ref) == INDIRECT_REF;
}
/* Return true if REF, a handled component reference, has an ARRAY_REF
somewhere in it. */
static inline bool
ref_contains_array_ref (const_tree ref)
{
gcc_assert (handled_component_p (ref));
do {
if (TREE_CODE (ref) == ARRAY_REF)
return true;
ref = TREE_OPERAND (ref, 0);
} while (handled_component_p (ref));
return false;
}
/* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
static inline bool
contains_view_convert_expr_p (const_tree ref)
{
while (handled_component_p (ref))
{
if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
return true;
ref = TREE_OPERAND (ref, 0);
}
return false;
}
/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
range is open-ended. Otherwise return false. */
static inline bool
ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
unsigned HOST_WIDE_INT size1,
unsigned HOST_WIDE_INT pos2,
unsigned HOST_WIDE_INT size2)
{
if (pos1 >= pos2
&& (size2 == (unsigned HOST_WIDE_INT)-1
|| pos1 < (pos2 + size2)))
return true;
if (pos2 >= pos1
&& (size1 == (unsigned HOST_WIDE_INT)-1
|| pos2 < (pos1 + size1)))
return true;
return false;
}
/* Accessor to tree-ssa-operands.c caches. */
static inline struct ssa_operands *
gimple_ssa_operands (const struct function *fun)
{
return &fun->gimple_df->ssa_operands;
}
/* Given an edge_var_map V, return the PHI arg definition. */
static inline tree
redirect_edge_var_map_def (edge_var_map *v)
{
return v->def;
}
/* Given an edge_var_map V, return the PHI result. */
static inline tree
redirect_edge_var_map_result (edge_var_map *v)
{
return v->result;
}
/* Given an edge_var_map V, return the PHI arg location. */
static inline source_location
redirect_edge_var_map_location (edge_var_map *v)
{
return v->locus;
}
/* Return an SSA_NAME node for variable VAR defined in statement STMT
in function cfun. */
static inline tree
make_ssa_name (tree var, gimple stmt)
{
return make_ssa_name_fn (cfun, var, stmt);
}
#endif /* _TREE_FLOW_INLINE_H */