e4fb38bd17
PR target/41693 * rtl.h (DEBUG_EXPR_TREE_DECL): Define. * sched-vis.c (print_value): Use it. * cselib.c (cselib_hash_rtx): Likewise. * print-rtl.c (print_rtx): Likewise. * cfgexpand.c (expand_debug_rtx): Likewise. * var-tracking.c (vt_expand_loc_callback): Likewise. From-SVN: r152707
7572 lines
192 KiB
C
7572 lines
192 KiB
C
/* Variable tracking routines for the GNU compiler.
|
||
Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains the variable tracking pass. It computes where
|
||
variables are located (which registers or where in memory) at each position
|
||
in instruction stream and emits notes describing the locations.
|
||
Debug information (DWARF2 location lists) is finally generated from
|
||
these notes.
|
||
With this debug information, it is possible to show variables
|
||
even when debugging optimized code.
|
||
|
||
How does the variable tracking pass work?
|
||
|
||
First, it scans RTL code for uses, stores and clobbers (register/memory
|
||
references in instructions), for call insns and for stack adjustments
|
||
separately for each basic block and saves them to an array of micro
|
||
operations.
|
||
The micro operations of one instruction are ordered so that
|
||
pre-modifying stack adjustment < use < use with no var < call insn <
|
||
< set < clobber < post-modifying stack adjustment
|
||
|
||
Then, a forward dataflow analysis is performed to find out how locations
|
||
of variables change through code and to propagate the variable locations
|
||
along control flow graph.
|
||
The IN set for basic block BB is computed as a union of OUT sets of BB's
|
||
predecessors, the OUT set for BB is copied from the IN set for BB and
|
||
is changed according to micro operations in BB.
|
||
|
||
The IN and OUT sets for basic blocks consist of a current stack adjustment
|
||
(used for adjusting offset of variables addressed using stack pointer),
|
||
the table of structures describing the locations of parts of a variable
|
||
and for each physical register a linked list for each physical register.
|
||
The linked list is a list of variable parts stored in the register,
|
||
i.e. it is a list of triplets (reg, decl, offset) where decl is
|
||
REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
|
||
effective deleting appropriate variable parts when we set or clobber the
|
||
register.
|
||
|
||
There may be more than one variable part in a register. The linked lists
|
||
should be pretty short so it is a good data structure here.
|
||
For example in the following code, register allocator may assign same
|
||
register to variables A and B, and both of them are stored in the same
|
||
register in CODE:
|
||
|
||
if (cond)
|
||
set A;
|
||
else
|
||
set B;
|
||
CODE;
|
||
if (cond)
|
||
use A;
|
||
else
|
||
use B;
|
||
|
||
Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
|
||
are emitted to appropriate positions in RTL code. Each such a note describes
|
||
the location of one variable at the point in instruction stream where the
|
||
note is. There is no need to emit a note for each variable before each
|
||
instruction, we only emit these notes where the location of variable changes
|
||
(this means that we also emit notes for changes between the OUT set of the
|
||
previous block and the IN set of the current block).
|
||
|
||
The notes consist of two parts:
|
||
1. the declaration (from REG_EXPR or MEM_EXPR)
|
||
2. the location of a variable - it is either a simple register/memory
|
||
reference (for simple variables, for example int),
|
||
or a parallel of register/memory references (for a large variables
|
||
which consist of several parts, for example long long).
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "insn-config.h"
|
||
#include "reload.h"
|
||
#include "sbitmap.h"
|
||
#include "alloc-pool.h"
|
||
#include "fibheap.h"
|
||
#include "hashtab.h"
|
||
#include "regs.h"
|
||
#include "expr.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
#include "cselib.h"
|
||
#include "target.h"
|
||
|
||
/* Type of micro operation. */
|
||
enum micro_operation_type
|
||
{
|
||
MO_USE, /* Use location (REG or MEM). */
|
||
MO_USE_NO_VAR,/* Use location which is not associated with a variable
|
||
or the variable is not trackable. */
|
||
MO_VAL_USE, /* Use location which is associated with a value. */
|
||
MO_VAL_LOC, /* Use location which appears in a debug insn. */
|
||
MO_VAL_SET, /* Set location associated with a value. */
|
||
MO_SET, /* Set location. */
|
||
MO_COPY, /* Copy the same portion of a variable from one
|
||
location to another. */
|
||
MO_CLOBBER, /* Clobber location. */
|
||
MO_CALL, /* Call insn. */
|
||
MO_ADJUST /* Adjust stack pointer. */
|
||
|
||
};
|
||
|
||
static const char * const ATTRIBUTE_UNUSED
|
||
micro_operation_type_name[] = {
|
||
"MO_USE",
|
||
"MO_USE_NO_VAR",
|
||
"MO_VAL_USE",
|
||
"MO_VAL_LOC",
|
||
"MO_VAL_SET",
|
||
"MO_SET",
|
||
"MO_COPY",
|
||
"MO_CLOBBER",
|
||
"MO_CALL",
|
||
"MO_ADJUST"
|
||
};
|
||
|
||
/* Where shall the note be emitted? BEFORE or AFTER the instruction.
|
||
Notes emitted as AFTER_CALL are to take effect during the call,
|
||
rather than after the call. */
|
||
enum emit_note_where
|
||
{
|
||
EMIT_NOTE_BEFORE_INSN,
|
||
EMIT_NOTE_AFTER_INSN,
|
||
EMIT_NOTE_AFTER_CALL_INSN
|
||
};
|
||
|
||
/* Structure holding information about micro operation. */
|
||
typedef struct micro_operation_def
|
||
{
|
||
/* Type of micro operation. */
|
||
enum micro_operation_type type;
|
||
|
||
union {
|
||
/* Location. For MO_SET and MO_COPY, this is the SET that
|
||
performs the assignment, if known, otherwise it is the target
|
||
of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
|
||
CONCAT of the VALUE and the LOC associated with it. For
|
||
MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
|
||
associated with it. */
|
||
rtx loc;
|
||
|
||
/* Stack adjustment. */
|
||
HOST_WIDE_INT adjust;
|
||
} u;
|
||
|
||
/* The instruction which the micro operation is in, for MO_USE,
|
||
MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
|
||
instruction or note in the original flow (before any var-tracking
|
||
notes are inserted, to simplify emission of notes), for MO_SET
|
||
and MO_CLOBBER. */
|
||
rtx insn;
|
||
} micro_operation;
|
||
|
||
/* A declaration of a variable, or an RTL value being handled like a
|
||
declaration. */
|
||
typedef void *decl_or_value;
|
||
|
||
/* Structure for passing some other parameters to function
|
||
emit_note_insn_var_location. */
|
||
typedef struct emit_note_data_def
|
||
{
|
||
/* The instruction which the note will be emitted before/after. */
|
||
rtx insn;
|
||
|
||
/* Where the note will be emitted (before/after insn)? */
|
||
enum emit_note_where where;
|
||
|
||
/* The variables and values active at this point. */
|
||
htab_t vars;
|
||
} emit_note_data;
|
||
|
||
/* Description of location of a part of a variable. The content of a physical
|
||
register is described by a chain of these structures.
|
||
The chains are pretty short (usually 1 or 2 elements) and thus
|
||
chain is the best data structure. */
|
||
typedef struct attrs_def
|
||
{
|
||
/* Pointer to next member of the list. */
|
||
struct attrs_def *next;
|
||
|
||
/* The rtx of register. */
|
||
rtx loc;
|
||
|
||
/* The declaration corresponding to LOC. */
|
||
decl_or_value dv;
|
||
|
||
/* Offset from start of DECL. */
|
||
HOST_WIDE_INT offset;
|
||
} *attrs;
|
||
|
||
/* Structure holding a refcounted hash table. If refcount > 1,
|
||
it must be first unshared before modified. */
|
||
typedef struct shared_hash_def
|
||
{
|
||
/* Reference count. */
|
||
int refcount;
|
||
|
||
/* Actual hash table. */
|
||
htab_t htab;
|
||
} *shared_hash;
|
||
|
||
/* Structure holding the IN or OUT set for a basic block. */
|
||
typedef struct dataflow_set_def
|
||
{
|
||
/* Adjustment of stack offset. */
|
||
HOST_WIDE_INT stack_adjust;
|
||
|
||
/* Attributes for registers (lists of attrs). */
|
||
attrs regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Variable locations. */
|
||
shared_hash vars;
|
||
|
||
/* Vars that is being traversed. */
|
||
shared_hash traversed_vars;
|
||
} dataflow_set;
|
||
|
||
/* The structure (one for each basic block) containing the information
|
||
needed for variable tracking. */
|
||
typedef struct variable_tracking_info_def
|
||
{
|
||
/* Number of micro operations stored in the MOS array. */
|
||
int n_mos;
|
||
|
||
/* The array of micro operations. */
|
||
micro_operation *mos;
|
||
|
||
/* The IN and OUT set for dataflow analysis. */
|
||
dataflow_set in;
|
||
dataflow_set out;
|
||
|
||
/* The permanent-in dataflow set for this block. This is used to
|
||
hold values for which we had to compute entry values. ??? This
|
||
should probably be dynamically allocated, to avoid using more
|
||
memory in non-debug builds. */
|
||
dataflow_set *permp;
|
||
|
||
/* Has the block been visited in DFS? */
|
||
bool visited;
|
||
|
||
/* Has the block been flooded in VTA? */
|
||
bool flooded;
|
||
|
||
} *variable_tracking_info;
|
||
|
||
/* Structure for chaining the locations. */
|
||
typedef struct location_chain_def
|
||
{
|
||
/* Next element in the chain. */
|
||
struct location_chain_def *next;
|
||
|
||
/* The location (REG, MEM or VALUE). */
|
||
rtx loc;
|
||
|
||
/* The "value" stored in this location. */
|
||
rtx set_src;
|
||
|
||
/* Initialized? */
|
||
enum var_init_status init;
|
||
} *location_chain;
|
||
|
||
/* Structure describing one part of variable. */
|
||
typedef struct variable_part_def
|
||
{
|
||
/* Chain of locations of the part. */
|
||
location_chain loc_chain;
|
||
|
||
/* Location which was last emitted to location list. */
|
||
rtx cur_loc;
|
||
|
||
/* The offset in the variable. */
|
||
HOST_WIDE_INT offset;
|
||
} variable_part;
|
||
|
||
/* Maximum number of location parts. */
|
||
#define MAX_VAR_PARTS 16
|
||
|
||
/* Structure describing where the variable is located. */
|
||
typedef struct variable_def
|
||
{
|
||
/* The declaration of the variable, or an RTL value being handled
|
||
like a declaration. */
|
||
decl_or_value dv;
|
||
|
||
/* Reference count. */
|
||
int refcount;
|
||
|
||
/* Number of variable parts. */
|
||
int n_var_parts;
|
||
|
||
/* The variable parts. */
|
||
variable_part var_part[1];
|
||
} *variable;
|
||
typedef const struct variable_def *const_variable;
|
||
|
||
/* Structure for chaining backlinks from referenced VALUEs to
|
||
DVs that are referencing them. */
|
||
typedef struct value_chain_def
|
||
{
|
||
/* Next value_chain entry. */
|
||
struct value_chain_def *next;
|
||
|
||
/* The declaration of the variable, or an RTL value
|
||
being handled like a declaration, whose var_parts[0].loc_chain
|
||
references the VALUE owning this value_chain. */
|
||
decl_or_value dv;
|
||
|
||
/* Reference count. */
|
||
int refcount;
|
||
} *value_chain;
|
||
typedef const struct value_chain_def *const_value_chain;
|
||
|
||
/* Hash function for DECL for VARIABLE_HTAB. */
|
||
#define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
|
||
|
||
/* Pointer to the BB's information specific to variable tracking pass. */
|
||
#define VTI(BB) ((variable_tracking_info) (BB)->aux)
|
||
|
||
/* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
|
||
#define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
|
||
|
||
/* Alloc pool for struct attrs_def. */
|
||
static alloc_pool attrs_pool;
|
||
|
||
/* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
|
||
static alloc_pool var_pool;
|
||
|
||
/* Alloc pool for struct variable_def with a single var_part entry. */
|
||
static alloc_pool valvar_pool;
|
||
|
||
/* Alloc pool for struct location_chain_def. */
|
||
static alloc_pool loc_chain_pool;
|
||
|
||
/* Alloc pool for struct shared_hash_def. */
|
||
static alloc_pool shared_hash_pool;
|
||
|
||
/* Alloc pool for struct value_chain_def. */
|
||
static alloc_pool value_chain_pool;
|
||
|
||
/* Changed variables, notes will be emitted for them. */
|
||
static htab_t changed_variables;
|
||
|
||
/* Links from VALUEs to DVs referencing them in their current loc_chains. */
|
||
static htab_t value_chains;
|
||
|
||
/* Shall notes be emitted? */
|
||
static bool emit_notes;
|
||
|
||
/* Empty shared hashtable. */
|
||
static shared_hash empty_shared_hash;
|
||
|
||
/* Scratch register bitmap used by cselib_expand_value_rtx. */
|
||
static bitmap scratch_regs = NULL;
|
||
|
||
/* Variable used to tell whether cselib_process_insn called our hook. */
|
||
static bool cselib_hook_called;
|
||
|
||
/* Local function prototypes. */
|
||
static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
|
||
HOST_WIDE_INT *);
|
||
static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
|
||
HOST_WIDE_INT *);
|
||
static void bb_stack_adjust_offset (basic_block);
|
||
static bool vt_stack_adjustments (void);
|
||
static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
|
||
static hashval_t variable_htab_hash (const void *);
|
||
static int variable_htab_eq (const void *, const void *);
|
||
static void variable_htab_free (void *);
|
||
|
||
static void init_attrs_list_set (attrs *);
|
||
static void attrs_list_clear (attrs *);
|
||
static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
|
||
static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
|
||
static void attrs_list_copy (attrs *, attrs);
|
||
static void attrs_list_union (attrs *, attrs);
|
||
|
||
static void **unshare_variable (dataflow_set *set, void **slot, variable var,
|
||
enum var_init_status);
|
||
static int vars_copy_1 (void **, void *);
|
||
static void vars_copy (htab_t, htab_t);
|
||
static tree var_debug_decl (tree);
|
||
static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
|
||
static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
|
||
enum var_init_status, rtx);
|
||
static void var_reg_delete (dataflow_set *, rtx, bool);
|
||
static void var_regno_delete (dataflow_set *, int);
|
||
static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
|
||
static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
|
||
enum var_init_status, rtx);
|
||
static void var_mem_delete (dataflow_set *, rtx, bool);
|
||
|
||
static void dataflow_set_init (dataflow_set *);
|
||
static void dataflow_set_clear (dataflow_set *);
|
||
static void dataflow_set_copy (dataflow_set *, dataflow_set *);
|
||
static int variable_union_info_cmp_pos (const void *, const void *);
|
||
static int variable_union (void **, void *);
|
||
static int variable_canonicalize (void **, void *);
|
||
static void dataflow_set_union (dataflow_set *, dataflow_set *);
|
||
static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
|
||
static bool canon_value_cmp (rtx, rtx);
|
||
static int loc_cmp (rtx, rtx);
|
||
static bool variable_part_different_p (variable_part *, variable_part *);
|
||
static bool onepart_variable_different_p (variable, variable);
|
||
static bool variable_different_p (variable, variable, bool);
|
||
static int dataflow_set_different_1 (void **, void *);
|
||
static bool dataflow_set_different (dataflow_set *, dataflow_set *);
|
||
static void dataflow_set_destroy (dataflow_set *);
|
||
|
||
static bool contains_symbol_ref (rtx);
|
||
static bool track_expr_p (tree, bool);
|
||
static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
|
||
static int count_uses (rtx *, void *);
|
||
static void count_uses_1 (rtx *, void *);
|
||
static void count_stores (rtx, const_rtx, void *);
|
||
static int add_uses (rtx *, void *);
|
||
static void add_uses_1 (rtx *, void *);
|
||
static void add_stores (rtx, const_rtx, void *);
|
||
static bool compute_bb_dataflow (basic_block);
|
||
static void vt_find_locations (void);
|
||
|
||
static void dump_attrs_list (attrs);
|
||
static int dump_variable_slot (void **, void *);
|
||
static void dump_variable (variable);
|
||
static void dump_vars (htab_t);
|
||
static void dump_dataflow_set (dataflow_set *);
|
||
static void dump_dataflow_sets (void);
|
||
|
||
static void variable_was_changed (variable, dataflow_set *);
|
||
static void **set_slot_part (dataflow_set *, rtx, void **,
|
||
decl_or_value, HOST_WIDE_INT,
|
||
enum var_init_status, rtx);
|
||
static void set_variable_part (dataflow_set *, rtx,
|
||
decl_or_value, HOST_WIDE_INT,
|
||
enum var_init_status, rtx, enum insert_option);
|
||
static void **clobber_slot_part (dataflow_set *, rtx,
|
||
void **, HOST_WIDE_INT, rtx);
|
||
static void clobber_variable_part (dataflow_set *, rtx,
|
||
decl_or_value, HOST_WIDE_INT, rtx);
|
||
static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
|
||
static void delete_variable_part (dataflow_set *, rtx,
|
||
decl_or_value, HOST_WIDE_INT);
|
||
static int emit_note_insn_var_location (void **, void *);
|
||
static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
|
||
static int emit_notes_for_differences_1 (void **, void *);
|
||
static int emit_notes_for_differences_2 (void **, void *);
|
||
static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
|
||
static void emit_notes_in_bb (basic_block, dataflow_set *);
|
||
static void vt_emit_notes (void);
|
||
|
||
static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
|
||
static void vt_add_function_parameters (void);
|
||
static void vt_initialize (void);
|
||
static void vt_finalize (void);
|
||
|
||
/* Given a SET, calculate the amount of stack adjustment it contains
|
||
PRE- and POST-modifying stack pointer.
|
||
This function is similar to stack_adjust_offset. */
|
||
|
||
static void
|
||
stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
|
||
HOST_WIDE_INT *post)
|
||
{
|
||
rtx src = SET_SRC (pattern);
|
||
rtx dest = SET_DEST (pattern);
|
||
enum rtx_code code;
|
||
|
||
if (dest == stack_pointer_rtx)
|
||
{
|
||
/* (set (reg sp) (plus (reg sp) (const_int))) */
|
||
code = GET_CODE (src);
|
||
if (! (code == PLUS || code == MINUS)
|
||
|| XEXP (src, 0) != stack_pointer_rtx
|
||
|| !CONST_INT_P (XEXP (src, 1)))
|
||
return;
|
||
|
||
if (code == MINUS)
|
||
*post += INTVAL (XEXP (src, 1));
|
||
else
|
||
*post -= INTVAL (XEXP (src, 1));
|
||
}
|
||
else if (MEM_P (dest))
|
||
{
|
||
/* (set (mem (pre_dec (reg sp))) (foo)) */
|
||
src = XEXP (dest, 0);
|
||
code = GET_CODE (src);
|
||
|
||
switch (code)
|
||
{
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
if (XEXP (src, 0) == stack_pointer_rtx)
|
||
{
|
||
rtx val = XEXP (XEXP (src, 1), 1);
|
||
/* We handle only adjustments by constant amount. */
|
||
gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
|
||
CONST_INT_P (val));
|
||
|
||
if (code == PRE_MODIFY)
|
||
*pre -= INTVAL (val);
|
||
else
|
||
*post -= INTVAL (val);
|
||
break;
|
||
}
|
||
return;
|
||
|
||
case PRE_DEC:
|
||
if (XEXP (src, 0) == stack_pointer_rtx)
|
||
{
|
||
*pre += GET_MODE_SIZE (GET_MODE (dest));
|
||
break;
|
||
}
|
||
return;
|
||
|
||
case POST_DEC:
|
||
if (XEXP (src, 0) == stack_pointer_rtx)
|
||
{
|
||
*post += GET_MODE_SIZE (GET_MODE (dest));
|
||
break;
|
||
}
|
||
return;
|
||
|
||
case PRE_INC:
|
||
if (XEXP (src, 0) == stack_pointer_rtx)
|
||
{
|
||
*pre -= GET_MODE_SIZE (GET_MODE (dest));
|
||
break;
|
||
}
|
||
return;
|
||
|
||
case POST_INC:
|
||
if (XEXP (src, 0) == stack_pointer_rtx)
|
||
{
|
||
*post -= GET_MODE_SIZE (GET_MODE (dest));
|
||
break;
|
||
}
|
||
return;
|
||
|
||
default:
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given an INSN, calculate the amount of stack adjustment it contains
|
||
PRE- and POST-modifying stack pointer. */
|
||
|
||
static void
|
||
insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
|
||
HOST_WIDE_INT *post)
|
||
{
|
||
rtx pattern;
|
||
|
||
*pre = 0;
|
||
*post = 0;
|
||
|
||
pattern = PATTERN (insn);
|
||
if (RTX_FRAME_RELATED_P (insn))
|
||
{
|
||
rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
|
||
if (expr)
|
||
pattern = XEXP (expr, 0);
|
||
}
|
||
|
||
if (GET_CODE (pattern) == SET)
|
||
stack_adjust_offset_pre_post (pattern, pre, post);
|
||
else if (GET_CODE (pattern) == PARALLEL
|
||
|| GET_CODE (pattern) == SEQUENCE)
|
||
{
|
||
int i;
|
||
|
||
/* There may be stack adjustments inside compound insns. Search
|
||
for them. */
|
||
for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
|
||
stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
|
||
}
|
||
}
|
||
|
||
/* Compute stack adjustment in basic block BB. */
|
||
|
||
static void
|
||
bb_stack_adjust_offset (basic_block bb)
|
||
{
|
||
HOST_WIDE_INT offset;
|
||
int i;
|
||
|
||
offset = VTI (bb)->in.stack_adjust;
|
||
for (i = 0; i < VTI (bb)->n_mos; i++)
|
||
{
|
||
if (VTI (bb)->mos[i].type == MO_ADJUST)
|
||
offset += VTI (bb)->mos[i].u.adjust;
|
||
else if (VTI (bb)->mos[i].type != MO_CALL)
|
||
{
|
||
if (MEM_P (VTI (bb)->mos[i].u.loc))
|
||
{
|
||
VTI (bb)->mos[i].u.loc
|
||
= adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
|
||
}
|
||
}
|
||
}
|
||
VTI (bb)->out.stack_adjust = offset;
|
||
}
|
||
|
||
/* Compute stack adjustments for all blocks by traversing DFS tree.
|
||
Return true when the adjustments on all incoming edges are consistent.
|
||
Heavily borrowed from pre_and_rev_post_order_compute. */
|
||
|
||
static bool
|
||
vt_stack_adjustments (void)
|
||
{
|
||
edge_iterator *stack;
|
||
int sp;
|
||
|
||
/* Initialize entry block. */
|
||
VTI (ENTRY_BLOCK_PTR)->visited = true;
|
||
VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
||
sp = 0;
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
||
|
||
while (sp)
|
||
{
|
||
edge_iterator ei;
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
ei = stack[sp - 1];
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (!VTI (dest)->visited)
|
||
{
|
||
VTI (dest)->visited = true;
|
||
VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
|
||
bb_stack_adjust_offset (dest);
|
||
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack[sp++] = ei_start (dest->succs);
|
||
}
|
||
else
|
||
{
|
||
/* Check whether the adjustments on the edges are the same. */
|
||
if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
|
||
{
|
||
free (stack);
|
||
return false;
|
||
}
|
||
|
||
if (! ei_one_before_end_p (ei))
|
||
/* Go to the next edge. */
|
||
ei_next (&stack[sp - 1]);
|
||
else
|
||
/* Return to previous level if there are no more edges. */
|
||
sp--;
|
||
}
|
||
}
|
||
|
||
free (stack);
|
||
return true;
|
||
}
|
||
|
||
/* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
|
||
to the argument pointer. Return the new rtx. */
|
||
|
||
static rtx
|
||
adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
|
||
{
|
||
rtx addr, cfa, tmp;
|
||
|
||
#ifdef FRAME_POINTER_CFA_OFFSET
|
||
adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
|
||
cfa = plus_constant (frame_pointer_rtx, adjustment);
|
||
#else
|
||
adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
|
||
cfa = plus_constant (arg_pointer_rtx, adjustment);
|
||
#endif
|
||
|
||
addr = replace_rtx (copy_rtx (XEXP (mem, 0)), stack_pointer_rtx, cfa);
|
||
tmp = simplify_rtx (addr);
|
||
if (tmp)
|
||
addr = tmp;
|
||
|
||
return replace_equiv_address_nv (mem, addr);
|
||
}
|
||
|
||
/* Return true if a decl_or_value DV is a DECL or NULL. */
|
||
static inline bool
|
||
dv_is_decl_p (decl_or_value dv)
|
||
{
|
||
if (!dv)
|
||
return true;
|
||
|
||
/* Make sure relevant codes don't overlap. */
|
||
switch ((int)TREE_CODE ((tree)dv))
|
||
{
|
||
case (int)VAR_DECL:
|
||
case (int)PARM_DECL:
|
||
case (int)RESULT_DECL:
|
||
case (int)FUNCTION_DECL:
|
||
case (int)DEBUG_EXPR_DECL:
|
||
case (int)COMPONENT_REF:
|
||
return true;
|
||
|
||
case (int)VALUE:
|
||
return false;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return true if a decl_or_value is a VALUE rtl. */
|
||
static inline bool
|
||
dv_is_value_p (decl_or_value dv)
|
||
{
|
||
return dv && !dv_is_decl_p (dv);
|
||
}
|
||
|
||
/* Return the decl in the decl_or_value. */
|
||
static inline tree
|
||
dv_as_decl (decl_or_value dv)
|
||
{
|
||
gcc_assert (dv_is_decl_p (dv));
|
||
return (tree) dv;
|
||
}
|
||
|
||
/* Return the value in the decl_or_value. */
|
||
static inline rtx
|
||
dv_as_value (decl_or_value dv)
|
||
{
|
||
gcc_assert (dv_is_value_p (dv));
|
||
return (rtx)dv;
|
||
}
|
||
|
||
/* Return the opaque pointer in the decl_or_value. */
|
||
static inline void *
|
||
dv_as_opaque (decl_or_value dv)
|
||
{
|
||
return dv;
|
||
}
|
||
|
||
/* Return true if a decl_or_value must not have more than one variable
|
||
part. */
|
||
static inline bool
|
||
dv_onepart_p (decl_or_value dv)
|
||
{
|
||
tree decl;
|
||
|
||
if (!MAY_HAVE_DEBUG_INSNS)
|
||
return false;
|
||
|
||
if (dv_is_value_p (dv))
|
||
return true;
|
||
|
||
decl = dv_as_decl (dv);
|
||
|
||
if (!decl)
|
||
return true;
|
||
|
||
return (target_for_debug_bind (decl) != NULL_TREE);
|
||
}
|
||
|
||
/* Return the variable pool to be used for dv, depending on whether it
|
||
can have multiple parts or not. */
|
||
static inline alloc_pool
|
||
dv_pool (decl_or_value dv)
|
||
{
|
||
return dv_onepart_p (dv) ? valvar_pool : var_pool;
|
||
}
|
||
|
||
/* Build a decl_or_value out of a decl. */
|
||
static inline decl_or_value
|
||
dv_from_decl (tree decl)
|
||
{
|
||
decl_or_value dv;
|
||
dv = decl;
|
||
gcc_assert (dv_is_decl_p (dv));
|
||
return dv;
|
||
}
|
||
|
||
/* Build a decl_or_value out of a value. */
|
||
static inline decl_or_value
|
||
dv_from_value (rtx value)
|
||
{
|
||
decl_or_value dv;
|
||
dv = value;
|
||
gcc_assert (dv_is_value_p (dv));
|
||
return dv;
|
||
}
|
||
|
||
static inline hashval_t
|
||
dv_htab_hash (decl_or_value dv)
|
||
{
|
||
if (dv_is_value_p (dv))
|
||
return -(hashval_t)(CSELIB_VAL_PTR (dv_as_value (dv))->value);
|
||
else
|
||
return (VARIABLE_HASH_VAL (dv_as_decl (dv)));
|
||
}
|
||
|
||
/* The hash function for variable_htab, computes the hash value
|
||
from the declaration of variable X. */
|
||
|
||
static hashval_t
|
||
variable_htab_hash (const void *x)
|
||
{
|
||
const_variable const v = (const_variable) x;
|
||
|
||
return dv_htab_hash (v->dv);
|
||
}
|
||
|
||
/* Compare the declaration of variable X with declaration Y. */
|
||
|
||
static int
|
||
variable_htab_eq (const void *x, const void *y)
|
||
{
|
||
const_variable const v = (const_variable) x;
|
||
decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
|
||
|
||
if (dv_as_opaque (v->dv) == dv_as_opaque (dv))
|
||
return true;
|
||
|
||
#if ENABLE_CHECKING
|
||
{
|
||
bool visv, dvisv;
|
||
|
||
visv = dv_is_value_p (v->dv);
|
||
dvisv = dv_is_value_p (dv);
|
||
|
||
if (visv != dvisv)
|
||
return false;
|
||
|
||
if (visv)
|
||
gcc_assert (CSELIB_VAL_PTR (dv_as_value (v->dv))
|
||
!= CSELIB_VAL_PTR (dv_as_value (dv)));
|
||
else
|
||
gcc_assert (VARIABLE_HASH_VAL (dv_as_decl (v->dv))
|
||
!= VARIABLE_HASH_VAL (dv_as_decl (dv)));
|
||
}
|
||
#endif
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
|
||
|
||
static void
|
||
variable_htab_free (void *elem)
|
||
{
|
||
int i;
|
||
variable var = (variable) elem;
|
||
location_chain node, next;
|
||
|
||
gcc_assert (var->refcount > 0);
|
||
|
||
var->refcount--;
|
||
if (var->refcount > 0)
|
||
return;
|
||
|
||
for (i = 0; i < var->n_var_parts; i++)
|
||
{
|
||
for (node = var->var_part[i].loc_chain; node; node = next)
|
||
{
|
||
next = node->next;
|
||
pool_free (loc_chain_pool, node);
|
||
}
|
||
var->var_part[i].loc_chain = NULL;
|
||
}
|
||
pool_free (dv_pool (var->dv), var);
|
||
}
|
||
|
||
/* The hash function for value_chains htab, computes the hash value
|
||
from the VALUE. */
|
||
|
||
static hashval_t
|
||
value_chain_htab_hash (const void *x)
|
||
{
|
||
const_value_chain const v = (const_value_chain) x;
|
||
|
||
return dv_htab_hash (v->dv);
|
||
}
|
||
|
||
/* Compare the VALUE X with VALUE Y. */
|
||
|
||
static int
|
||
value_chain_htab_eq (const void *x, const void *y)
|
||
{
|
||
const_value_chain const v = (const_value_chain) x;
|
||
decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
|
||
|
||
return dv_as_opaque (v->dv) == dv_as_opaque (dv);
|
||
}
|
||
|
||
/* Initialize the set (array) SET of attrs to empty lists. */
|
||
|
||
static void
|
||
init_attrs_list_set (attrs *set)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
set[i] = NULL;
|
||
}
|
||
|
||
/* Make the list *LISTP empty. */
|
||
|
||
static void
|
||
attrs_list_clear (attrs *listp)
|
||
{
|
||
attrs list, next;
|
||
|
||
for (list = *listp; list; list = next)
|
||
{
|
||
next = list->next;
|
||
pool_free (attrs_pool, list);
|
||
}
|
||
*listp = NULL;
|
||
}
|
||
|
||
/* Return true if the pair of DECL and OFFSET is the member of the LIST. */
|
||
|
||
static attrs
|
||
attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
|
||
{
|
||
for (; list; list = list->next)
|
||
if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
|
||
return list;
|
||
return NULL;
|
||
}
|
||
|
||
/* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
|
||
|
||
static void
|
||
attrs_list_insert (attrs *listp, decl_or_value dv,
|
||
HOST_WIDE_INT offset, rtx loc)
|
||
{
|
||
attrs list;
|
||
|
||
list = (attrs) pool_alloc (attrs_pool);
|
||
list->loc = loc;
|
||
list->dv = dv;
|
||
list->offset = offset;
|
||
list->next = *listp;
|
||
*listp = list;
|
||
}
|
||
|
||
/* Copy all nodes from SRC and create a list *DSTP of the copies. */
|
||
|
||
static void
|
||
attrs_list_copy (attrs *dstp, attrs src)
|
||
{
|
||
attrs n;
|
||
|
||
attrs_list_clear (dstp);
|
||
for (; src; src = src->next)
|
||
{
|
||
n = (attrs) pool_alloc (attrs_pool);
|
||
n->loc = src->loc;
|
||
n->dv = src->dv;
|
||
n->offset = src->offset;
|
||
n->next = *dstp;
|
||
*dstp = n;
|
||
}
|
||
}
|
||
|
||
/* Add all nodes from SRC which are not in *DSTP to *DSTP. */
|
||
|
||
static void
|
||
attrs_list_union (attrs *dstp, attrs src)
|
||
{
|
||
for (; src; src = src->next)
|
||
{
|
||
if (!attrs_list_member (*dstp, src->dv, src->offset))
|
||
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
|
||
}
|
||
}
|
||
|
||
/* Combine nodes that are not onepart nodes from SRC and SRC2 into
|
||
*DSTP. */
|
||
|
||
static void
|
||
attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
|
||
{
|
||
gcc_assert (!*dstp);
|
||
for (; src; src = src->next)
|
||
{
|
||
if (!dv_onepart_p (src->dv))
|
||
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
|
||
}
|
||
for (src = src2; src; src = src->next)
|
||
{
|
||
if (!dv_onepart_p (src->dv)
|
||
&& !attrs_list_member (*dstp, src->dv, src->offset))
|
||
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
|
||
}
|
||
}
|
||
|
||
/* Shared hashtable support. */
|
||
|
||
/* Return true if VARS is shared. */
|
||
|
||
static inline bool
|
||
shared_hash_shared (shared_hash vars)
|
||
{
|
||
return vars->refcount > 1;
|
||
}
|
||
|
||
/* Return the hash table for VARS. */
|
||
|
||
static inline htab_t
|
||
shared_hash_htab (shared_hash vars)
|
||
{
|
||
return vars->htab;
|
||
}
|
||
|
||
/* Copy variables into a new hash table. */
|
||
|
||
static shared_hash
|
||
shared_hash_unshare (shared_hash vars)
|
||
{
|
||
shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
|
||
gcc_assert (vars->refcount > 1);
|
||
new_vars->refcount = 1;
|
||
new_vars->htab
|
||
= htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
|
||
variable_htab_eq, variable_htab_free);
|
||
vars_copy (new_vars->htab, vars->htab);
|
||
vars->refcount--;
|
||
return new_vars;
|
||
}
|
||
|
||
/* Increment reference counter on VARS and return it. */
|
||
|
||
static inline shared_hash
|
||
shared_hash_copy (shared_hash vars)
|
||
{
|
||
vars->refcount++;
|
||
return vars;
|
||
}
|
||
|
||
/* Decrement reference counter and destroy hash table if not shared
|
||
anymore. */
|
||
|
||
static void
|
||
shared_hash_destroy (shared_hash vars)
|
||
{
|
||
gcc_assert (vars->refcount > 0);
|
||
if (--vars->refcount == 0)
|
||
{
|
||
htab_delete (vars->htab);
|
||
pool_free (shared_hash_pool, vars);
|
||
}
|
||
}
|
||
|
||
/* Unshare *PVARS if shared and return slot for DV. If INS is
|
||
INSERT, insert it if not already present. */
|
||
|
||
static inline void **
|
||
shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
|
||
hashval_t dvhash, enum insert_option ins)
|
||
{
|
||
if (shared_hash_shared (*pvars))
|
||
*pvars = shared_hash_unshare (*pvars);
|
||
return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
|
||
}
|
||
|
||
static inline void **
|
||
shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
|
||
enum insert_option ins)
|
||
{
|
||
return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
|
||
}
|
||
|
||
/* Return slot for DV, if it is already present in the hash table.
|
||
If it is not present, insert it only VARS is not shared, otherwise
|
||
return NULL. */
|
||
|
||
static inline void **
|
||
shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
|
||
{
|
||
return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
|
||
shared_hash_shared (vars)
|
||
? NO_INSERT : INSERT);
|
||
}
|
||
|
||
static inline void **
|
||
shared_hash_find_slot (shared_hash vars, decl_or_value dv)
|
||
{
|
||
return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
|
||
}
|
||
|
||
/* Return slot for DV only if it is already present in the hash table. */
|
||
|
||
static inline void **
|
||
shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
|
||
hashval_t dvhash)
|
||
{
|
||
return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
|
||
NO_INSERT);
|
||
}
|
||
|
||
static inline void **
|
||
shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
|
||
{
|
||
return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
|
||
}
|
||
|
||
/* Return variable for DV or NULL if not already present in the hash
|
||
table. */
|
||
|
||
static inline variable
|
||
shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
|
||
{
|
||
return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
|
||
}
|
||
|
||
static inline variable
|
||
shared_hash_find (shared_hash vars, decl_or_value dv)
|
||
{
|
||
return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
|
||
}
|
||
|
||
/* Determine a total order between two distinct pointers. Compare the
|
||
pointers as integral types if size_t is wide enough, otherwise
|
||
resort to bitwise memory compare. The actual order does not
|
||
matter, we just need to be consistent, so endianness is
|
||
irrelevant. */
|
||
|
||
static int
|
||
tie_break_pointers (const void *p1, const void *p2)
|
||
{
|
||
gcc_assert (p1 != p2);
|
||
|
||
if (sizeof (size_t) >= sizeof (void*))
|
||
return (size_t)p1 < (size_t)p2 ? -1 : 1;
|
||
else
|
||
return memcmp (&p1, &p2, sizeof (p1));
|
||
}
|
||
|
||
/* Return true if TVAL is better than CVAL as a canonival value. We
|
||
choose lowest-numbered VALUEs, using the RTX address as a
|
||
tie-breaker. The idea is to arrange them into a star topology,
|
||
such that all of them are at most one step away from the canonical
|
||
value, and the canonical value has backlinks to all of them, in
|
||
addition to all the actual locations. We don't enforce this
|
||
topology throughout the entire dataflow analysis, though.
|
||
*/
|
||
|
||
static inline bool
|
||
canon_value_cmp (rtx tval, rtx cval)
|
||
{
|
||
return !cval
|
||
|| CSELIB_VAL_PTR (tval)->value < CSELIB_VAL_PTR (cval)->value
|
||
|| (CSELIB_VAL_PTR (tval)->value == CSELIB_VAL_PTR (cval)->value
|
||
&& tie_break_pointers (tval, cval) < 0);
|
||
}
|
||
|
||
static bool dst_can_be_shared;
|
||
|
||
/* Return a copy of a variable VAR and insert it to dataflow set SET. */
|
||
|
||
static void **
|
||
unshare_variable (dataflow_set *set, void **slot, variable var,
|
||
enum var_init_status initialized)
|
||
{
|
||
variable new_var;
|
||
int i;
|
||
|
||
new_var = (variable) pool_alloc (dv_pool (var->dv));
|
||
new_var->dv = var->dv;
|
||
new_var->refcount = 1;
|
||
var->refcount--;
|
||
new_var->n_var_parts = var->n_var_parts;
|
||
|
||
if (! flag_var_tracking_uninit)
|
||
initialized = VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
for (i = 0; i < var->n_var_parts; i++)
|
||
{
|
||
location_chain node;
|
||
location_chain *nextp;
|
||
|
||
new_var->var_part[i].offset = var->var_part[i].offset;
|
||
nextp = &new_var->var_part[i].loc_chain;
|
||
for (node = var->var_part[i].loc_chain; node; node = node->next)
|
||
{
|
||
location_chain new_lc;
|
||
|
||
new_lc = (location_chain) pool_alloc (loc_chain_pool);
|
||
new_lc->next = NULL;
|
||
if (node->init > initialized)
|
||
new_lc->init = node->init;
|
||
else
|
||
new_lc->init = initialized;
|
||
if (node->set_src && !(MEM_P (node->set_src)))
|
||
new_lc->set_src = node->set_src;
|
||
else
|
||
new_lc->set_src = NULL;
|
||
new_lc->loc = node->loc;
|
||
|
||
*nextp = new_lc;
|
||
nextp = &new_lc->next;
|
||
}
|
||
|
||
/* We are at the basic block boundary when copying variable description
|
||
so set the CUR_LOC to be the first element of the chain. */
|
||
if (new_var->var_part[i].loc_chain)
|
||
new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
|
||
else
|
||
new_var->var_part[i].cur_loc = NULL;
|
||
}
|
||
|
||
dst_can_be_shared = false;
|
||
if (shared_hash_shared (set->vars))
|
||
slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
|
||
else if (set->traversed_vars && set->vars != set->traversed_vars)
|
||
slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
|
||
*slot = new_var;
|
||
return slot;
|
||
}
|
||
|
||
/* Add a variable from *SLOT to hash table DATA and increase its reference
|
||
count. */
|
||
|
||
static int
|
||
vars_copy_1 (void **slot, void *data)
|
||
{
|
||
htab_t dst = (htab_t) data;
|
||
variable src;
|
||
void **dstp;
|
||
|
||
src = (variable) *slot;
|
||
src->refcount++;
|
||
|
||
dstp = htab_find_slot_with_hash (dst, src->dv,
|
||
dv_htab_hash (src->dv),
|
||
INSERT);
|
||
*dstp = src;
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
/* Copy all variables from hash table SRC to hash table DST. */
|
||
|
||
static void
|
||
vars_copy (htab_t dst, htab_t src)
|
||
{
|
||
htab_traverse_noresize (src, vars_copy_1, dst);
|
||
}
|
||
|
||
/* Map a decl to its main debug decl. */
|
||
|
||
static inline tree
|
||
var_debug_decl (tree decl)
|
||
{
|
||
if (decl && DECL_P (decl)
|
||
&& DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
|
||
&& DECL_P (DECL_DEBUG_EXPR (decl)))
|
||
decl = DECL_DEBUG_EXPR (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Set the register LOC to contain DV, OFFSET. */
|
||
|
||
static void
|
||
var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
|
||
decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
|
||
enum insert_option iopt)
|
||
{
|
||
attrs node;
|
||
bool decl_p = dv_is_decl_p (dv);
|
||
|
||
if (decl_p)
|
||
dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
|
||
|
||
for (node = set->regs[REGNO (loc)]; node; node = node->next)
|
||
if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
|
||
&& node->offset == offset)
|
||
break;
|
||
if (!node)
|
||
attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
|
||
set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
|
||
}
|
||
|
||
/* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
|
||
|
||
static void
|
||
var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
|
||
rtx set_src)
|
||
{
|
||
tree decl = REG_EXPR (loc);
|
||
HOST_WIDE_INT offset = REG_OFFSET (loc);
|
||
|
||
var_reg_decl_set (set, loc, initialized,
|
||
dv_from_decl (decl), offset, set_src, INSERT);
|
||
}
|
||
|
||
static enum var_init_status
|
||
get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
|
||
{
|
||
variable var;
|
||
int i;
|
||
enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
|
||
|
||
if (! flag_var_tracking_uninit)
|
||
return VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
var = shared_hash_find (set->vars, dv);
|
||
if (var)
|
||
{
|
||
for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
|
||
{
|
||
location_chain nextp;
|
||
for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
|
||
if (rtx_equal_p (nextp->loc, loc))
|
||
{
|
||
ret_val = nextp->init;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return ret_val;
|
||
}
|
||
|
||
/* Delete current content of register LOC in dataflow set SET and set
|
||
the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
|
||
MODIFY is true, any other live copies of the same variable part are
|
||
also deleted from the dataflow set, otherwise the variable part is
|
||
assumed to be copied from another location holding the same
|
||
part. */
|
||
|
||
static void
|
||
var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
|
||
enum var_init_status initialized, rtx set_src)
|
||
{
|
||
tree decl = REG_EXPR (loc);
|
||
HOST_WIDE_INT offset = REG_OFFSET (loc);
|
||
attrs node, next;
|
||
attrs *nextp;
|
||
|
||
decl = var_debug_decl (decl);
|
||
|
||
if (initialized == VAR_INIT_STATUS_UNKNOWN)
|
||
initialized = get_init_value (set, loc, dv_from_decl (decl));
|
||
|
||
nextp = &set->regs[REGNO (loc)];
|
||
for (node = *nextp; node; node = next)
|
||
{
|
||
next = node->next;
|
||
if (dv_as_opaque (node->dv) != decl || node->offset != offset)
|
||
{
|
||
delete_variable_part (set, node->loc, node->dv, node->offset);
|
||
pool_free (attrs_pool, node);
|
||
*nextp = next;
|
||
}
|
||
else
|
||
{
|
||
node->loc = loc;
|
||
nextp = &node->next;
|
||
}
|
||
}
|
||
if (modify)
|
||
clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
|
||
var_reg_set (set, loc, initialized, set_src);
|
||
}
|
||
|
||
/* Delete current content of register LOC in dataflow set SET. If
|
||
CLOBBER is true, also delete any other live copies of the same
|
||
variable part. */
|
||
|
||
static void
|
||
var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
|
||
{
|
||
attrs *reg = &set->regs[REGNO (loc)];
|
||
attrs node, next;
|
||
|
||
if (clobber)
|
||
{
|
||
tree decl = REG_EXPR (loc);
|
||
HOST_WIDE_INT offset = REG_OFFSET (loc);
|
||
|
||
decl = var_debug_decl (decl);
|
||
|
||
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
|
||
}
|
||
|
||
for (node = *reg; node; node = next)
|
||
{
|
||
next = node->next;
|
||
delete_variable_part (set, node->loc, node->dv, node->offset);
|
||
pool_free (attrs_pool, node);
|
||
}
|
||
*reg = NULL;
|
||
}
|
||
|
||
/* Delete content of register with number REGNO in dataflow set SET. */
|
||
|
||
static void
|
||
var_regno_delete (dataflow_set *set, int regno)
|
||
{
|
||
attrs *reg = &set->regs[regno];
|
||
attrs node, next;
|
||
|
||
for (node = *reg; node; node = next)
|
||
{
|
||
next = node->next;
|
||
delete_variable_part (set, node->loc, node->dv, node->offset);
|
||
pool_free (attrs_pool, node);
|
||
}
|
||
*reg = NULL;
|
||
}
|
||
|
||
/* Set the location of DV, OFFSET as the MEM LOC. */
|
||
|
||
static void
|
||
var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
|
||
decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
|
||
enum insert_option iopt)
|
||
{
|
||
if (dv_is_decl_p (dv))
|
||
dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
|
||
|
||
set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
|
||
}
|
||
|
||
/* Set the location part of variable MEM_EXPR (LOC) in dataflow set
|
||
SET to LOC.
|
||
Adjust the address first if it is stack pointer based. */
|
||
|
||
static void
|
||
var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
|
||
rtx set_src)
|
||
{
|
||
tree decl = MEM_EXPR (loc);
|
||
HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
|
||
|
||
var_mem_decl_set (set, loc, initialized,
|
||
dv_from_decl (decl), offset, set_src, INSERT);
|
||
}
|
||
|
||
/* Delete and set the location part of variable MEM_EXPR (LOC) in
|
||
dataflow set SET to LOC. If MODIFY is true, any other live copies
|
||
of the same variable part are also deleted from the dataflow set,
|
||
otherwise the variable part is assumed to be copied from another
|
||
location holding the same part.
|
||
Adjust the address first if it is stack pointer based. */
|
||
|
||
static void
|
||
var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
|
||
enum var_init_status initialized, rtx set_src)
|
||
{
|
||
tree decl = MEM_EXPR (loc);
|
||
HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
|
||
|
||
decl = var_debug_decl (decl);
|
||
|
||
if (initialized == VAR_INIT_STATUS_UNKNOWN)
|
||
initialized = get_init_value (set, loc, dv_from_decl (decl));
|
||
|
||
if (modify)
|
||
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
|
||
var_mem_set (set, loc, initialized, set_src);
|
||
}
|
||
|
||
/* Delete the location part LOC from dataflow set SET. If CLOBBER is
|
||
true, also delete any other live copies of the same variable part.
|
||
Adjust the address first if it is stack pointer based. */
|
||
|
||
static void
|
||
var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
|
||
{
|
||
tree decl = MEM_EXPR (loc);
|
||
HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
|
||
|
||
decl = var_debug_decl (decl);
|
||
if (clobber)
|
||
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
|
||
delete_variable_part (set, loc, dv_from_decl (decl), offset);
|
||
}
|
||
|
||
/* Map a value to a location it was just stored in. */
|
||
|
||
static void
|
||
val_store (dataflow_set *set, rtx val, rtx loc, rtx insn)
|
||
{
|
||
cselib_val *v = CSELIB_VAL_PTR (val);
|
||
|
||
gcc_assert (cselib_preserved_value_p (v));
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "%i: ", INSN_UID (insn));
|
||
print_inline_rtx (dump_file, val, 0);
|
||
fprintf (dump_file, " stored in ");
|
||
print_inline_rtx (dump_file, loc, 0);
|
||
if (v->locs)
|
||
{
|
||
struct elt_loc_list *l;
|
||
for (l = v->locs; l; l = l->next)
|
||
{
|
||
fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
|
||
print_inline_rtx (dump_file, l->loc, 0);
|
||
}
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
if (REG_P (loc))
|
||
{
|
||
var_regno_delete (set, REGNO (loc));
|
||
var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
|
||
dv_from_value (val), 0, NULL_RTX, INSERT);
|
||
}
|
||
else if (MEM_P (loc))
|
||
var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
|
||
dv_from_value (val), 0, NULL_RTX, INSERT);
|
||
else
|
||
set_variable_part (set, loc, dv_from_value (val), 0,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
|
||
}
|
||
|
||
/* Reset this node, detaching all its equivalences. Return the slot
|
||
in the variable hash table that holds dv, if there is one. */
|
||
|
||
static void
|
||
val_reset (dataflow_set *set, decl_or_value dv)
|
||
{
|
||
variable var = shared_hash_find (set->vars, dv) ;
|
||
location_chain node;
|
||
rtx cval;
|
||
|
||
if (!var || !var->n_var_parts)
|
||
return;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
cval = NULL;
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE
|
||
&& canon_value_cmp (node->loc, cval))
|
||
cval = node->loc;
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE && cval != node->loc)
|
||
{
|
||
/* Redirect the equivalence link to the new canonical
|
||
value, or simply remove it if it would point at
|
||
itself. */
|
||
if (cval)
|
||
set_variable_part (set, cval, dv_from_value (node->loc),
|
||
0, node->init, node->set_src, NO_INSERT);
|
||
delete_variable_part (set, dv_as_value (dv),
|
||
dv_from_value (node->loc), 0);
|
||
}
|
||
|
||
if (cval)
|
||
{
|
||
decl_or_value cdv = dv_from_value (cval);
|
||
|
||
/* Keep the remaining values connected, accummulating links
|
||
in the canonical value. */
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
{
|
||
if (node->loc == cval)
|
||
continue;
|
||
else if (GET_CODE (node->loc) == REG)
|
||
var_reg_decl_set (set, node->loc, node->init, cdv, 0,
|
||
node->set_src, NO_INSERT);
|
||
else if (GET_CODE (node->loc) == MEM)
|
||
var_mem_decl_set (set, node->loc, node->init, cdv, 0,
|
||
node->set_src, NO_INSERT);
|
||
else
|
||
set_variable_part (set, node->loc, cdv, 0,
|
||
node->init, node->set_src, NO_INSERT);
|
||
}
|
||
}
|
||
|
||
/* We remove this last, to make sure that the canonical value is not
|
||
removed to the point of requiring reinsertion. */
|
||
if (cval)
|
||
delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
|
||
|
||
clobber_variable_part (set, NULL, dv, 0, NULL);
|
||
|
||
/* ??? Should we make sure there aren't other available values or
|
||
variables whose values involve this one other than by
|
||
equivalence? E.g., at the very least we should reset MEMs, those
|
||
shouldn't be too hard to find cselib-looking up the value as an
|
||
address, then locating the resulting value in our own hash
|
||
table. */
|
||
}
|
||
|
||
/* Find the values in a given location and map the val to another
|
||
value, if it is unique, or add the location as one holding the
|
||
value. */
|
||
|
||
static void
|
||
val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
|
||
{
|
||
decl_or_value dv = dv_from_value (val);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
if (insn)
|
||
fprintf (dump_file, "%i: ", INSN_UID (insn));
|
||
else
|
||
fprintf (dump_file, "head: ");
|
||
print_inline_rtx (dump_file, val, 0);
|
||
fputs (" is at ", dump_file);
|
||
print_inline_rtx (dump_file, loc, 0);
|
||
fputc ('\n', dump_file);
|
||
}
|
||
|
||
val_reset (set, dv);
|
||
|
||
if (REG_P (loc))
|
||
{
|
||
attrs node, found = NULL;
|
||
|
||
for (node = set->regs[REGNO (loc)]; node; node = node->next)
|
||
if (dv_is_value_p (node->dv)
|
||
&& GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
|
||
{
|
||
found = node;
|
||
|
||
/* Map incoming equivalences. ??? Wouldn't it be nice if
|
||
we just started sharing the location lists? Maybe a
|
||
circular list ending at the value itself or some
|
||
such. */
|
||
set_variable_part (set, dv_as_value (node->dv),
|
||
dv_from_value (val), node->offset,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
|
||
set_variable_part (set, val, node->dv, node->offset,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
|
||
}
|
||
|
||
/* If we didn't find any equivalence, we need to remember that
|
||
this value is held in the named register. */
|
||
if (!found)
|
||
var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
|
||
dv_from_value (val), 0, NULL_RTX, INSERT);
|
||
}
|
||
else if (MEM_P (loc))
|
||
/* ??? Merge equivalent MEMs. */
|
||
var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
|
||
dv_from_value (val), 0, NULL_RTX, INSERT);
|
||
else
|
||
/* ??? Merge equivalent expressions. */
|
||
set_variable_part (set, loc, dv_from_value (val), 0,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
|
||
}
|
||
|
||
/* Initialize dataflow set SET to be empty.
|
||
VARS_SIZE is the initial size of hash table VARS. */
|
||
|
||
static void
|
||
dataflow_set_init (dataflow_set *set)
|
||
{
|
||
init_attrs_list_set (set->regs);
|
||
set->vars = shared_hash_copy (empty_shared_hash);
|
||
set->stack_adjust = 0;
|
||
set->traversed_vars = NULL;
|
||
}
|
||
|
||
/* Delete the contents of dataflow set SET. */
|
||
|
||
static void
|
||
dataflow_set_clear (dataflow_set *set)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
attrs_list_clear (&set->regs[i]);
|
||
|
||
shared_hash_destroy (set->vars);
|
||
set->vars = shared_hash_copy (empty_shared_hash);
|
||
}
|
||
|
||
/* Copy the contents of dataflow set SRC to DST. */
|
||
|
||
static void
|
||
dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
attrs_list_copy (&dst->regs[i], src->regs[i]);
|
||
|
||
shared_hash_destroy (dst->vars);
|
||
dst->vars = shared_hash_copy (src->vars);
|
||
dst->stack_adjust = src->stack_adjust;
|
||
}
|
||
|
||
/* Information for merging lists of locations for a given offset of variable.
|
||
*/
|
||
struct variable_union_info
|
||
{
|
||
/* Node of the location chain. */
|
||
location_chain lc;
|
||
|
||
/* The sum of positions in the input chains. */
|
||
int pos;
|
||
|
||
/* The position in the chain of DST dataflow set. */
|
||
int pos_dst;
|
||
};
|
||
|
||
/* Buffer for location list sorting and its allocated size. */
|
||
static struct variable_union_info *vui_vec;
|
||
static int vui_allocated;
|
||
|
||
/* Compare function for qsort, order the structures by POS element. */
|
||
|
||
static int
|
||
variable_union_info_cmp_pos (const void *n1, const void *n2)
|
||
{
|
||
const struct variable_union_info *const i1 =
|
||
(const struct variable_union_info *) n1;
|
||
const struct variable_union_info *const i2 =
|
||
( const struct variable_union_info *) n2;
|
||
|
||
if (i1->pos != i2->pos)
|
||
return i1->pos - i2->pos;
|
||
|
||
return (i1->pos_dst - i2->pos_dst);
|
||
}
|
||
|
||
/* Compute union of location parts of variable *SLOT and the same variable
|
||
from hash table DATA. Compute "sorted" union of the location chains
|
||
for common offsets, i.e. the locations of a variable part are sorted by
|
||
a priority where the priority is the sum of the positions in the 2 chains
|
||
(if a location is only in one list the position in the second list is
|
||
defined to be larger than the length of the chains).
|
||
When we are updating the location parts the newest location is in the
|
||
beginning of the chain, so when we do the described "sorted" union
|
||
we keep the newest locations in the beginning. */
|
||
|
||
static int
|
||
variable_union (void **slot, void *data)
|
||
{
|
||
variable src, dst;
|
||
void **dstp;
|
||
dataflow_set *set = (dataflow_set *) data;
|
||
int i, j, k;
|
||
|
||
src = (variable) *slot;
|
||
dstp = shared_hash_find_slot (set->vars, src->dv);
|
||
if (!dstp || !*dstp)
|
||
{
|
||
src->refcount++;
|
||
|
||
dst_can_be_shared = false;
|
||
if (!dstp)
|
||
dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
|
||
|
||
*dstp = src;
|
||
|
||
/* If CUR_LOC of some variable part is not the first element of
|
||
the location chain we are going to change it so we have to make
|
||
a copy of the variable. */
|
||
for (k = 0; k < src->n_var_parts; k++)
|
||
{
|
||
gcc_assert (!src->var_part[k].loc_chain
|
||
== !src->var_part[k].cur_loc);
|
||
if (src->var_part[k].loc_chain)
|
||
{
|
||
gcc_assert (src->var_part[k].cur_loc);
|
||
if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
|
||
break;
|
||
}
|
||
}
|
||
if (k < src->n_var_parts)
|
||
dstp = unshare_variable (set, dstp, src, VAR_INIT_STATUS_UNKNOWN);
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
else
|
||
dst = (variable) *dstp;
|
||
|
||
gcc_assert (src->n_var_parts);
|
||
|
||
/* We can combine one-part variables very efficiently, because their
|
||
entries are in canonical order. */
|
||
if (dv_onepart_p (src->dv))
|
||
{
|
||
location_chain *nodep, dnode, snode;
|
||
|
||
gcc_assert (src->n_var_parts == 1);
|
||
gcc_assert (dst->n_var_parts == 1);
|
||
|
||
snode = src->var_part[0].loc_chain;
|
||
gcc_assert (snode);
|
||
|
||
restart_onepart_unshared:
|
||
nodep = &dst->var_part[0].loc_chain;
|
||
dnode = *nodep;
|
||
gcc_assert (dnode);
|
||
|
||
while (snode)
|
||
{
|
||
int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
|
||
|
||
if (r > 0)
|
||
{
|
||
location_chain nnode;
|
||
|
||
if (dst->refcount != 1 || shared_hash_shared (set->vars))
|
||
{
|
||
dstp = unshare_variable (set, dstp, dst,
|
||
VAR_INIT_STATUS_INITIALIZED);
|
||
dst = (variable)*dstp;
|
||
goto restart_onepart_unshared;
|
||
}
|
||
|
||
*nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
|
||
nnode->loc = snode->loc;
|
||
nnode->init = snode->init;
|
||
if (!snode->set_src || MEM_P (snode->set_src))
|
||
nnode->set_src = NULL;
|
||
else
|
||
nnode->set_src = snode->set_src;
|
||
nnode->next = dnode;
|
||
dnode = nnode;
|
||
}
|
||
#ifdef ENABLE_CHECKING
|
||
else if (r == 0)
|
||
gcc_assert (rtx_equal_p (dnode->loc, snode->loc));
|
||
#endif
|
||
|
||
if (r >= 0)
|
||
snode = snode->next;
|
||
|
||
nodep = &dnode->next;
|
||
dnode = *nodep;
|
||
}
|
||
|
||
dst->var_part[0].cur_loc = dst->var_part[0].loc_chain->loc;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Count the number of location parts, result is K. */
|
||
for (i = 0, j = 0, k = 0;
|
||
i < src->n_var_parts && j < dst->n_var_parts; k++)
|
||
{
|
||
if (src->var_part[i].offset == dst->var_part[j].offset)
|
||
{
|
||
i++;
|
||
j++;
|
||
}
|
||
else if (src->var_part[i].offset < dst->var_part[j].offset)
|
||
i++;
|
||
else
|
||
j++;
|
||
}
|
||
k += src->n_var_parts - i;
|
||
k += dst->n_var_parts - j;
|
||
|
||
/* We track only variables whose size is <= MAX_VAR_PARTS bytes
|
||
thus there are at most MAX_VAR_PARTS different offsets. */
|
||
gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
|
||
|
||
if ((dst->refcount > 1 || shared_hash_shared (set->vars))
|
||
&& dst->n_var_parts != k)
|
||
{
|
||
dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
|
||
dst = (variable)*dstp;
|
||
}
|
||
|
||
i = src->n_var_parts - 1;
|
||
j = dst->n_var_parts - 1;
|
||
dst->n_var_parts = k;
|
||
|
||
for (k--; k >= 0; k--)
|
||
{
|
||
location_chain node, node2;
|
||
|
||
if (i >= 0 && j >= 0
|
||
&& src->var_part[i].offset == dst->var_part[j].offset)
|
||
{
|
||
/* Compute the "sorted" union of the chains, i.e. the locations which
|
||
are in both chains go first, they are sorted by the sum of
|
||
positions in the chains. */
|
||
int dst_l, src_l;
|
||
int ii, jj, n;
|
||
struct variable_union_info *vui;
|
||
|
||
/* If DST is shared compare the location chains.
|
||
If they are different we will modify the chain in DST with
|
||
high probability so make a copy of DST. */
|
||
if (dst->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
for (node = src->var_part[i].loc_chain,
|
||
node2 = dst->var_part[j].loc_chain; node && node2;
|
||
node = node->next, node2 = node2->next)
|
||
{
|
||
if (!((REG_P (node2->loc)
|
||
&& REG_P (node->loc)
|
||
&& REGNO (node2->loc) == REGNO (node->loc))
|
||
|| rtx_equal_p (node2->loc, node->loc)))
|
||
{
|
||
if (node2->init < node->init)
|
||
node2->init = node->init;
|
||
break;
|
||
}
|
||
}
|
||
if (node || node2)
|
||
{
|
||
dstp = unshare_variable (set, dstp, dst,
|
||
VAR_INIT_STATUS_UNKNOWN);
|
||
dst = (variable)*dstp;
|
||
}
|
||
}
|
||
|
||
src_l = 0;
|
||
for (node = src->var_part[i].loc_chain; node; node = node->next)
|
||
src_l++;
|
||
dst_l = 0;
|
||
for (node = dst->var_part[j].loc_chain; node; node = node->next)
|
||
dst_l++;
|
||
|
||
if (dst_l == 1)
|
||
{
|
||
/* The most common case, much simpler, no qsort is needed. */
|
||
location_chain dstnode = dst->var_part[j].loc_chain;
|
||
dst->var_part[k].loc_chain = dstnode;
|
||
dst->var_part[k].offset = dst->var_part[j].offset;
|
||
node2 = dstnode;
|
||
for (node = src->var_part[i].loc_chain; node; node = node->next)
|
||
if (!((REG_P (dstnode->loc)
|
||
&& REG_P (node->loc)
|
||
&& REGNO (dstnode->loc) == REGNO (node->loc))
|
||
|| rtx_equal_p (dstnode->loc, node->loc)))
|
||
{
|
||
location_chain new_node;
|
||
|
||
/* Copy the location from SRC. */
|
||
new_node = (location_chain) pool_alloc (loc_chain_pool);
|
||
new_node->loc = node->loc;
|
||
new_node->init = node->init;
|
||
if (!node->set_src || MEM_P (node->set_src))
|
||
new_node->set_src = NULL;
|
||
else
|
||
new_node->set_src = node->set_src;
|
||
node2->next = new_node;
|
||
node2 = new_node;
|
||
}
|
||
node2->next = NULL;
|
||
}
|
||
else
|
||
{
|
||
if (src_l + dst_l > vui_allocated)
|
||
{
|
||
vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
|
||
vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
|
||
vui_allocated);
|
||
}
|
||
vui = vui_vec;
|
||
|
||
/* Fill in the locations from DST. */
|
||
for (node = dst->var_part[j].loc_chain, jj = 0; node;
|
||
node = node->next, jj++)
|
||
{
|
||
vui[jj].lc = node;
|
||
vui[jj].pos_dst = jj;
|
||
|
||
/* Pos plus value larger than a sum of 2 valid positions. */
|
||
vui[jj].pos = jj + src_l + dst_l;
|
||
}
|
||
|
||
/* Fill in the locations from SRC. */
|
||
n = dst_l;
|
||
for (node = src->var_part[i].loc_chain, ii = 0; node;
|
||
node = node->next, ii++)
|
||
{
|
||
/* Find location from NODE. */
|
||
for (jj = 0; jj < dst_l; jj++)
|
||
{
|
||
if ((REG_P (vui[jj].lc->loc)
|
||
&& REG_P (node->loc)
|
||
&& REGNO (vui[jj].lc->loc) == REGNO (node->loc))
|
||
|| rtx_equal_p (vui[jj].lc->loc, node->loc))
|
||
{
|
||
vui[jj].pos = jj + ii;
|
||
break;
|
||
}
|
||
}
|
||
if (jj >= dst_l) /* The location has not been found. */
|
||
{
|
||
location_chain new_node;
|
||
|
||
/* Copy the location from SRC. */
|
||
new_node = (location_chain) pool_alloc (loc_chain_pool);
|
||
new_node->loc = node->loc;
|
||
new_node->init = node->init;
|
||
if (!node->set_src || MEM_P (node->set_src))
|
||
new_node->set_src = NULL;
|
||
else
|
||
new_node->set_src = node->set_src;
|
||
vui[n].lc = new_node;
|
||
vui[n].pos_dst = src_l + dst_l;
|
||
vui[n].pos = ii + src_l + dst_l;
|
||
n++;
|
||
}
|
||
}
|
||
|
||
if (dst_l == 2)
|
||
{
|
||
/* Special case still very common case. For dst_l == 2
|
||
all entries dst_l ... n-1 are sorted, with for i >= dst_l
|
||
vui[i].pos == i + src_l + dst_l. */
|
||
if (vui[0].pos > vui[1].pos)
|
||
{
|
||
/* Order should be 1, 0, 2... */
|
||
dst->var_part[k].loc_chain = vui[1].lc;
|
||
vui[1].lc->next = vui[0].lc;
|
||
if (n >= 3)
|
||
{
|
||
vui[0].lc->next = vui[2].lc;
|
||
vui[n - 1].lc->next = NULL;
|
||
}
|
||
else
|
||
vui[0].lc->next = NULL;
|
||
ii = 3;
|
||
}
|
||
else
|
||
{
|
||
dst->var_part[k].loc_chain = vui[0].lc;
|
||
if (n >= 3 && vui[2].pos < vui[1].pos)
|
||
{
|
||
/* Order should be 0, 2, 1, 3... */
|
||
vui[0].lc->next = vui[2].lc;
|
||
vui[2].lc->next = vui[1].lc;
|
||
if (n >= 4)
|
||
{
|
||
vui[1].lc->next = vui[3].lc;
|
||
vui[n - 1].lc->next = NULL;
|
||
}
|
||
else
|
||
vui[1].lc->next = NULL;
|
||
ii = 4;
|
||
}
|
||
else
|
||
{
|
||
/* Order should be 0, 1, 2... */
|
||
ii = 1;
|
||
vui[n - 1].lc->next = NULL;
|
||
}
|
||
}
|
||
for (; ii < n; ii++)
|
||
vui[ii - 1].lc->next = vui[ii].lc;
|
||
}
|
||
else
|
||
{
|
||
qsort (vui, n, sizeof (struct variable_union_info),
|
||
variable_union_info_cmp_pos);
|
||
|
||
/* Reconnect the nodes in sorted order. */
|
||
for (ii = 1; ii < n; ii++)
|
||
vui[ii - 1].lc->next = vui[ii].lc;
|
||
vui[n - 1].lc->next = NULL;
|
||
dst->var_part[k].loc_chain = vui[0].lc;
|
||
}
|
||
|
||
dst->var_part[k].offset = dst->var_part[j].offset;
|
||
}
|
||
i--;
|
||
j--;
|
||
}
|
||
else if ((i >= 0 && j >= 0
|
||
&& src->var_part[i].offset < dst->var_part[j].offset)
|
||
|| i < 0)
|
||
{
|
||
dst->var_part[k] = dst->var_part[j];
|
||
j--;
|
||
}
|
||
else if ((i >= 0 && j >= 0
|
||
&& src->var_part[i].offset > dst->var_part[j].offset)
|
||
|| j < 0)
|
||
{
|
||
location_chain *nextp;
|
||
|
||
/* Copy the chain from SRC. */
|
||
nextp = &dst->var_part[k].loc_chain;
|
||
for (node = src->var_part[i].loc_chain; node; node = node->next)
|
||
{
|
||
location_chain new_lc;
|
||
|
||
new_lc = (location_chain) pool_alloc (loc_chain_pool);
|
||
new_lc->next = NULL;
|
||
new_lc->init = node->init;
|
||
if (!node->set_src || MEM_P (node->set_src))
|
||
new_lc->set_src = NULL;
|
||
else
|
||
new_lc->set_src = node->set_src;
|
||
new_lc->loc = node->loc;
|
||
|
||
*nextp = new_lc;
|
||
nextp = &new_lc->next;
|
||
}
|
||
|
||
dst->var_part[k].offset = src->var_part[i].offset;
|
||
i--;
|
||
}
|
||
|
||
/* We are at the basic block boundary when computing union
|
||
so set the CUR_LOC to be the first element of the chain. */
|
||
if (dst->var_part[k].loc_chain)
|
||
dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
|
||
else
|
||
dst->var_part[k].cur_loc = NULL;
|
||
}
|
||
|
||
if (flag_var_tracking_uninit)
|
||
for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
|
||
{
|
||
location_chain node, node2;
|
||
for (node = src->var_part[i].loc_chain; node; node = node->next)
|
||
for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
|
||
if (rtx_equal_p (node->loc, node2->loc))
|
||
{
|
||
if (node->init > node2->init)
|
||
node2->init = node->init;
|
||
}
|
||
}
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
/* Like variable_union, but only used when doing dataflow_set_union
|
||
into an empty hashtab. To allow sharing, dst is initially shared
|
||
with src (so all variables are "copied" from src to dst hashtab),
|
||
so only unshare_variable for variables that need canonicalization
|
||
are needed. */
|
||
|
||
static int
|
||
variable_canonicalize (void **slot, void *data)
|
||
{
|
||
variable src;
|
||
dataflow_set *set = (dataflow_set *) data;
|
||
int k;
|
||
|
||
src = *(variable *) slot;
|
||
|
||
/* If CUR_LOC of some variable part is not the first element of
|
||
the location chain we are going to change it so we have to make
|
||
a copy of the variable. */
|
||
for (k = 0; k < src->n_var_parts; k++)
|
||
{
|
||
gcc_assert (!src->var_part[k].loc_chain == !src->var_part[k].cur_loc);
|
||
if (src->var_part[k].loc_chain)
|
||
{
|
||
gcc_assert (src->var_part[k].cur_loc);
|
||
if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
|
||
break;
|
||
}
|
||
}
|
||
if (k < src->n_var_parts)
|
||
slot = unshare_variable (set, slot, src, VAR_INIT_STATUS_UNKNOWN);
|
||
return 1;
|
||
}
|
||
|
||
/* Compute union of dataflow sets SRC and DST and store it to DST. */
|
||
|
||
static void
|
||
dataflow_set_union (dataflow_set *dst, dataflow_set *src)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
attrs_list_union (&dst->regs[i], src->regs[i]);
|
||
|
||
if (dst->vars == empty_shared_hash)
|
||
{
|
||
shared_hash_destroy (dst->vars);
|
||
dst->vars = shared_hash_copy (src->vars);
|
||
dst->traversed_vars = dst->vars;
|
||
htab_traverse (shared_hash_htab (dst->vars), variable_canonicalize, dst);
|
||
dst->traversed_vars = NULL;
|
||
}
|
||
else
|
||
htab_traverse (shared_hash_htab (src->vars), variable_union, dst);
|
||
}
|
||
|
||
/* Whether the value is currently being expanded. */
|
||
#define VALUE_RECURSED_INTO(x) \
|
||
(RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
|
||
/* Whether the value is in changed_variables hash table. */
|
||
#define VALUE_CHANGED(x) \
|
||
(RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
|
||
/* Whether the decl is in changed_variables hash table. */
|
||
#define DECL_CHANGED(x) TREE_VISITED (x)
|
||
|
||
/* Record that DV has been added into resp. removed from changed_variables
|
||
hashtable. */
|
||
|
||
static inline void
|
||
set_dv_changed (decl_or_value dv, bool newv)
|
||
{
|
||
if (dv_is_value_p (dv))
|
||
VALUE_CHANGED (dv_as_value (dv)) = newv;
|
||
else
|
||
DECL_CHANGED (dv_as_decl (dv)) = newv;
|
||
}
|
||
|
||
/* Return true if DV is present in changed_variables hash table. */
|
||
|
||
static inline bool
|
||
dv_changed_p (decl_or_value dv)
|
||
{
|
||
return (dv_is_value_p (dv)
|
||
? VALUE_CHANGED (dv_as_value (dv))
|
||
: DECL_CHANGED (dv_as_decl (dv)));
|
||
}
|
||
|
||
/* Return a location list node whose loc is rtx_equal to LOC, in the
|
||
location list of a one-part variable or value VAR, or in that of
|
||
any values recursively mentioned in the location lists. */
|
||
|
||
static location_chain
|
||
find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
|
||
{
|
||
location_chain node;
|
||
|
||
if (!var)
|
||
return NULL;
|
||
|
||
gcc_assert (dv_onepart_p (var->dv));
|
||
|
||
if (!var->n_var_parts)
|
||
return NULL;
|
||
|
||
gcc_assert (var->var_part[0].offset == 0);
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (rtx_equal_p (loc, node->loc))
|
||
return node;
|
||
else if (GET_CODE (node->loc) == VALUE
|
||
&& !VALUE_RECURSED_INTO (node->loc))
|
||
{
|
||
decl_or_value dv = dv_from_value (node->loc);
|
||
variable var = (variable)
|
||
htab_find_with_hash (vars, dv, dv_htab_hash (dv));
|
||
|
||
if (var)
|
||
{
|
||
location_chain where;
|
||
VALUE_RECURSED_INTO (node->loc) = true;
|
||
if ((where = find_loc_in_1pdv (loc, var, vars)))
|
||
{
|
||
VALUE_RECURSED_INTO (node->loc) = false;
|
||
return where;
|
||
}
|
||
VALUE_RECURSED_INTO (node->loc) = false;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Hash table iteration argument passed to variable_merge. */
|
||
struct dfset_merge
|
||
{
|
||
/* The set in which the merge is to be inserted. */
|
||
dataflow_set *dst;
|
||
/* The set that we're iterating in. */
|
||
dataflow_set *cur;
|
||
/* The set that may contain the other dv we are to merge with. */
|
||
dataflow_set *src;
|
||
/* Number of onepart dvs in src. */
|
||
int src_onepart_cnt;
|
||
};
|
||
|
||
/* Insert LOC in *DNODE, if it's not there yet. The list must be in
|
||
loc_cmp order, and it is maintained as such. */
|
||
|
||
static void
|
||
insert_into_intersection (location_chain *nodep, rtx loc,
|
||
enum var_init_status status)
|
||
{
|
||
location_chain node;
|
||
int r;
|
||
|
||
for (node = *nodep; node; nodep = &node->next, node = *nodep)
|
||
if ((r = loc_cmp (node->loc, loc)) == 0)
|
||
{
|
||
node->init = MIN (node->init, status);
|
||
return;
|
||
}
|
||
else if (r > 0)
|
||
break;
|
||
|
||
node = (location_chain) pool_alloc (loc_chain_pool);
|
||
|
||
node->loc = loc;
|
||
node->set_src = NULL;
|
||
node->init = status;
|
||
node->next = *nodep;
|
||
*nodep = node;
|
||
}
|
||
|
||
/* Insert in DEST the intersection the locations present in both
|
||
S1NODE and S2VAR, directly or indirectly. S1NODE is from a
|
||
variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
|
||
DSM->dst. */
|
||
|
||
static void
|
||
intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
|
||
location_chain s1node, variable s2var)
|
||
{
|
||
dataflow_set *s1set = dsm->cur;
|
||
dataflow_set *s2set = dsm->src;
|
||
location_chain found;
|
||
|
||
for (; s1node; s1node = s1node->next)
|
||
{
|
||
if (s1node->loc == val)
|
||
continue;
|
||
|
||
if ((found = find_loc_in_1pdv (s1node->loc, s2var,
|
||
shared_hash_htab (s2set->vars))))
|
||
{
|
||
insert_into_intersection (dest, s1node->loc,
|
||
MIN (s1node->init, found->init));
|
||
continue;
|
||
}
|
||
|
||
if (GET_CODE (s1node->loc) == VALUE
|
||
&& !VALUE_RECURSED_INTO (s1node->loc))
|
||
{
|
||
decl_or_value dv = dv_from_value (s1node->loc);
|
||
variable svar = shared_hash_find (s1set->vars, dv);
|
||
if (svar)
|
||
{
|
||
if (svar->n_var_parts == 1)
|
||
{
|
||
VALUE_RECURSED_INTO (s1node->loc) = true;
|
||
intersect_loc_chains (val, dest, dsm,
|
||
svar->var_part[0].loc_chain,
|
||
s2var);
|
||
VALUE_RECURSED_INTO (s1node->loc) = false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* ??? if the location is equivalent to any location in src,
|
||
searched recursively
|
||
|
||
add to dst the values needed to represent the equivalence
|
||
|
||
telling whether locations S is equivalent to another dv's
|
||
location list:
|
||
|
||
for each location D in the list
|
||
|
||
if S and D satisfy rtx_equal_p, then it is present
|
||
|
||
else if D is a value, recurse without cycles
|
||
|
||
else if S and D have the same CODE and MODE
|
||
|
||
for each operand oS and the corresponding oD
|
||
|
||
if oS and oD are not equivalent, then S an D are not equivalent
|
||
|
||
else if they are RTX vectors
|
||
|
||
if any vector oS element is not equivalent to its respective oD,
|
||
then S and D are not equivalent
|
||
|
||
*/
|
||
|
||
|
||
}
|
||
}
|
||
|
||
/* Return -1 if X should be before Y in a location list for a 1-part
|
||
variable, 1 if Y should be before X, and 0 if they're equivalent
|
||
and should not appear in the list. */
|
||
|
||
static int
|
||
loc_cmp (rtx x, rtx y)
|
||
{
|
||
int i, j, r;
|
||
RTX_CODE code = GET_CODE (x);
|
||
const char *fmt;
|
||
|
||
if (x == y)
|
||
return 0;
|
||
|
||
if (REG_P (x))
|
||
{
|
||
if (!REG_P (y))
|
||
return -1;
|
||
gcc_assert (GET_MODE (x) == GET_MODE (y));
|
||
if (REGNO (x) == REGNO (y))
|
||
return 0;
|
||
else if (REGNO (x) < REGNO (y))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
if (REG_P (y))
|
||
return 1;
|
||
|
||
if (MEM_P (x))
|
||
{
|
||
if (!MEM_P (y))
|
||
return -1;
|
||
gcc_assert (GET_MODE (x) == GET_MODE (y));
|
||
return loc_cmp (XEXP (x, 0), XEXP (y, 0));
|
||
}
|
||
|
||
if (MEM_P (y))
|
||
return 1;
|
||
|
||
if (GET_CODE (x) == VALUE)
|
||
{
|
||
if (GET_CODE (y) != VALUE)
|
||
return -1;
|
||
gcc_assert (GET_MODE (x) == GET_MODE (y));
|
||
if (canon_value_cmp (x, y))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
if (GET_CODE (y) == VALUE)
|
||
return 1;
|
||
|
||
if (GET_CODE (x) == GET_CODE (y))
|
||
/* Compare operands below. */;
|
||
else if (GET_CODE (x) < GET_CODE (y))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
|
||
gcc_assert (GET_MODE (x) == GET_MODE (y));
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
switch (fmt[i])
|
||
{
|
||
case 'w':
|
||
if (XWINT (x, i) == XWINT (y, i))
|
||
break;
|
||
else if (XWINT (x, i) < XWINT (y, i))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
|
||
case 'n':
|
||
case 'i':
|
||
if (XINT (x, i) == XINT (y, i))
|
||
break;
|
||
else if (XINT (x, i) < XINT (y, i))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
|
||
case 'V':
|
||
case 'E':
|
||
/* Compare the vector length first. */
|
||
if (XVECLEN (x, i) == XVECLEN (y, i))
|
||
/* Compare the vectors elements. */;
|
||
else if (XVECLEN (x, i) < XVECLEN (y, i))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if ((r = loc_cmp (XVECEXP (x, i, j),
|
||
XVECEXP (y, i, j))))
|
||
return r;
|
||
break;
|
||
|
||
case 'e':
|
||
if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
|
||
return r;
|
||
break;
|
||
|
||
case 'S':
|
||
case 's':
|
||
if (XSTR (x, i) == XSTR (y, i))
|
||
break;
|
||
if (!XSTR (x, i))
|
||
return -1;
|
||
if (!XSTR (y, i))
|
||
return 1;
|
||
if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
|
||
break;
|
||
else if (r < 0)
|
||
return -1;
|
||
else
|
||
return 1;
|
||
|
||
case 'u':
|
||
/* These are just backpointers, so they don't matter. */
|
||
break;
|
||
|
||
case '0':
|
||
case 't':
|
||
break;
|
||
|
||
/* It is believed that rtx's at this level will never
|
||
contain anything but integers and other rtx's,
|
||
except for within LABEL_REFs and SYMBOL_REFs. */
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If decl or value DVP refers to VALUE from *LOC, add backlinks
|
||
from VALUE to DVP. */
|
||
|
||
static int
|
||
add_value_chain (rtx *loc, void *dvp)
|
||
{
|
||
if (GET_CODE (*loc) == VALUE && (void *) *loc != dvp)
|
||
{
|
||
decl_or_value dv = (decl_or_value) dvp;
|
||
decl_or_value ldv = dv_from_value (*loc);
|
||
value_chain vc, nvc;
|
||
void **slot = htab_find_slot_with_hash (value_chains, ldv,
|
||
dv_htab_hash (ldv), INSERT);
|
||
if (!*slot)
|
||
{
|
||
vc = (value_chain) pool_alloc (value_chain_pool);
|
||
vc->dv = ldv;
|
||
vc->next = NULL;
|
||
vc->refcount = 0;
|
||
*slot = (void *) vc;
|
||
}
|
||
else
|
||
{
|
||
for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
|
||
if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
|
||
break;
|
||
if (vc)
|
||
{
|
||
vc->refcount++;
|
||
return 0;
|
||
}
|
||
}
|
||
vc = (value_chain) *slot;
|
||
nvc = (value_chain) pool_alloc (value_chain_pool);
|
||
nvc->dv = dv;
|
||
nvc->next = vc->next;
|
||
nvc->refcount = 1;
|
||
vc->next = nvc;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* If decl or value DVP refers to VALUEs from within LOC, add backlinks
|
||
from those VALUEs to DVP. */
|
||
|
||
static void
|
||
add_value_chains (decl_or_value dv, rtx loc)
|
||
{
|
||
if (GET_CODE (loc) == VALUE)
|
||
{
|
||
add_value_chain (&loc, dv_as_opaque (dv));
|
||
return;
|
||
}
|
||
if (REG_P (loc))
|
||
return;
|
||
if (MEM_P (loc))
|
||
loc = XEXP (loc, 0);
|
||
for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
|
||
}
|
||
|
||
/* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
|
||
VALUEs to DV. */
|
||
|
||
static void
|
||
add_cselib_value_chains (decl_or_value dv)
|
||
{
|
||
struct elt_loc_list *l;
|
||
|
||
for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
|
||
for_each_rtx (&l->loc, add_value_chain, dv_as_opaque (dv));
|
||
}
|
||
|
||
/* If decl or value DVP refers to VALUE from *LOC, remove backlinks
|
||
from VALUE to DVP. */
|
||
|
||
static int
|
||
remove_value_chain (rtx *loc, void *dvp)
|
||
{
|
||
if (GET_CODE (*loc) == VALUE && (void *) *loc != dvp)
|
||
{
|
||
decl_or_value dv = (decl_or_value) dvp;
|
||
decl_or_value ldv = dv_from_value (*loc);
|
||
value_chain vc, dvc = NULL;
|
||
void **slot = htab_find_slot_with_hash (value_chains, ldv,
|
||
dv_htab_hash (ldv), NO_INSERT);
|
||
for (vc = (value_chain) *slot; vc->next; vc = vc->next)
|
||
if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
|
||
{
|
||
dvc = vc->next;
|
||
gcc_assert (dvc->refcount > 0);
|
||
if (--dvc->refcount == 0)
|
||
{
|
||
vc->next = dvc->next;
|
||
pool_free (value_chain_pool, dvc);
|
||
if (vc->next == NULL && vc == (value_chain) *slot)
|
||
{
|
||
pool_free (value_chain_pool, vc);
|
||
htab_clear_slot (value_chains, slot);
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
|
||
from those VALUEs to DVP. */
|
||
|
||
static void
|
||
remove_value_chains (decl_or_value dv, rtx loc)
|
||
{
|
||
if (GET_CODE (loc) == VALUE)
|
||
{
|
||
remove_value_chain (&loc, dv_as_opaque (dv));
|
||
return;
|
||
}
|
||
if (REG_P (loc))
|
||
return;
|
||
if (MEM_P (loc))
|
||
loc = XEXP (loc, 0);
|
||
for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
|
||
}
|
||
|
||
/* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
|
||
VALUEs to DV. */
|
||
|
||
static void
|
||
remove_cselib_value_chains (decl_or_value dv)
|
||
{
|
||
struct elt_loc_list *l;
|
||
|
||
for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
|
||
for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
|
||
}
|
||
|
||
#if ENABLE_CHECKING
|
||
/* Check the order of entries in one-part variables. */
|
||
|
||
static int
|
||
canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
variable var = (variable) *slot;
|
||
decl_or_value dv = var->dv;
|
||
location_chain node, next;
|
||
|
||
if (!dv_onepart_p (dv))
|
||
return 1;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
node = var->var_part[0].loc_chain;
|
||
gcc_assert (node);
|
||
|
||
while ((next = node->next))
|
||
{
|
||
gcc_assert (loc_cmp (node->loc, next->loc) < 0);
|
||
node = next;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
#endif
|
||
|
||
/* Mark with VALUE_RECURSED_INTO values that have neighbors that are
|
||
more likely to be chosen as canonical for an equivalence set.
|
||
Ensure less likely values can reach more likely neighbors, making
|
||
the connections bidirectional. */
|
||
|
||
static int
|
||
canonicalize_values_mark (void **slot, void *data)
|
||
{
|
||
dataflow_set *set = (dataflow_set *)data;
|
||
variable var = (variable) *slot;
|
||
decl_or_value dv = var->dv;
|
||
rtx val;
|
||
location_chain node;
|
||
|
||
if (!dv_is_value_p (dv))
|
||
return 1;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
val = dv_as_value (dv);
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
if (canon_value_cmp (node->loc, val))
|
||
VALUE_RECURSED_INTO (val) = true;
|
||
else
|
||
{
|
||
decl_or_value odv = dv_from_value (node->loc);
|
||
void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
|
||
|
||
oslot = set_slot_part (set, val, oslot, odv, 0,
|
||
node->init, NULL_RTX);
|
||
|
||
VALUE_RECURSED_INTO (node->loc) = true;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Remove redundant entries from equivalence lists in onepart
|
||
variables, canonicalizing equivalence sets into star shapes. */
|
||
|
||
static int
|
||
canonicalize_values_star (void **slot, void *data)
|
||
{
|
||
dataflow_set *set = (dataflow_set *)data;
|
||
variable var = (variable) *slot;
|
||
decl_or_value dv = var->dv;
|
||
location_chain node;
|
||
decl_or_value cdv;
|
||
rtx val, cval;
|
||
void **cslot;
|
||
bool has_value;
|
||
bool has_marks;
|
||
|
||
if (!dv_onepart_p (dv))
|
||
return 1;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
if (dv_is_value_p (dv))
|
||
{
|
||
cval = dv_as_value (dv);
|
||
if (!VALUE_RECURSED_INTO (cval))
|
||
return 1;
|
||
VALUE_RECURSED_INTO (cval) = false;
|
||
}
|
||
else
|
||
cval = NULL_RTX;
|
||
|
||
restart:
|
||
val = cval;
|
||
has_value = false;
|
||
has_marks = false;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
has_value = true;
|
||
if (VALUE_RECURSED_INTO (node->loc))
|
||
has_marks = true;
|
||
if (canon_value_cmp (node->loc, cval))
|
||
cval = node->loc;
|
||
}
|
||
|
||
if (!has_value)
|
||
return 1;
|
||
|
||
if (cval == val)
|
||
{
|
||
if (!has_marks || dv_is_decl_p (dv))
|
||
return 1;
|
||
|
||
/* Keep it marked so that we revisit it, either after visiting a
|
||
child node, or after visiting a new parent that might be
|
||
found out. */
|
||
VALUE_RECURSED_INTO (val) = true;
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE
|
||
&& VALUE_RECURSED_INTO (node->loc))
|
||
{
|
||
cval = node->loc;
|
||
restart_with_cval:
|
||
VALUE_RECURSED_INTO (cval) = false;
|
||
dv = dv_from_value (cval);
|
||
slot = shared_hash_find_slot_noinsert (set->vars, dv);
|
||
if (!slot)
|
||
{
|
||
gcc_assert (dv_is_decl_p (var->dv));
|
||
/* The canonical value was reset and dropped.
|
||
Remove it. */
|
||
clobber_variable_part (set, NULL, var->dv, 0, NULL);
|
||
return 1;
|
||
}
|
||
var = (variable)*slot;
|
||
gcc_assert (dv_is_value_p (var->dv));
|
||
if (var->n_var_parts == 0)
|
||
return 1;
|
||
gcc_assert (var->n_var_parts == 1);
|
||
goto restart;
|
||
}
|
||
|
||
VALUE_RECURSED_INTO (val) = false;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Push values to the canonical one. */
|
||
cdv = dv_from_value (cval);
|
||
cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (node->loc != cval)
|
||
{
|
||
cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
|
||
node->init, NULL_RTX);
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
decl_or_value ndv = dv_from_value (node->loc);
|
||
|
||
set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
|
||
NO_INSERT);
|
||
|
||
if (canon_value_cmp (node->loc, val))
|
||
{
|
||
/* If it could have been a local minimum, it's not any more,
|
||
since it's now neighbor to cval, so it may have to push
|
||
to it. Conversely, if it wouldn't have prevailed over
|
||
val, then whatever mark it has is fine: if it was to
|
||
push, it will now push to a more canonical node, but if
|
||
it wasn't, then it has already pushed any values it might
|
||
have to. */
|
||
VALUE_RECURSED_INTO (node->loc) = true;
|
||
/* Make sure we visit node->loc by ensuring we cval is
|
||
visited too. */
|
||
VALUE_RECURSED_INTO (cval) = true;
|
||
}
|
||
else if (!VALUE_RECURSED_INTO (node->loc))
|
||
/* If we have no need to "recurse" into this node, it's
|
||
already "canonicalized", so drop the link to the old
|
||
parent. */
|
||
clobber_variable_part (set, cval, ndv, 0, NULL);
|
||
}
|
||
else if (GET_CODE (node->loc) == REG)
|
||
{
|
||
attrs list = set->regs[REGNO (node->loc)], *listp;
|
||
|
||
/* Change an existing attribute referring to dv so that it
|
||
refers to cdv, removing any duplicate this might
|
||
introduce, and checking that no previous duplicates
|
||
existed, all in a single pass. */
|
||
|
||
while (list)
|
||
{
|
||
if (list->offset == 0
|
||
&& (dv_as_opaque (list->dv) == dv_as_opaque (dv)
|
||
|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
|
||
break;
|
||
|
||
list = list->next;
|
||
}
|
||
|
||
gcc_assert (list);
|
||
if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
|
||
{
|
||
list->dv = cdv;
|
||
for (listp = &list->next; (list = *listp); listp = &list->next)
|
||
{
|
||
if (list->offset)
|
||
continue;
|
||
|
||
if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
|
||
{
|
||
*listp = list->next;
|
||
pool_free (attrs_pool, list);
|
||
list = *listp;
|
||
break;
|
||
}
|
||
|
||
gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
|
||
}
|
||
}
|
||
else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
|
||
{
|
||
for (listp = &list->next; (list = *listp); listp = &list->next)
|
||
{
|
||
if (list->offset)
|
||
continue;
|
||
|
||
if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
|
||
{
|
||
*listp = list->next;
|
||
pool_free (attrs_pool, list);
|
||
list = *listp;
|
||
break;
|
||
}
|
||
|
||
gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
|
||
}
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
#if ENABLE_CHECKING
|
||
while (list)
|
||
{
|
||
if (list->offset == 0
|
||
&& (dv_as_opaque (list->dv) == dv_as_opaque (dv)
|
||
|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
|
||
gcc_unreachable ();
|
||
|
||
list = list->next;
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
if (val)
|
||
cslot = set_slot_part (set, val, cslot, cdv, 0,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
|
||
|
||
slot = clobber_slot_part (set, cval, slot, 0, NULL);
|
||
|
||
/* Variable may have been unshared. */
|
||
var = (variable)*slot;
|
||
gcc_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
|
||
&& var->var_part[0].loc_chain->next == NULL);
|
||
|
||
if (VALUE_RECURSED_INTO (cval))
|
||
goto restart_with_cval;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Combine variable or value in *S1SLOT (in DSM->cur) with the
|
||
corresponding entry in DSM->src. Multi-part variables are combined
|
||
with variable_union, whereas onepart dvs are combined with
|
||
intersection. */
|
||
|
||
static int
|
||
variable_merge_over_cur (void **s1slot, void *data)
|
||
{
|
||
struct dfset_merge *dsm = (struct dfset_merge *)data;
|
||
dataflow_set *dst = dsm->dst;
|
||
void **dstslot;
|
||
variable s1var = (variable) *s1slot;
|
||
variable s2var, dvar = NULL;
|
||
decl_or_value dv = s1var->dv;
|
||
bool onepart = dv_onepart_p (dv);
|
||
rtx val;
|
||
hashval_t dvhash;
|
||
location_chain node, *nodep;
|
||
|
||
/* If the incoming onepart variable has an empty location list, then
|
||
the intersection will be just as empty. For other variables,
|
||
it's always union. */
|
||
gcc_assert (s1var->n_var_parts);
|
||
gcc_assert (s1var->var_part[0].loc_chain);
|
||
|
||
if (!onepart)
|
||
return variable_union (s1slot, dst);
|
||
|
||
gcc_assert (s1var->n_var_parts == 1);
|
||
gcc_assert (s1var->var_part[0].offset == 0);
|
||
|
||
dvhash = dv_htab_hash (dv);
|
||
if (dv_is_value_p (dv))
|
||
val = dv_as_value (dv);
|
||
else
|
||
val = NULL;
|
||
|
||
s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
|
||
if (!s2var)
|
||
{
|
||
dst_can_be_shared = false;
|
||
return 1;
|
||
}
|
||
|
||
dsm->src_onepart_cnt--;
|
||
gcc_assert (s2var->var_part[0].loc_chain);
|
||
gcc_assert (s2var->n_var_parts == 1);
|
||
gcc_assert (s2var->var_part[0].offset == 0);
|
||
|
||
dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
|
||
if (dstslot)
|
||
{
|
||
dvar = (variable)*dstslot;
|
||
gcc_assert (dvar->refcount == 1);
|
||
gcc_assert (dvar->n_var_parts == 1);
|
||
gcc_assert (dvar->var_part[0].offset == 0);
|
||
nodep = &dvar->var_part[0].loc_chain;
|
||
}
|
||
else
|
||
{
|
||
nodep = &node;
|
||
node = NULL;
|
||
}
|
||
|
||
if (!dstslot && !onepart_variable_different_p (s1var, s2var))
|
||
{
|
||
dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
|
||
dvhash, INSERT);
|
||
*dstslot = dvar = s2var;
|
||
dvar->refcount++;
|
||
}
|
||
else
|
||
{
|
||
dst_can_be_shared = false;
|
||
|
||
intersect_loc_chains (val, nodep, dsm,
|
||
s1var->var_part[0].loc_chain, s2var);
|
||
|
||
if (!dstslot)
|
||
{
|
||
if (node)
|
||
{
|
||
dvar = (variable) pool_alloc (dv_pool (dv));
|
||
dvar->dv = dv;
|
||
dvar->refcount = 1;
|
||
dvar->n_var_parts = 1;
|
||
dvar->var_part[0].offset = 0;
|
||
dvar->var_part[0].loc_chain = node;
|
||
dvar->var_part[0].cur_loc = node->loc;
|
||
|
||
dstslot
|
||
= shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
|
||
INSERT);
|
||
gcc_assert (!*dstslot);
|
||
*dstslot = dvar;
|
||
}
|
||
else
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
nodep = &dvar->var_part[0].loc_chain;
|
||
while ((node = *nodep))
|
||
{
|
||
location_chain *nextp = &node->next;
|
||
|
||
if (GET_CODE (node->loc) == REG)
|
||
{
|
||
attrs list;
|
||
|
||
for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
|
||
if (GET_MODE (node->loc) == GET_MODE (list->loc)
|
||
&& dv_is_value_p (list->dv))
|
||
break;
|
||
|
||
if (!list)
|
||
attrs_list_insert (&dst->regs[REGNO (node->loc)],
|
||
dv, 0, node->loc);
|
||
/* If this value became canonical for another value that had
|
||
this register, we want to leave it alone. */
|
||
else if (dv_as_value (list->dv) != val)
|
||
{
|
||
dstslot = set_slot_part (dst, dv_as_value (list->dv),
|
||
dstslot, dv, 0,
|
||
node->init, NULL_RTX);
|
||
dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
|
||
|
||
/* Since nextp points into the removed node, we can't
|
||
use it. The pointer to the next node moved to nodep.
|
||
However, if the variable we're walking is unshared
|
||
during our walk, we'll keep walking the location list
|
||
of the previously-shared variable, in which case the
|
||
node won't have been removed, and we'll want to skip
|
||
it. That's why we test *nodep here. */
|
||
if (*nodep != node)
|
||
nextp = nodep;
|
||
}
|
||
}
|
||
else
|
||
/* Canonicalization puts registers first, so we don't have to
|
||
walk it all. */
|
||
break;
|
||
nodep = nextp;
|
||
}
|
||
|
||
if (dvar != (variable)*dstslot)
|
||
dvar = (variable)*dstslot;
|
||
nodep = &dvar->var_part[0].loc_chain;
|
||
|
||
if (val)
|
||
{
|
||
/* Mark all referenced nodes for canonicalization, and make sure
|
||
we have mutual equivalence links. */
|
||
VALUE_RECURSED_INTO (val) = true;
|
||
for (node = *nodep; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
VALUE_RECURSED_INTO (node->loc) = true;
|
||
set_variable_part (dst, val, dv_from_value (node->loc), 0,
|
||
node->init, NULL, INSERT);
|
||
}
|
||
|
||
dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
|
||
gcc_assert (*dstslot == dvar);
|
||
canonicalize_values_star (dstslot, dst);
|
||
#ifdef ENABLE_CHECKING
|
||
gcc_assert (dstslot
|
||
== shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash));
|
||
#endif
|
||
dvar = (variable)*dstslot;
|
||
}
|
||
else
|
||
{
|
||
bool has_value = false, has_other = false;
|
||
|
||
/* If we have one value and anything else, we're going to
|
||
canonicalize this, so make sure all values have an entry in
|
||
the table and are marked for canonicalization. */
|
||
for (node = *nodep; node; node = node->next)
|
||
{
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
/* If this was marked during register canonicalization,
|
||
we know we have to canonicalize values. */
|
||
if (has_value)
|
||
has_other = true;
|
||
has_value = true;
|
||
if (has_other)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
has_other = true;
|
||
if (has_value)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (has_value && has_other)
|
||
{
|
||
for (node = *nodep; node; node = node->next)
|
||
{
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
decl_or_value dv = dv_from_value (node->loc);
|
||
void **slot = NULL;
|
||
|
||
if (shared_hash_shared (dst->vars))
|
||
slot = shared_hash_find_slot_noinsert (dst->vars, dv);
|
||
if (!slot)
|
||
slot = shared_hash_find_slot_unshare (&dst->vars, dv,
|
||
INSERT);
|
||
if (!*slot)
|
||
{
|
||
variable var = (variable) pool_alloc (dv_pool (dv));
|
||
var->dv = dv;
|
||
var->refcount = 1;
|
||
var->n_var_parts = 1;
|
||
var->var_part[0].offset = 0;
|
||
var->var_part[0].loc_chain = NULL;
|
||
var->var_part[0].cur_loc = NULL;
|
||
*slot = var;
|
||
}
|
||
|
||
VALUE_RECURSED_INTO (node->loc) = true;
|
||
}
|
||
}
|
||
|
||
dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
|
||
gcc_assert (*dstslot == dvar);
|
||
canonicalize_values_star (dstslot, dst);
|
||
#ifdef ENABLE_CHECKING
|
||
gcc_assert (dstslot
|
||
== shared_hash_find_slot_noinsert_1 (dst->vars,
|
||
dv, dvhash));
|
||
#endif
|
||
dvar = (variable)*dstslot;
|
||
}
|
||
}
|
||
|
||
if (!onepart_variable_different_p (dvar, s2var))
|
||
{
|
||
variable_htab_free (dvar);
|
||
*dstslot = dvar = s2var;
|
||
dvar->refcount++;
|
||
}
|
||
else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
|
||
{
|
||
variable_htab_free (dvar);
|
||
*dstslot = dvar = s1var;
|
||
dvar->refcount++;
|
||
dst_can_be_shared = false;
|
||
}
|
||
else
|
||
{
|
||
if (dvar->refcount == 1)
|
||
dvar->var_part[0].cur_loc = dvar->var_part[0].loc_chain->loc;
|
||
dst_can_be_shared = false;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Combine variable in *S1SLOT (in DSM->src) with the corresponding
|
||
entry in DSM->src. Only multi-part variables are combined, using
|
||
variable_union. onepart dvs were already combined with
|
||
intersection in variable_merge_over_cur(). */
|
||
|
||
static int
|
||
variable_merge_over_src (void **s2slot, void *data)
|
||
{
|
||
struct dfset_merge *dsm = (struct dfset_merge *)data;
|
||
dataflow_set *dst = dsm->dst;
|
||
variable s2var = (variable) *s2slot;
|
||
decl_or_value dv = s2var->dv;
|
||
bool onepart = dv_onepart_p (dv);
|
||
|
||
if (!onepart)
|
||
{
|
||
void **dstp = shared_hash_find_slot (dst->vars, dv);
|
||
*dstp = s2var;
|
||
s2var->refcount++;
|
||
return variable_canonicalize (dstp, dst);
|
||
}
|
||
|
||
dsm->src_onepart_cnt++;
|
||
return 1;
|
||
}
|
||
|
||
/* Combine dataflow set information from SRC into DST, using PDST
|
||
to carry over information across passes. */
|
||
|
||
static void
|
||
dataflow_set_merge (dataflow_set *dst, dataflow_set *src)
|
||
{
|
||
dataflow_set src2 = *dst;
|
||
struct dfset_merge dsm;
|
||
int i;
|
||
size_t src_elems, dst_elems;
|
||
|
||
src_elems = htab_elements (shared_hash_htab (src->vars));
|
||
dst_elems = htab_elements (shared_hash_htab (src2.vars));
|
||
dataflow_set_init (dst);
|
||
dst->stack_adjust = src2.stack_adjust;
|
||
shared_hash_destroy (dst->vars);
|
||
dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
|
||
dst->vars->refcount = 1;
|
||
dst->vars->htab
|
||
= htab_create (MAX (src_elems, dst_elems), variable_htab_hash,
|
||
variable_htab_eq, variable_htab_free);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
attrs_list_mpdv_union (&dst->regs[i], src->regs[i], src2.regs[i]);
|
||
|
||
dsm.dst = dst;
|
||
dsm.src = &src2;
|
||
dsm.cur = src;
|
||
dsm.src_onepart_cnt = 0;
|
||
|
||
htab_traverse (shared_hash_htab (dsm.src->vars), variable_merge_over_src,
|
||
&dsm);
|
||
htab_traverse (shared_hash_htab (dsm.cur->vars), variable_merge_over_cur,
|
||
&dsm);
|
||
|
||
if (dsm.src_onepart_cnt)
|
||
dst_can_be_shared = false;
|
||
|
||
dataflow_set_destroy (&src2);
|
||
}
|
||
|
||
/* Mark register equivalences. */
|
||
|
||
static void
|
||
dataflow_set_equiv_regs (dataflow_set *set)
|
||
{
|
||
int i;
|
||
attrs list, *listp;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
rtx canon[NUM_MACHINE_MODES];
|
||
|
||
memset (canon, 0, sizeof (canon));
|
||
|
||
for (list = set->regs[i]; list; list = list->next)
|
||
if (list->offset == 0 && dv_is_value_p (list->dv))
|
||
{
|
||
rtx val = dv_as_value (list->dv);
|
||
rtx *cvalp = &canon[(int)GET_MODE (val)];
|
||
rtx cval = *cvalp;
|
||
|
||
if (canon_value_cmp (val, cval))
|
||
*cvalp = val;
|
||
}
|
||
|
||
for (list = set->regs[i]; list; list = list->next)
|
||
if (list->offset == 0 && dv_onepart_p (list->dv))
|
||
{
|
||
rtx cval = canon[(int)GET_MODE (list->loc)];
|
||
|
||
if (!cval)
|
||
continue;
|
||
|
||
if (dv_is_value_p (list->dv))
|
||
{
|
||
rtx val = dv_as_value (list->dv);
|
||
|
||
if (val == cval)
|
||
continue;
|
||
|
||
VALUE_RECURSED_INTO (val) = true;
|
||
set_variable_part (set, val, dv_from_value (cval), 0,
|
||
VAR_INIT_STATUS_INITIALIZED,
|
||
NULL, NO_INSERT);
|
||
}
|
||
|
||
VALUE_RECURSED_INTO (cval) = true;
|
||
set_variable_part (set, cval, list->dv, 0,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
|
||
}
|
||
|
||
for (listp = &set->regs[i]; (list = *listp);
|
||
listp = list ? &list->next : listp)
|
||
if (list->offset == 0 && dv_onepart_p (list->dv))
|
||
{
|
||
rtx cval = canon[(int)GET_MODE (list->loc)];
|
||
void **slot;
|
||
|
||
if (!cval)
|
||
continue;
|
||
|
||
if (dv_is_value_p (list->dv))
|
||
{
|
||
rtx val = dv_as_value (list->dv);
|
||
if (!VALUE_RECURSED_INTO (val))
|
||
continue;
|
||
}
|
||
|
||
slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
|
||
canonicalize_values_star (slot, set);
|
||
if (*listp != list)
|
||
list = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove any redundant values in the location list of VAR, which must
|
||
be unshared and 1-part. */
|
||
|
||
static void
|
||
remove_duplicate_values (variable var)
|
||
{
|
||
location_chain node, *nodep;
|
||
|
||
gcc_assert (dv_onepart_p (var->dv));
|
||
gcc_assert (var->n_var_parts == 1);
|
||
gcc_assert (var->refcount == 1);
|
||
|
||
for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
|
||
{
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
if (VALUE_RECURSED_INTO (node->loc))
|
||
{
|
||
/* Remove duplicate value node. */
|
||
*nodep = node->next;
|
||
pool_free (loc_chain_pool, node);
|
||
continue;
|
||
}
|
||
else
|
||
VALUE_RECURSED_INTO (node->loc) = true;
|
||
}
|
||
nodep = &node->next;
|
||
}
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
gcc_assert (VALUE_RECURSED_INTO (node->loc));
|
||
VALUE_RECURSED_INTO (node->loc) = false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Hash table iteration argument passed to variable_post_merge. */
|
||
struct dfset_post_merge
|
||
{
|
||
/* The new input set for the current block. */
|
||
dataflow_set *set;
|
||
/* Pointer to the permanent input set for the current block, or
|
||
NULL. */
|
||
dataflow_set **permp;
|
||
};
|
||
|
||
/* Create values for incoming expressions associated with one-part
|
||
variables that don't have value numbers for them. */
|
||
|
||
static int
|
||
variable_post_merge_new_vals (void **slot, void *info)
|
||
{
|
||
struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
|
||
dataflow_set *set = dfpm->set;
|
||
variable var = (variable)*slot;
|
||
location_chain node;
|
||
|
||
if (!dv_onepart_p (var->dv) || !var->n_var_parts)
|
||
return 1;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
if (dv_is_decl_p (var->dv))
|
||
{
|
||
bool check_dupes = false;
|
||
|
||
restart:
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
{
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
gcc_assert (!VALUE_RECURSED_INTO (node->loc));
|
||
else if (GET_CODE (node->loc) == REG)
|
||
{
|
||
attrs att, *attp, *curp = NULL;
|
||
|
||
if (var->refcount != 1)
|
||
{
|
||
slot = unshare_variable (set, slot, var,
|
||
VAR_INIT_STATUS_INITIALIZED);
|
||
var = (variable)*slot;
|
||
goto restart;
|
||
}
|
||
|
||
for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
|
||
attp = &att->next)
|
||
if (att->offset == 0
|
||
&& GET_MODE (att->loc) == GET_MODE (node->loc))
|
||
{
|
||
if (dv_is_value_p (att->dv))
|
||
{
|
||
rtx cval = dv_as_value (att->dv);
|
||
node->loc = cval;
|
||
check_dupes = true;
|
||
break;
|
||
}
|
||
else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
|
||
curp = attp;
|
||
}
|
||
|
||
if (!curp)
|
||
{
|
||
curp = attp;
|
||
while (*curp)
|
||
if ((*curp)->offset == 0
|
||
&& GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
|
||
&& dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
|
||
break;
|
||
else
|
||
curp = &(*curp)->next;
|
||
gcc_assert (*curp);
|
||
}
|
||
|
||
if (!att)
|
||
{
|
||
decl_or_value cdv;
|
||
rtx cval;
|
||
|
||
if (!*dfpm->permp)
|
||
{
|
||
*dfpm->permp = XNEW (dataflow_set);
|
||
dataflow_set_init (*dfpm->permp);
|
||
}
|
||
|
||
for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
|
||
att; att = att->next)
|
||
if (GET_MODE (att->loc) == GET_MODE (node->loc))
|
||
{
|
||
gcc_assert (att->offset == 0);
|
||
gcc_assert (dv_is_value_p (att->dv));
|
||
val_reset (set, att->dv);
|
||
break;
|
||
}
|
||
|
||
if (att)
|
||
{
|
||
cdv = att->dv;
|
||
cval = dv_as_value (cdv);
|
||
}
|
||
else
|
||
{
|
||
/* Create a unique value to hold this register,
|
||
that ought to be found and reused in
|
||
subsequent rounds. */
|
||
cselib_val *v;
|
||
gcc_assert (!cselib_lookup (node->loc,
|
||
GET_MODE (node->loc), 0));
|
||
v = cselib_lookup (node->loc, GET_MODE (node->loc), 1);
|
||
cselib_preserve_value (v);
|
||
cselib_invalidate_rtx (node->loc);
|
||
cval = v->val_rtx;
|
||
cdv = dv_from_value (cval);
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Created new value %i for reg %i\n",
|
||
v->value, REGNO (node->loc));
|
||
}
|
||
|
||
var_reg_decl_set (*dfpm->permp, node->loc,
|
||
VAR_INIT_STATUS_INITIALIZED,
|
||
cdv, 0, NULL, INSERT);
|
||
|
||
node->loc = cval;
|
||
check_dupes = true;
|
||
}
|
||
|
||
/* Remove attribute referring to the decl, which now
|
||
uses the value for the register, already existing or
|
||
to be added when we bring perm in. */
|
||
att = *curp;
|
||
*curp = att->next;
|
||
pool_free (attrs_pool, att);
|
||
}
|
||
}
|
||
|
||
if (check_dupes)
|
||
remove_duplicate_values (var);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Reset values in the permanent set that are not associated with the
|
||
chosen expression. */
|
||
|
||
static int
|
||
variable_post_merge_perm_vals (void **pslot, void *info)
|
||
{
|
||
struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
|
||
dataflow_set *set = dfpm->set;
|
||
variable pvar = (variable)*pslot, var;
|
||
location_chain pnode;
|
||
decl_or_value dv;
|
||
attrs att;
|
||
|
||
gcc_assert (dv_is_value_p (pvar->dv));
|
||
gcc_assert (pvar->n_var_parts == 1);
|
||
pnode = pvar->var_part[0].loc_chain;
|
||
gcc_assert (pnode);
|
||
gcc_assert (!pnode->next);
|
||
gcc_assert (REG_P (pnode->loc));
|
||
|
||
dv = pvar->dv;
|
||
|
||
var = shared_hash_find (set->vars, dv);
|
||
if (var)
|
||
{
|
||
if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
|
||
return 1;
|
||
val_reset (set, dv);
|
||
}
|
||
|
||
for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
|
||
if (att->offset == 0
|
||
&& GET_MODE (att->loc) == GET_MODE (pnode->loc)
|
||
&& dv_is_value_p (att->dv))
|
||
break;
|
||
|
||
/* If there is a value associated with this register already, create
|
||
an equivalence. */
|
||
if (att && dv_as_value (att->dv) != dv_as_value (dv))
|
||
{
|
||
rtx cval = dv_as_value (att->dv);
|
||
set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
|
||
set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
|
||
NULL, INSERT);
|
||
}
|
||
else if (!att)
|
||
{
|
||
attrs_list_insert (&set->regs[REGNO (pnode->loc)],
|
||
dv, 0, pnode->loc);
|
||
variable_union (pslot, set);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Just checking stuff and registering register attributes for
|
||
now. */
|
||
|
||
static void
|
||
dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
|
||
{
|
||
struct dfset_post_merge dfpm;
|
||
|
||
dfpm.set = set;
|
||
dfpm.permp = permp;
|
||
|
||
htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
|
||
&dfpm);
|
||
if (*permp)
|
||
htab_traverse (shared_hash_htab ((*permp)->vars),
|
||
variable_post_merge_perm_vals, &dfpm);
|
||
htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
|
||
}
|
||
|
||
/* Return a node whose loc is a MEM that refers to EXPR in the
|
||
location list of a one-part variable or value VAR, or in that of
|
||
any values recursively mentioned in the location lists. */
|
||
|
||
static location_chain
|
||
find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
|
||
{
|
||
location_chain node;
|
||
decl_or_value dv;
|
||
variable var;
|
||
location_chain where = NULL;
|
||
|
||
if (!val)
|
||
return NULL;
|
||
|
||
gcc_assert (GET_CODE (val) == VALUE);
|
||
|
||
gcc_assert (!VALUE_RECURSED_INTO (val));
|
||
|
||
dv = dv_from_value (val);
|
||
var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
|
||
|
||
if (!var)
|
||
return NULL;
|
||
|
||
gcc_assert (dv_onepart_p (var->dv));
|
||
|
||
if (!var->n_var_parts)
|
||
return NULL;
|
||
|
||
gcc_assert (var->var_part[0].offset == 0);
|
||
|
||
VALUE_RECURSED_INTO (val) = true;
|
||
|
||
for (node = var->var_part[0].loc_chain; node; node = node->next)
|
||
if (MEM_P (node->loc) && MEM_EXPR (node->loc) == expr
|
||
&& MEM_OFFSET (node->loc) == 0)
|
||
{
|
||
where = node;
|
||
break;
|
||
}
|
||
else if (GET_CODE (node->loc) == VALUE
|
||
&& !VALUE_RECURSED_INTO (node->loc)
|
||
&& (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
|
||
break;
|
||
|
||
VALUE_RECURSED_INTO (val) = false;
|
||
|
||
return where;
|
||
}
|
||
|
||
/* Remove all MEMs from the location list of a hash table entry for a
|
||
one-part variable, except those whose MEM attributes map back to
|
||
the variable itself, directly or within a VALUE.
|
||
|
||
??? We could also preserve MEMs that reference stack slots that are
|
||
annotated as not addressable. This is arguably even more reliable
|
||
than the current heuristic. */
|
||
|
||
static int
|
||
dataflow_set_preserve_mem_locs (void **slot, void *data)
|
||
{
|
||
dataflow_set *set = (dataflow_set *) data;
|
||
variable var = (variable) *slot;
|
||
|
||
if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
|
||
{
|
||
tree decl = dv_as_decl (var->dv);
|
||
location_chain loc, *locp;
|
||
|
||
if (!var->n_var_parts)
|
||
return 1;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
if (var->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
|
||
{
|
||
/* We want to remove a MEM that doesn't refer to DECL. */
|
||
if (GET_CODE (loc->loc) == MEM
|
||
&& (MEM_EXPR (loc->loc) != decl
|
||
|| MEM_OFFSET (loc->loc)))
|
||
break;
|
||
/* We want to move here a MEM that does refer to DECL. */
|
||
else if (GET_CODE (loc->loc) == VALUE
|
||
&& find_mem_expr_in_1pdv (decl, loc->loc,
|
||
shared_hash_htab (set->vars)))
|
||
break;
|
||
}
|
||
|
||
if (!loc)
|
||
return 1;
|
||
|
||
slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
|
||
var = (variable)*slot;
|
||
gcc_assert (var->n_var_parts == 1);
|
||
}
|
||
|
||
for (locp = &var->var_part[0].loc_chain, loc = *locp;
|
||
loc; loc = *locp)
|
||
{
|
||
rtx old_loc = loc->loc;
|
||
if (GET_CODE (old_loc) == VALUE)
|
||
{
|
||
location_chain mem_node
|
||
= find_mem_expr_in_1pdv (decl, loc->loc,
|
||
shared_hash_htab (set->vars));
|
||
|
||
/* ??? This picks up only one out of multiple MEMs that
|
||
refer to the same variable. Do we ever need to be
|
||
concerned about dealing with more than one, or, given
|
||
that they should all map to the same variable
|
||
location, their addresses will have been merged and
|
||
they will be regarded as equivalent? */
|
||
if (mem_node)
|
||
{
|
||
loc->loc = mem_node->loc;
|
||
loc->set_src = mem_node->set_src;
|
||
loc->init = MIN (loc->init, mem_node->init);
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (loc->loc) != MEM
|
||
|| (MEM_EXPR (loc->loc) == decl
|
||
&& MEM_OFFSET (loc->loc) == 0))
|
||
{
|
||
if (old_loc != loc->loc && emit_notes)
|
||
{
|
||
add_value_chains (var->dv, loc->loc);
|
||
remove_value_chains (var->dv, old_loc);
|
||
}
|
||
locp = &loc->next;
|
||
continue;
|
||
}
|
||
|
||
if (emit_notes)
|
||
remove_value_chains (var->dv, old_loc);
|
||
*locp = loc->next;
|
||
pool_free (loc_chain_pool, loc);
|
||
}
|
||
|
||
if (!var->var_part[0].loc_chain)
|
||
{
|
||
var->n_var_parts--;
|
||
if (emit_notes && dv_is_value_p (var->dv))
|
||
remove_cselib_value_chains (var->dv);
|
||
variable_was_changed (var, set);
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Remove all MEMs from the location list of a hash table entry for a
|
||
value. */
|
||
|
||
static int
|
||
dataflow_set_remove_mem_locs (void **slot, void *data)
|
||
{
|
||
dataflow_set *set = (dataflow_set *) data;
|
||
variable var = (variable) *slot;
|
||
|
||
if (dv_is_value_p (var->dv))
|
||
{
|
||
location_chain loc, *locp;
|
||
bool changed = false;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
if (var->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
|
||
if (GET_CODE (loc->loc) == MEM)
|
||
break;
|
||
|
||
if (!loc)
|
||
return 1;
|
||
|
||
slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
|
||
var = (variable)*slot;
|
||
gcc_assert (var->n_var_parts == 1);
|
||
}
|
||
|
||
for (locp = &var->var_part[0].loc_chain, loc = *locp;
|
||
loc; loc = *locp)
|
||
{
|
||
if (GET_CODE (loc->loc) != MEM)
|
||
{
|
||
locp = &loc->next;
|
||
continue;
|
||
}
|
||
|
||
if (emit_notes)
|
||
remove_value_chains (var->dv, loc->loc);
|
||
*locp = loc->next;
|
||
/* If we have deleted the location which was last emitted
|
||
we have to emit new location so add the variable to set
|
||
of changed variables. */
|
||
if (var->var_part[0].cur_loc
|
||
&& rtx_equal_p (loc->loc, var->var_part[0].cur_loc))
|
||
changed = true;
|
||
pool_free (loc_chain_pool, loc);
|
||
}
|
||
|
||
if (!var->var_part[0].loc_chain)
|
||
{
|
||
var->n_var_parts--;
|
||
if (emit_notes && dv_is_value_p (var->dv))
|
||
remove_cselib_value_chains (var->dv);
|
||
gcc_assert (changed);
|
||
}
|
||
if (changed)
|
||
{
|
||
if (var->n_var_parts && var->var_part[0].loc_chain)
|
||
var->var_part[0].cur_loc = var->var_part[0].loc_chain->loc;
|
||
variable_was_changed (var, set);
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Remove all variable-location information about call-clobbered
|
||
registers, as well as associations between MEMs and VALUEs. */
|
||
|
||
static void
|
||
dataflow_set_clear_at_call (dataflow_set *set)
|
||
{
|
||
int r;
|
||
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (TEST_HARD_REG_BIT (call_used_reg_set, r))
|
||
var_regno_delete (set, r);
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
set->traversed_vars = set->vars;
|
||
htab_traverse (shared_hash_htab (set->vars),
|
||
dataflow_set_preserve_mem_locs, set);
|
||
set->traversed_vars = set->vars;
|
||
htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
|
||
set);
|
||
set->traversed_vars = NULL;
|
||
}
|
||
}
|
||
|
||
/* Flag whether two dataflow sets being compared contain different data. */
|
||
static bool
|
||
dataflow_set_different_value;
|
||
|
||
static bool
|
||
variable_part_different_p (variable_part *vp1, variable_part *vp2)
|
||
{
|
||
location_chain lc1, lc2;
|
||
|
||
for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
|
||
{
|
||
for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
|
||
{
|
||
if (REG_P (lc1->loc) && REG_P (lc2->loc))
|
||
{
|
||
if (REGNO (lc1->loc) == REGNO (lc2->loc))
|
||
break;
|
||
}
|
||
if (rtx_equal_p (lc1->loc, lc2->loc))
|
||
break;
|
||
}
|
||
if (!lc2)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if one-part variables VAR1 and VAR2 are different.
|
||
They must be in canonical order. */
|
||
|
||
static bool
|
||
onepart_variable_different_p (variable var1, variable var2)
|
||
{
|
||
location_chain lc1, lc2;
|
||
|
||
if (var1 == var2)
|
||
return false;
|
||
|
||
gcc_assert (var1->n_var_parts == 1);
|
||
gcc_assert (var2->n_var_parts == 1);
|
||
|
||
lc1 = var1->var_part[0].loc_chain;
|
||
lc2 = var2->var_part[0].loc_chain;
|
||
|
||
gcc_assert (lc1);
|
||
gcc_assert (lc2);
|
||
|
||
while (lc1 && lc2)
|
||
{
|
||
if (loc_cmp (lc1->loc, lc2->loc))
|
||
return true;
|
||
lc1 = lc1->next;
|
||
lc2 = lc2->next;
|
||
}
|
||
|
||
return lc1 != lc2;
|
||
}
|
||
|
||
/* Return true if variables VAR1 and VAR2 are different.
|
||
If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
|
||
variable part. */
|
||
|
||
static bool
|
||
variable_different_p (variable var1, variable var2,
|
||
bool compare_current_location)
|
||
{
|
||
int i;
|
||
|
||
if (var1 == var2)
|
||
return false;
|
||
|
||
if (var1->n_var_parts != var2->n_var_parts)
|
||
return true;
|
||
|
||
for (i = 0; i < var1->n_var_parts; i++)
|
||
{
|
||
if (var1->var_part[i].offset != var2->var_part[i].offset)
|
||
return true;
|
||
if (compare_current_location)
|
||
{
|
||
if (!((REG_P (var1->var_part[i].cur_loc)
|
||
&& REG_P (var2->var_part[i].cur_loc)
|
||
&& (REGNO (var1->var_part[i].cur_loc)
|
||
== REGNO (var2->var_part[i].cur_loc)))
|
||
|| rtx_equal_p (var1->var_part[i].cur_loc,
|
||
var2->var_part[i].cur_loc)))
|
||
return true;
|
||
}
|
||
/* One-part values have locations in a canonical order. */
|
||
if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
|
||
{
|
||
gcc_assert (var1->n_var_parts == 1);
|
||
gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
|
||
return onepart_variable_different_p (var1, var2);
|
||
}
|
||
if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
|
||
return true;
|
||
if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Compare variable *SLOT with the same variable in hash table DATA
|
||
and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
|
||
|
||
static int
|
||
dataflow_set_different_1 (void **slot, void *data)
|
||
{
|
||
htab_t htab = (htab_t) data;
|
||
variable var1, var2;
|
||
|
||
var1 = (variable) *slot;
|
||
var2 = (variable) htab_find_with_hash (htab, var1->dv,
|
||
dv_htab_hash (var1->dv));
|
||
if (!var2)
|
||
{
|
||
dataflow_set_different_value = true;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "dataflow difference found: removal of:\n");
|
||
dump_variable (var1);
|
||
}
|
||
|
||
/* Stop traversing the hash table. */
|
||
return 0;
|
||
}
|
||
|
||
if (variable_different_p (var1, var2, false))
|
||
{
|
||
dataflow_set_different_value = true;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "dataflow difference found: old and new follow:\n");
|
||
dump_variable (var1);
|
||
dump_variable (var2);
|
||
}
|
||
|
||
/* Stop traversing the hash table. */
|
||
return 0;
|
||
}
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return true if dataflow sets OLD_SET and NEW_SET differ. */
|
||
|
||
static bool
|
||
dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
|
||
{
|
||
if (old_set->vars == new_set->vars)
|
||
return false;
|
||
|
||
if (htab_elements (shared_hash_htab (old_set->vars))
|
||
!= htab_elements (shared_hash_htab (new_set->vars)))
|
||
return true;
|
||
|
||
dataflow_set_different_value = false;
|
||
|
||
htab_traverse (shared_hash_htab (old_set->vars), dataflow_set_different_1,
|
||
shared_hash_htab (new_set->vars));
|
||
/* No need to traverse the second hashtab, if both have the same number
|
||
of elements and the second one had all entries found in the first one,
|
||
then it can't have any extra entries. */
|
||
return dataflow_set_different_value;
|
||
}
|
||
|
||
/* Free the contents of dataflow set SET. */
|
||
|
||
static void
|
||
dataflow_set_destroy (dataflow_set *set)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
attrs_list_clear (&set->regs[i]);
|
||
|
||
shared_hash_destroy (set->vars);
|
||
set->vars = NULL;
|
||
}
|
||
|
||
/* Return true if RTL X contains a SYMBOL_REF. */
|
||
|
||
static bool
|
||
contains_symbol_ref (rtx x)
|
||
{
|
||
const char *fmt;
|
||
RTX_CODE code;
|
||
int i;
|
||
|
||
if (!x)
|
||
return false;
|
||
|
||
code = GET_CODE (x);
|
||
if (code == SYMBOL_REF)
|
||
return true;
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (contains_symbol_ref (XEXP (x, i)))
|
||
return true;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (contains_symbol_ref (XVECEXP (x, i, j)))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Shall EXPR be tracked? */
|
||
|
||
static bool
|
||
track_expr_p (tree expr, bool need_rtl)
|
||
{
|
||
rtx decl_rtl;
|
||
tree realdecl;
|
||
|
||
if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
|
||
return DECL_RTL_SET_P (expr);
|
||
|
||
/* If EXPR is not a parameter or a variable do not track it. */
|
||
if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
|
||
return 0;
|
||
|
||
/* It also must have a name... */
|
||
if (!DECL_NAME (expr))
|
||
return 0;
|
||
|
||
/* ... and a RTL assigned to it. */
|
||
decl_rtl = DECL_RTL_IF_SET (expr);
|
||
if (!decl_rtl && need_rtl)
|
||
return 0;
|
||
|
||
/* If this expression is really a debug alias of some other declaration, we
|
||
don't need to track this expression if the ultimate declaration is
|
||
ignored. */
|
||
realdecl = expr;
|
||
if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
|
||
{
|
||
realdecl = DECL_DEBUG_EXPR (realdecl);
|
||
/* ??? We don't yet know how to emit DW_OP_piece for variable
|
||
that has been SRA'ed. */
|
||
if (!DECL_P (realdecl))
|
||
return 0;
|
||
}
|
||
|
||
/* Do not track EXPR if REALDECL it should be ignored for debugging
|
||
purposes. */
|
||
if (DECL_IGNORED_P (realdecl))
|
||
return 0;
|
||
|
||
/* Do not track global variables until we are able to emit correct location
|
||
list for them. */
|
||
if (TREE_STATIC (realdecl))
|
||
return 0;
|
||
|
||
/* When the EXPR is a DECL for alias of some variable (see example)
|
||
the TREE_STATIC flag is not used. Disable tracking all DECLs whose
|
||
DECL_RTL contains SYMBOL_REF.
|
||
|
||
Example:
|
||
extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
|
||
char **_dl_argv;
|
||
*/
|
||
if (decl_rtl && MEM_P (decl_rtl)
|
||
&& contains_symbol_ref (XEXP (decl_rtl, 0)))
|
||
return 0;
|
||
|
||
/* If RTX is a memory it should not be very large (because it would be
|
||
an array or struct). */
|
||
if (decl_rtl && MEM_P (decl_rtl))
|
||
{
|
||
/* Do not track structures and arrays. */
|
||
if (GET_MODE (decl_rtl) == BLKmode
|
||
|| AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
|
||
return 0;
|
||
if (MEM_SIZE (decl_rtl)
|
||
&& INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
|
||
return 0;
|
||
}
|
||
|
||
DECL_CHANGED (expr) = 0;
|
||
DECL_CHANGED (realdecl) = 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Determine whether a given LOC refers to the same variable part as
|
||
EXPR+OFFSET. */
|
||
|
||
static bool
|
||
same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
|
||
{
|
||
tree expr2;
|
||
HOST_WIDE_INT offset2;
|
||
|
||
if (! DECL_P (expr))
|
||
return false;
|
||
|
||
if (REG_P (loc))
|
||
{
|
||
expr2 = REG_EXPR (loc);
|
||
offset2 = REG_OFFSET (loc);
|
||
}
|
||
else if (MEM_P (loc))
|
||
{
|
||
expr2 = MEM_EXPR (loc);
|
||
offset2 = INT_MEM_OFFSET (loc);
|
||
}
|
||
else
|
||
return false;
|
||
|
||
if (! expr2 || ! DECL_P (expr2))
|
||
return false;
|
||
|
||
expr = var_debug_decl (expr);
|
||
expr2 = var_debug_decl (expr2);
|
||
|
||
return (expr == expr2 && offset == offset2);
|
||
}
|
||
|
||
/* LOC is a REG or MEM that we would like to track if possible.
|
||
If EXPR is null, we don't know what expression LOC refers to,
|
||
otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
|
||
LOC is an lvalue register.
|
||
|
||
Return true if EXPR is nonnull and if LOC, or some lowpart of it,
|
||
is something we can track. When returning true, store the mode of
|
||
the lowpart we can track in *MODE_OUT (if nonnull) and its offset
|
||
from EXPR in *OFFSET_OUT (if nonnull). */
|
||
|
||
static bool
|
||
track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
|
||
enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
if (expr == NULL || !track_expr_p (expr, true))
|
||
return false;
|
||
|
||
/* If REG was a paradoxical subreg, its REG_ATTRS will describe the
|
||
whole subreg, but only the old inner part is really relevant. */
|
||
mode = GET_MODE (loc);
|
||
if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
|
||
{
|
||
enum machine_mode pseudo_mode;
|
||
|
||
pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
|
||
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
|
||
{
|
||
offset += byte_lowpart_offset (pseudo_mode, mode);
|
||
mode = pseudo_mode;
|
||
}
|
||
}
|
||
|
||
/* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
|
||
Do the same if we are storing to a register and EXPR occupies
|
||
the whole of register LOC; in that case, the whole of EXPR is
|
||
being changed. We exclude complex modes from the second case
|
||
because the real and imaginary parts are represented as separate
|
||
pseudo registers, even if the whole complex value fits into one
|
||
hard register. */
|
||
if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
|
||
|| (store_reg_p
|
||
&& !COMPLEX_MODE_P (DECL_MODE (expr))
|
||
&& hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
|
||
&& offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
|
||
{
|
||
mode = DECL_MODE (expr);
|
||
offset = 0;
|
||
}
|
||
|
||
if (offset < 0 || offset >= MAX_VAR_PARTS)
|
||
return false;
|
||
|
||
if (mode_out)
|
||
*mode_out = mode;
|
||
if (offset_out)
|
||
*offset_out = offset;
|
||
return true;
|
||
}
|
||
|
||
/* Return the MODE lowpart of LOC, or null if LOC is not something we
|
||
want to track. When returning nonnull, make sure that the attributes
|
||
on the returned value are updated. */
|
||
|
||
static rtx
|
||
var_lowpart (enum machine_mode mode, rtx loc)
|
||
{
|
||
unsigned int offset, reg_offset, regno;
|
||
|
||
if (!REG_P (loc) && !MEM_P (loc))
|
||
return NULL;
|
||
|
||
if (GET_MODE (loc) == mode)
|
||
return loc;
|
||
|
||
offset = byte_lowpart_offset (mode, GET_MODE (loc));
|
||
|
||
if (MEM_P (loc))
|
||
return adjust_address_nv (loc, mode, offset);
|
||
|
||
reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
|
||
regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
|
||
reg_offset, mode);
|
||
return gen_rtx_REG_offset (loc, mode, regno, offset);
|
||
}
|
||
|
||
/* Carry information about uses and stores while walking rtx. */
|
||
|
||
struct count_use_info
|
||
{
|
||
/* The insn where the RTX is. */
|
||
rtx insn;
|
||
|
||
/* The basic block where insn is. */
|
||
basic_block bb;
|
||
|
||
/* The array of n_sets sets in the insn, as determined by cselib. */
|
||
struct cselib_set *sets;
|
||
int n_sets;
|
||
|
||
/* True if we're counting stores, false otherwise. */
|
||
bool store_p;
|
||
};
|
||
|
||
/* Find a VALUE corresponding to X. */
|
||
|
||
static inline cselib_val *
|
||
find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
|
||
{
|
||
int i;
|
||
|
||
if (cui->sets)
|
||
{
|
||
/* This is called after uses are set up and before stores are
|
||
processed bycselib, so it's safe to look up srcs, but not
|
||
dsts. So we look up expressions that appear in srcs or in
|
||
dest expressions, but we search the sets array for dests of
|
||
stores. */
|
||
if (cui->store_p)
|
||
{
|
||
for (i = 0; i < cui->n_sets; i++)
|
||
if (cui->sets[i].dest == x)
|
||
return cui->sets[i].src_elt;
|
||
}
|
||
else
|
||
return cselib_lookup (x, mode, 0);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Replace all registers and addresses in an expression with VALUE
|
||
expressions that map back to them, unless the expression is a
|
||
register. If no mapping is or can be performed, returns NULL. */
|
||
|
||
static rtx
|
||
replace_expr_with_values (rtx loc)
|
||
{
|
||
if (REG_P (loc))
|
||
return NULL;
|
||
else if (MEM_P (loc))
|
||
{
|
||
cselib_val *addr = cselib_lookup (XEXP (loc, 0), Pmode, 0);
|
||
if (addr)
|
||
return replace_equiv_address_nv (loc, addr->val_rtx);
|
||
else
|
||
return NULL;
|
||
}
|
||
else
|
||
return cselib_subst_to_values (loc);
|
||
}
|
||
|
||
/* Determine what kind of micro operation to choose for a USE. Return
|
||
MO_CLOBBER if no micro operation is to be generated. */
|
||
|
||
static enum micro_operation_type
|
||
use_type (rtx *loc, struct count_use_info *cui, enum machine_mode *modep)
|
||
{
|
||
tree expr;
|
||
cselib_val *val;
|
||
|
||
if (cui && cui->sets)
|
||
{
|
||
if (GET_CODE (*loc) == VAR_LOCATION)
|
||
{
|
||
if (track_expr_p (PAT_VAR_LOCATION_DECL (*loc), false))
|
||
{
|
||
rtx ploc = PAT_VAR_LOCATION_LOC (*loc);
|
||
cselib_val *val = cselib_lookup (ploc, GET_MODE (*loc), 1);
|
||
|
||
/* ??? flag_float_store and volatile mems are never
|
||
given values, but we could in theory use them for
|
||
locations. */
|
||
gcc_assert (val || 1);
|
||
return MO_VAL_LOC;
|
||
}
|
||
else
|
||
return MO_CLOBBER;
|
||
}
|
||
|
||
if ((REG_P (*loc) || MEM_P (*loc))
|
||
&& (val = find_use_val (*loc, GET_MODE (*loc), cui)))
|
||
{
|
||
if (modep)
|
||
*modep = GET_MODE (*loc);
|
||
if (cui->store_p)
|
||
{
|
||
if (REG_P (*loc)
|
||
|| cselib_lookup (XEXP (*loc, 0), GET_MODE (*loc), 0))
|
||
return MO_VAL_SET;
|
||
}
|
||
else if (!cselib_preserved_value_p (val))
|
||
return MO_VAL_USE;
|
||
}
|
||
}
|
||
|
||
if (REG_P (*loc))
|
||
{
|
||
gcc_assert (REGNO (*loc) < FIRST_PSEUDO_REGISTER);
|
||
|
||
expr = REG_EXPR (*loc);
|
||
|
||
if (!expr)
|
||
return MO_USE_NO_VAR;
|
||
else if (target_for_debug_bind (var_debug_decl (expr)))
|
||
return MO_CLOBBER;
|
||
else if (track_loc_p (*loc, expr, REG_OFFSET (*loc),
|
||
false, modep, NULL))
|
||
return MO_USE;
|
||
else
|
||
return MO_USE_NO_VAR;
|
||
}
|
||
else if (MEM_P (*loc))
|
||
{
|
||
expr = MEM_EXPR (*loc);
|
||
|
||
if (!expr)
|
||
return MO_CLOBBER;
|
||
else if (target_for_debug_bind (var_debug_decl (expr)))
|
||
return MO_CLOBBER;
|
||
else if (track_loc_p (*loc, expr, INT_MEM_OFFSET (*loc),
|
||
false, modep, NULL))
|
||
return MO_USE;
|
||
else
|
||
return MO_CLOBBER;
|
||
}
|
||
|
||
return MO_CLOBBER;
|
||
}
|
||
|
||
/* Log to OUT information about micro-operation MOPT involving X in
|
||
INSN of BB. */
|
||
|
||
static inline void
|
||
log_op_type (rtx x, basic_block bb, rtx insn,
|
||
enum micro_operation_type mopt, FILE *out)
|
||
{
|
||
fprintf (out, "bb %i op %i insn %i %s ",
|
||
bb->index, VTI (bb)->n_mos - 1,
|
||
INSN_UID (insn), micro_operation_type_name[mopt]);
|
||
print_inline_rtx (out, x, 2);
|
||
fputc ('\n', out);
|
||
}
|
||
|
||
/* Count uses (register and memory references) LOC which will be tracked.
|
||
INSN is instruction which the LOC is part of. */
|
||
|
||
static int
|
||
count_uses (rtx *loc, void *cuip)
|
||
{
|
||
struct count_use_info *cui = (struct count_use_info *) cuip;
|
||
enum micro_operation_type mopt = use_type (loc, cui, NULL);
|
||
|
||
if (mopt != MO_CLOBBER)
|
||
{
|
||
cselib_val *val;
|
||
enum machine_mode mode = GET_MODE (*loc);
|
||
|
||
VTI (cui->bb)->n_mos++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (*loc, cui->bb, cui->insn, mopt, dump_file);
|
||
|
||
switch (mopt)
|
||
{
|
||
case MO_VAL_LOC:
|
||
loc = &PAT_VAR_LOCATION_LOC (*loc);
|
||
if (VAR_LOC_UNKNOWN_P (*loc))
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case MO_VAL_USE:
|
||
case MO_VAL_SET:
|
||
if (MEM_P (*loc)
|
||
&& !REG_P (XEXP (*loc, 0)) && !MEM_P (XEXP (*loc, 0)))
|
||
{
|
||
val = cselib_lookup (XEXP (*loc, 0), Pmode, false);
|
||
|
||
if (val && !cselib_preserved_value_p (val))
|
||
{
|
||
VTI (cui->bb)->n_mos++;
|
||
cselib_preserve_value (val);
|
||
}
|
||
}
|
||
|
||
val = find_use_val (*loc, mode, cui);
|
||
if (val)
|
||
cselib_preserve_value (val);
|
||
else
|
||
gcc_assert (mopt == MO_VAL_LOC);
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for finding all uses of REG/MEM in X in CUI's
|
||
insn. */
|
||
|
||
static void
|
||
count_uses_1 (rtx *x, void *cui)
|
||
{
|
||
for_each_rtx (x, count_uses, cui);
|
||
}
|
||
|
||
/* Count stores (register and memory references) LOC which will be
|
||
tracked. CUI is a count_use_info object containing the instruction
|
||
which the LOC is part of. */
|
||
|
||
static void
|
||
count_stores (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *cui)
|
||
{
|
||
count_uses (&loc, cui);
|
||
}
|
||
|
||
/* Callback for cselib_record_sets_hook, that counts how many micro
|
||
operations it takes for uses and stores in an insn after
|
||
cselib_record_sets has analyzed the sets in an insn, but before it
|
||
modifies the stored values in the internal tables, unless
|
||
cselib_record_sets doesn't call it directly (perhaps because we're
|
||
not doing cselib in the first place, in which case sets and n_sets
|
||
will be 0). */
|
||
|
||
static void
|
||
count_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
struct count_use_info cui;
|
||
|
||
cselib_hook_called = true;
|
||
|
||
cui.insn = insn;
|
||
cui.bb = bb;
|
||
cui.sets = sets;
|
||
cui.n_sets = n_sets;
|
||
|
||
cui.store_p = false;
|
||
note_uses (&PATTERN (insn), count_uses_1, &cui);
|
||
cui.store_p = true;
|
||
note_stores (PATTERN (insn), count_stores, &cui);
|
||
}
|
||
|
||
/* Tell whether the CONCAT used to holds a VALUE and its location
|
||
needs value resolution, i.e., an attempt of mapping the location
|
||
back to other incoming values. */
|
||
#define VAL_NEEDS_RESOLUTION(x) \
|
||
(RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
|
||
/* Whether the location in the CONCAT is a tracked expression, that
|
||
should also be handled like a MO_USE. */
|
||
#define VAL_HOLDS_TRACK_EXPR(x) \
|
||
(RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
|
||
/* Whether the location in the CONCAT should be handled like a MO_COPY
|
||
as well. */
|
||
#define VAL_EXPR_IS_COPIED(x) \
|
||
(RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
|
||
/* Whether the location in the CONCAT should be handled like a
|
||
MO_CLOBBER as well. */
|
||
#define VAL_EXPR_IS_CLOBBERED(x) \
|
||
(RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
|
||
|
||
/* Add uses (register and memory references) LOC which will be tracked
|
||
to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
|
||
|
||
static int
|
||
add_uses (rtx *loc, void *data)
|
||
{
|
||
enum machine_mode mode = VOIDmode;
|
||
struct count_use_info *cui = (struct count_use_info *)data;
|
||
enum micro_operation_type type = use_type (loc, cui, &mode);
|
||
|
||
if (type != MO_CLOBBER)
|
||
{
|
||
basic_block bb = cui->bb;
|
||
micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
|
||
mo->type = type;
|
||
mo->u.loc = type == MO_USE ? var_lowpart (mode, *loc) : *loc;
|
||
mo->insn = cui->insn;
|
||
|
||
if (type == MO_VAL_LOC)
|
||
{
|
||
rtx oloc = *loc;
|
||
rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
|
||
cselib_val *val;
|
||
|
||
gcc_assert (cui->sets);
|
||
|
||
if (MEM_P (vloc)
|
||
&& !REG_P (XEXP (vloc, 0)) && !MEM_P (XEXP (vloc, 0)))
|
||
{
|
||
rtx mloc = vloc;
|
||
cselib_val *val = cselib_lookup (XEXP (mloc, 0), Pmode, 0);
|
||
|
||
if (val && !cselib_preserved_value_p (val))
|
||
{
|
||
micro_operation *mon = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
mon->type = mo->type;
|
||
mon->u.loc = mo->u.loc;
|
||
mon->insn = mo->insn;
|
||
cselib_preserve_value (val);
|
||
mo->type = MO_VAL_USE;
|
||
mloc = cselib_subst_to_values (XEXP (mloc, 0));
|
||
mo->u.loc = gen_rtx_CONCAT (Pmode, val->val_rtx, mloc);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (mo->u.loc, cui->bb, cui->insn,
|
||
mo->type, dump_file);
|
||
mo = mon;
|
||
}
|
||
}
|
||
|
||
if (!VAR_LOC_UNKNOWN_P (vloc)
|
||
&& (val = find_use_val (vloc, GET_MODE (oloc), cui)))
|
||
{
|
||
enum machine_mode mode2;
|
||
enum micro_operation_type type2;
|
||
rtx nloc = replace_expr_with_values (vloc);
|
||
|
||
if (nloc)
|
||
{
|
||
oloc = shallow_copy_rtx (oloc);
|
||
PAT_VAR_LOCATION_LOC (oloc) = nloc;
|
||
}
|
||
|
||
oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
|
||
|
||
type2 = use_type (&vloc, 0, &mode2);
|
||
|
||
gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
|
||
|| type2 == MO_CLOBBER);
|
||
|
||
if (type2 == MO_CLOBBER
|
||
&& !cselib_preserved_value_p (val))
|
||
{
|
||
VAL_NEEDS_RESOLUTION (oloc) = 1;
|
||
cselib_preserve_value (val);
|
||
}
|
||
}
|
||
else if (!VAR_LOC_UNKNOWN_P (vloc))
|
||
{
|
||
oloc = shallow_copy_rtx (oloc);
|
||
PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
|
||
}
|
||
|
||
mo->u.loc = oloc;
|
||
}
|
||
else if (type == MO_VAL_USE)
|
||
{
|
||
enum machine_mode mode2 = VOIDmode;
|
||
enum micro_operation_type type2;
|
||
cselib_val *val = find_use_val (*loc, GET_MODE (*loc), cui);
|
||
rtx vloc, oloc = *loc, nloc;
|
||
|
||
gcc_assert (cui->sets);
|
||
|
||
if (MEM_P (oloc)
|
||
&& !REG_P (XEXP (oloc, 0)) && !MEM_P (XEXP (oloc, 0)))
|
||
{
|
||
rtx mloc = oloc;
|
||
cselib_val *val = cselib_lookup (XEXP (mloc, 0), Pmode, 0);
|
||
|
||
if (val && !cselib_preserved_value_p (val))
|
||
{
|
||
micro_operation *mon = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
mon->type = mo->type;
|
||
mon->u.loc = mo->u.loc;
|
||
mon->insn = mo->insn;
|
||
cselib_preserve_value (val);
|
||
mo->type = MO_VAL_USE;
|
||
mloc = cselib_subst_to_values (XEXP (mloc, 0));
|
||
mo->u.loc = gen_rtx_CONCAT (Pmode, val->val_rtx, mloc);
|
||
mo->insn = cui->insn;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (mo->u.loc, cui->bb, cui->insn,
|
||
mo->type, dump_file);
|
||
mo = mon;
|
||
}
|
||
}
|
||
|
||
type2 = use_type (loc, 0, &mode2);
|
||
|
||
gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
|
||
|| type2 == MO_CLOBBER);
|
||
|
||
if (type2 == MO_USE)
|
||
vloc = var_lowpart (mode2, *loc);
|
||
else
|
||
vloc = oloc;
|
||
|
||
/* The loc of a MO_VAL_USE may have two forms:
|
||
|
||
(concat val src): val is at src, a value-based
|
||
representation.
|
||
|
||
(concat (concat val use) src): same as above, with use as
|
||
the MO_USE tracked value, if it differs from src.
|
||
|
||
*/
|
||
|
||
nloc = replace_expr_with_values (*loc);
|
||
if (!nloc)
|
||
nloc = oloc;
|
||
|
||
if (vloc != nloc)
|
||
oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
|
||
else
|
||
oloc = val->val_rtx;
|
||
|
||
mo->u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
|
||
|
||
if (type2 == MO_USE)
|
||
VAL_HOLDS_TRACK_EXPR (mo->u.loc) = 1;
|
||
if (!cselib_preserved_value_p (val))
|
||
{
|
||
VAL_NEEDS_RESOLUTION (mo->u.loc) = 1;
|
||
cselib_preserve_value (val);
|
||
}
|
||
}
|
||
else
|
||
gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (mo->u.loc, cui->bb, cui->insn, mo->type, dump_file);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for finding all uses of REG/MEM in X in insn INSN. */
|
||
|
||
static void
|
||
add_uses_1 (rtx *x, void *cui)
|
||
{
|
||
for_each_rtx (x, add_uses, cui);
|
||
}
|
||
|
||
/* Add stores (register and memory references) LOC which will be tracked
|
||
to VTI (bb)->mos. EXPR is the RTL expression containing the store.
|
||
CUIP->insn is instruction which the LOC is part of. */
|
||
|
||
static void
|
||
add_stores (rtx loc, const_rtx expr, void *cuip)
|
||
{
|
||
enum machine_mode mode = VOIDmode, mode2;
|
||
struct count_use_info *cui = (struct count_use_info *)cuip;
|
||
basic_block bb = cui->bb;
|
||
micro_operation *mo;
|
||
rtx oloc = loc, nloc, src = NULL;
|
||
enum micro_operation_type type = use_type (&loc, cui, &mode);
|
||
bool track_p = false;
|
||
cselib_val *v;
|
||
bool resolve, preserve;
|
||
|
||
if (type == MO_CLOBBER)
|
||
return;
|
||
|
||
mode2 = mode;
|
||
|
||
if (REG_P (loc))
|
||
{
|
||
mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
|
||
if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
|
||
|| !(track_p = use_type (&loc, NULL, &mode2) == MO_USE)
|
||
|| GET_CODE (expr) == CLOBBER)
|
||
{
|
||
mo->type = MO_CLOBBER;
|
||
mo->u.loc = loc;
|
||
}
|
||
else
|
||
{
|
||
if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
|
||
src = var_lowpart (mode2, SET_SRC (expr));
|
||
loc = var_lowpart (mode2, loc);
|
||
|
||
if (src == NULL)
|
||
{
|
||
mo->type = MO_SET;
|
||
mo->u.loc = loc;
|
||
}
|
||
else
|
||
{
|
||
if (SET_SRC (expr) != src)
|
||
expr = gen_rtx_SET (VOIDmode, loc, src);
|
||
if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
|
||
mo->type = MO_COPY;
|
||
else
|
||
mo->type = MO_SET;
|
||
mo->u.loc = CONST_CAST_RTX (expr);
|
||
}
|
||
}
|
||
mo->insn = cui->insn;
|
||
}
|
||
else if (MEM_P (loc)
|
||
&& ((track_p = use_type (&loc, NULL, &mode2) == MO_USE)
|
||
|| cui->sets))
|
||
{
|
||
mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
|
||
if (MEM_P (loc) && type == MO_VAL_SET
|
||
&& !REG_P (XEXP (loc, 0)) && !MEM_P (XEXP (loc, 0)))
|
||
{
|
||
rtx mloc = loc;
|
||
cselib_val *val = cselib_lookup (XEXP (mloc, 0), Pmode, 0);
|
||
|
||
if (val && !cselib_preserved_value_p (val))
|
||
{
|
||
cselib_preserve_value (val);
|
||
mo->type = MO_VAL_USE;
|
||
mloc = cselib_subst_to_values (XEXP (mloc, 0));
|
||
mo->u.loc = gen_rtx_CONCAT (Pmode, val->val_rtx, mloc);
|
||
mo->insn = cui->insn;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (mo->u.loc, cui->bb, cui->insn,
|
||
mo->type, dump_file);
|
||
mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (expr) == CLOBBER || !track_p)
|
||
{
|
||
mo->type = MO_CLOBBER;
|
||
mo->u.loc = track_p ? var_lowpart (mode2, loc) : loc;
|
||
}
|
||
else
|
||
{
|
||
if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
|
||
src = var_lowpart (mode2, SET_SRC (expr));
|
||
loc = var_lowpart (mode2, loc);
|
||
|
||
if (src == NULL)
|
||
{
|
||
mo->type = MO_SET;
|
||
mo->u.loc = loc;
|
||
}
|
||
else
|
||
{
|
||
if (SET_SRC (expr) != src)
|
||
expr = gen_rtx_SET (VOIDmode, loc, src);
|
||
if (same_variable_part_p (SET_SRC (expr),
|
||
MEM_EXPR (loc),
|
||
INT_MEM_OFFSET (loc)))
|
||
mo->type = MO_COPY;
|
||
else
|
||
mo->type = MO_SET;
|
||
mo->u.loc = CONST_CAST_RTX (expr);
|
||
}
|
||
}
|
||
mo->insn = cui->insn;
|
||
}
|
||
else
|
||
return;
|
||
|
||
if (type != MO_VAL_SET)
|
||
goto log_and_return;
|
||
|
||
v = find_use_val (oloc, mode, cui);
|
||
|
||
resolve = preserve = !cselib_preserved_value_p (v);
|
||
|
||
nloc = replace_expr_with_values (oloc);
|
||
if (nloc)
|
||
oloc = nloc;
|
||
|
||
if (resolve && GET_CODE (mo->u.loc) == SET)
|
||
{
|
||
nloc = replace_expr_with_values (SET_SRC (mo->u.loc));
|
||
|
||
if (nloc)
|
||
oloc = gen_rtx_SET (GET_MODE (mo->u.loc), oloc, nloc);
|
||
else
|
||
{
|
||
if (oloc == SET_DEST (mo->u.loc))
|
||
/* No point in duplicating. */
|
||
oloc = mo->u.loc;
|
||
if (!REG_P (SET_SRC (mo->u.loc)))
|
||
resolve = false;
|
||
}
|
||
}
|
||
else if (!resolve)
|
||
{
|
||
if (GET_CODE (mo->u.loc) == SET
|
||
&& oloc == SET_DEST (mo->u.loc))
|
||
/* No point in duplicating. */
|
||
oloc = mo->u.loc;
|
||
}
|
||
else
|
||
resolve = false;
|
||
|
||
loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
|
||
|
||
if (mo->u.loc != oloc)
|
||
loc = gen_rtx_CONCAT (GET_MODE (mo->u.loc), loc, mo->u.loc);
|
||
|
||
/* The loc of a MO_VAL_SET may have various forms:
|
||
|
||
(concat val dst): dst now holds val
|
||
|
||
(concat val (set dst src)): dst now holds val, copied from src
|
||
|
||
(concat (concat val dstv) dst): dst now holds val; dstv is dst
|
||
after replacing mems and non-top-level regs with values.
|
||
|
||
(concat (concat val dstv) (set dst src)): dst now holds val,
|
||
copied from src. dstv is a value-based representation of dst, if
|
||
it differs from dst. If resolution is needed, src is a REG.
|
||
|
||
(concat (concat val (set dstv srcv)) (set dst src)): src
|
||
copied to dst, holding val. dstv and srcv are value-based
|
||
representations of dst and src, respectively.
|
||
|
||
*/
|
||
|
||
mo->u.loc = loc;
|
||
|
||
if (track_p)
|
||
VAL_HOLDS_TRACK_EXPR (loc) = 1;
|
||
if (preserve)
|
||
{
|
||
VAL_NEEDS_RESOLUTION (loc) = resolve;
|
||
cselib_preserve_value (v);
|
||
}
|
||
if (mo->type == MO_CLOBBER)
|
||
VAL_EXPR_IS_CLOBBERED (loc) = 1;
|
||
if (mo->type == MO_COPY)
|
||
VAL_EXPR_IS_COPIED (loc) = 1;
|
||
|
||
mo->type = MO_VAL_SET;
|
||
|
||
log_and_return:
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (mo->u.loc, cui->bb, cui->insn, mo->type, dump_file);
|
||
}
|
||
|
||
/* Callback for cselib_record_sets_hook, that records as micro
|
||
operations uses and stores in an insn after cselib_record_sets has
|
||
analyzed the sets in an insn, but before it modifies the stored
|
||
values in the internal tables, unless cselib_record_sets doesn't
|
||
call it directly (perhaps because we're not doing cselib in the
|
||
first place, in which case sets and n_sets will be 0). */
|
||
|
||
static void
|
||
add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
int n1, n2;
|
||
struct count_use_info cui;
|
||
|
||
cselib_hook_called = true;
|
||
|
||
cui.insn = insn;
|
||
cui.bb = bb;
|
||
cui.sets = sets;
|
||
cui.n_sets = n_sets;
|
||
|
||
n1 = VTI (bb)->n_mos;
|
||
cui.store_p = false;
|
||
note_uses (&PATTERN (insn), add_uses_1, &cui);
|
||
n2 = VTI (bb)->n_mos - 1;
|
||
|
||
/* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
|
||
MO_VAL_LOC last. */
|
||
while (n1 < n2)
|
||
{
|
||
while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
|
||
n1++;
|
||
while (n1 < n2 && VTI (bb)->mos[n2].type != MO_USE)
|
||
n2--;
|
||
if (n1 < n2)
|
||
{
|
||
micro_operation sw;
|
||
|
||
sw = VTI (bb)->mos[n1];
|
||
VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
|
||
VTI (bb)->mos[n2] = sw;
|
||
}
|
||
}
|
||
|
||
n2 = VTI (bb)->n_mos - 1;
|
||
|
||
while (n1 < n2)
|
||
{
|
||
while (n1 < n2 && VTI (bb)->mos[n1].type != MO_VAL_LOC)
|
||
n1++;
|
||
while (n1 < n2 && VTI (bb)->mos[n2].type == MO_VAL_LOC)
|
||
n2--;
|
||
if (n1 < n2)
|
||
{
|
||
micro_operation sw;
|
||
|
||
sw = VTI (bb)->mos[n1];
|
||
VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
|
||
VTI (bb)->mos[n2] = sw;
|
||
}
|
||
}
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
|
||
mo->type = MO_CALL;
|
||
mo->insn = insn;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (PATTERN (insn), bb, insn, mo->type, dump_file);
|
||
}
|
||
|
||
n1 = VTI (bb)->n_mos;
|
||
/* This will record NEXT_INSN (insn), such that we can
|
||
insert notes before it without worrying about any
|
||
notes that MO_USEs might emit after the insn. */
|
||
cui.store_p = true;
|
||
note_stores (PATTERN (insn), add_stores, &cui);
|
||
n2 = VTI (bb)->n_mos - 1;
|
||
|
||
/* Order the MO_CLOBBERs to be before MO_SETs. */
|
||
while (n1 < n2)
|
||
{
|
||
while (n1 < n2 && VTI (bb)->mos[n1].type == MO_CLOBBER)
|
||
n1++;
|
||
while (n1 < n2 && VTI (bb)->mos[n2].type != MO_CLOBBER)
|
||
n2--;
|
||
if (n1 < n2)
|
||
{
|
||
micro_operation sw;
|
||
|
||
sw = VTI (bb)->mos[n1];
|
||
VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
|
||
VTI (bb)->mos[n2] = sw;
|
||
}
|
||
}
|
||
}
|
||
|
||
static enum var_init_status
|
||
find_src_status (dataflow_set *in, rtx src)
|
||
{
|
||
tree decl = NULL_TREE;
|
||
enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
|
||
|
||
if (! flag_var_tracking_uninit)
|
||
status = VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
if (src && REG_P (src))
|
||
decl = var_debug_decl (REG_EXPR (src));
|
||
else if (src && MEM_P (src))
|
||
decl = var_debug_decl (MEM_EXPR (src));
|
||
|
||
if (src && decl)
|
||
status = get_init_value (in, src, dv_from_decl (decl));
|
||
|
||
return status;
|
||
}
|
||
|
||
/* SRC is the source of an assignment. Use SET to try to find what
|
||
was ultimately assigned to SRC. Return that value if known,
|
||
otherwise return SRC itself. */
|
||
|
||
static rtx
|
||
find_src_set_src (dataflow_set *set, rtx src)
|
||
{
|
||
tree decl = NULL_TREE; /* The variable being copied around. */
|
||
rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
|
||
variable var;
|
||
location_chain nextp;
|
||
int i;
|
||
bool found;
|
||
|
||
if (src && REG_P (src))
|
||
decl = var_debug_decl (REG_EXPR (src));
|
||
else if (src && MEM_P (src))
|
||
decl = var_debug_decl (MEM_EXPR (src));
|
||
|
||
if (src && decl)
|
||
{
|
||
decl_or_value dv = dv_from_decl (decl);
|
||
|
||
var = shared_hash_find (set->vars, dv);
|
||
if (var)
|
||
{
|
||
found = false;
|
||
for (i = 0; i < var->n_var_parts && !found; i++)
|
||
for (nextp = var->var_part[i].loc_chain; nextp && !found;
|
||
nextp = nextp->next)
|
||
if (rtx_equal_p (nextp->loc, src))
|
||
{
|
||
set_src = nextp->set_src;
|
||
found = true;
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
return set_src;
|
||
}
|
||
|
||
/* Compute the changes of variable locations in the basic block BB. */
|
||
|
||
static bool
|
||
compute_bb_dataflow (basic_block bb)
|
||
{
|
||
int i, n;
|
||
bool changed;
|
||
dataflow_set old_out;
|
||
dataflow_set *in = &VTI (bb)->in;
|
||
dataflow_set *out = &VTI (bb)->out;
|
||
|
||
dataflow_set_init (&old_out);
|
||
dataflow_set_copy (&old_out, out);
|
||
dataflow_set_copy (out, in);
|
||
|
||
n = VTI (bb)->n_mos;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
rtx insn = VTI (bb)->mos[i].insn;
|
||
|
||
switch (VTI (bb)->mos[i].type)
|
||
{
|
||
case MO_CALL:
|
||
dataflow_set_clear_at_call (out);
|
||
break;
|
||
|
||
case MO_USE:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
|
||
if (REG_P (loc))
|
||
var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
|
||
else if (MEM_P (loc))
|
||
var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
|
||
}
|
||
break;
|
||
|
||
case MO_VAL_LOC:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx val, vloc;
|
||
tree var;
|
||
|
||
if (GET_CODE (loc) == CONCAT)
|
||
{
|
||
val = XEXP (loc, 0);
|
||
vloc = XEXP (loc, 1);
|
||
}
|
||
else
|
||
{
|
||
val = NULL_RTX;
|
||
vloc = loc;
|
||
}
|
||
|
||
var = PAT_VAR_LOCATION_DECL (vloc);
|
||
|
||
clobber_variable_part (out, NULL_RTX,
|
||
dv_from_decl (var), 0, NULL_RTX);
|
||
if (val)
|
||
{
|
||
if (VAL_NEEDS_RESOLUTION (loc))
|
||
val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
|
||
set_variable_part (out, val, dv_from_decl (var), 0,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
|
||
INSERT);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case MO_VAL_USE:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx val, vloc, uloc;
|
||
|
||
vloc = uloc = XEXP (loc, 1);
|
||
val = XEXP (loc, 0);
|
||
|
||
if (GET_CODE (val) == CONCAT)
|
||
{
|
||
uloc = XEXP (val, 1);
|
||
val = XEXP (val, 0);
|
||
}
|
||
|
||
if (VAL_NEEDS_RESOLUTION (loc))
|
||
val_resolve (out, val, vloc, insn);
|
||
|
||
if (VAL_HOLDS_TRACK_EXPR (loc))
|
||
{
|
||
if (GET_CODE (uloc) == REG)
|
||
var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
|
||
NULL);
|
||
else if (GET_CODE (uloc) == MEM)
|
||
var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
|
||
NULL);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case MO_VAL_SET:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx val, vloc, uloc;
|
||
|
||
vloc = uloc = XEXP (loc, 1);
|
||
val = XEXP (loc, 0);
|
||
|
||
if (GET_CODE (val) == CONCAT)
|
||
{
|
||
vloc = XEXP (val, 1);
|
||
val = XEXP (val, 0);
|
||
}
|
||
|
||
if (GET_CODE (vloc) == SET)
|
||
{
|
||
rtx vsrc = SET_SRC (vloc);
|
||
|
||
gcc_assert (val != vsrc);
|
||
gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
|
||
|
||
vloc = SET_DEST (vloc);
|
||
|
||
if (VAL_NEEDS_RESOLUTION (loc))
|
||
val_resolve (out, val, vsrc, insn);
|
||
}
|
||
else if (VAL_NEEDS_RESOLUTION (loc))
|
||
{
|
||
gcc_assert (GET_CODE (uloc) == SET
|
||
&& GET_CODE (SET_SRC (uloc)) == REG);
|
||
val_resolve (out, val, SET_SRC (uloc), insn);
|
||
}
|
||
|
||
if (VAL_HOLDS_TRACK_EXPR (loc))
|
||
{
|
||
if (VAL_EXPR_IS_CLOBBERED (loc))
|
||
{
|
||
if (REG_P (uloc))
|
||
var_reg_delete (out, uloc, true);
|
||
else if (MEM_P (uloc))
|
||
var_mem_delete (out, uloc, true);
|
||
}
|
||
else
|
||
{
|
||
bool copied_p = VAL_EXPR_IS_COPIED (loc);
|
||
rtx set_src = NULL;
|
||
enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
if (GET_CODE (uloc) == SET)
|
||
{
|
||
set_src = SET_SRC (uloc);
|
||
uloc = SET_DEST (uloc);
|
||
}
|
||
|
||
if (copied_p)
|
||
{
|
||
if (flag_var_tracking_uninit)
|
||
{
|
||
status = find_src_status (in, set_src);
|
||
|
||
if (status == VAR_INIT_STATUS_UNKNOWN)
|
||
status = find_src_status (out, set_src);
|
||
}
|
||
|
||
set_src = find_src_set_src (in, set_src);
|
||
}
|
||
|
||
if (REG_P (uloc))
|
||
var_reg_delete_and_set (out, uloc, !copied_p,
|
||
status, set_src);
|
||
else if (MEM_P (uloc))
|
||
var_mem_delete_and_set (out, uloc, !copied_p,
|
||
status, set_src);
|
||
}
|
||
}
|
||
else if (REG_P (uloc))
|
||
var_regno_delete (out, REGNO (uloc));
|
||
|
||
val_store (out, val, vloc, insn);
|
||
}
|
||
break;
|
||
|
||
case MO_SET:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx set_src = NULL;
|
||
|
||
if (GET_CODE (loc) == SET)
|
||
{
|
||
set_src = SET_SRC (loc);
|
||
loc = SET_DEST (loc);
|
||
}
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
|
||
set_src);
|
||
else if (MEM_P (loc))
|
||
var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
|
||
set_src);
|
||
}
|
||
break;
|
||
|
||
case MO_COPY:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
enum var_init_status src_status;
|
||
rtx set_src = NULL;
|
||
|
||
if (GET_CODE (loc) == SET)
|
||
{
|
||
set_src = SET_SRC (loc);
|
||
loc = SET_DEST (loc);
|
||
}
|
||
|
||
if (! flag_var_tracking_uninit)
|
||
src_status = VAR_INIT_STATUS_INITIALIZED;
|
||
else
|
||
{
|
||
src_status = find_src_status (in, set_src);
|
||
|
||
if (src_status == VAR_INIT_STATUS_UNKNOWN)
|
||
src_status = find_src_status (out, set_src);
|
||
}
|
||
|
||
set_src = find_src_set_src (in, set_src);
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete_and_set (out, loc, false, src_status, set_src);
|
||
else if (MEM_P (loc))
|
||
var_mem_delete_and_set (out, loc, false, src_status, set_src);
|
||
}
|
||
break;
|
||
|
||
case MO_USE_NO_VAR:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete (out, loc, false);
|
||
else if (MEM_P (loc))
|
||
var_mem_delete (out, loc, false);
|
||
}
|
||
break;
|
||
|
||
case MO_CLOBBER:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete (out, loc, true);
|
||
else if (MEM_P (loc))
|
||
var_mem_delete (out, loc, true);
|
||
}
|
||
break;
|
||
|
||
case MO_ADJUST:
|
||
out->stack_adjust += VTI (bb)->mos[i].u.adjust;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
dataflow_set_equiv_regs (out);
|
||
htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
|
||
out);
|
||
htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
|
||
out);
|
||
#if ENABLE_CHECKING
|
||
htab_traverse (shared_hash_htab (out->vars),
|
||
canonicalize_loc_order_check, out);
|
||
#endif
|
||
}
|
||
changed = dataflow_set_different (&old_out, out);
|
||
dataflow_set_destroy (&old_out);
|
||
return changed;
|
||
}
|
||
|
||
/* Find the locations of variables in the whole function. */
|
||
|
||
static void
|
||
vt_find_locations (void)
|
||
{
|
||
fibheap_t worklist, pending, fibheap_swap;
|
||
sbitmap visited, in_worklist, in_pending, sbitmap_swap;
|
||
basic_block bb;
|
||
edge e;
|
||
int *bb_order;
|
||
int *rc_order;
|
||
int i;
|
||
int htabsz = 0;
|
||
|
||
/* Compute reverse completion order of depth first search of the CFG
|
||
so that the data-flow runs faster. */
|
||
rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
|
||
bb_order = XNEWVEC (int, last_basic_block);
|
||
pre_and_rev_post_order_compute (NULL, rc_order, false);
|
||
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
|
||
bb_order[rc_order[i]] = i;
|
||
free (rc_order);
|
||
|
||
worklist = fibheap_new ();
|
||
pending = fibheap_new ();
|
||
visited = sbitmap_alloc (last_basic_block);
|
||
in_worklist = sbitmap_alloc (last_basic_block);
|
||
in_pending = sbitmap_alloc (last_basic_block);
|
||
sbitmap_zero (in_worklist);
|
||
|
||
FOR_EACH_BB (bb)
|
||
fibheap_insert (pending, bb_order[bb->index], bb);
|
||
sbitmap_ones (in_pending);
|
||
|
||
while (!fibheap_empty (pending))
|
||
{
|
||
fibheap_swap = pending;
|
||
pending = worklist;
|
||
worklist = fibheap_swap;
|
||
sbitmap_swap = in_pending;
|
||
in_pending = in_worklist;
|
||
in_worklist = sbitmap_swap;
|
||
|
||
sbitmap_zero (visited);
|
||
|
||
while (!fibheap_empty (worklist))
|
||
{
|
||
bb = (basic_block) fibheap_extract_min (worklist);
|
||
RESET_BIT (in_worklist, bb->index);
|
||
if (!TEST_BIT (visited, bb->index))
|
||
{
|
||
bool changed;
|
||
edge_iterator ei;
|
||
int oldinsz, oldoutsz;
|
||
|
||
SET_BIT (visited, bb->index);
|
||
|
||
if (dump_file && VTI (bb)->in.vars)
|
||
{
|
||
htabsz
|
||
-= htab_size (shared_hash_htab (VTI (bb)->in.vars))
|
||
+ htab_size (shared_hash_htab (VTI (bb)->out.vars));
|
||
oldinsz
|
||
= htab_elements (shared_hash_htab (VTI (bb)->in.vars));
|
||
oldoutsz
|
||
= htab_elements (shared_hash_htab (VTI (bb)->out.vars));
|
||
}
|
||
else
|
||
oldinsz = oldoutsz = 0;
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
|
||
bool first = true, adjust = false;
|
||
|
||
/* Calculate the IN set as the intersection of
|
||
predecessor OUT sets. */
|
||
|
||
dataflow_set_clear (in);
|
||
dst_can_be_shared = true;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!VTI (e->src)->flooded)
|
||
gcc_assert (bb_order[bb->index]
|
||
<= bb_order[e->src->index]);
|
||
else if (first)
|
||
{
|
||
dataflow_set_copy (in, &VTI (e->src)->out);
|
||
first_out = &VTI (e->src)->out;
|
||
first = false;
|
||
}
|
||
else
|
||
{
|
||
dataflow_set_merge (in, &VTI (e->src)->out);
|
||
adjust = true;
|
||
}
|
||
|
||
if (adjust)
|
||
{
|
||
dataflow_post_merge_adjust (in, &VTI (bb)->permp);
|
||
#if ENABLE_CHECKING
|
||
/* Merge and merge_adjust should keep entries in
|
||
canonical order. */
|
||
htab_traverse (shared_hash_htab (in->vars),
|
||
canonicalize_loc_order_check,
|
||
in);
|
||
#endif
|
||
if (dst_can_be_shared)
|
||
{
|
||
shared_hash_destroy (in->vars);
|
||
in->vars = shared_hash_copy (first_out->vars);
|
||
}
|
||
}
|
||
|
||
VTI (bb)->flooded = true;
|
||
}
|
||
else
|
||
{
|
||
/* Calculate the IN set as union of predecessor OUT sets. */
|
||
dataflow_set_clear (&VTI (bb)->in);
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
|
||
}
|
||
|
||
changed = compute_bb_dataflow (bb);
|
||
if (dump_file)
|
||
htabsz += htab_size (shared_hash_htab (VTI (bb)->in.vars))
|
||
+ htab_size (shared_hash_htab (VTI (bb)->out.vars));
|
||
|
||
if (changed)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (e->dest == EXIT_BLOCK_PTR)
|
||
continue;
|
||
|
||
if (TEST_BIT (visited, e->dest->index))
|
||
{
|
||
if (!TEST_BIT (in_pending, e->dest->index))
|
||
{
|
||
/* Send E->DEST to next round. */
|
||
SET_BIT (in_pending, e->dest->index);
|
||
fibheap_insert (pending,
|
||
bb_order[e->dest->index],
|
||
e->dest);
|
||
}
|
||
}
|
||
else if (!TEST_BIT (in_worklist, e->dest->index))
|
||
{
|
||
/* Add E->DEST to current round. */
|
||
SET_BIT (in_worklist, e->dest->index);
|
||
fibheap_insert (worklist, bb_order[e->dest->index],
|
||
e->dest);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
|
||
bb->index,
|
||
(int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
|
||
oldinsz,
|
||
(int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
|
||
oldoutsz,
|
||
(int)worklist->nodes, (int)pending->nodes, htabsz);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "BB %i IN:\n", bb->index);
|
||
dump_dataflow_set (&VTI (bb)->in);
|
||
fprintf (dump_file, "BB %i OUT:\n", bb->index);
|
||
dump_dataflow_set (&VTI (bb)->out);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
FOR_EACH_BB (bb)
|
||
gcc_assert (VTI (bb)->flooded);
|
||
|
||
free (bb_order);
|
||
fibheap_delete (worklist);
|
||
fibheap_delete (pending);
|
||
sbitmap_free (visited);
|
||
sbitmap_free (in_worklist);
|
||
sbitmap_free (in_pending);
|
||
}
|
||
|
||
/* Print the content of the LIST to dump file. */
|
||
|
||
static void
|
||
dump_attrs_list (attrs list)
|
||
{
|
||
for (; list; list = list->next)
|
||
{
|
||
if (dv_is_decl_p (list->dv))
|
||
print_mem_expr (dump_file, dv_as_decl (list->dv));
|
||
else
|
||
print_rtl_single (dump_file, dv_as_value (list->dv));
|
||
fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
/* Print the information about variable *SLOT to dump file. */
|
||
|
||
static int
|
||
dump_variable_slot (void **slot, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
variable var = (variable) *slot;
|
||
|
||
dump_variable (var);
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
/* Print the information about variable VAR to dump file. */
|
||
|
||
static void
|
||
dump_variable (variable var)
|
||
{
|
||
int i;
|
||
location_chain node;
|
||
|
||
if (dv_is_decl_p (var->dv))
|
||
{
|
||
const_tree decl = dv_as_decl (var->dv);
|
||
|
||
if (DECL_NAME (decl))
|
||
fprintf (dump_file, " name: %s",
|
||
IDENTIFIER_POINTER (DECL_NAME (decl)));
|
||
else
|
||
fprintf (dump_file, " name: D.%u", DECL_UID (decl));
|
||
if (dump_flags & TDF_UID)
|
||
fprintf (dump_file, " D.%u\n", DECL_UID (decl));
|
||
else
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
else
|
||
{
|
||
fputc (' ', dump_file);
|
||
print_rtl_single (dump_file, dv_as_value (var->dv));
|
||
}
|
||
|
||
for (i = 0; i < var->n_var_parts; i++)
|
||
{
|
||
fprintf (dump_file, " offset %ld\n",
|
||
(long) var->var_part[i].offset);
|
||
for (node = var->var_part[i].loc_chain; node; node = node->next)
|
||
{
|
||
fprintf (dump_file, " ");
|
||
if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
|
||
fprintf (dump_file, "[uninit]");
|
||
print_rtl_single (dump_file, node->loc);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print the information about variables from hash table VARS to dump file. */
|
||
|
||
static void
|
||
dump_vars (htab_t vars)
|
||
{
|
||
if (htab_elements (vars) > 0)
|
||
{
|
||
fprintf (dump_file, "Variables:\n");
|
||
htab_traverse (vars, dump_variable_slot, NULL);
|
||
}
|
||
}
|
||
|
||
/* Print the dataflow set SET to dump file. */
|
||
|
||
static void
|
||
dump_dataflow_set (dataflow_set *set)
|
||
{
|
||
int i;
|
||
|
||
fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
|
||
set->stack_adjust);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (set->regs[i])
|
||
{
|
||
fprintf (dump_file, "Reg %d:", i);
|
||
dump_attrs_list (set->regs[i]);
|
||
}
|
||
}
|
||
dump_vars (shared_hash_htab (set->vars));
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
/* Print the IN and OUT sets for each basic block to dump file. */
|
||
|
||
static void
|
||
dump_dataflow_sets (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
fprintf (dump_file, "\nBasic block %d:\n", bb->index);
|
||
fprintf (dump_file, "IN:\n");
|
||
dump_dataflow_set (&VTI (bb)->in);
|
||
fprintf (dump_file, "OUT:\n");
|
||
dump_dataflow_set (&VTI (bb)->out);
|
||
}
|
||
}
|
||
|
||
/* Add variable VAR to the hash table of changed variables and
|
||
if it has no locations delete it from SET's hash table. */
|
||
|
||
static void
|
||
variable_was_changed (variable var, dataflow_set *set)
|
||
{
|
||
hashval_t hash = dv_htab_hash (var->dv);
|
||
|
||
if (emit_notes)
|
||
{
|
||
void **slot;
|
||
|
||
/* Remember this decl or VALUE has been added to changed_variables. */
|
||
set_dv_changed (var->dv, true);
|
||
|
||
slot = htab_find_slot_with_hash (changed_variables,
|
||
var->dv,
|
||
hash, INSERT);
|
||
|
||
if (set && var->n_var_parts == 0)
|
||
{
|
||
variable empty_var;
|
||
|
||
empty_var = (variable) pool_alloc (dv_pool (var->dv));
|
||
empty_var->dv = var->dv;
|
||
empty_var->refcount = 1;
|
||
empty_var->n_var_parts = 0;
|
||
*slot = empty_var;
|
||
goto drop_var;
|
||
}
|
||
else
|
||
{
|
||
var->refcount++;
|
||
*slot = var;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (set);
|
||
if (var->n_var_parts == 0)
|
||
{
|
||
void **slot;
|
||
|
||
drop_var:
|
||
slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
|
||
if (slot)
|
||
{
|
||
if (shared_hash_shared (set->vars))
|
||
slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
|
||
NO_INSERT);
|
||
htab_clear_slot (shared_hash_htab (set->vars), slot);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look for the index in VAR->var_part corresponding to OFFSET.
|
||
Return -1 if not found. If INSERTION_POINT is non-NULL, the
|
||
referenced int will be set to the index that the part has or should
|
||
have, if it should be inserted. */
|
||
|
||
static inline int
|
||
find_variable_location_part (variable var, HOST_WIDE_INT offset,
|
||
int *insertion_point)
|
||
{
|
||
int pos, low, high;
|
||
|
||
/* Find the location part. */
|
||
low = 0;
|
||
high = var->n_var_parts;
|
||
while (low != high)
|
||
{
|
||
pos = (low + high) / 2;
|
||
if (var->var_part[pos].offset < offset)
|
||
low = pos + 1;
|
||
else
|
||
high = pos;
|
||
}
|
||
pos = low;
|
||
|
||
if (insertion_point)
|
||
*insertion_point = pos;
|
||
|
||
if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
|
||
return pos;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static void **
|
||
set_slot_part (dataflow_set *set, rtx loc, void **slot,
|
||
decl_or_value dv, HOST_WIDE_INT offset,
|
||
enum var_init_status initialized, rtx set_src)
|
||
{
|
||
int pos;
|
||
location_chain node, next;
|
||
location_chain *nextp;
|
||
variable var;
|
||
bool onepart = dv_onepart_p (dv);
|
||
|
||
gcc_assert (offset == 0 || !onepart);
|
||
gcc_assert (loc != dv_as_opaque (dv));
|
||
|
||
var = (variable) *slot;
|
||
|
||
if (! flag_var_tracking_uninit)
|
||
initialized = VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
if (!var)
|
||
{
|
||
/* Create new variable information. */
|
||
var = (variable) pool_alloc (dv_pool (dv));
|
||
var->dv = dv;
|
||
var->refcount = 1;
|
||
var->n_var_parts = 1;
|
||
var->var_part[0].offset = offset;
|
||
var->var_part[0].loc_chain = NULL;
|
||
var->var_part[0].cur_loc = NULL;
|
||
*slot = var;
|
||
pos = 0;
|
||
nextp = &var->var_part[0].loc_chain;
|
||
if (emit_notes && dv_is_value_p (dv))
|
||
add_cselib_value_chains (dv);
|
||
}
|
||
else if (onepart)
|
||
{
|
||
int r = -1, c = 0;
|
||
|
||
gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
|
||
|
||
pos = 0;
|
||
|
||
if (GET_CODE (loc) == VALUE)
|
||
{
|
||
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
|
||
nextp = &node->next)
|
||
if (GET_CODE (node->loc) == VALUE)
|
||
{
|
||
if (node->loc == loc)
|
||
{
|
||
r = 0;
|
||
break;
|
||
}
|
||
if (canon_value_cmp (node->loc, loc))
|
||
c++;
|
||
else
|
||
{
|
||
r = 1;
|
||
break;
|
||
}
|
||
}
|
||
else if (REG_P (node->loc) || MEM_P (node->loc))
|
||
c++;
|
||
else
|
||
{
|
||
r = 1;
|
||
break;
|
||
}
|
||
}
|
||
else if (REG_P (loc))
|
||
{
|
||
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
|
||
nextp = &node->next)
|
||
if (REG_P (node->loc))
|
||
{
|
||
if (REGNO (node->loc) < REGNO (loc))
|
||
c++;
|
||
else
|
||
{
|
||
if (REGNO (node->loc) == REGNO (loc))
|
||
r = 0;
|
||
else
|
||
r = 1;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r = 1;
|
||
break;
|
||
}
|
||
}
|
||
else if (MEM_P (loc))
|
||
{
|
||
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
|
||
nextp = &node->next)
|
||
if (REG_P (node->loc))
|
||
c++;
|
||
else if (MEM_P (node->loc))
|
||
{
|
||
if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
|
||
break;
|
||
else
|
||
c++;
|
||
}
|
||
else
|
||
{
|
||
r = 1;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
|
||
nextp = &node->next)
|
||
if ((r = loc_cmp (node->loc, loc)) >= 0)
|
||
break;
|
||
else
|
||
c++;
|
||
|
||
if (r == 0)
|
||
return slot;
|
||
|
||
if (var->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
slot = unshare_variable (set, slot, var, initialized);
|
||
var = (variable)*slot;
|
||
for (nextp = &var->var_part[0].loc_chain; c;
|
||
nextp = &(*nextp)->next)
|
||
c--;
|
||
gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int inspos = 0;
|
||
|
||
gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
|
||
|
||
pos = find_variable_location_part (var, offset, &inspos);
|
||
|
||
if (pos >= 0)
|
||
{
|
||
node = var->var_part[pos].loc_chain;
|
||
|
||
if (node
|
||
&& ((REG_P (node->loc) && REG_P (loc)
|
||
&& REGNO (node->loc) == REGNO (loc))
|
||
|| rtx_equal_p (node->loc, loc)))
|
||
{
|
||
/* LOC is in the beginning of the chain so we have nothing
|
||
to do. */
|
||
if (node->init < initialized)
|
||
node->init = initialized;
|
||
if (set_src != NULL)
|
||
node->set_src = set_src;
|
||
|
||
return slot;
|
||
}
|
||
else
|
||
{
|
||
/* We have to make a copy of a shared variable. */
|
||
if (var->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
slot = unshare_variable (set, slot, var, initialized);
|
||
var = (variable)*slot;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We have not found the location part, new one will be created. */
|
||
|
||
/* We have to make a copy of the shared variable. */
|
||
if (var->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
slot = unshare_variable (set, slot, var, initialized);
|
||
var = (variable)*slot;
|
||
}
|
||
|
||
/* We track only variables whose size is <= MAX_VAR_PARTS bytes
|
||
thus there are at most MAX_VAR_PARTS different offsets. */
|
||
gcc_assert (var->n_var_parts < MAX_VAR_PARTS
|
||
&& (!var->n_var_parts || !dv_onepart_p (var->dv)));
|
||
|
||
/* We have to move the elements of array starting at index
|
||
inspos to the next position. */
|
||
for (pos = var->n_var_parts; pos > inspos; pos--)
|
||
var->var_part[pos] = var->var_part[pos - 1];
|
||
|
||
var->n_var_parts++;
|
||
var->var_part[pos].offset = offset;
|
||
var->var_part[pos].loc_chain = NULL;
|
||
var->var_part[pos].cur_loc = NULL;
|
||
}
|
||
|
||
/* Delete the location from the list. */
|
||
nextp = &var->var_part[pos].loc_chain;
|
||
for (node = var->var_part[pos].loc_chain; node; node = next)
|
||
{
|
||
next = node->next;
|
||
if ((REG_P (node->loc) && REG_P (loc)
|
||
&& REGNO (node->loc) == REGNO (loc))
|
||
|| rtx_equal_p (node->loc, loc))
|
||
{
|
||
/* Save these values, to assign to the new node, before
|
||
deleting this one. */
|
||
if (node->init > initialized)
|
||
initialized = node->init;
|
||
if (node->set_src != NULL && set_src == NULL)
|
||
set_src = node->set_src;
|
||
pool_free (loc_chain_pool, node);
|
||
*nextp = next;
|
||
break;
|
||
}
|
||
else
|
||
nextp = &node->next;
|
||
}
|
||
|
||
nextp = &var->var_part[pos].loc_chain;
|
||
}
|
||
|
||
/* Add the location to the beginning. */
|
||
node = (location_chain) pool_alloc (loc_chain_pool);
|
||
node->loc = loc;
|
||
node->init = initialized;
|
||
node->set_src = set_src;
|
||
node->next = *nextp;
|
||
*nextp = node;
|
||
|
||
if (onepart && emit_notes)
|
||
add_value_chains (var->dv, loc);
|
||
|
||
/* If no location was emitted do so. */
|
||
if (var->var_part[pos].cur_loc == NULL)
|
||
{
|
||
var->var_part[pos].cur_loc = loc;
|
||
variable_was_changed (var, set);
|
||
}
|
||
|
||
return slot;
|
||
}
|
||
|
||
/* Set the part of variable's location in the dataflow set SET. The
|
||
variable part is specified by variable's declaration in DV and
|
||
offset OFFSET and the part's location by LOC. IOPT should be
|
||
NO_INSERT if the variable is known to be in SET already and the
|
||
variable hash table must not be resized, and INSERT otherwise. */
|
||
|
||
static void
|
||
set_variable_part (dataflow_set *set, rtx loc,
|
||
decl_or_value dv, HOST_WIDE_INT offset,
|
||
enum var_init_status initialized, rtx set_src,
|
||
enum insert_option iopt)
|
||
{
|
||
void **slot;
|
||
|
||
if (iopt == NO_INSERT)
|
||
slot = shared_hash_find_slot_noinsert (set->vars, dv);
|
||
else
|
||
{
|
||
slot = shared_hash_find_slot (set->vars, dv);
|
||
if (!slot)
|
||
slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
|
||
}
|
||
slot = set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
|
||
}
|
||
|
||
/* Remove all recorded register locations for the given variable part
|
||
from dataflow set SET, except for those that are identical to loc.
|
||
The variable part is specified by variable's declaration or value
|
||
DV and offset OFFSET. */
|
||
|
||
static void **
|
||
clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
|
||
HOST_WIDE_INT offset, rtx set_src)
|
||
{
|
||
variable var = (variable) *slot;
|
||
int pos = find_variable_location_part (var, offset, NULL);
|
||
|
||
if (pos >= 0)
|
||
{
|
||
location_chain node, next;
|
||
|
||
/* Remove the register locations from the dataflow set. */
|
||
next = var->var_part[pos].loc_chain;
|
||
for (node = next; node; node = next)
|
||
{
|
||
next = node->next;
|
||
if (node->loc != loc
|
||
&& (!flag_var_tracking_uninit
|
||
|| !set_src
|
||
|| MEM_P (set_src)
|
||
|| !rtx_equal_p (set_src, node->set_src)))
|
||
{
|
||
if (REG_P (node->loc))
|
||
{
|
||
attrs anode, anext;
|
||
attrs *anextp;
|
||
|
||
/* Remove the variable part from the register's
|
||
list, but preserve any other variable parts
|
||
that might be regarded as live in that same
|
||
register. */
|
||
anextp = &set->regs[REGNO (node->loc)];
|
||
for (anode = *anextp; anode; anode = anext)
|
||
{
|
||
anext = anode->next;
|
||
if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
|
||
&& anode->offset == offset)
|
||
{
|
||
pool_free (attrs_pool, anode);
|
||
*anextp = anext;
|
||
}
|
||
else
|
||
anextp = &anode->next;
|
||
}
|
||
}
|
||
|
||
slot = delete_slot_part (set, node->loc, slot, offset);
|
||
}
|
||
}
|
||
}
|
||
|
||
return slot;
|
||
}
|
||
|
||
/* Remove all recorded register locations for the given variable part
|
||
from dataflow set SET, except for those that are identical to loc.
|
||
The variable part is specified by variable's declaration or value
|
||
DV and offset OFFSET. */
|
||
|
||
static void
|
||
clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
|
||
HOST_WIDE_INT offset, rtx set_src)
|
||
{
|
||
void **slot;
|
||
|
||
if (!dv_as_opaque (dv)
|
||
|| (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
|
||
return;
|
||
|
||
slot = shared_hash_find_slot_noinsert (set->vars, dv);
|
||
if (!slot)
|
||
return;
|
||
|
||
slot = clobber_slot_part (set, loc, slot, offset, set_src);
|
||
}
|
||
|
||
/* Delete the part of variable's location from dataflow set SET. The
|
||
variable part is specified by its SET->vars slot SLOT and offset
|
||
OFFSET and the part's location by LOC. */
|
||
|
||
static void **
|
||
delete_slot_part (dataflow_set *set, rtx loc, void **slot,
|
||
HOST_WIDE_INT offset)
|
||
{
|
||
variable var = (variable) *slot;
|
||
int pos = find_variable_location_part (var, offset, NULL);
|
||
|
||
if (pos >= 0)
|
||
{
|
||
location_chain node, next;
|
||
location_chain *nextp;
|
||
bool changed;
|
||
|
||
if (var->refcount > 1 || shared_hash_shared (set->vars))
|
||
{
|
||
/* If the variable contains the location part we have to
|
||
make a copy of the variable. */
|
||
for (node = var->var_part[pos].loc_chain; node;
|
||
node = node->next)
|
||
{
|
||
if ((REG_P (node->loc) && REG_P (loc)
|
||
&& REGNO (node->loc) == REGNO (loc))
|
||
|| rtx_equal_p (node->loc, loc))
|
||
{
|
||
slot = unshare_variable (set, slot, var,
|
||
VAR_INIT_STATUS_UNKNOWN);
|
||
var = (variable)*slot;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Delete the location part. */
|
||
nextp = &var->var_part[pos].loc_chain;
|
||
for (node = *nextp; node; node = next)
|
||
{
|
||
next = node->next;
|
||
if ((REG_P (node->loc) && REG_P (loc)
|
||
&& REGNO (node->loc) == REGNO (loc))
|
||
|| rtx_equal_p (node->loc, loc))
|
||
{
|
||
if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
|
||
remove_value_chains (var->dv, node->loc);
|
||
pool_free (loc_chain_pool, node);
|
||
*nextp = next;
|
||
break;
|
||
}
|
||
else
|
||
nextp = &node->next;
|
||
}
|
||
|
||
/* If we have deleted the location which was last emitted
|
||
we have to emit new location so add the variable to set
|
||
of changed variables. */
|
||
if (var->var_part[pos].cur_loc
|
||
&& ((REG_P (loc)
|
||
&& REG_P (var->var_part[pos].cur_loc)
|
||
&& REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
|
||
|| rtx_equal_p (loc, var->var_part[pos].cur_loc)))
|
||
{
|
||
changed = true;
|
||
if (var->var_part[pos].loc_chain)
|
||
var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
|
||
}
|
||
else
|
||
changed = false;
|
||
|
||
if (var->var_part[pos].loc_chain == NULL)
|
||
{
|
||
gcc_assert (changed);
|
||
var->n_var_parts--;
|
||
if (emit_notes && var->n_var_parts == 0 && dv_is_value_p (var->dv))
|
||
remove_cselib_value_chains (var->dv);
|
||
while (pos < var->n_var_parts)
|
||
{
|
||
var->var_part[pos] = var->var_part[pos + 1];
|
||
pos++;
|
||
}
|
||
}
|
||
if (changed)
|
||
variable_was_changed (var, set);
|
||
}
|
||
|
||
return slot;
|
||
}
|
||
|
||
/* Delete the part of variable's location from dataflow set SET. The
|
||
variable part is specified by variable's declaration or value DV
|
||
and offset OFFSET and the part's location by LOC. */
|
||
|
||
static void
|
||
delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
|
||
HOST_WIDE_INT offset)
|
||
{
|
||
void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
|
||
if (!slot)
|
||
return;
|
||
|
||
slot = delete_slot_part (set, loc, slot, offset);
|
||
}
|
||
|
||
/* Wrap result in CONST:MODE if needed to preserve the mode. */
|
||
|
||
static rtx
|
||
check_wrap_constant (enum machine_mode mode, rtx result)
|
||
{
|
||
if (!result || GET_MODE (result) == mode)
|
||
return result;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, " wrapping result in const to preserve mode %s\n",
|
||
GET_MODE_NAME (mode));
|
||
|
||
result = wrap_constant (mode, result);
|
||
gcc_assert (GET_MODE (result) == mode);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Callback for cselib_expand_value, that looks for expressions
|
||
holding the value in the var-tracking hash tables. Return X for
|
||
standard processing, anything else is to be used as-is. */
|
||
|
||
static rtx
|
||
vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
|
||
{
|
||
htab_t vars = (htab_t)data;
|
||
decl_or_value dv;
|
||
variable var;
|
||
location_chain loc;
|
||
rtx result, subreg, xret;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case SUBREG:
|
||
subreg = SUBREG_REG (x);
|
||
|
||
if (GET_CODE (SUBREG_REG (x)) != VALUE)
|
||
return x;
|
||
|
||
subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
|
||
max_depth - 1,
|
||
vt_expand_loc_callback, data);
|
||
|
||
if (!subreg)
|
||
return NULL;
|
||
|
||
result = simplify_gen_subreg (GET_MODE (x), subreg,
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
|
||
/* Invalid SUBREGs are ok in debug info. ??? We could try
|
||
alternate expansions for the VALUE as well. */
|
||
if (!result && (REG_P (subreg) || MEM_P (subreg)))
|
||
result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
|
||
|
||
return result;
|
||
|
||
case DEBUG_EXPR:
|
||
dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
|
||
xret = NULL;
|
||
break;
|
||
|
||
case VALUE:
|
||
dv = dv_from_value (x);
|
||
xret = x;
|
||
break;
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
if (VALUE_RECURSED_INTO (x))
|
||
return NULL;
|
||
|
||
var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
|
||
|
||
if (!var)
|
||
return xret;
|
||
|
||
if (var->n_var_parts == 0)
|
||
return xret;
|
||
|
||
gcc_assert (var->n_var_parts == 1);
|
||
|
||
VALUE_RECURSED_INTO (x) = true;
|
||
result = NULL;
|
||
|
||
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
|
||
{
|
||
result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
|
||
vt_expand_loc_callback, vars);
|
||
result = check_wrap_constant (GET_MODE (loc->loc), result);
|
||
if (result)
|
||
break;
|
||
}
|
||
|
||
VALUE_RECURSED_INTO (x) = false;
|
||
if (result)
|
||
return result;
|
||
else
|
||
return xret;
|
||
}
|
||
|
||
/* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
|
||
tables. */
|
||
|
||
static rtx
|
||
vt_expand_loc (rtx loc, htab_t vars)
|
||
{
|
||
rtx newloc;
|
||
|
||
if (!MAY_HAVE_DEBUG_INSNS)
|
||
return loc;
|
||
|
||
newloc = cselib_expand_value_rtx_cb (loc, scratch_regs, 5,
|
||
vt_expand_loc_callback, vars);
|
||
loc = check_wrap_constant (GET_MODE (loc), newloc);
|
||
|
||
if (loc && MEM_P (loc))
|
||
loc = targetm.delegitimize_address (loc);
|
||
|
||
return loc;
|
||
}
|
||
|
||
/* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
|
||
additional parameters: WHERE specifies whether the note shall be emitted
|
||
before or after instruction INSN. */
|
||
|
||
static int
|
||
emit_note_insn_var_location (void **varp, void *data)
|
||
{
|
||
variable var = (variable) *varp;
|
||
rtx insn = ((emit_note_data *)data)->insn;
|
||
enum emit_note_where where = ((emit_note_data *)data)->where;
|
||
htab_t vars = ((emit_note_data *)data)->vars;
|
||
rtx note;
|
||
int i, j, n_var_parts;
|
||
bool complete;
|
||
enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
|
||
HOST_WIDE_INT last_limit;
|
||
tree type_size_unit;
|
||
HOST_WIDE_INT offsets[MAX_VAR_PARTS];
|
||
rtx loc[MAX_VAR_PARTS];
|
||
tree decl;
|
||
|
||
if (dv_is_value_p (var->dv))
|
||
goto clear;
|
||
|
||
decl = dv_as_decl (var->dv);
|
||
|
||
if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
|
||
goto clear;
|
||
|
||
gcc_assert (decl);
|
||
|
||
complete = true;
|
||
last_limit = 0;
|
||
n_var_parts = 0;
|
||
for (i = 0; i < var->n_var_parts; i++)
|
||
{
|
||
enum machine_mode mode, wider_mode;
|
||
rtx loc2;
|
||
|
||
if (last_limit < var->var_part[i].offset)
|
||
{
|
||
complete = false;
|
||
break;
|
||
}
|
||
else if (last_limit > var->var_part[i].offset)
|
||
continue;
|
||
offsets[n_var_parts] = var->var_part[i].offset;
|
||
loc2 = vt_expand_loc (var->var_part[i].loc_chain->loc, vars);
|
||
if (!loc2)
|
||
{
|
||
complete = false;
|
||
continue;
|
||
}
|
||
loc[n_var_parts] = loc2;
|
||
mode = GET_MODE (loc[n_var_parts]);
|
||
initialized = var->var_part[i].loc_chain->init;
|
||
last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
|
||
|
||
/* Attempt to merge adjacent registers or memory. */
|
||
wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
for (j = i + 1; j < var->n_var_parts; j++)
|
||
if (last_limit <= var->var_part[j].offset)
|
||
break;
|
||
if (j < var->n_var_parts
|
||
&& wider_mode != VOIDmode
|
||
&& (loc2 = vt_expand_loc (var->var_part[j].loc_chain->loc, vars))
|
||
&& GET_CODE (loc[n_var_parts]) == GET_CODE (loc2)
|
||
&& mode == GET_MODE (loc2)
|
||
&& last_limit == var->var_part[j].offset)
|
||
{
|
||
rtx new_loc = NULL;
|
||
|
||
if (REG_P (loc[n_var_parts])
|
||
&& hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
|
||
== hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
|
||
&& end_hard_regno (mode, REGNO (loc[n_var_parts]))
|
||
== REGNO (loc2))
|
||
{
|
||
if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
|
||
new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
|
||
mode, 0);
|
||
else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
|
||
new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
|
||
if (new_loc)
|
||
{
|
||
if (!REG_P (new_loc)
|
||
|| REGNO (new_loc) != REGNO (loc[n_var_parts]))
|
||
new_loc = NULL;
|
||
else
|
||
REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
|
||
}
|
||
}
|
||
else if (MEM_P (loc[n_var_parts])
|
||
&& GET_CODE (XEXP (loc2, 0)) == PLUS
|
||
&& REG_P (XEXP (XEXP (loc2, 0), 0))
|
||
&& CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
|
||
{
|
||
if ((REG_P (XEXP (loc[n_var_parts], 0))
|
||
&& rtx_equal_p (XEXP (loc[n_var_parts], 0),
|
||
XEXP (XEXP (loc2, 0), 0))
|
||
&& INTVAL (XEXP (XEXP (loc2, 0), 1))
|
||
== GET_MODE_SIZE (mode))
|
||
|| (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
|
||
&& CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
|
||
&& rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
|
||
XEXP (XEXP (loc2, 0), 0))
|
||
&& INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
|
||
+ GET_MODE_SIZE (mode)
|
||
== INTVAL (XEXP (XEXP (loc2, 0), 1))))
|
||
new_loc = adjust_address_nv (loc[n_var_parts],
|
||
wider_mode, 0);
|
||
}
|
||
|
||
if (new_loc)
|
||
{
|
||
loc[n_var_parts] = new_loc;
|
||
mode = wider_mode;
|
||
last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
|
||
i = j;
|
||
}
|
||
}
|
||
++n_var_parts;
|
||
}
|
||
type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
|
||
if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
|
||
complete = false;
|
||
|
||
if (where != EMIT_NOTE_BEFORE_INSN)
|
||
{
|
||
note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
|
||
if (where == EMIT_NOTE_AFTER_CALL_INSN)
|
||
NOTE_DURING_CALL_P (note) = true;
|
||
}
|
||
else
|
||
note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
|
||
|
||
if (! flag_var_tracking_uninit)
|
||
initialized = VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
if (!complete)
|
||
{
|
||
NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, decl,
|
||
NULL_RTX, (int) initialized);
|
||
}
|
||
else if (n_var_parts == 1)
|
||
{
|
||
rtx expr_list
|
||
= gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
|
||
|
||
NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, decl,
|
||
expr_list,
|
||
(int) initialized);
|
||
}
|
||
else if (n_var_parts)
|
||
{
|
||
rtx parallel;
|
||
|
||
for (i = 0; i < n_var_parts; i++)
|
||
loc[i]
|
||
= gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
|
||
|
||
parallel = gen_rtx_PARALLEL (VOIDmode,
|
||
gen_rtvec_v (n_var_parts, loc));
|
||
NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, decl,
|
||
parallel,
|
||
(int) initialized);
|
||
}
|
||
|
||
clear:
|
||
set_dv_changed (var->dv, false);
|
||
htab_clear_slot (changed_variables, varp);
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
DEF_VEC_P (variable);
|
||
DEF_VEC_ALLOC_P (variable, heap);
|
||
|
||
/* Stack of variable_def pointers that need processing with
|
||
check_changed_vars_2. */
|
||
|
||
static VEC (variable, heap) *changed_variables_stack;
|
||
|
||
/* Populate changed_variables_stack with variable_def pointers
|
||
that need variable_was_changed called on them. */
|
||
|
||
static int
|
||
check_changed_vars_1 (void **slot, void *data)
|
||
{
|
||
variable var = (variable) *slot;
|
||
htab_t htab = (htab_t) data;
|
||
|
||
if (dv_is_value_p (var->dv))
|
||
{
|
||
value_chain vc
|
||
= (value_chain) htab_find_with_hash (value_chains, var->dv,
|
||
dv_htab_hash (var->dv));
|
||
|
||
if (vc == NULL)
|
||
return 1;
|
||
for (vc = vc->next; vc; vc = vc->next)
|
||
if (!dv_changed_p (vc->dv))
|
||
{
|
||
variable vcvar
|
||
= (variable) htab_find_with_hash (htab, vc->dv,
|
||
dv_htab_hash (vc->dv));
|
||
if (vcvar)
|
||
VEC_safe_push (variable, heap, changed_variables_stack,
|
||
vcvar);
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Add VAR to changed_variables and also for VALUEs add recursively
|
||
all DVs that aren't in changed_variables yet but reference the
|
||
VALUE from its loc_chain. */
|
||
|
||
static void
|
||
check_changed_vars_2 (variable var, htab_t htab)
|
||
{
|
||
variable_was_changed (var, NULL);
|
||
if (dv_is_value_p (var->dv))
|
||
{
|
||
value_chain vc
|
||
= (value_chain) htab_find_with_hash (value_chains, var->dv,
|
||
dv_htab_hash (var->dv));
|
||
|
||
if (vc == NULL)
|
||
return;
|
||
for (vc = vc->next; vc; vc = vc->next)
|
||
if (!dv_changed_p (vc->dv))
|
||
{
|
||
variable vcvar
|
||
= (variable) htab_find_with_hash (htab, vc->dv,
|
||
dv_htab_hash (vc->dv));
|
||
if (vcvar)
|
||
check_changed_vars_2 (vcvar, htab);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
|
||
CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
|
||
shall be emitted before of after instruction INSN. */
|
||
|
||
static void
|
||
emit_notes_for_changes (rtx insn, enum emit_note_where where,
|
||
shared_hash vars)
|
||
{
|
||
emit_note_data data;
|
||
htab_t htab = shared_hash_htab (vars);
|
||
|
||
if (!htab_elements (changed_variables))
|
||
return;
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
/* Unfortunately this has to be done in two steps, because
|
||
we can't traverse a hashtab into which we are inserting
|
||
through variable_was_changed. */
|
||
htab_traverse (changed_variables, check_changed_vars_1, htab);
|
||
while (VEC_length (variable, changed_variables_stack) > 0)
|
||
check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
|
||
htab);
|
||
}
|
||
|
||
data.insn = insn;
|
||
data.where = where;
|
||
data.vars = htab;
|
||
|
||
htab_traverse (changed_variables, emit_note_insn_var_location, &data);
|
||
}
|
||
|
||
/* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
|
||
same variable in hash table DATA or is not there at all. */
|
||
|
||
static int
|
||
emit_notes_for_differences_1 (void **slot, void *data)
|
||
{
|
||
htab_t new_vars = (htab_t) data;
|
||
variable old_var, new_var;
|
||
|
||
old_var = (variable) *slot;
|
||
new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
|
||
dv_htab_hash (old_var->dv));
|
||
|
||
if (!new_var)
|
||
{
|
||
/* Variable has disappeared. */
|
||
variable empty_var;
|
||
|
||
empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
|
||
empty_var->dv = old_var->dv;
|
||
empty_var->refcount = 0;
|
||
empty_var->n_var_parts = 0;
|
||
if (dv_onepart_p (old_var->dv))
|
||
{
|
||
location_chain lc;
|
||
|
||
gcc_assert (old_var->n_var_parts == 1);
|
||
for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
|
||
remove_value_chains (old_var->dv, lc->loc);
|
||
if (dv_is_value_p (old_var->dv))
|
||
remove_cselib_value_chains (old_var->dv);
|
||
}
|
||
variable_was_changed (empty_var, NULL);
|
||
}
|
||
else if (variable_different_p (old_var, new_var, true))
|
||
{
|
||
if (dv_onepart_p (old_var->dv))
|
||
{
|
||
location_chain lc1, lc2;
|
||
|
||
gcc_assert (old_var->n_var_parts == 1);
|
||
gcc_assert (new_var->n_var_parts == 1);
|
||
lc1 = old_var->var_part[0].loc_chain;
|
||
lc2 = new_var->var_part[0].loc_chain;
|
||
while (lc1
|
||
&& lc2
|
||
&& ((REG_P (lc1->loc) && REG_P (lc2->loc))
|
||
|| rtx_equal_p (lc1->loc, lc2->loc)))
|
||
{
|
||
lc1 = lc1->next;
|
||
lc2 = lc2->next;
|
||
}
|
||
for (; lc2; lc2 = lc2->next)
|
||
add_value_chains (old_var->dv, lc2->loc);
|
||
for (; lc1; lc1 = lc1->next)
|
||
remove_value_chains (old_var->dv, lc1->loc);
|
||
}
|
||
variable_was_changed (new_var, NULL);
|
||
}
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
/* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
|
||
table DATA. */
|
||
|
||
static int
|
||
emit_notes_for_differences_2 (void **slot, void *data)
|
||
{
|
||
htab_t old_vars = (htab_t) data;
|
||
variable old_var, new_var;
|
||
|
||
new_var = (variable) *slot;
|
||
old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
|
||
dv_htab_hash (new_var->dv));
|
||
if (!old_var)
|
||
{
|
||
/* Variable has appeared. */
|
||
if (dv_onepart_p (new_var->dv))
|
||
{
|
||
location_chain lc;
|
||
|
||
gcc_assert (new_var->n_var_parts == 1);
|
||
for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
|
||
add_value_chains (new_var->dv, lc->loc);
|
||
if (dv_is_value_p (new_var->dv))
|
||
add_cselib_value_chains (new_var->dv);
|
||
}
|
||
variable_was_changed (new_var, NULL);
|
||
}
|
||
|
||
/* Continue traversing the hash table. */
|
||
return 1;
|
||
}
|
||
|
||
/* Emit notes before INSN for differences between dataflow sets OLD_SET and
|
||
NEW_SET. */
|
||
|
||
static void
|
||
emit_notes_for_differences (rtx insn, dataflow_set *old_set,
|
||
dataflow_set *new_set)
|
||
{
|
||
htab_traverse (shared_hash_htab (old_set->vars),
|
||
emit_notes_for_differences_1,
|
||
shared_hash_htab (new_set->vars));
|
||
htab_traverse (shared_hash_htab (new_set->vars),
|
||
emit_notes_for_differences_2,
|
||
shared_hash_htab (old_set->vars));
|
||
emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
|
||
}
|
||
|
||
/* Emit the notes for changes of location parts in the basic block BB. */
|
||
|
||
static void
|
||
emit_notes_in_bb (basic_block bb, dataflow_set *set)
|
||
{
|
||
int i;
|
||
|
||
dataflow_set_clear (set);
|
||
dataflow_set_copy (set, &VTI (bb)->in);
|
||
|
||
for (i = 0; i < VTI (bb)->n_mos; i++)
|
||
{
|
||
rtx insn = VTI (bb)->mos[i].insn;
|
||
|
||
switch (VTI (bb)->mos[i].type)
|
||
{
|
||
case MO_CALL:
|
||
dataflow_set_clear_at_call (set);
|
||
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
|
||
break;
|
||
|
||
case MO_USE:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
|
||
if (REG_P (loc))
|
||
var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
|
||
else
|
||
var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
|
||
|
||
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_VAL_LOC:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx val, vloc;
|
||
tree var;
|
||
|
||
if (GET_CODE (loc) == CONCAT)
|
||
{
|
||
val = XEXP (loc, 0);
|
||
vloc = XEXP (loc, 1);
|
||
}
|
||
else
|
||
{
|
||
val = NULL_RTX;
|
||
vloc = loc;
|
||
}
|
||
|
||
var = PAT_VAR_LOCATION_DECL (vloc);
|
||
|
||
clobber_variable_part (set, NULL_RTX,
|
||
dv_from_decl (var), 0, NULL_RTX);
|
||
if (val)
|
||
{
|
||
if (VAL_NEEDS_RESOLUTION (loc))
|
||
val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
|
||
set_variable_part (set, val, dv_from_decl (var), 0,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
|
||
INSERT);
|
||
}
|
||
|
||
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_VAL_USE:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx val, vloc, uloc;
|
||
|
||
vloc = uloc = XEXP (loc, 1);
|
||
val = XEXP (loc, 0);
|
||
|
||
if (GET_CODE (val) == CONCAT)
|
||
{
|
||
uloc = XEXP (val, 1);
|
||
val = XEXP (val, 0);
|
||
}
|
||
|
||
if (VAL_NEEDS_RESOLUTION (loc))
|
||
val_resolve (set, val, vloc, insn);
|
||
|
||
if (VAL_HOLDS_TRACK_EXPR (loc))
|
||
{
|
||
if (GET_CODE (uloc) == REG)
|
||
var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
|
||
NULL);
|
||
else if (GET_CODE (uloc) == MEM)
|
||
var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
|
||
NULL);
|
||
}
|
||
|
||
emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_VAL_SET:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx val, vloc, uloc;
|
||
|
||
vloc = uloc = XEXP (loc, 1);
|
||
val = XEXP (loc, 0);
|
||
|
||
if (GET_CODE (val) == CONCAT)
|
||
{
|
||
vloc = XEXP (val, 1);
|
||
val = XEXP (val, 0);
|
||
}
|
||
|
||
if (GET_CODE (vloc) == SET)
|
||
{
|
||
rtx vsrc = SET_SRC (vloc);
|
||
|
||
gcc_assert (val != vsrc);
|
||
gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
|
||
|
||
vloc = SET_DEST (vloc);
|
||
|
||
if (VAL_NEEDS_RESOLUTION (loc))
|
||
val_resolve (set, val, vsrc, insn);
|
||
}
|
||
else if (VAL_NEEDS_RESOLUTION (loc))
|
||
{
|
||
gcc_assert (GET_CODE (uloc) == SET
|
||
&& GET_CODE (SET_SRC (uloc)) == REG);
|
||
val_resolve (set, val, SET_SRC (uloc), insn);
|
||
}
|
||
|
||
if (VAL_HOLDS_TRACK_EXPR (loc))
|
||
{
|
||
if (VAL_EXPR_IS_CLOBBERED (loc))
|
||
{
|
||
if (REG_P (uloc))
|
||
var_reg_delete (set, uloc, true);
|
||
else if (MEM_P (uloc))
|
||
var_mem_delete (set, uloc, true);
|
||
}
|
||
else
|
||
{
|
||
bool copied_p = VAL_EXPR_IS_COPIED (loc);
|
||
rtx set_src = NULL;
|
||
enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
|
||
|
||
if (GET_CODE (uloc) == SET)
|
||
{
|
||
set_src = SET_SRC (uloc);
|
||
uloc = SET_DEST (uloc);
|
||
}
|
||
|
||
if (copied_p)
|
||
{
|
||
status = find_src_status (set, set_src);
|
||
|
||
set_src = find_src_set_src (set, set_src);
|
||
}
|
||
|
||
if (REG_P (uloc))
|
||
var_reg_delete_and_set (set, uloc, !copied_p,
|
||
status, set_src);
|
||
else if (MEM_P (uloc))
|
||
var_mem_delete_and_set (set, uloc, !copied_p,
|
||
status, set_src);
|
||
}
|
||
}
|
||
else if (REG_P (uloc))
|
||
var_regno_delete (set, REGNO (uloc));
|
||
|
||
val_store (set, val, vloc, insn);
|
||
|
||
emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
|
||
set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_SET:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
rtx set_src = NULL;
|
||
|
||
if (GET_CODE (loc) == SET)
|
||
{
|
||
set_src = SET_SRC (loc);
|
||
loc = SET_DEST (loc);
|
||
}
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
|
||
set_src);
|
||
else
|
||
var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
|
||
set_src);
|
||
|
||
emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
|
||
set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_COPY:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
enum var_init_status src_status;
|
||
rtx set_src = NULL;
|
||
|
||
if (GET_CODE (loc) == SET)
|
||
{
|
||
set_src = SET_SRC (loc);
|
||
loc = SET_DEST (loc);
|
||
}
|
||
|
||
src_status = find_src_status (set, set_src);
|
||
set_src = find_src_set_src (set, set_src);
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete_and_set (set, loc, false, src_status, set_src);
|
||
else
|
||
var_mem_delete_and_set (set, loc, false, src_status, set_src);
|
||
|
||
emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
|
||
set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_USE_NO_VAR:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete (set, loc, false);
|
||
else
|
||
var_mem_delete (set, loc, false);
|
||
|
||
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_CLOBBER:
|
||
{
|
||
rtx loc = VTI (bb)->mos[i].u.loc;
|
||
|
||
if (REG_P (loc))
|
||
var_reg_delete (set, loc, true);
|
||
else
|
||
var_mem_delete (set, loc, true);
|
||
|
||
emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
|
||
set->vars);
|
||
}
|
||
break;
|
||
|
||
case MO_ADJUST:
|
||
set->stack_adjust += VTI (bb)->mos[i].u.adjust;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Emit notes for the whole function. */
|
||
|
||
static void
|
||
vt_emit_notes (void)
|
||
{
|
||
basic_block bb;
|
||
dataflow_set cur;
|
||
|
||
gcc_assert (!htab_elements (changed_variables));
|
||
|
||
/* Free memory occupied by the out hash tables, as they aren't used
|
||
anymore. */
|
||
FOR_EACH_BB (bb)
|
||
dataflow_set_clear (&VTI (bb)->out);
|
||
|
||
/* Enable emitting notes by functions (mainly by set_variable_part and
|
||
delete_variable_part). */
|
||
emit_notes = true;
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
changed_variables_stack = VEC_alloc (variable, heap, 40);
|
||
|
||
dataflow_set_init (&cur);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
/* Emit the notes for changes of variable locations between two
|
||
subsequent basic blocks. */
|
||
emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
|
||
|
||
/* Emit the notes for the changes in the basic block itself. */
|
||
emit_notes_in_bb (bb, &cur);
|
||
|
||
/* Free memory occupied by the in hash table, we won't need it
|
||
again. */
|
||
dataflow_set_clear (&VTI (bb)->in);
|
||
}
|
||
#ifdef ENABLE_CHECKING
|
||
htab_traverse (shared_hash_htab (cur.vars),
|
||
emit_notes_for_differences_1,
|
||
shared_hash_htab (empty_shared_hash));
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
gcc_assert (htab_elements (value_chains) == 0);
|
||
#endif
|
||
dataflow_set_destroy (&cur);
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
VEC_free (variable, heap, changed_variables_stack);
|
||
|
||
emit_notes = false;
|
||
}
|
||
|
||
/* If there is a declaration and offset associated with register/memory RTL
|
||
assign declaration to *DECLP and offset to *OFFSETP, and return true. */
|
||
|
||
static bool
|
||
vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
|
||
{
|
||
if (REG_P (rtl))
|
||
{
|
||
if (REG_ATTRS (rtl))
|
||
{
|
||
*declp = REG_EXPR (rtl);
|
||
*offsetp = REG_OFFSET (rtl);
|
||
return true;
|
||
}
|
||
}
|
||
else if (MEM_P (rtl))
|
||
{
|
||
if (MEM_ATTRS (rtl))
|
||
{
|
||
*declp = MEM_EXPR (rtl);
|
||
*offsetp = INT_MEM_OFFSET (rtl);
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
|
||
|
||
static void
|
||
vt_add_function_parameters (void)
|
||
{
|
||
tree parm;
|
||
|
||
for (parm = DECL_ARGUMENTS (current_function_decl);
|
||
parm; parm = TREE_CHAIN (parm))
|
||
{
|
||
rtx decl_rtl = DECL_RTL_IF_SET (parm);
|
||
rtx incoming = DECL_INCOMING_RTL (parm);
|
||
tree decl;
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT offset;
|
||
dataflow_set *out;
|
||
decl_or_value dv;
|
||
|
||
if (TREE_CODE (parm) != PARM_DECL)
|
||
continue;
|
||
|
||
if (!DECL_NAME (parm))
|
||
continue;
|
||
|
||
if (!decl_rtl || !incoming)
|
||
continue;
|
||
|
||
if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
|
||
continue;
|
||
|
||
if (!vt_get_decl_and_offset (incoming, &decl, &offset))
|
||
{
|
||
if (REG_P (incoming) || MEM_P (incoming))
|
||
{
|
||
/* This means argument is passed by invisible reference. */
|
||
offset = 0;
|
||
decl = parm;
|
||
incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
|
||
}
|
||
else
|
||
{
|
||
if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
|
||
continue;
|
||
offset += byte_lowpart_offset (GET_MODE (incoming),
|
||
GET_MODE (decl_rtl));
|
||
}
|
||
}
|
||
|
||
if (!decl)
|
||
continue;
|
||
|
||
if (parm != decl)
|
||
{
|
||
/* Assume that DECL_RTL was a pseudo that got spilled to
|
||
memory. The spill slot sharing code will force the
|
||
memory to reference spill_slot_decl (%sfp), so we don't
|
||
match above. That's ok, the pseudo must have referenced
|
||
the entire parameter, so just reset OFFSET. */
|
||
gcc_assert (decl == get_spill_slot_decl (false));
|
||
offset = 0;
|
||
}
|
||
|
||
if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
|
||
continue;
|
||
|
||
out = &VTI (ENTRY_BLOCK_PTR)->out;
|
||
|
||
dv = dv_from_decl (parm);
|
||
|
||
if (target_for_debug_bind (parm)
|
||
/* We can't deal with these right now, because this kind of
|
||
variable is single-part. ??? We could handle parallels
|
||
that describe multiple locations for the same single
|
||
value, but ATM we don't. */
|
||
&& GET_CODE (incoming) != PARALLEL)
|
||
{
|
||
cselib_val *val;
|
||
|
||
/* ??? We shouldn't ever hit this, but it may happen because
|
||
arguments passed by invisible reference aren't dealt with
|
||
above: incoming-rtl will have Pmode rather than the
|
||
expected mode for the type. */
|
||
if (offset)
|
||
continue;
|
||
|
||
val = cselib_lookup (var_lowpart (mode, incoming), mode, true);
|
||
|
||
/* ??? Float-typed values in memory are not handled by
|
||
cselib. */
|
||
if (val)
|
||
{
|
||
cselib_preserve_value (val);
|
||
set_variable_part (out, val->val_rtx, dv, offset,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
|
||
dv = dv_from_value (val->val_rtx);
|
||
}
|
||
}
|
||
|
||
if (REG_P (incoming))
|
||
{
|
||
incoming = var_lowpart (mode, incoming);
|
||
gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
|
||
attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
|
||
incoming);
|
||
set_variable_part (out, incoming, dv, offset,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
|
||
}
|
||
else if (MEM_P (incoming))
|
||
{
|
||
incoming = var_lowpart (mode, incoming);
|
||
set_variable_part (out, incoming, dv, offset,
|
||
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
|
||
}
|
||
}
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_preserve_only_values (true);
|
||
cselib_reset_table_with_next_value (cselib_get_next_unknown_value ());
|
||
}
|
||
|
||
}
|
||
|
||
/* Allocate and initialize the data structures for variable tracking
|
||
and parse the RTL to get the micro operations. */
|
||
|
||
static void
|
||
vt_initialize (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_init (true);
|
||
scratch_regs = BITMAP_ALLOC (NULL);
|
||
valvar_pool = create_alloc_pool ("small variable_def pool",
|
||
sizeof (struct variable_def), 256);
|
||
}
|
||
else
|
||
{
|
||
scratch_regs = NULL;
|
||
valvar_pool = NULL;
|
||
}
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
HOST_WIDE_INT pre, post = 0;
|
||
int count;
|
||
unsigned int next_value_before = cselib_get_next_unknown_value ();
|
||
unsigned int next_value_after = next_value_before;
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_record_sets_hook = count_with_sets;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "first value: %i\n",
|
||
cselib_get_next_unknown_value ());
|
||
}
|
||
|
||
/* Count the number of micro operations. */
|
||
VTI (bb)->n_mos = 0;
|
||
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
if (!frame_pointer_needed)
|
||
{
|
||
insn_stack_adjust_offset_pre_post (insn, &pre, &post);
|
||
if (pre)
|
||
{
|
||
VTI (bb)->n_mos++;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (GEN_INT (pre), bb, insn,
|
||
MO_ADJUST, dump_file);
|
||
}
|
||
if (post)
|
||
{
|
||
VTI (bb)->n_mos++;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (GEN_INT (post), bb, insn,
|
||
MO_ADJUST, dump_file);
|
||
}
|
||
}
|
||
cselib_hook_called = false;
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_process_insn (insn);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
print_rtl_single (dump_file, insn);
|
||
dump_cselib_table (dump_file);
|
||
}
|
||
}
|
||
if (!cselib_hook_called)
|
||
count_with_sets (insn, 0, 0);
|
||
if (CALL_P (insn))
|
||
{
|
||
VTI (bb)->n_mos++;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (PATTERN (insn), bb, insn,
|
||
MO_CALL, dump_file);
|
||
}
|
||
}
|
||
}
|
||
|
||
count = VTI (bb)->n_mos;
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_preserve_only_values (false);
|
||
next_value_after = cselib_get_next_unknown_value ();
|
||
cselib_reset_table_with_next_value (next_value_before);
|
||
cselib_record_sets_hook = add_with_sets;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "first value: %i\n",
|
||
cselib_get_next_unknown_value ());
|
||
}
|
||
|
||
/* Add the micro-operations to the array. */
|
||
VTI (bb)->mos = XNEWVEC (micro_operation, VTI (bb)->n_mos);
|
||
VTI (bb)->n_mos = 0;
|
||
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
if (!frame_pointer_needed)
|
||
{
|
||
insn_stack_adjust_offset_pre_post (insn, &pre, &post);
|
||
if (pre)
|
||
{
|
||
micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
|
||
mo->type = MO_ADJUST;
|
||
mo->u.adjust = pre;
|
||
mo->insn = insn;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (PATTERN (insn), bb, insn,
|
||
MO_ADJUST, dump_file);
|
||
}
|
||
}
|
||
|
||
cselib_hook_called = false;
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_process_insn (insn);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
print_rtl_single (dump_file, insn);
|
||
dump_cselib_table (dump_file);
|
||
}
|
||
}
|
||
if (!cselib_hook_called)
|
||
add_with_sets (insn, 0, 0);
|
||
|
||
if (!frame_pointer_needed && post)
|
||
{
|
||
micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
|
||
|
||
mo->type = MO_ADJUST;
|
||
mo->u.adjust = post;
|
||
mo->insn = insn;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
log_op_type (PATTERN (insn), bb, insn,
|
||
MO_ADJUST, dump_file);
|
||
}
|
||
}
|
||
}
|
||
gcc_assert (count == VTI (bb)->n_mos);
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
cselib_preserve_only_values (true);
|
||
gcc_assert (next_value_after == cselib_get_next_unknown_value ());
|
||
cselib_reset_table_with_next_value (next_value_after);
|
||
cselib_record_sets_hook = NULL;
|
||
}
|
||
}
|
||
|
||
attrs_pool = create_alloc_pool ("attrs_def pool",
|
||
sizeof (struct attrs_def), 1024);
|
||
var_pool = create_alloc_pool ("variable_def pool",
|
||
sizeof (struct variable_def)
|
||
+ (MAX_VAR_PARTS - 1)
|
||
* sizeof (((variable)NULL)->var_part[0]), 64);
|
||
loc_chain_pool = create_alloc_pool ("location_chain_def pool",
|
||
sizeof (struct location_chain_def),
|
||
1024);
|
||
shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
|
||
sizeof (struct shared_hash_def), 256);
|
||
empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
|
||
empty_shared_hash->refcount = 1;
|
||
empty_shared_hash->htab
|
||
= htab_create (1, variable_htab_hash, variable_htab_eq,
|
||
variable_htab_free);
|
||
changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
|
||
variable_htab_free);
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
value_chain_pool = create_alloc_pool ("value_chain_def pool",
|
||
sizeof (struct value_chain_def),
|
||
1024);
|
||
value_chains = htab_create (32, value_chain_htab_hash,
|
||
value_chain_htab_eq, NULL);
|
||
}
|
||
|
||
/* Init the IN and OUT sets. */
|
||
FOR_ALL_BB (bb)
|
||
{
|
||
VTI (bb)->visited = false;
|
||
VTI (bb)->flooded = false;
|
||
dataflow_set_init (&VTI (bb)->in);
|
||
dataflow_set_init (&VTI (bb)->out);
|
||
VTI (bb)->permp = NULL;
|
||
}
|
||
|
||
VTI (ENTRY_BLOCK_PTR)->flooded = true;
|
||
vt_add_function_parameters ();
|
||
}
|
||
|
||
/* Get rid of all debug insns from the insn stream. */
|
||
|
||
static void
|
||
delete_debug_insns (void)
|
||
{
|
||
basic_block bb;
|
||
rtx insn, next;
|
||
|
||
if (!MAY_HAVE_DEBUG_INSNS)
|
||
return;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
FOR_BB_INSNS_SAFE (bb, insn, next)
|
||
if (DEBUG_INSN_P (insn))
|
||
delete_insn (insn);
|
||
}
|
||
}
|
||
|
||
/* Run a fast, BB-local only version of var tracking, to take care of
|
||
information that we don't do global analysis on, such that not all
|
||
information is lost. If SKIPPED holds, we're skipping the global
|
||
pass entirely, so we should try to use information it would have
|
||
handled as well.. */
|
||
|
||
static void
|
||
vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
|
||
{
|
||
/* ??? Just skip it all for now. */
|
||
delete_debug_insns ();
|
||
}
|
||
|
||
/* Free the data structures needed for variable tracking. */
|
||
|
||
static void
|
||
vt_finalize (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
free (VTI (bb)->mos);
|
||
}
|
||
|
||
FOR_ALL_BB (bb)
|
||
{
|
||
dataflow_set_destroy (&VTI (bb)->in);
|
||
dataflow_set_destroy (&VTI (bb)->out);
|
||
if (VTI (bb)->permp)
|
||
{
|
||
dataflow_set_destroy (VTI (bb)->permp);
|
||
XDELETE (VTI (bb)->permp);
|
||
}
|
||
}
|
||
free_aux_for_blocks ();
|
||
htab_delete (empty_shared_hash->htab);
|
||
htab_delete (changed_variables);
|
||
free_alloc_pool (attrs_pool);
|
||
free_alloc_pool (var_pool);
|
||
free_alloc_pool (loc_chain_pool);
|
||
free_alloc_pool (shared_hash_pool);
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
htab_delete (value_chains);
|
||
free_alloc_pool (value_chain_pool);
|
||
free_alloc_pool (valvar_pool);
|
||
cselib_finish ();
|
||
BITMAP_FREE (scratch_regs);
|
||
scratch_regs = NULL;
|
||
}
|
||
|
||
if (vui_vec)
|
||
XDELETEVEC (vui_vec);
|
||
vui_vec = NULL;
|
||
vui_allocated = 0;
|
||
}
|
||
|
||
/* The entry point to variable tracking pass. */
|
||
|
||
unsigned int
|
||
variable_tracking_main (void)
|
||
{
|
||
if (flag_var_tracking_assignments < 0)
|
||
{
|
||
delete_debug_insns ();
|
||
return 0;
|
||
}
|
||
|
||
if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
|
||
{
|
||
vt_debug_insns_local (true);
|
||
return 0;
|
||
}
|
||
|
||
mark_dfs_back_edges ();
|
||
vt_initialize ();
|
||
if (!frame_pointer_needed)
|
||
{
|
||
if (!vt_stack_adjustments ())
|
||
{
|
||
vt_finalize ();
|
||
vt_debug_insns_local (true);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
vt_find_locations ();
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
dump_dataflow_sets ();
|
||
dump_flow_info (dump_file, dump_flags);
|
||
}
|
||
|
||
vt_emit_notes ();
|
||
|
||
vt_finalize ();
|
||
vt_debug_insns_local (false);
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_handle_var_tracking (void)
|
||
{
|
||
return (flag_var_tracking);
|
||
}
|
||
|
||
|
||
|
||
struct rtl_opt_pass pass_variable_tracking =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"vartrack", /* name */
|
||
gate_handle_var_tracking, /* gate */
|
||
variable_tracking_main, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_VAR_TRACKING, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */
|
||
}
|
||
};
|