gcc/gcc/omp-low.c

3310 lines
90 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Lowering pass for OpenMP directives. Converts OpenMP directives
into explicit calls to the runtime library (libgomp) and data
marshalling to implement data sharing and copying clauses.
Contributed by Diego Novillo <dnovillo@redhat.com>
Copyright (C) 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "timevar.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "tree-pass.h"
#include "ggc.h"
#include "except.h"
/* Lowering of OpenMP parallel and workshare constructs proceeds in two
phases. The first phase scans the function looking for OMP statements
and then for variables that must be replaced to satisfy data sharing
clauses. The second phase expands code for the constructs, as well as
re-gimplifing things when variables have been replaced with complex
expressions.
Lowering of a parallel statement results in the contents of the
parallel being moved to a new function, to be invoked by the thread
library. The variable remapping process is complex enough that only
one level of parallel statement is handled at one time. If there are
nested parallel statements, those nested statements are handled when
the new function is lowered and optimized. The result is not 100%
optimal, but lexically nested parallels effectively only happens in
test suites. */
/* Context structure. Used to store information about each parallel
directive in the code. */
typedef struct omp_context
{
/* This field must be at the beginning, as we do "inheritance": Some
callback functions for tree-inline.c (e.g., omp_copy_decl)
receive a copy_body_data pointer that is up-casted to an
omp_context pointer. */
copy_body_data cb;
/* The tree of contexts corresponding to the encountered constructs. */
struct omp_context *outer;
tree stmt;
/* Map variables to fields in a structure that allows communication
between sending and receiving threads. */
splay_tree field_map;
tree record_type;
tree sender_decl;
tree receiver_decl;
/* A chain of variables to add to the top-level block surrounding the
construct. In the case of a parallel, this is in the child function. */
tree block_vars;
/* What to do with variables with implicitly determined sharing
attributes. */
enum omp_clause_default_kind default_kind;
/* Nesting depth of this context. Used to beautify error messages re
invalid gotos. The outermost ctx is depth 1, with depth 0 being
reserved for the main body of the function. */
int depth;
/* Type of parallel construct. Used to distinguish regular parallel
regions from combined parallel+workshare directives (parallel,
parallel loop and parallel sections). */
enum omp_parallel_type parallel_type;
/* True if this parallel directive is nested within another. */
bool is_nested;
/* For combined parallel constructs, the built-in index for the
library call used to launch the children threads. */
int parallel_start_ix;
/* If the combined parallel directive needs additional arguments for
the call to GOMP_parallel_start_foo, they are added here. */
tree parallel_start_additional_args;
} omp_context;
/* A structure describing the main elements of a parallel loop.
Mostly used to communicate between the various subroutines of
expand_omp_for_1. */
struct expand_omp_for_data
{
tree v, n1, n2, step, chunk_size, for_stmt;
enum tree_code cond_code;
tree pre;
omp_context *ctx;
bool have_nowait, have_ordered;
enum omp_clause_schedule_kind sched_kind;
};
static splay_tree all_contexts;
static int parallel_nesting_level;
static void scan_omp (tree *, omp_context *);
static void expand_omp (tree *, omp_context *);
/* Find an OpenMP clause of type KIND within CLAUSES. */
tree
find_omp_clause (tree clauses, enum tree_code kind)
{
for (; clauses ; clauses = OMP_CLAUSE_CHAIN (clauses))
if (TREE_CODE (clauses) == kind)
return clauses;
return NULL_TREE;
}
/* Return true if CTX is for an omp parallel. */
static inline bool
is_parallel_ctx (omp_context *ctx)
{
return ctx->parallel_type != IS_NOT_PARALLEL;
}
/* Return true if CTX is inside a combined omp parallel + workshare. */
static inline bool
is_in_combined_parallel_ctx (omp_context *ctx)
{
return ctx->outer && ctx->outer->parallel_type == IS_COMBINED_PARALLEL;
}
/* Return true if EXPR is variable sized. */
static inline bool
is_variable_sized (tree expr)
{
return !TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
}
/* Return true if DECL is a reference type. */
static inline bool
is_reference (tree decl)
{
return lang_hooks.decls.omp_privatize_by_reference (decl);
}
/* Lookup variables in the decl or field splay trees. The "maybe" form
allows for the variable form to not have been entered, otherwise we
assert that the variable must have been entered. */
static inline tree
lookup_decl (tree var, omp_context *ctx)
{
splay_tree_node n;
n = splay_tree_lookup (ctx->cb.decl_map, (splay_tree_key) var);
return (tree) n->value;
}
static inline tree
maybe_lookup_decl (tree var, omp_context *ctx)
{
splay_tree_node n;
n = splay_tree_lookup (ctx->cb.decl_map, (splay_tree_key) var);
return n ? (tree) n->value : NULL_TREE;
}
static inline tree
lookup_field (tree var, omp_context *ctx)
{
splay_tree_node n;
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var);
return (tree) n->value;
}
static inline tree
maybe_lookup_field (tree var, omp_context *ctx)
{
splay_tree_node n;
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var);
return n ? (tree) n->value : NULL_TREE;
}
/* Return true if DECL should be copied by pointer. SHARED_P is true
if DECL is to be shared. */
static bool
use_pointer_for_field (tree decl, bool shared_p)
{
if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
return true;
/* We can only use copy-in/copy-out semantics for shared varibles
when we know the value is not accessible from an outer scope. */
if (shared_p)
{
/* ??? Trivially accessible from anywhere. But why would we even
be passing an address in this case? Should we simply assert
this to be false, or should we have a cleanup pass that removes
these from the list of mappings? */
if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
return true;
/* For variables with DECL_HAS_VALUE_EXPR_P set, we cannot tell
without analyzing the expression whether or not its location
is accessible to anyone else. In the case of nested parallel
regions it certainly may be. */
if (DECL_HAS_VALUE_EXPR_P (decl))
return true;
/* Do not use copy-in/copy-out for variables that have their
address taken. */
if (TREE_ADDRESSABLE (decl))
return true;
}
return false;
}
/* Construct a new automatic decl similar to VAR. */
static tree
omp_copy_decl_2 (tree var, tree name, tree type, omp_context *ctx)
{
tree copy = build_decl (VAR_DECL, name, type);
TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
DECL_COMPLEX_GIMPLE_REG_P (copy) = DECL_COMPLEX_GIMPLE_REG_P (var);
DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
TREE_USED (copy) = 1;
DECL_CONTEXT (copy) = ctx->cb.dst_fn;
DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
TREE_CHAIN (copy) = ctx->block_vars;
ctx->block_vars = copy;
return copy;
}
static tree
omp_copy_decl_1 (tree var, omp_context *ctx)
{
return omp_copy_decl_2 (var, DECL_NAME (var), TREE_TYPE (var), ctx);
}
/* Build tree nodes to access the field for VAR on the receiver side. */
static tree
build_receiver_ref (tree var, bool by_ref, omp_context *ctx)
{
tree x, field = lookup_field (var, ctx);
/* If the receiver record type was remapped in the child function,
remap the field into the new record type. */
x = maybe_lookup_field (field, ctx);
if (x != NULL)
field = x;
x = build_fold_indirect_ref (ctx->receiver_decl);
x = build3 (COMPONENT_REF, TREE_TYPE (field), x, field, NULL);
if (by_ref)
x = build_fold_indirect_ref (x);
return x;
}
/* Build tree nodes to access VAR in the scope outer to CTX. In the case
of a parallel, this is a component reference; for workshare constructs
this is some variable. */
static tree
build_outer_var_ref (tree var, omp_context *ctx)
{
tree x;
if (is_global_var (var))
x = var;
else if (is_variable_sized (var))
{
x = TREE_OPERAND (DECL_VALUE_EXPR (var), 0);
x = build_outer_var_ref (x, ctx);
x = build_fold_indirect_ref (x);
}
else if (is_parallel_ctx (ctx))
{
bool by_ref = use_pointer_for_field (var, false);
x = build_receiver_ref (var, by_ref, ctx);
}
else if (ctx->outer)
x = lookup_decl (var, ctx->outer);
else
gcc_unreachable ();
if (is_reference (var))
x = build_fold_indirect_ref (x);
return x;
}
/* Build tree nodes to access the field for VAR on the sender side. */
static tree
build_sender_ref (tree var, omp_context *ctx)
{
tree field = lookup_field (var, ctx);
return build3 (COMPONENT_REF, TREE_TYPE (field),
ctx->sender_decl, field, NULL);
}
/* Add a new field for VAR inside the structure CTX->SENDER_DECL. */
static void
install_var_field (tree var, bool by_ref, omp_context *ctx)
{
tree field, type;
gcc_assert (!splay_tree_lookup (ctx->field_map, (splay_tree_key) var));
type = TREE_TYPE (var);
if (by_ref)
type = build_pointer_type (type);
field = build_decl (FIELD_DECL, DECL_NAME (var), type);
/* Remember what variable this field was created for. This does have a
side effect of making dwarf2out ignore this member, so for helpful
debugging we clear it later in delete_omp_context. */
DECL_ABSTRACT_ORIGIN (field) = var;
insert_field_into_struct (ctx->record_type, field);
splay_tree_insert (ctx->field_map, (splay_tree_key) var,
(splay_tree_value) field);
}
static tree
install_var_local (tree var, omp_context *ctx)
{
tree new_var = omp_copy_decl_1 (var, ctx);
insert_decl_map (&ctx->cb, var, new_var);
return new_var;
}
/* Adjust the replacement for DECL in CTX for the new context. This means
copying the DECL_VALUE_EXPR, and fixing up the type. */
static void
fixup_remapped_decl (tree decl, omp_context *ctx, bool private_debug)
{
tree new_decl, size;
new_decl = lookup_decl (decl, ctx);
TREE_TYPE (new_decl) = remap_type (TREE_TYPE (decl), &ctx->cb);
if ((!TREE_CONSTANT (DECL_SIZE (new_decl)) || private_debug)
&& DECL_HAS_VALUE_EXPR_P (decl))
{
tree ve = DECL_VALUE_EXPR (decl);
walk_tree (&ve, copy_body_r, &ctx->cb, NULL);
SET_DECL_VALUE_EXPR (new_decl, ve);
DECL_HAS_VALUE_EXPR_P (new_decl) = 1;
}
if (!TREE_CONSTANT (DECL_SIZE (new_decl)))
{
size = remap_decl (DECL_SIZE (decl), &ctx->cb);
if (size == error_mark_node)
size = TYPE_SIZE (TREE_TYPE (new_decl));
DECL_SIZE (new_decl) = size;
size = remap_decl (DECL_SIZE_UNIT (decl), &ctx->cb);
if (size == error_mark_node)
size = TYPE_SIZE_UNIT (TREE_TYPE (new_decl));
DECL_SIZE_UNIT (new_decl) = size;
}
}
/* The callback for remap_decl. Search all containing contexts for a
mapping of the variable; this avoids having to duplicate the splay
tree ahead of time. We know a mapping doesn't already exist in the
given context. Create new mappings to implement default semantics. */
static tree
omp_copy_decl (tree var, copy_body_data *cb)
{
omp_context *ctx = (omp_context *) cb;
tree new_var;
if (is_global_var (var) || decl_function_context (var) != ctx->cb.src_fn)
return var;
if (TREE_CODE (var) == LABEL_DECL)
{
new_var = create_artificial_label ();
DECL_CONTEXT (new_var) = ctx->cb.dst_fn;
insert_decl_map (&ctx->cb, var, new_var);
return new_var;
}
while (!is_parallel_ctx (ctx))
{
ctx = ctx->outer;
if (ctx == NULL)
return var;
new_var = maybe_lookup_decl (var, ctx);
if (new_var)
return new_var;
}
return error_mark_node;
}
/* Create a new context, with OUTER_CTX being the surrounding context. */
static omp_context *
new_omp_context (tree stmt, omp_context *outer_ctx)
{
omp_context *ctx = XCNEW (omp_context);
splay_tree_insert (all_contexts, (splay_tree_key) stmt,
(splay_tree_value) ctx);
ctx->stmt = stmt;
if (outer_ctx)
{
ctx->outer = outer_ctx;
ctx->cb = outer_ctx->cb;
ctx->cb.block = NULL;
ctx->depth = outer_ctx->depth + 1;
}
else
{
ctx->cb.src_fn = current_function_decl;
ctx->cb.dst_fn = current_function_decl;
ctx->cb.src_node = cgraph_node (current_function_decl);
ctx->cb.dst_node = ctx->cb.src_node;
ctx->cb.src_cfun = cfun;
ctx->cb.copy_decl = omp_copy_decl;
ctx->cb.eh_region = -1;
ctx->cb.transform_call_graph_edges = CB_CGE_MOVE;
ctx->depth = 1;
}
ctx->cb.decl_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
return ctx;
}
/* Destroy a omp_context data structures. Called through the splay tree
value delete callback. */
static void
delete_omp_context (splay_tree_value value)
{
omp_context *ctx = (omp_context *) value;
splay_tree_delete (ctx->cb.decl_map);
if (ctx->field_map)
splay_tree_delete (ctx->field_map);
/* We hijacked DECL_ABSTRACT_ORIGIN earlier. We need to clear it before
it produces corrupt debug information. */
if (ctx->record_type)
{
tree t;
for (t = TYPE_FIELDS (ctx->record_type); t ; t = TREE_CHAIN (t))
DECL_ABSTRACT_ORIGIN (t) = NULL;
}
XDELETE (ctx);
}
/* Fix up RECEIVER_DECL with a type that has been remapped to the child
context. */
static void
fixup_child_record_type (omp_context *ctx)
{
tree f, type = ctx->record_type;
/* ??? It isn't sufficient to just call remap_type here, because
variably_modified_type_p doesn't work the way we expect for
record types. Testing each field for whether it needs remapping
and creating a new record by hand works, however. */
for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn))
break;
if (f)
{
tree name, new_fields = NULL;
type = lang_hooks.types.make_type (RECORD_TYPE);
name = DECL_NAME (TYPE_NAME (ctx->record_type));
name = build_decl (TYPE_DECL, name, type);
TYPE_NAME (type) = name;
for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f))
{
tree new_f = copy_node (f);
DECL_CONTEXT (new_f) = type;
TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &ctx->cb);
TREE_CHAIN (new_f) = new_fields;
new_fields = new_f;
/* Arrange to be able to look up the receiver field
given the sender field. */
splay_tree_insert (ctx->field_map, (splay_tree_key) f,
(splay_tree_value) new_f);
}
TYPE_FIELDS (type) = nreverse (new_fields);
layout_type (type);
}
TREE_TYPE (ctx->receiver_decl) = build_pointer_type (type);
}
/* Instantiate decls as necessary in CTX to satisfy the data sharing
specified by CLAUSES. */
static void
scan_sharing_clauses (tree clauses, omp_context *ctx)
{
tree c, decl;
bool scan_array_reductions = false;
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
{
bool by_ref;
switch (TREE_CODE (c))
{
case OMP_CLAUSE_PRIVATE:
decl = OMP_CLAUSE_DECL (c);
if (!is_variable_sized (decl))
install_var_local (decl, ctx);
break;
case OMP_CLAUSE_SHARED:
gcc_assert (is_parallel_ctx (ctx));
decl = OMP_CLAUSE_DECL (c);
gcc_assert (!is_variable_sized (decl));
by_ref = use_pointer_for_field (decl, true);
if (! TREE_READONLY (decl)
|| TREE_ADDRESSABLE (decl)
|| by_ref
|| is_reference (decl))
{
install_var_field (decl, by_ref, ctx);
install_var_local (decl, ctx);
break;
}
/* We don't need to copy const scalar vars back. */
TREE_SET_CODE (c, OMP_CLAUSE_FIRSTPRIVATE);
goto do_private;
case OMP_CLAUSE_LASTPRIVATE:
/* Let the corresponding firstprivate clause create
the variable. */
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
break;
/* FALLTHRU */
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_REDUCTION:
decl = OMP_CLAUSE_DECL (c);
do_private:
if (is_variable_sized (decl))
break;
else if (is_parallel_ctx (ctx))
{
by_ref = use_pointer_for_field (decl, false);
install_var_field (decl, by_ref, ctx);
}
install_var_local (decl, ctx);
break;
case OMP_CLAUSE_COPYPRIVATE:
if (ctx->outer)
scan_omp (&OMP_CLAUSE_DECL (c), ctx->outer);
/* FALLTHRU */
case OMP_CLAUSE_COPYIN:
decl = OMP_CLAUSE_DECL (c);
by_ref = use_pointer_for_field (decl, false);
install_var_field (decl, by_ref, ctx);
break;
case OMP_CLAUSE_DEFAULT:
ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c);
break;
case OMP_CLAUSE_IF:
case OMP_CLAUSE_NUM_THREADS:
case OMP_CLAUSE_SCHEDULE:
if (ctx->outer)
scan_omp (&TREE_OPERAND (c, 0), ctx->outer);
break;
case OMP_CLAUSE_NOWAIT:
case OMP_CLAUSE_ORDERED:
break;
default:
gcc_unreachable ();
}
}
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
{
switch (TREE_CODE (c))
{
case OMP_CLAUSE_LASTPRIVATE:
/* Let the corresponding firstprivate clause create
the variable. */
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
break;
/* FALLTHRU */
case OMP_CLAUSE_PRIVATE:
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_REDUCTION:
decl = OMP_CLAUSE_DECL (c);
if (is_variable_sized (decl))
install_var_local (decl, ctx);
fixup_remapped_decl (decl, ctx,
TREE_CODE (c) == OMP_CLAUSE_PRIVATE
&& OMP_CLAUSE_PRIVATE_DEBUG (c));
if (TREE_CODE (c) == OMP_CLAUSE_REDUCTION
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
scan_array_reductions = true;
break;
case OMP_CLAUSE_SHARED:
decl = OMP_CLAUSE_DECL (c);
fixup_remapped_decl (decl, ctx, false);
break;
case OMP_CLAUSE_COPYPRIVATE:
case OMP_CLAUSE_COPYIN:
case OMP_CLAUSE_DEFAULT:
case OMP_CLAUSE_IF:
case OMP_CLAUSE_NUM_THREADS:
case OMP_CLAUSE_SCHEDULE:
case OMP_CLAUSE_NOWAIT:
case OMP_CLAUSE_ORDERED:
break;
default:
gcc_unreachable ();
}
}
if (scan_array_reductions)
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
if (TREE_CODE (c) == OMP_CLAUSE_REDUCTION
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
{
scan_omp (&OMP_CLAUSE_REDUCTION_INIT (c), ctx);
scan_omp (&OMP_CLAUSE_REDUCTION_MERGE (c), ctx);
}
}
/* Create a new name for omp child function. Returns an identifier. */
static GTY(()) unsigned int tmp_ompfn_id_num;
static tree
create_omp_child_function_name (void)
{
tree name = DECL_ASSEMBLER_NAME (current_function_decl);
size_t len = IDENTIFIER_LENGTH (name);
char *tmp_name, *prefix;
prefix = alloca (len + sizeof ("_omp_fn"));
memcpy (prefix, IDENTIFIER_POINTER (name), len);
strcpy (prefix + len, "_omp_fn");
#ifndef NO_DOT_IN_LABEL
prefix[len] = '.';
#elif !defined NO_DOLLAR_IN_LABEL
prefix[len] = '$';
#endif
ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix, tmp_ompfn_id_num++);
return get_identifier (tmp_name);
}
/* Build a decl for the omp child function. It'll not contain a body
yet, just the bare decl. */
static void
create_omp_child_function (omp_context *ctx)
{
tree decl, type, name, t;
name = create_omp_child_function_name ();
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
decl = build_decl (FUNCTION_DECL, name, type);
decl = lang_hooks.decls.pushdecl (decl);
ctx->cb.dst_fn = decl;
TREE_STATIC (decl) = 1;
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 0;
TREE_PUBLIC (decl) = 0;
DECL_UNINLINABLE (decl) = 1;
DECL_EXTERNAL (decl) = 0;
DECL_CONTEXT (decl) = NULL_TREE;
t = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
DECL_ARTIFICIAL (t) = 1;
DECL_IGNORED_P (t) = 1;
DECL_RESULT (decl) = t;
t = build_decl (PARM_DECL, get_identifier (".omp_data_i"), ptr_type_node);
DECL_ARTIFICIAL (t) = 1;
DECL_ARG_TYPE (t) = ptr_type_node;
DECL_CONTEXT (t) = decl;
TREE_USED (t) = 1;
DECL_ARGUMENTS (decl) = t;
ctx->receiver_decl = t;
/* Allocate memory for the function structure. The call to
allocate_struct_function clobbers cfun, so we need to restore
it afterward. */
allocate_struct_function (decl);
DECL_SOURCE_LOCATION (decl) = EXPR_LOCATION (ctx->stmt);
cfun->function_end_locus = EXPR_LOCATION (ctx->stmt);
cfun = ctx->cb.src_cfun;
}
/* Given an OMP_PARALLEL statement, determine whether it is a combined
parallel+worksharing directive. This is simply done by examining
the body of the directive. If the body contains a single OMP_FOR
or a single OMP_SECTIONS then this is a combined directive.
Otherwise, it is a regular parallel directive. */
enum omp_parallel_type
determine_parallel_type (tree stmt)
{
enum omp_parallel_type par_type;
tree body = BIND_EXPR_BODY (OMP_PARALLEL_BODY (stmt));
tree t;
par_type = IS_PARALLEL;
t = expr_only (body);
if (t && TREE_CODE (t) == OMP_SECTIONS)
par_type = IS_COMBINED_PARALLEL;
else
par_type = IS_PARALLEL;
return par_type;
}
/* Scan an OpenMP parallel directive. */
static void
scan_omp_parallel (tree *stmt_p, omp_context *outer_ctx)
{
omp_context *ctx;
tree name;
/* Ignore parallel directives with empty bodies, unless there
are copyin clauses. */
if (optimize > 0
&& empty_body_p (OMP_PARALLEL_BODY (*stmt_p))
&& find_omp_clause (OMP_CLAUSES (*stmt_p), OMP_CLAUSE_COPYIN) == NULL)
{
*stmt_p = build_empty_stmt ();
return;
}
ctx = new_omp_context (*stmt_p, outer_ctx);
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
ctx->parallel_type = determine_parallel_type (*stmt_p);
ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
ctx->parallel_start_ix = BUILT_IN_GOMP_PARALLEL_START;
ctx->parallel_start_additional_args = NULL_TREE;
name = create_tmp_var_name (".omp_data_s");
name = build_decl (TYPE_DECL, name, ctx->record_type);
TYPE_NAME (ctx->record_type) = name;
create_omp_child_function (ctx);
scan_sharing_clauses (OMP_PARALLEL_CLAUSES (*stmt_p), ctx);
scan_omp (&OMP_PARALLEL_BODY (*stmt_p), ctx);
if (TYPE_FIELDS (ctx->record_type) == NULL)
ctx->record_type = ctx->receiver_decl = NULL;
else
{
layout_type (ctx->record_type);
fixup_child_record_type (ctx);
}
}
/* Extract the header elements of parallel loop FOR_STMT and store
them into *FD. */
static void
extract_omp_for_data (tree for_stmt, omp_context *ctx,
struct expand_omp_for_data *fd)
{
tree t;
fd->for_stmt = for_stmt;
fd->pre = NULL;
fd->ctx = ctx;
t = OMP_FOR_INIT (for_stmt);
gcc_assert (TREE_CODE (t) == MODIFY_EXPR);
fd->v = TREE_OPERAND (t, 0);
gcc_assert (DECL_P (fd->v));
gcc_assert (TREE_CODE (TREE_TYPE (fd->v)) == INTEGER_TYPE);
fd->n1 = TREE_OPERAND (t, 1);
t = OMP_FOR_COND (for_stmt);
fd->cond_code = TREE_CODE (t);
gcc_assert (TREE_OPERAND (t, 0) == fd->v);
fd->n2 = TREE_OPERAND (t, 1);
switch (fd->cond_code)
{
case LT_EXPR:
case GT_EXPR:
break;
case LE_EXPR:
fd->n2 = fold_build2 (PLUS_EXPR, TREE_TYPE (fd->n2), fd->n2,
build_int_cst (TREE_TYPE (fd->n2), 1));
fd->cond_code = LT_EXPR;
break;
case GE_EXPR:
fd->n2 = fold_build2 (MINUS_EXPR, TREE_TYPE (fd->n2), fd->n2,
build_int_cst (TREE_TYPE (fd->n2), 1));
fd->cond_code = GT_EXPR;
break;
default:
gcc_unreachable ();
}
t = OMP_FOR_INCR (fd->for_stmt);
gcc_assert (TREE_CODE (t) == MODIFY_EXPR);
gcc_assert (TREE_OPERAND (t, 0) == fd->v);
t = TREE_OPERAND (t, 1);
gcc_assert (TREE_OPERAND (t, 0) == fd->v);
switch (TREE_CODE (t))
{
case PLUS_EXPR:
fd->step = TREE_OPERAND (t, 1);
break;
case MINUS_EXPR:
fd->step = TREE_OPERAND (t, 1);
fd->step = fold_build1 (NEGATE_EXPR, TREE_TYPE (fd->step), fd->step);
break;
default:
gcc_unreachable ();
}
fd->have_nowait = fd->have_ordered = false;
fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC;
fd->chunk_size = NULL_TREE;
for (t = OMP_FOR_CLAUSES (for_stmt); t ; t = OMP_CLAUSE_CHAIN (t))
switch (TREE_CODE (t))
{
case OMP_CLAUSE_NOWAIT:
fd->have_nowait = true;
break;
case OMP_CLAUSE_ORDERED:
fd->have_ordered = true;
break;
case OMP_CLAUSE_SCHEDULE:
fd->sched_kind = OMP_CLAUSE_SCHEDULE_KIND (t);
fd->chunk_size = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t);
break;
default:
break;
}
if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME)
gcc_assert (fd->chunk_size == NULL);
else if (fd->chunk_size == NULL)
{
/* We only need to compute a default chunk size for ordered
static loops and dynamic loops. */
if (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC || fd->have_ordered)
fd->chunk_size = (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC)
? integer_zero_node : integer_one_node;
}
}
/* Scan an OpenMP loop directive. */
static void
scan_omp_for (tree *stmt_p, omp_context *outer_ctx)
{
omp_context *ctx;
tree stmt = *stmt_p;
ctx = new_omp_context (stmt, outer_ctx);
/* If this is a combined parallel loop directive, we need to extract
the bounds, step and chunk size for the loop so that we can build
the call to GOMP_parallel_loop_foo_start. Do this before
scanning the loop header to avoid getting the mapped variables
from the child context. */
if (is_in_combined_parallel_ctx (ctx))
{
struct expand_omp_for_data fd;
tree t, additional_args;
extract_omp_for_data (stmt, ctx, &fd);
additional_args = NULL_TREE;
if (fd.chunk_size)
{
t = fold_convert (long_integer_type_node, fd.chunk_size);
additional_args = tree_cons (NULL, t, additional_args);
}
t = fold_convert (long_integer_type_node, fd.step);
additional_args = tree_cons (NULL, t, additional_args);
t = fold_convert (long_integer_type_node, fd.n2);
additional_args = tree_cons (NULL, t, additional_args);
t = fold_convert (long_integer_type_node, fd.n1);
additional_args = tree_cons (NULL, t, additional_args);
outer_ctx->parallel_start_additional_args = additional_args;
}
scan_sharing_clauses (OMP_FOR_CLAUSES (stmt), ctx);
/* FIXME. When expanding into a combined parallel loop, we may not
need to map some of the variables in the loop header (in
particular, FD.N1 and FD.N2 for dynamic loops). */
scan_omp (&OMP_FOR_PRE_BODY (stmt), ctx);
scan_omp (&OMP_FOR_INIT (stmt), ctx);
scan_omp (&OMP_FOR_COND (stmt), ctx);
scan_omp (&OMP_FOR_INCR (stmt), ctx);
scan_omp (&OMP_FOR_BODY (stmt), ctx);
}
/* Scan an OpenMP sections directive. */
static void
scan_omp_sections (tree *stmt_p, omp_context *outer_ctx)
{
tree stmt = *stmt_p;
omp_context *ctx;
ctx = new_omp_context (stmt, outer_ctx);
scan_sharing_clauses (OMP_SECTIONS_CLAUSES (stmt), ctx);
scan_omp (&OMP_SECTIONS_BODY (stmt), ctx);
}
/* Scan an OpenMP single directive. */
static void
scan_omp_single (tree *stmt_p, omp_context *outer_ctx)
{
tree stmt = *stmt_p;
omp_context *ctx;
tree name;
ctx = new_omp_context (stmt, outer_ctx);
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
name = create_tmp_var_name (".omp_copy_s");
name = build_decl (TYPE_DECL, name, ctx->record_type);
TYPE_NAME (ctx->record_type) = name;
scan_sharing_clauses (OMP_SINGLE_CLAUSES (stmt), ctx);
scan_omp (&OMP_SINGLE_BODY (stmt), ctx);
if (TYPE_FIELDS (ctx->record_type) == NULL)
ctx->record_type = NULL;
else
layout_type (ctx->record_type);
}
/* Similar, except this is either a parallel nested within another
parallel, or a workshare construct nested within a nested parallel.
In this case we want to do minimal processing, as the real work
will be done during lowering of the function generated by the
outermost parallel.
The minimal amount of work is processing private clauses, and simply
scanning the rest. Private clauses are the only ones that don't
also imply a reference in the outer parallel. We must set up a
translation lest the default behaviour in omp_copy_decl substitute
error_mark_node. */
static void
scan_omp_nested (tree *stmt_p, omp_context *outer_ctx)
{
omp_context *ctx;
tree var_sized_list = NULL;
tree c, decl, stmt = *stmt_p;
ctx = new_omp_context (stmt, outer_ctx);
ctx->is_nested = true;
for (c = OMP_CLAUSES (stmt); c ; c = OMP_CLAUSE_CHAIN (c))
{
switch (TREE_CODE (c))
{
case OMP_CLAUSE_PRIVATE:
decl = OMP_CLAUSE_DECL (c);
if (is_variable_sized (decl))
var_sized_list = tree_cons (NULL, c, var_sized_list);
OMP_CLAUSE_DECL (c) = install_var_local (decl, ctx);
break;
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_LASTPRIVATE:
case OMP_CLAUSE_REDUCTION:
case OMP_CLAUSE_SHARED:
case OMP_CLAUSE_COPYPRIVATE:
case OMP_CLAUSE_IF:
case OMP_CLAUSE_NUM_THREADS:
case OMP_CLAUSE_SCHEDULE:
scan_omp (&TREE_OPERAND (c, 0), ctx->outer);
break;
case OMP_CLAUSE_COPYIN:
case OMP_CLAUSE_NOWAIT:
case OMP_CLAUSE_ORDERED:
case OMP_CLAUSE_DEFAULT:
break;
default:
gcc_unreachable ();
}
}
/* Instantiate the VALUE_EXPR for variable sized variables. We have
to do this as a separate pass, since we need the pointer and size
decls installed first. */
for (c = var_sized_list; c ; c = TREE_CHAIN (c))
fixup_remapped_decl (OMP_CLAUSE_DECL (TREE_VALUE (c)), ctx,
OMP_CLAUSE_PRIVATE_DEBUG (TREE_VALUE (c)));
scan_omp (&OMP_BODY (stmt), ctx);
if (TREE_CODE (stmt) == OMP_FOR)
{
scan_omp (&OMP_FOR_PRE_BODY (stmt), ctx);
scan_omp (&OMP_FOR_INIT (stmt), ctx);
scan_omp (&OMP_FOR_COND (stmt), ctx);
scan_omp (&OMP_FOR_INCR (stmt), ctx);
}
}
/* Callback for walk_stmts used to scan for OpenMP directives at TP. */
static tree
scan_omp_1 (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = data;
omp_context *ctx = wi->info;
tree t = *tp;
if (EXPR_HAS_LOCATION (t))
input_location = EXPR_LOCATION (t);
*walk_subtrees = 0;
switch (TREE_CODE (t))
{
case OMP_PARALLEL:
if (++parallel_nesting_level == 1)
scan_omp_parallel (tp, ctx);
else
scan_omp_nested (tp, ctx);
parallel_nesting_level--;
break;
case OMP_FOR:
if (parallel_nesting_level <= 1)
scan_omp_for (tp, ctx);
else
scan_omp_nested (tp, ctx);
break;
case OMP_SECTIONS:
if (parallel_nesting_level <= 1)
scan_omp_sections (tp, ctx);
else
scan_omp_nested (tp, ctx);
break;
case OMP_SINGLE:
if (parallel_nesting_level <= 1)
scan_omp_single (tp, ctx);
else
scan_omp_nested (tp, ctx);
break;
case OMP_SECTION:
case OMP_MASTER:
case OMP_ORDERED:
case OMP_CRITICAL:
ctx = new_omp_context (*tp, ctx);
scan_omp (&OMP_BODY (*tp), ctx);
break;
case BIND_EXPR:
{
tree var;
*walk_subtrees = 1;
for (var = BIND_EXPR_VARS (t); var ; var = TREE_CHAIN (var))
{
if (DECL_CONTEXT (var) == ctx->cb.src_fn)
DECL_CONTEXT (var) = ctx->cb.dst_fn;
insert_decl_map (&ctx->cb, var, var);
}
}
break;
case VAR_DECL:
case PARM_DECL:
case LABEL_DECL:
if (ctx)
*tp = remap_decl (t, &ctx->cb);
break;
default:
if (ctx && TYPE_P (t))
*tp = remap_type (t, &ctx->cb);
else if (!DECL_P (t))
*walk_subtrees = 1;
break;
}
return NULL_TREE;
}
/* Scan all the statements starting at STMT_P. CTX contains context
information about the OpenMP directives and clauses found during
the scan. */
static void
scan_omp (tree *stmt_p, omp_context *ctx)
{
location_t saved_location;
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
wi.callback = scan_omp_1;
wi.info = ctx;
wi.want_bind_expr = (ctx != NULL);
wi.want_locations = true;
saved_location = input_location;
walk_stmts (&wi, stmt_p);
input_location = saved_location;
}
/* Re-gimplification and code generation routines. */
/* Build a call to GOMP_barrier. */
static void
build_omp_barrier (tree *stmt_list)
{
tree t;
t = built_in_decls[BUILT_IN_GOMP_BARRIER];
t = build_function_call_expr (t, NULL);
gimplify_and_add (t, stmt_list);
}
/* If a context was created for STMT when it was scanned, return it. */
static omp_context *
maybe_lookup_ctx (tree stmt)
{
splay_tree_node n;
n = splay_tree_lookup (all_contexts, (splay_tree_key) stmt);
return n ? (omp_context *) n->value : NULL;
}
/* Construct the initialization value for reduction CLAUSE. */
tree
omp_reduction_init (tree clause, tree type)
{
switch (OMP_CLAUSE_REDUCTION_CODE (clause))
{
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_XOR_EXPR:
case NE_EXPR:
return fold_convert (type, integer_zero_node);
case MULT_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_ANDIF_EXPR:
case EQ_EXPR:
return fold_convert (type, integer_one_node);
case BIT_AND_EXPR:
return fold_convert (type, integer_minus_one_node);
case MAX_EXPR:
if (SCALAR_FLOAT_TYPE_P (type))
{
REAL_VALUE_TYPE max, min;
if (HONOR_INFINITIES (TYPE_MODE (type)))
{
real_inf (&max);
real_arithmetic (&min, NEGATE_EXPR, &max, NULL);
}
else
real_maxval (&min, 1, TYPE_MODE (type));
return build_real (type, min);
}
else
{
gcc_assert (INTEGRAL_TYPE_P (type));
return TYPE_MIN_VALUE (type);
}
case MIN_EXPR:
if (SCALAR_FLOAT_TYPE_P (type))
{
REAL_VALUE_TYPE max;
if (HONOR_INFINITIES (TYPE_MODE (type)))
real_inf (&max);
else
real_maxval (&max, 0, TYPE_MODE (type));
return build_real (type, max);
}
else
{
gcc_assert (INTEGRAL_TYPE_P (type));
return TYPE_MAX_VALUE (type);
}
default:
gcc_unreachable ();
}
}
/* Generate code to implement the input clauses, FIRSTPRIVATE and COPYIN,
from the receiver (aka child) side and initializers for REFERENCE_TYPE
private variables. Initialization statements go in ILIST, while calls
to destructors go in DLIST. */
static void
expand_rec_input_clauses (tree clauses, tree *ilist, tree *dlist,
omp_context *ctx)
{
tree_stmt_iterator diter;
tree c, dtor, copyin_seq, x, args, ptr;
bool copyin_by_ref = false;
int pass;
*dlist = alloc_stmt_list ();
diter = tsi_start (*dlist);
copyin_seq = NULL;
/* Do all the fixed sized types in the first pass, and the variable sized
types in the second pass. This makes sure that the scalar arguments to
the variable sized types are processed before we use them in the
variable sized operations. */
for (pass = 0; pass < 2; ++pass)
{
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
{
enum tree_code c_kind = TREE_CODE (c);
tree var, new_var;
bool by_ref;
switch (c_kind)
{
case OMP_CLAUSE_PRIVATE:
if (OMP_CLAUSE_PRIVATE_DEBUG (c))
continue;
break;
case OMP_CLAUSE_SHARED:
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_LASTPRIVATE:
case OMP_CLAUSE_COPYIN:
case OMP_CLAUSE_REDUCTION:
break;
default:
continue;
}
new_var = var = OMP_CLAUSE_DECL (c);
if (c_kind != OMP_CLAUSE_COPYIN)
new_var = lookup_decl (var, ctx);
if (c_kind == OMP_CLAUSE_SHARED || c_kind == OMP_CLAUSE_COPYIN)
{
if (pass != 0)
continue;
}
/* For variable sized types, we need to allocate the actual
storage here. Call alloca and store the result in the pointer
decl that we created elsewhere. */
else if (is_variable_sized (var))
{
if (pass == 0)
continue;
ptr = DECL_VALUE_EXPR (new_var);
gcc_assert (TREE_CODE (ptr) == INDIRECT_REF);
ptr = TREE_OPERAND (ptr, 0);
gcc_assert (DECL_P (ptr));
x = TYPE_SIZE_UNIT (TREE_TYPE (new_var));
args = tree_cons (NULL, x, NULL);
x = built_in_decls[BUILT_IN_ALLOCA];
x = build_function_call_expr (x, args);
x = fold_convert (TREE_TYPE (ptr), x);
x = build2 (MODIFY_EXPR, void_type_node, ptr, x);
gimplify_and_add (x, ilist);
}
/* For references that are being privatized for Fortran, allocate
new backing storage for the new pointer variable. This allows
us to avoid changing all the code that expects a pointer to
something that expects a direct variable. Note that this
doesn't apply to C++, since reference types are disallowed in
data sharing clauses there. */
else if (is_reference (var))
{
if (pass == 0)
continue;
x = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_var)));
if (TREE_CONSTANT (x))
{
const char *name = NULL;
if (DECL_NAME (var))
name = IDENTIFIER_POINTER (DECL_NAME (new_var));
x = create_tmp_var (TREE_TYPE (TREE_TYPE (new_var)), name);
x = build_fold_addr_expr_with_type (x, TREE_TYPE (new_var));
}
else
{
args = tree_cons (NULL, x, NULL);
x = built_in_decls[BUILT_IN_ALLOCA];
x = build_function_call_expr (x, args);
x = fold_convert (TREE_TYPE (new_var), x);
}
x = build2 (MODIFY_EXPR, void_type_node, new_var, x);
gimplify_and_add (x, ilist);
new_var = build_fold_indirect_ref (new_var);
}
else if (c_kind == OMP_CLAUSE_REDUCTION
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
{
if (pass == 0)
continue;
}
else if (pass != 0)
continue;
switch (TREE_CODE (c))
{
case OMP_CLAUSE_SHARED:
/* Set up the DECL_VALUE_EXPR for shared variables now. This
needs to be delayed until after fixup_child_record_type so
that we get the correct type during the dereference. */
by_ref = use_pointer_for_field (var, true);
x = build_receiver_ref (var, by_ref, ctx);
SET_DECL_VALUE_EXPR (new_var, x);
DECL_HAS_VALUE_EXPR_P (new_var) = 1;
/* ??? If VAR is not passed by reference, and the variable
hasn't been initialized yet, then we'll get a warning for
the store into the omp_data_s structure. Ideally, we'd be
able to notice this and not store anything at all, but
we're generating code too early. Suppress the warning. */
if (!by_ref)
TREE_NO_WARNING (var) = 1;
break;
case OMP_CLAUSE_LASTPRIVATE:
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
break;
/* FALLTHRU */
case OMP_CLAUSE_PRIVATE:
x = lang_hooks.decls.omp_clause_default_ctor (c, new_var);
if (x)
gimplify_and_add (x, ilist);
/* FALLTHRU */
do_dtor:
x = lang_hooks.decls.omp_clause_dtor (c, new_var);
if (x)
{
dtor = x;
gimplify_stmt (&dtor);
tsi_link_before (&diter, dtor, TSI_SAME_STMT);
}
break;
case OMP_CLAUSE_FIRSTPRIVATE:
x = build_outer_var_ref (var, ctx);
x = lang_hooks.decls.omp_clause_copy_ctor (c, new_var, x);
gimplify_and_add (x, ilist);
goto do_dtor;
break;
case OMP_CLAUSE_COPYIN:
by_ref = use_pointer_for_field (var, false);
x = build_receiver_ref (var, by_ref, ctx);
x = lang_hooks.decls.omp_clause_assign_op (c, new_var, x);
append_to_statement_list (x, &copyin_seq);
copyin_by_ref |= by_ref;
break;
case OMP_CLAUSE_REDUCTION:
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
{
gimplify_and_add (OMP_CLAUSE_REDUCTION_INIT (c), ilist);
OMP_CLAUSE_REDUCTION_INIT (c) = NULL;
}
else
{
x = omp_reduction_init (c, TREE_TYPE (new_var));
gcc_assert (TREE_CODE (TREE_TYPE (new_var)) != ARRAY_TYPE);
x = build2 (MODIFY_EXPR, void_type_node, new_var, x);
gimplify_and_add (x, ilist);
}
break;
default:
gcc_unreachable ();
}
}
}
/* The copyin sequence is not to be executed by the main thread, since
that would result in self-copies. Perhaps not visible to scalars,
but it certainly is to C++ operator=. */
if (copyin_seq)
{
x = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
x = build_function_call_expr (x, NULL);
x = build2 (NE_EXPR, boolean_type_node, x,
build_int_cst (TREE_TYPE (x), 0));
x = build3 (COND_EXPR, void_type_node, x, copyin_seq, NULL);
gimplify_and_add (x, ilist);
}
/* If any copyin variable is passed by reference, we must ensure the
master thread doesn't modify it before it is copied over in all
threads. */
if (copyin_by_ref)
build_omp_barrier (ilist);
}
/* Generate code to implement the LASTPRIVATE clauses. This is used for
both parallel and workshare constructs. PREDICATE may be NULL if it's
always true. */
static void
expand_lastprivate_clauses (tree clauses, tree predicate, tree *stmt_list,
omp_context *ctx)
{
tree sub_list, x, c;
/* Early exit if there are no lastprivate clauses. */
clauses = find_omp_clause (clauses, OMP_CLAUSE_LASTPRIVATE);
if (clauses == NULL)
{
/* If this was a workshare clause, see if it had been combined
with its parallel. In that case, look for the clauses on the
parallel statement itself. */
if (is_parallel_ctx (ctx))
return;
ctx = ctx->outer;
if (ctx == NULL || !is_parallel_ctx (ctx))
return;
clauses = find_omp_clause (OMP_PARALLEL_CLAUSES (ctx->stmt),
OMP_CLAUSE_LASTPRIVATE);
if (clauses == NULL)
return;
}
sub_list = alloc_stmt_list ();
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
{
tree var, new_var;
if (TREE_CODE (c) != OMP_CLAUSE_LASTPRIVATE)
continue;
var = OMP_CLAUSE_DECL (c);
new_var = lookup_decl (var, ctx);
x = build_outer_var_ref (var, ctx);
if (is_reference (var))
new_var = build_fold_indirect_ref (new_var);
x = lang_hooks.decls.omp_clause_assign_op (c, x, new_var);
append_to_statement_list (x, &sub_list);
}
if (predicate)
x = build3 (COND_EXPR, void_type_node, predicate, sub_list, NULL);
else
x = sub_list;
gimplify_and_add (x, stmt_list);
}
/* Generate code to implement the REDUCTION clauses. */
static void
expand_reduction_clauses (tree clauses, tree *stmt_list, omp_context *ctx)
{
tree sub_list = NULL, x, c;
int count = 0;
/* First see if there is exactly one reduction clause. Use OMP_ATOMIC
update in that case, otherwise use a lock. */
for (c = clauses; c && count < 2; c = OMP_CLAUSE_CHAIN (c))
if (TREE_CODE (c) == OMP_CLAUSE_REDUCTION)
{
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
{
/* Never use OMP_ATOMIC for array reductions. */
count = -1;
break;
}
count++;
}
if (count == 0)
return;
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
{
tree var, ref, new_var;
enum tree_code code;
if (TREE_CODE (c) != OMP_CLAUSE_REDUCTION)
continue;
var = OMP_CLAUSE_DECL (c);
new_var = lookup_decl (var, ctx);
if (is_reference (var))
new_var = build_fold_indirect_ref (new_var);
ref = build_outer_var_ref (var, ctx);
code = OMP_CLAUSE_REDUCTION_CODE (c);
/* reduction(-:var) sums up the partial results, so it acts identically
to reduction(+:var). */
if (code == MINUS_EXPR)
code = PLUS_EXPR;
if (count == 1)
{
tree addr = build_fold_addr_expr (ref);
addr = save_expr (addr);
ref = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (addr)), addr);
x = fold_build2 (code, TREE_TYPE (ref), ref, new_var);
x = build2 (OMP_ATOMIC, void_type_node, addr, x);
gimplify_and_add (x, stmt_list);
return;
}
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
{
tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c);
if (is_reference (var))
ref = build_fold_addr_expr (ref);
SET_DECL_VALUE_EXPR (placeholder, ref);
DECL_HAS_VALUE_EXPR_P (placeholder) = 1;
gimplify_and_add (OMP_CLAUSE_REDUCTION_MERGE (c), &sub_list);
OMP_CLAUSE_REDUCTION_MERGE (c) = NULL;
OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = NULL;
}
else
{
x = build2 (code, TREE_TYPE (ref), ref, new_var);
ref = build_outer_var_ref (var, ctx);
x = build2 (MODIFY_EXPR, void_type_node, ref, x);
append_to_statement_list (x, &sub_list);
}
}
x = built_in_decls[BUILT_IN_GOMP_ATOMIC_START];
x = build_function_call_expr (x, NULL);
gimplify_and_add (x, stmt_list);
gimplify_and_add (sub_list, stmt_list);
x = built_in_decls[BUILT_IN_GOMP_ATOMIC_END];
x = build_function_call_expr (x, NULL);
gimplify_and_add (x, stmt_list);
}
/* Generate code to implement the COPYPRIVATE clauses. */
static void
expand_copyprivate_clauses (tree clauses, tree *slist, tree *rlist,
omp_context *ctx)
{
tree c;
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
{
tree var, ref, x;
bool by_ref;
if (TREE_CODE (c) != OMP_CLAUSE_COPYPRIVATE)
continue;
var = OMP_CLAUSE_DECL (c);
by_ref = use_pointer_for_field (var, false);
ref = build_sender_ref (var, ctx);
x = by_ref ? build_fold_addr_expr (var) : var;
x = build2 (MODIFY_EXPR, void_type_node, ref, x);
gimplify_and_add (x, slist);
ref = build_receiver_ref (var, by_ref, ctx);
if (is_reference (var))
{
ref = build_fold_indirect_ref (ref);
var = build_fold_indirect_ref (var);
}
x = lang_hooks.decls.omp_clause_assign_op (c, var, ref);
gimplify_and_add (x, rlist);
}
}
/* Generate code to implement the clauses, FIRSTPRIVATE, COPYIN, LASTPRIVATE,
and REDUCTION from the sender (aka parent) side. */
static void
expand_send_clauses (tree clauses, tree *ilist, tree *olist, omp_context *ctx)
{
tree c;
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
{
tree val, ref, x;
bool by_ref, do_in = false, do_out = false;
switch (TREE_CODE (c))
{
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_COPYIN:
case OMP_CLAUSE_LASTPRIVATE:
case OMP_CLAUSE_REDUCTION:
break;
default:
continue;
}
val = OMP_CLAUSE_DECL (c);
if (is_variable_sized (val))
continue;
by_ref = use_pointer_for_field (val, false);
switch (TREE_CODE (c))
{
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_COPYIN:
do_in = true;
break;
case OMP_CLAUSE_LASTPRIVATE:
if (by_ref || is_reference (val))
{
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
continue;
do_in = true;
}
else
do_out = true;
break;
case OMP_CLAUSE_REDUCTION:
do_in = true;
do_out = !(by_ref || is_reference (val));
break;
default:
gcc_unreachable ();
}
if (do_in)
{
ref = build_sender_ref (val, ctx);
x = by_ref ? build_fold_addr_expr (val) : val;
x = build2 (MODIFY_EXPR, void_type_node, ref, x);
gimplify_and_add (x, ilist);
}
if (do_out)
{
ref = build_sender_ref (val, ctx);
x = build2 (MODIFY_EXPR, void_type_node, val, ref);
gimplify_and_add (x, olist);
}
}
}
/* Generate code to implement SHARED from the sender (aka parent) side.
This is trickier, since OMP_PARALLEL_CLAUSES doesn't list things that
got automatically shared. */
static void
expand_send_shared_vars (tree *ilist, tree *olist, omp_context *ctx)
{
tree ovar, nvar, f, x;
if (ctx->record_type == NULL)
return;
for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f))
{
ovar = DECL_ABSTRACT_ORIGIN (f);
nvar = maybe_lookup_decl (ovar, ctx);
if (!nvar || !DECL_HAS_VALUE_EXPR_P (nvar))
continue;
if (use_pointer_for_field (ovar, true))
{
x = build_sender_ref (ovar, ctx);
ovar = build_fold_addr_expr (ovar);
x = build2 (MODIFY_EXPR, void_type_node, x, ovar);
gimplify_and_add (x, ilist);
}
else
{
x = build_sender_ref (ovar, ctx);
x = build2 (MODIFY_EXPR, void_type_node, x, ovar);
gimplify_and_add (x, ilist);
x = build_sender_ref (ovar, ctx);
x = build2 (MODIFY_EXPR, void_type_node, ovar, x);
gimplify_and_add (x, olist);
}
}
}
/* Build the function calls to GOMP_parallel_start etc to actually
generate the parallel operation. */
static void
build_parallel_call (tree clauses, tree *stmt_list, omp_context *ctx)
{
tree t, args, val, cond, c;
/* By default, the value of NUM_THREADS is zero (selected at run time)
and there is no conditional. */
cond = NULL_TREE;
val = build_int_cst (unsigned_type_node, 0);
c = find_omp_clause (clauses, OMP_CLAUSE_IF);
if (c)
cond = OMP_CLAUSE_IF_EXPR (c);
c = find_omp_clause (clauses, OMP_CLAUSE_NUM_THREADS);
if (c)
val = OMP_CLAUSE_NUM_THREADS_EXPR (c);
/* Ensure 'val' is of the correct type. */
val = fold_convert (unsigned_type_node, val);
/* If we found the clause 'if (cond)', build either
(cond != 0) or (cond ? val : 1u). */
if (cond)
{
if (integer_zerop (val))
val = build2 (EQ_EXPR, unsigned_type_node, cond,
build_int_cst (TREE_TYPE (cond), 0));
else
val = build3 (COND_EXPR, unsigned_type_node, cond, val,
build_int_cst (unsigned_type_node, 1));
}
args = tree_cons (NULL, val, NULL);
t = ctx->sender_decl;
if (t == NULL)
t = null_pointer_node;
else
t = build_fold_addr_expr (t);
args = tree_cons (NULL, t, args);
t = build_fold_addr_expr (ctx->cb.dst_fn);
args = tree_cons (NULL, t, args);
if (ctx->parallel_start_additional_args)
args = chainon (args, ctx->parallel_start_additional_args);
t = built_in_decls[ctx->parallel_start_ix];
t = build_function_call_expr (t, args);
gimplify_and_add (t, stmt_list);
t = ctx->sender_decl;
if (t == NULL)
t = null_pointer_node;
else
t = build_fold_addr_expr (t);
args = tree_cons (NULL, t, NULL);
t = build_function_call_expr (ctx->cb.dst_fn, args);
gimplify_and_add (t, stmt_list);
t = built_in_decls[BUILT_IN_GOMP_PARALLEL_END];
t = build_function_call_expr (t, NULL);
gimplify_and_add (t, stmt_list);
}
/* If exceptions are enabled, wrap *STMT_P in a MUST_NOT_THROW catch
handler. This prevents programs from violating the structured
block semantics with throws. */
static void
maybe_catch_exception (tree *stmt_p)
{
tree f, t;
if (!flag_exceptions)
return;
if (lang_protect_cleanup_actions)
t = lang_protect_cleanup_actions ();
else
{
t = built_in_decls[BUILT_IN_TRAP];
t = build_function_call_expr (t, NULL);
}
f = build2 (EH_FILTER_EXPR, void_type_node, NULL, NULL);
EH_FILTER_MUST_NOT_THROW (f) = 1;
gimplify_and_add (t, &EH_FILTER_FAILURE (f));
t = build2 (TRY_CATCH_EXPR, void_type_node, *stmt_p, NULL);
append_to_statement_list (f, &TREE_OPERAND (t, 1));
*stmt_p = NULL;
append_to_statement_list (t, stmt_p);
}
/* Expand the OpenMP parallel directive pointed to by STMT_P. CTX
holds context information for *STMT_P. Expansion proceeds in
two main phases:
(1) The body of the parallel is expanded in-situ.
All the input and reduction clauses are expanded (from the
child's perspective). The body of the parallel is then
inserted as the body of CTX->CB.DST_FUN (the function spawned
to execute each child thread).
(2) Back in the original function, the original body of the
directive is replaced with the expansion of clauses (from the
parent's perspective), and the thread library call to launch
all the children threads. */
static void
expand_omp_parallel (tree *stmt_p, omp_context *ctx)
{
tree clauses, block, bind, body, olist;
current_function_decl = ctx->cb.dst_fn;
cfun = DECL_STRUCT_FUNCTION (current_function_decl);
push_gimplify_context ();
/* First phase. Expand the body of the children threads, emit
receiving code for data copying clauses. */
clauses = OMP_PARALLEL_CLAUSES (*stmt_p);
bind = OMP_PARALLEL_BODY (*stmt_p);
block = BIND_EXPR_BLOCK (bind);
body = BIND_EXPR_BODY (bind);
BIND_EXPR_BODY (bind) = alloc_stmt_list ();
expand_rec_input_clauses (clauses, &BIND_EXPR_BODY (bind), &olist, ctx);
expand_omp (&body, ctx);
append_to_statement_list (body, &BIND_EXPR_BODY (bind));
expand_reduction_clauses (clauses, &BIND_EXPR_BODY (bind), ctx);
append_to_statement_list (olist, &BIND_EXPR_BODY (bind));
maybe_catch_exception (&BIND_EXPR_BODY (bind));
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
DECL_INITIAL (ctx->cb.dst_fn) = block;
DECL_SAVED_TREE (ctx->cb.dst_fn) = bind;
cgraph_add_new_function (ctx->cb.dst_fn);
current_function_decl = ctx->cb.src_fn;
cfun = DECL_STRUCT_FUNCTION (current_function_decl);
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
*stmt_p = bind;
push_gimplify_context ();
/* Second phase. Build the sender decl now that we're in the
correct context. Replace the original body of the directive with
sending code for data copying clauses and the parallel call to
launch children threads. */
if (ctx->record_type)
ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_data_o");
olist = NULL;
expand_send_clauses (clauses, &BIND_EXPR_BODY (bind), &olist, ctx);
expand_send_shared_vars (&BIND_EXPR_BODY (bind), &olist, ctx);
build_parallel_call (clauses, &BIND_EXPR_BODY (bind), ctx);
append_to_statement_list (olist, &BIND_EXPR_BODY (bind));
pop_gimplify_context (bind);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* A subroutine of expand_omp_for_1. Generate code to emit the
for for a lastprivate clause. Given a loop control predicate
of (V cond N2), we gate the clause on (!(V cond N2)). */
static void
expand_omp_for_lastprivate (struct expand_omp_for_data *fd)
{
tree clauses, cond;
enum tree_code cond_code;
cond_code = fd->cond_code;
cond_code = cond_code == LT_EXPR ? GE_EXPR : LE_EXPR;
/* When possible, use a strict equality expression. This can let VRP
type optimizations deduce the value and remove a copy. */
if (host_integerp (fd->step, 0))
{
HOST_WIDE_INT step = TREE_INT_CST_LOW (fd->step);
if (step == 1 || step == -1)
cond_code = EQ_EXPR;
}
cond = build2 (cond_code, boolean_type_node, fd->v, fd->n2);
clauses = OMP_FOR_CLAUSES (fd->for_stmt);
expand_lastprivate_clauses (clauses, cond, &fd->pre, fd->ctx);
}
/* A subroutine of expand_omp_for_1. Generate code for a parallel
loop with any schedule. Given parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
more = GOMP_loop_foo_start (N1, N2, STEP, CHUNK, &istart0, &iend0);
if (more) goto L0; else goto L2;
L0:
V = istart0;
iend = iend0;
L1:
BODY;
V += STEP;
if (V cond iend) goto L1;
more = GOMP_loop_foo_next (&istart0, &iend0);
if (more) goto L0;
lastprivate;
L2:
If this is a combined omp parallel loop, we can skip the call
to GOMP_loop_foo_start and generate
L0:
if (!GOMP_loop_foo_next (&istart0, &iend0)) goto L2;
V = istart0;
iend = iend0;
L1:
BODY;
V += STEP;
if (V cond iend) goto L1;
goto L0;
L2:
lastprivate;
*/
static void
expand_omp_for_generic (struct expand_omp_for_data *fd,
enum built_in_function start_fn,
enum built_in_function next_fn)
{
tree l0, l1, l2;
tree type, istart0, iend0, iend;
tree t, args;
bool in_combined_parallel = is_in_combined_parallel_ctx (fd->ctx);
type = TREE_TYPE (fd->v);
istart0 = create_tmp_var (long_integer_type_node, ".istart0");
iend0 = create_tmp_var (long_integer_type_node, ".iend0");
l0 = create_artificial_label ();
l1 = create_artificial_label ();
l2 = create_artificial_label ();
iend = create_tmp_var (type, NULL);
/* If this is a combined parallel loop, skip the call to
GOMP_loop_foo_start and call GOMP_loop_foo_next directly. */
if (in_combined_parallel)
{
t = build1 (LABEL_EXPR, void_type_node, l0);
gimplify_and_add (t, &fd->pre);
t = build_fold_addr_expr (iend0);
args = tree_cons (NULL, t, NULL);
t = build_fold_addr_expr (istart0);
args = tree_cons (NULL, t, args);
t = build_function_call_expr (built_in_decls[next_fn], args);
t = build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l2), NULL);
gimplify_and_add (t, &fd->pre);
}
else
{
t = build_fold_addr_expr (iend0);
args = tree_cons (NULL, t, NULL);
t = build_fold_addr_expr (istart0);
args = tree_cons (NULL, t, args);
if (fd->chunk_size)
{
t = fold_convert (long_integer_type_node, fd->chunk_size);
args = tree_cons (NULL, t, args);
}
t = fold_convert (long_integer_type_node, fd->step);
args = tree_cons (NULL, t, args);
t = fold_convert (long_integer_type_node, fd->n2);
args = tree_cons (NULL, t, args);
t = fold_convert (long_integer_type_node, fd->n1);
args = tree_cons (NULL, t, args);
t = build_function_call_expr (built_in_decls[start_fn], args);
t = build3 (COND_EXPR, void_type_node, t,
build_and_jump (&l0), build_and_jump (&l2));
gimplify_and_add (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l0);
gimplify_and_add (t, &fd->pre);
}
t = fold_convert (type, istart0);
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
gimplify_and_add (t, &fd->pre);
t = fold_convert (type, iend0);
t = build2 (MODIFY_EXPR, void_type_node, iend, t);
gimplify_and_add (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l1);
gimplify_and_add (t, &fd->pre);
append_to_statement_list (OMP_FOR_BODY (fd->for_stmt), &fd->pre);
t = build2 (PLUS_EXPR, type, fd->v, fd->step);
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
gimplify_and_add (t, &fd->pre);
t = build2 (fd->cond_code, boolean_type_node, fd->v, iend);
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1), NULL);
gimplify_and_add (t, &fd->pre);
/* If emitting a combined parallel loop, we only need to emit a jump
back to L0 to call GOMP_loop_foo_next again. */
if (in_combined_parallel)
{
t = build_and_jump (&l0);
gimplify_and_add (t, &fd->pre);
}
else
{
t = build_fold_addr_expr (iend0);
args = tree_cons (NULL, t, NULL);
t = build_fold_addr_expr (istart0);
args = tree_cons (NULL, t, args);
t = build_function_call_expr (built_in_decls[next_fn], args);
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l0), NULL);
gimplify_and_add (t, &fd->pre);
}
expand_omp_for_lastprivate (fd);
t = build1 (LABEL_EXPR, void_type_node, l2);
gimplify_and_add (t, &fd->pre);
}
/* A subroutine of expand_omp_for_1. Generate code for a parallel
loop with static schedule and no specified chunk size. Given parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
if (cond is <)
adj = STEP - 1;
else
adj = STEP + 1;
n = (adj + N2 - N1) / STEP;
q = n / nthreads;
q += (q * nthreads != n);
s0 = q * threadid;
e0 = min(s0 + q, n);
if (s0 >= e0) goto L2; else goto L0;
L0:
V = s0 * STEP + N1;
e = e0 * STEP + N1;
L1:
BODY;
V += STEP;
if (V cond e) goto L1;
lastprivate;
L2:
*/
static void
expand_omp_for_static_nochunk (struct expand_omp_for_data *fd)
{
tree l0, l1, l2, n, q, s0, e0, e, t, nthreads, threadid;
tree type, utype;
l0 = create_artificial_label ();
l1 = create_artificial_label ();
l2 = create_artificial_label ();
type = TREE_TYPE (fd->v);
utype = lang_hooks.types.unsigned_type (type);
t = built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS];
t = build_function_call_expr (t, NULL);
t = fold_convert (utype, t);
nthreads = get_formal_tmp_var (t, &fd->pre);
t = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
t = build_function_call_expr (t, NULL);
t = fold_convert (utype, t);
threadid = get_formal_tmp_var (t, &fd->pre);
fd->n1 = fold_convert (type, fd->n1);
if (!is_gimple_val (fd->n1))
fd->n1 = get_formal_tmp_var (fd->n1, &fd->pre);
fd->n2 = fold_convert (type, fd->n2);
if (!is_gimple_val (fd->n2))
fd->n2 = get_formal_tmp_var (fd->n2, &fd->pre);
fd->step = fold_convert (type, fd->step);
if (!is_gimple_val (fd->step))
fd->step = get_formal_tmp_var (fd->step, &fd->pre);
t = build_int_cst (type, (fd->cond_code == LT_EXPR ? -1 : 1));
t = fold_build2 (PLUS_EXPR, type, fd->step, t);
t = fold_build2 (PLUS_EXPR, type, t, fd->n2);
t = fold_build2 (MINUS_EXPR, type, t, fd->n1);
t = fold_build2 (TRUNC_DIV_EXPR, type, t, fd->step);
t = fold_convert (utype, t);
if (is_gimple_val (t))
n = t;
else
n = get_formal_tmp_var (t, &fd->pre);
t = build2 (TRUNC_DIV_EXPR, utype, n, nthreads);
q = get_formal_tmp_var (t, &fd->pre);
t = build2 (MULT_EXPR, utype, q, nthreads);
t = build2 (NE_EXPR, utype, t, n);
t = build2 (PLUS_EXPR, utype, q, t);
q = get_formal_tmp_var (t, &fd->pre);
t = build2 (MULT_EXPR, utype, q, threadid);
s0 = get_formal_tmp_var (t, &fd->pre);
t = build2 (PLUS_EXPR, utype, s0, q);
t = build2 (MIN_EXPR, utype, t, n);
e0 = get_formal_tmp_var (t, &fd->pre);
t = build2 (GE_EXPR, boolean_type_node, s0, e0);
t = build3 (COND_EXPR, void_type_node, t,
build_and_jump (&l2), build_and_jump (&l0));
gimplify_and_add (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l0);
gimplify_and_add (t, &fd->pre);
t = fold_convert (type, s0);
t = build2 (MULT_EXPR, type, t, fd->step);
t = build2 (PLUS_EXPR, type, t, fd->n1);
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
gimplify_and_add (t, &fd->pre);
t = fold_convert (type, e0);
t = build2 (MULT_EXPR, type, t, fd->step);
t = build2 (PLUS_EXPR, type, t, fd->n1);
e = get_formal_tmp_var (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l1);
gimplify_and_add (t, &fd->pre);
append_to_statement_list (OMP_FOR_BODY (fd->for_stmt), &fd->pre);
t = build2 (PLUS_EXPR, type, fd->v, fd->step);
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
gimplify_and_add (t, &fd->pre);
t = build2 (fd->cond_code, boolean_type_node, fd->v, e);
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1), NULL);
gimplify_and_add (t, &fd->pre);
expand_omp_for_lastprivate (fd);
t = build1 (LABEL_EXPR, void_type_node, l2);
gimplify_and_add (t, &fd->pre);
}
/* A subroutine of expand_omp_for_1. Generate code for a parallel
loop with static schedule and a specified chunk size. Given parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
if (cond is <)
adj = STEP - 1;
else
adj = STEP + 1;
n = (adj + N2 - N1) / STEP;
trip = 0;
L0:
s0 = (trip * nthreads + threadid) * CHUNK;
e0 = min(s0 + CHUNK, n);
if (s0 < n) goto L1; else goto L4;
L1:
V = s0 * STEP + N1;
e = e0 * STEP + N1;
L2:
BODY;
V += STEP;
if (V cond e) goto L2; else goto L3;
L3:
trip += 1;
goto L0;
L4:
if (trip == 0) goto L5;
lastprivate;
L5:
*/
static void
expand_omp_for_static_chunk (struct expand_omp_for_data *fd)
{
tree l0, l1, l2, l3, l4, l5, n, s0, e0, e, t;
tree trip, nthreads, threadid;
tree type, utype;
l0 = create_artificial_label ();
l1 = create_artificial_label ();
l2 = create_artificial_label ();
l3 = create_artificial_label ();
l4 = create_artificial_label ();
l5 = create_artificial_label ();
type = TREE_TYPE (fd->v);
utype = lang_hooks.types.unsigned_type (type);
t = built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS];
t = build_function_call_expr (t, NULL);
t = fold_convert (utype, t);
nthreads = get_formal_tmp_var (t, &fd->pre);
t = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
t = build_function_call_expr (t, NULL);
t = fold_convert (utype, t);
threadid = get_formal_tmp_var (t, &fd->pre);
fd->n1 = fold_convert (type, fd->n1);
if (!is_gimple_val (fd->n1))
fd->n1 = get_formal_tmp_var (fd->n1, &fd->pre);
fd->n2 = fold_convert (type, fd->n2);
if (!is_gimple_val (fd->n2))
fd->n2 = get_formal_tmp_var (fd->n2, &fd->pre);
fd->step = fold_convert (type, fd->step);
if (!is_gimple_val (fd->step))
fd->step = get_formal_tmp_var (fd->step, &fd->pre);
fd->chunk_size = fold_convert (utype, fd->chunk_size);
if (!is_gimple_val (fd->chunk_size))
fd->chunk_size = get_formal_tmp_var (fd->chunk_size, &fd->pre);
t = build_int_cst (type, (fd->cond_code == LT_EXPR ? -1 : 1));
t = fold_build2 (PLUS_EXPR, type, fd->step, t);
t = fold_build2 (PLUS_EXPR, type, t, fd->n2);
t = fold_build2 (MINUS_EXPR, type, t, fd->n1);
t = fold_build2 (TRUNC_DIV_EXPR, type, t, fd->step);
t = fold_convert (utype, t);
if (is_gimple_val (t))
n = t;
else
n = get_formal_tmp_var (t, &fd->pre);
t = build_int_cst (utype, 0);
trip = get_initialized_tmp_var (t, &fd->pre, NULL);
t = build1 (LABEL_EXPR, void_type_node, l0);
gimplify_and_add (t, &fd->pre);
t = build2 (MULT_EXPR, utype, trip, nthreads);
t = build2 (PLUS_EXPR, utype, t, threadid);
t = build2 (MULT_EXPR, utype, t, fd->chunk_size);
s0 = get_formal_tmp_var (t, &fd->pre);
t = build2 (PLUS_EXPR, utype, s0, fd->chunk_size);
t = build2 (MIN_EXPR, utype, t, n);
e0 = get_formal_tmp_var (t, &fd->pre);
t = build2 (LT_EXPR, boolean_type_node, s0, n);
t = build3 (COND_EXPR, void_type_node, t,
build_and_jump (&l1), build_and_jump (&l4));
gimplify_and_add (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l1);
gimplify_and_add (t, &fd->pre);
t = fold_convert (type, s0);
t = build2 (MULT_EXPR, type, t, fd->step);
t = build2 (PLUS_EXPR, type, t, fd->n1);
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
gimplify_and_add (t, &fd->pre);
t = fold_convert (type, e0);
t = build2 (MULT_EXPR, type, t, fd->step);
t = build2 (PLUS_EXPR, type, t, fd->n1);
e = get_formal_tmp_var (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l2);
gimplify_and_add (t, &fd->pre);
append_to_statement_list (OMP_FOR_BODY (fd->for_stmt), &fd->pre);
t = build2 (PLUS_EXPR, type, fd->v, fd->step);
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
gimplify_and_add (t, &fd->pre);
t = build2 (fd->cond_code, boolean_type_node, fd->v, e);
t = build3 (COND_EXPR, void_type_node, t,
build_and_jump (&l2), build_and_jump (&l3));
gimplify_and_add (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l3);
gimplify_and_add (t, &fd->pre);
t = build_int_cst (utype, 1);
t = build2 (PLUS_EXPR, utype, trip, t);
t = build2 (MODIFY_EXPR, void_type_node, trip, t);
gimplify_and_add (t, &fd->pre);
t = build1 (GOTO_EXPR, void_type_node, l0);
gimplify_and_add (t, &fd->pre);
t = build1 (LABEL_EXPR, void_type_node, l4);
gimplify_and_add (t, &fd->pre);
t = build_int_cst (utype, 0);
t = build2 (EQ_EXPR, boolean_type_node, trip, t);
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l5), NULL);
expand_omp_for_lastprivate (fd);
t = build1 (LABEL_EXPR, void_type_node, l5);
gimplify_and_add (t, &fd->pre);
}
/* A subroutine of expand_omp_for. Expand the logic of the loop itself. */
static tree
expand_omp_for_1 (tree *stmt_p, omp_context *ctx)
{
struct expand_omp_for_data fd;
tree dlist;
extract_omp_for_data (*stmt_p, ctx, &fd);
expand_rec_input_clauses (OMP_FOR_CLAUSES (fd.for_stmt),
&fd.pre, &dlist, ctx);
expand_omp (&OMP_FOR_PRE_BODY (fd.for_stmt), ctx);
append_to_statement_list (OMP_FOR_PRE_BODY (fd.for_stmt), &fd.pre);
if (fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC && !fd.have_ordered)
{
if (fd.chunk_size == NULL)
expand_omp_for_static_nochunk (&fd);
else
expand_omp_for_static_chunk (&fd);
}
else
{
int fn_index;
fn_index = fd.sched_kind + fd.have_ordered * 4;
expand_omp_for_generic (&fd, BUILT_IN_GOMP_LOOP_STATIC_START + fn_index,
BUILT_IN_GOMP_LOOP_STATIC_NEXT + fn_index);
}
expand_reduction_clauses (OMP_FOR_CLAUSES (fd.for_stmt), &fd.pre, ctx);
append_to_statement_list (dlist, &fd.pre);
/* If this parallel loop was part of a combined parallel loop
directive, inform the parent parallel what flavour of
GOMP_parallel_loop_XXX_start to use. */
if (is_in_combined_parallel_ctx (ctx))
{
int start_ix = BUILT_IN_GOMP_PARALLEL_LOOP_STATIC_START + fd.sched_kind;
ctx->outer->parallel_start_ix = start_ix;
}
else if (!fd.have_nowait)
build_omp_barrier (&fd.pre);
return fd.pre;
}
/* Expand code for an OpenMP loop directive. */
static void
expand_omp_for (tree *stmt_p, omp_context *ctx)
{
tree bind, block, stmt_list;
push_gimplify_context ();
expand_omp (&OMP_FOR_BODY (*stmt_p), ctx);
stmt_list = expand_omp_for_1 (stmt_p, ctx);
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, stmt_list, block);
maybe_catch_exception (&BIND_EXPR_BODY (bind));
*stmt_p = bind;
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* Expand code for an OpenMP sections directive. In pseudo code, we generate
firstprivate;
v = GOMP_sections_start (n);
L0:
switch (v)
{
case 0:
goto L2;
case 1:
section 1;
goto L1;
case 2:
...
case n:
...
lastprivate;
default:
abort ();
}
L1:
v = GOMP_sections_next ();
goto L0;
L2:
reduction;
If this is a combined parallel sections skip the call to
GOMP_sections_start and emit the call to GOMP_sections_next right
before the switch(). */
static void
expand_omp_sections (tree *stmt_p, omp_context *ctx)
{
tree sec_stmt, label_vec, bind, block, stmt_list, l0, l1, l2, t, u, v;
tree_stmt_iterator tsi;
tree dlist;
unsigned i, len;
bool in_combined_parallel = is_in_combined_parallel_ctx (ctx);
sec_stmt = *stmt_p;
stmt_list = NULL;
push_gimplify_context ();
expand_rec_input_clauses (OMP_SECTIONS_CLAUSES (sec_stmt),
&stmt_list, &dlist, ctx);
tsi = tsi_start (OMP_SECTIONS_BODY (sec_stmt));
for (len = 0; !tsi_end_p (tsi); len++, tsi_next (&tsi))
continue;
l0 = create_artificial_label ();
l1 = create_artificial_label ();
l2 = create_artificial_label ();
v = create_tmp_var (unsigned_type_node, ".section");
label_vec = make_tree_vec (len + 2);
t = build_int_cst (unsigned_type_node, len);
t = tree_cons (NULL, t, NULL);
if (in_combined_parallel)
{
/* Nothing to do. Just inform our parent of the additional
arguments to invoke GOMP_parallel_sections_start. */
ctx->outer->parallel_start_ix = BUILT_IN_GOMP_PARALLEL_SECTIONS_START;
ctx->outer->parallel_start_additional_args = t;
}
else
{
u = built_in_decls[BUILT_IN_GOMP_SECTIONS_START];
t = build_function_call_expr (u, t);
t = build2 (MODIFY_EXPR, void_type_node, v, t);
gimplify_and_add (t, &stmt_list);
}
t = build1 (LABEL_EXPR, void_type_node, l0);
gimplify_and_add (t, &stmt_list);
if (in_combined_parallel)
{
/* Combined parallel sections need the call to GOMP_sections_next
before the switch(). */
t = built_in_decls[BUILT_IN_GOMP_SECTIONS_NEXT];
t = build_function_call_expr (t, NULL);
t = build2 (MODIFY_EXPR, void_type_node, v, t);
gimplify_and_add (t, &stmt_list);
}
t = build3 (SWITCH_EXPR, void_type_node, v, NULL, label_vec);
gimplify_and_add (t, &stmt_list);
t = build3 (CASE_LABEL_EXPR, void_type_node,
build_int_cst (unsigned_type_node, 0), NULL, l2);
TREE_VEC_ELT (label_vec, 0) = t;
tsi = tsi_start (OMP_SECTIONS_BODY (sec_stmt));
for (i = 0; i < len; i++, tsi_next (&tsi))
{
omp_context *sctx;
t = create_artificial_label ();
u = build_int_cst (unsigned_type_node, i + 1);
u = build3 (CASE_LABEL_EXPR, void_type_node, u, NULL, t);
TREE_VEC_ELT (label_vec, i + 1) = u;
t = build1 (LABEL_EXPR, void_type_node, t);
gimplify_and_add (t, &stmt_list);
t = tsi_stmt (tsi);
sctx = maybe_lookup_ctx (t);
gcc_assert (sctx);
expand_omp (&OMP_SECTION_BODY (t), sctx);
append_to_statement_list (OMP_SECTION_BODY (t), &stmt_list);
if (i == len - 1)
expand_lastprivate_clauses (OMP_SECTIONS_CLAUSES (sec_stmt),
NULL, &stmt_list, ctx);
t = build1 (GOTO_EXPR, void_type_node, l1);
gimplify_and_add (t, &stmt_list);
}
t = create_artificial_label ();
u = build3 (CASE_LABEL_EXPR, void_type_node, NULL, NULL, t);
TREE_VEC_ELT (label_vec, len + 1) = u;
t = build1 (LABEL_EXPR, void_type_node, t);
gimplify_and_add (t, &stmt_list);
t = built_in_decls[BUILT_IN_TRAP];
t = build_function_call_expr (t, NULL);
gimplify_and_add (t, &stmt_list);
t = build1 (LABEL_EXPR, void_type_node, l1);
gimplify_and_add (t, &stmt_list);
if (!in_combined_parallel)
{
t = built_in_decls[BUILT_IN_GOMP_SECTIONS_NEXT];
t = build_function_call_expr (t, NULL);
t = build2 (MODIFY_EXPR, void_type_node, v, t);
gimplify_and_add (t, &stmt_list);
}
t = build1 (GOTO_EXPR, void_type_node, l0);
gimplify_and_add (t, &stmt_list);
t = build1 (LABEL_EXPR, void_type_node, l2);
gimplify_and_add (t, &stmt_list);
expand_reduction_clauses (OMP_SECTIONS_CLAUSES (sec_stmt), &stmt_list, ctx);
append_to_statement_list (dlist, &stmt_list);
/* Unless there's a nowait clause, add a barrier afterward. */
if (!find_omp_clause (OMP_SECTIONS_CLAUSES (sec_stmt), OMP_CLAUSE_NOWAIT))
build_omp_barrier (&stmt_list);
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, stmt_list, block);
maybe_catch_exception (&BIND_EXPR_BODY (bind));
*stmt_p = bind;
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* A subroutine of expand_omp_single. Expand the simple form of
an OMP_SINGLE, without a copyprivate clause:
if (GOMP_single_start ())
BODY;
[ GOMP_barrier (); ] -> unless 'nowait' is present.
*/
static void
expand_omp_single_simple (tree single_stmt, tree *pre_p)
{
tree t;
t = built_in_decls[BUILT_IN_GOMP_SINGLE_START];
t = build_function_call_expr (t, NULL);
t = build3 (COND_EXPR, void_type_node, t,
OMP_SINGLE_BODY (single_stmt), NULL);
gimplify_and_add (t, pre_p);
if (!find_omp_clause (OMP_SINGLE_CLAUSES (single_stmt), OMP_CLAUSE_NOWAIT))
build_omp_barrier (pre_p);
}
/* A subroutine of expand_omp_single. Expand the simple form of
an OMP_SINGLE, with a copyprivate clause:
#pragma omp single copyprivate (a, b, c)
Create a new structure to hold copies of 'a', 'b' and 'c' and emit:
{
if ((copyout_p = GOMP_single_copy_start ()) == NULL)
{
BODY;
copyout.a = a;
copyout.b = b;
copyout.c = c;
GOMP_single_copy_end (&copyout);
}
else
{
a = copyout_p->a;
b = copyout_p->b;
c = copyout_p->c;
}
GOMP_barrier ();
}
*/
static void
expand_omp_single_copy (tree single_stmt, tree *pre_p, omp_context *ctx)
{
tree ptr_type, t, args, l0, l1, l2, copyin_seq;
ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_copy_o");
ptr_type = build_pointer_type (ctx->record_type);
ctx->receiver_decl = create_tmp_var (ptr_type, ".omp_copy_i");
l0 = create_artificial_label ();
l1 = create_artificial_label ();
l2 = create_artificial_label ();
t = built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_START];
t = build_function_call_expr (t, NULL);
t = fold_convert (ptr_type, t);
t = build2 (MODIFY_EXPR, void_type_node, ctx->receiver_decl, t);
gimplify_and_add (t, pre_p);
t = build2 (EQ_EXPR, boolean_type_node, ctx->receiver_decl,
build_int_cst (ptr_type, 0));
t = build3 (COND_EXPR, void_type_node, t,
build_and_jump (&l0), build_and_jump (&l1));
gimplify_and_add (t, pre_p);
t = build1 (LABEL_EXPR, void_type_node, l0);
gimplify_and_add (t, pre_p);
append_to_statement_list (OMP_SINGLE_BODY (single_stmt), pre_p);
copyin_seq = NULL;
expand_copyprivate_clauses (OMP_SINGLE_CLAUSES (single_stmt), pre_p,
&copyin_seq, ctx);
t = build_fold_addr_expr (ctx->sender_decl);
args = tree_cons (NULL, t, NULL);
t = built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_END];
t = build_function_call_expr (t, args);
gimplify_and_add (t, pre_p);
t = build_and_jump (&l2);
gimplify_and_add (t, pre_p);
t = build1 (LABEL_EXPR, void_type_node, l1);
gimplify_and_add (t, pre_p);
append_to_statement_list (copyin_seq, pre_p);
t = build1 (LABEL_EXPR, void_type_node, l2);
gimplify_and_add (t, pre_p);
build_omp_barrier (pre_p);
}
/* Expand code for an OpenMP single directive. */
static void
expand_omp_single (tree *stmt_p, omp_context *ctx)
{
tree bind, block, single_stmt = *stmt_p, dlist;
push_gimplify_context ();
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
*stmt_p = bind;
expand_rec_input_clauses (OMP_SINGLE_CLAUSES (single_stmt),
&BIND_EXPR_BODY (bind), &dlist, ctx);
expand_omp (&OMP_SINGLE_BODY (single_stmt), ctx);
if (ctx->record_type)
expand_omp_single_copy (single_stmt, &BIND_EXPR_BODY (bind), ctx);
else
expand_omp_single_simple (single_stmt, &BIND_EXPR_BODY (bind));
append_to_statement_list (dlist, &BIND_EXPR_BODY (bind));
maybe_catch_exception (&BIND_EXPR_BODY (bind));
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* Expand code for an OpenMP master directive. */
static void
expand_omp_master (tree *stmt_p, omp_context *ctx)
{
tree bind, block, stmt = *stmt_p, lab = NULL, x;
push_gimplify_context ();
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
*stmt_p = bind;
x = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
x = build_function_call_expr (x, NULL);
x = build2 (EQ_EXPR, boolean_type_node, x, integer_zero_node);
x = build3 (COND_EXPR, void_type_node, x, NULL, build_and_jump (&lab));
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
expand_omp (&OMP_MASTER_BODY (stmt), ctx);
append_to_statement_list (OMP_MASTER_BODY (stmt), &BIND_EXPR_BODY (bind));
x = build1 (LABEL_EXPR, void_type_node, lab);
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
maybe_catch_exception (&BIND_EXPR_BODY (bind));
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* Expand code for an OpenMP ordered directive. */
static void
expand_omp_ordered (tree *stmt_p, omp_context *ctx)
{
tree bind, block, stmt = *stmt_p, x;
push_gimplify_context ();
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
*stmt_p = bind;
x = built_in_decls[BUILT_IN_GOMP_ORDERED_START];
x = build_function_call_expr (x, NULL);
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
expand_omp (&OMP_ORDERED_BODY (stmt), ctx);
append_to_statement_list (OMP_ORDERED_BODY (stmt), &BIND_EXPR_BODY (bind));
x = built_in_decls[BUILT_IN_GOMP_ORDERED_END];
x = build_function_call_expr (x, NULL);
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
maybe_catch_exception (&BIND_EXPR_BODY (bind));
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* Expand code for an OpenMP critical directive. */
/* Gimplify an OMP_CRITICAL statement. This is a relatively simple
substitution of a couple of function calls. But in the NAMED case,
requires that languages coordinate a symbol name. It is therefore
best put here in common code. */
static GTY((param1_is (tree), param2_is (tree)))
splay_tree critical_name_mutexes;
static void
expand_omp_critical (tree *stmt_p, omp_context *ctx)
{
tree bind, block, stmt = *stmt_p;
tree lock, unlock, name;
name = OMP_CRITICAL_NAME (stmt);
if (name)
{
tree decl, args;
splay_tree_node n;
if (!critical_name_mutexes)
critical_name_mutexes
= splay_tree_new_ggc (splay_tree_compare_pointers);
n = splay_tree_lookup (critical_name_mutexes, (splay_tree_key) name);
if (n == NULL)
{
char *new_str;
decl = create_tmp_var_raw (ptr_type_node, NULL);
new_str = ACONCAT ((".gomp_critical_user_",
IDENTIFIER_POINTER (name), NULL));
DECL_NAME (decl) = get_identifier (new_str);
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
DECL_COMMON (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
cgraph_varpool_finalize_decl (decl);
splay_tree_insert (critical_name_mutexes, (splay_tree_key) name,
(splay_tree_value) decl);
}
else
decl = (tree) n->value;
args = tree_cons (NULL, build_fold_addr_expr (decl), NULL);
lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_START];
lock = build_function_call_expr (lock, args);
args = tree_cons (NULL, build_fold_addr_expr (decl), NULL);
unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_END];
unlock = build_function_call_expr (unlock, args);
}
else
{
lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_START];
lock = build_function_call_expr (lock, NULL);
unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_END];
unlock = build_function_call_expr (unlock, NULL);
}
push_gimplify_context ();
block = make_node (BLOCK);
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
*stmt_p = bind;
gimplify_and_add (lock, &BIND_EXPR_BODY (bind));
expand_omp (&OMP_CRITICAL_BODY (stmt), ctx);
maybe_catch_exception (&OMP_CRITICAL_BODY (stmt));
append_to_statement_list (OMP_CRITICAL_BODY (stmt), &BIND_EXPR_BODY (bind));
gimplify_and_add (unlock, &BIND_EXPR_BODY (bind));
pop_gimplify_context (bind);
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
}
/* Pass *TP back through the gimplifier within the context determined by WI.
This handles replacement of DECL_VALUE_EXPR, as well as adjusting the
flags on ADDR_EXPR. */
static void
expand_regimplify (tree *tp, struct walk_stmt_info *wi)
{
enum gimplify_status gs;
tree pre = NULL;
if (wi->is_lhs)
gs = gimplify_expr (tp, &pre, NULL, is_gimple_lvalue, fb_lvalue);
else if (wi->val_only)
gs = gimplify_expr (tp, &pre, NULL, is_gimple_val, fb_rvalue);
else
gs = gimplify_expr (tp, &pre, NULL, is_gimple_formal_tmp_var, fb_rvalue);
gcc_assert (gs == GS_ALL_DONE);
if (pre)
tsi_link_before (&wi->tsi, pre, TSI_SAME_STMT);
}
static tree
expand_omp_1 (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = data;
omp_context *ctx = wi->info;
tree t = *tp;
*walk_subtrees = 0;
switch (TREE_CODE (*tp))
{
case OMP_PARALLEL:
ctx = maybe_lookup_ctx (t);
if (!ctx->is_nested)
expand_omp_parallel (tp, ctx);
break;
case OMP_FOR:
ctx = maybe_lookup_ctx (t);
gcc_assert (ctx);
expand_omp_for (tp, ctx);
break;
case OMP_SECTIONS:
ctx = maybe_lookup_ctx (t);
gcc_assert (ctx);
expand_omp_sections (tp, ctx);
break;
case OMP_SINGLE:
ctx = maybe_lookup_ctx (t);
gcc_assert (ctx);
expand_omp_single (tp, ctx);
break;
case OMP_MASTER:
ctx = maybe_lookup_ctx (t);
gcc_assert (ctx);
expand_omp_master (tp, ctx);
break;
case OMP_ORDERED:
ctx = maybe_lookup_ctx (t);
gcc_assert (ctx);
expand_omp_ordered (tp, ctx);
break;
case OMP_CRITICAL:
ctx = maybe_lookup_ctx (t);
gcc_assert (ctx);
expand_omp_critical (tp, ctx);
break;
case VAR_DECL:
if (ctx && DECL_HAS_VALUE_EXPR_P (t))
expand_regimplify (tp, wi);
break;
case ADDR_EXPR:
if (ctx)
expand_regimplify (tp, wi);
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case COMPONENT_REF:
case VIEW_CONVERT_EXPR:
if (ctx)
expand_regimplify (tp, wi);
break;
case INDIRECT_REF:
if (ctx)
{
wi->is_lhs = false;
wi->val_only = true;
expand_regimplify (&TREE_OPERAND (t, 0), wi);
}
break;
default:
if (!TYPE_P (t) && !DECL_P (t))
*walk_subtrees = 1;
break;
}
return NULL_TREE;
}
static void
expand_omp (tree *stmt_p, omp_context *ctx)
{
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
wi.callback = expand_omp_1;
wi.info = ctx;
wi.val_only = true;
wi.want_locations = true;
walk_stmts (&wi, stmt_p);
}
/* Main entry point. */
static void
execute_lower_omp (void)
{
all_contexts = splay_tree_new (splay_tree_compare_pointers, 0,
delete_omp_context);
scan_omp (&DECL_SAVED_TREE (current_function_decl), NULL);
gcc_assert (parallel_nesting_level == 0);
if (all_contexts->root)
expand_omp (&DECL_SAVED_TREE (current_function_decl), NULL);
splay_tree_delete (all_contexts);
all_contexts = NULL;
}
static bool
gate_lower_omp (void)
{
return flag_openmp != 0;
}
struct tree_opt_pass pass_lower_omp =
{
"omplower", /* name */
gate_lower_omp, /* gate */
execute_lower_omp, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
PROP_gimple_any, /* properties_required */
PROP_gimple_lomp, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
/* The following is a utility to diagnose OpenMP structured block violations.
It's part of the "omplower" pass, as that's invoked too late. It should
be invoked by the respective front ends after gimplification. */
static splay_tree all_labels;
/* Check for mismatched contexts and generate an error if needed. Return
true if an error is detected. */
static bool
diagnose_sb_0 (tree *stmt_p, tree branch_ctx, tree label_ctx)
{
bool exit_p = true;
if ((label_ctx ? TREE_VALUE (label_ctx) : NULL) == branch_ctx)
return false;
/* Try to avoid confusing the user by producing and error message
with correct "exit" or "enter" verbage. We prefer "exit"
unless we can show that LABEL_CTX is nested within BRANCH_CTX. */
if (branch_ctx == NULL)
exit_p = false;
else
{
while (label_ctx)
{
if (TREE_VALUE (label_ctx) == branch_ctx)
{
exit_p = false;
break;
}
label_ctx = TREE_CHAIN (label_ctx);
}
}
if (exit_p)
error ("invalid exit from OpenMP structured block");
else
error ("invalid entry to OpenMP structured block");
*stmt_p = build_empty_stmt ();
return true;
}
/* Pass 1: Create a minimal tree of OpenMP structured blocks, and record
where in the tree each label is found. */
static tree
diagnose_sb_1 (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = data;
tree context = (tree) wi->info;
tree inner_context;
tree t = *tp;
*walk_subtrees = 0;
switch (TREE_CODE (t))
{
case OMP_PARALLEL:
case OMP_SECTIONS:
case OMP_SINGLE:
walk_tree (&OMP_CLAUSES (t), diagnose_sb_1, wi, NULL);
/* FALLTHRU */
case OMP_SECTION:
case OMP_MASTER:
case OMP_ORDERED:
case OMP_CRITICAL:
/* The minimal context here is just a tree of statements. */
inner_context = tree_cons (NULL, t, context);
wi->info = inner_context;
walk_stmts (wi, &OMP_BODY (t));
wi->info = context;
break;
case OMP_FOR:
walk_tree (&OMP_FOR_CLAUSES (t), diagnose_sb_1, wi, NULL);
inner_context = tree_cons (NULL, t, context);
wi->info = inner_context;
walk_tree (&OMP_FOR_INIT (t), diagnose_sb_1, wi, NULL);
walk_tree (&OMP_FOR_COND (t), diagnose_sb_1, wi, NULL);
walk_tree (&OMP_FOR_INCR (t), diagnose_sb_1, wi, NULL);
walk_stmts (wi, &OMP_FOR_PRE_BODY (t));
walk_stmts (wi, &OMP_FOR_BODY (t));
wi->info = context;
break;
case LABEL_EXPR:
splay_tree_insert (all_labels, (splay_tree_key) LABEL_EXPR_LABEL (t),
(splay_tree_value) context);
break;
default:
break;
}
return NULL_TREE;
}
/* Pass 2: Check each branch and see if its context differs from that of
the destination label's context. */
static tree
diagnose_sb_2 (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = data;
tree context = (tree) wi->info;
splay_tree_node n;
tree t = *tp;
*walk_subtrees = 0;
switch (TREE_CODE (t))
{
case OMP_PARALLEL:
case OMP_SECTIONS:
case OMP_SINGLE:
walk_tree (&OMP_CLAUSES (t), diagnose_sb_2, wi, NULL);
/* FALLTHRU */
case OMP_SECTION:
case OMP_MASTER:
case OMP_ORDERED:
case OMP_CRITICAL:
wi->info = t;
walk_stmts (wi, &OMP_BODY (t));
wi->info = context;
break;
case OMP_FOR:
walk_tree (&OMP_FOR_CLAUSES (t), diagnose_sb_2, wi, NULL);
wi->info = t;
walk_tree (&OMP_FOR_INIT (t), diagnose_sb_2, wi, NULL);
walk_tree (&OMP_FOR_COND (t), diagnose_sb_2, wi, NULL);
walk_tree (&OMP_FOR_INCR (t), diagnose_sb_2, wi, NULL);
walk_stmts (wi, &OMP_FOR_PRE_BODY (t));
walk_stmts (wi, &OMP_FOR_BODY (t));
wi->info = context;
break;
case GOTO_EXPR:
{
tree lab = GOTO_DESTINATION (t);
if (TREE_CODE (lab) != LABEL_DECL)
break;
n = splay_tree_lookup (all_labels, (splay_tree_key) lab);
diagnose_sb_0 (tp, context, n ? (tree) n->value : NULL_TREE);
}
break;
case SWITCH_EXPR:
{
tree vec = SWITCH_LABELS (t);
int i, len = TREE_VEC_LENGTH (vec);
for (i = 0; i < len; ++i)
{
tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
n = splay_tree_lookup (all_labels, (splay_tree_key) lab);
if (diagnose_sb_0 (tp, context, (tree) n->value))
break;
}
}
break;
case RETURN_EXPR:
diagnose_sb_0 (tp, context, NULL_TREE);
break;
default:
break;
}
return NULL_TREE;
}
void
diagnose_omp_structured_block_errors (tree fndecl)
{
tree save_current = current_function_decl;
struct walk_stmt_info wi;
current_function_decl = fndecl;
all_labels = splay_tree_new (splay_tree_compare_pointers, 0, 0);
memset (&wi, 0, sizeof (wi));
wi.callback = diagnose_sb_1;
walk_stmts (&wi, &DECL_SAVED_TREE (fndecl));
memset (&wi, 0, sizeof (wi));
wi.callback = diagnose_sb_2;
wi.want_locations = true;
wi.want_return_expr = true;
walk_stmts (&wi, &DECL_SAVED_TREE (fndecl));
splay_tree_delete (all_labels);
all_labels = NULL;
current_function_decl = save_current;
}
#include "gt-omp-low.h"