gcc/libstdc++-v3/include/parallel/multiseq_selection.h
2009-04-09 17:00:19 +02:00

634 lines
17 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- C++ -*-
// Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file parallel/multiseq_selection.h
* @brief Functions to find elements of a certain global rank in
* multiple sorted sequences. Also serves for splitting such
* sequence sets.
*
* The algorithm description can be found in
*
* P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard.
* Merging Multiple Lists on Hierarchical-Memory Multiprocessors.
* Journal of Parallel and Distributed Computing, 12(2):171177, 1991.
*
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H
#define _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H 1
#include <vector>
#include <queue>
#include <bits/stl_algo.h>
#include <parallel/sort.h>
namespace __gnu_parallel
{
/** @brief Compare a pair of types lexicographically, ascending. */
template<typename T1, typename T2, typename Comparator>
class lexicographic
: public std::binary_function<std::pair<T1, T2>, std::pair<T1, T2>, bool>
{
private:
Comparator& comp;
public:
lexicographic(Comparator& _comp) : comp(_comp) { }
bool
operator()(const std::pair<T1, T2>& p1,
const std::pair<T1, T2>& p2) const
{
if (comp(p1.first, p2.first))
return true;
if (comp(p2.first, p1.first))
return false;
// Firsts are equal.
return p1.second < p2.second;
}
};
/** @brief Compare a pair of types lexicographically, descending. */
template<typename T1, typename T2, typename Comparator>
class lexicographic_reverse : public std::binary_function<T1, T2, bool>
{
private:
Comparator& comp;
public:
lexicographic_reverse(Comparator& _comp) : comp(_comp) { }
bool
operator()(const std::pair<T1, T2>& p1,
const std::pair<T1, T2>& p2) const
{
if (comp(p2.first, p1.first))
return true;
if (comp(p1.first, p2.first))
return false;
// Firsts are equal.
return p2.second < p1.second;
}
};
/**
* @brief Splits several sorted sequences at a certain global rank,
* resulting in a splitting point for each sequence.
* The sequences are passed via a sequence of random-access
* iterator pairs, none of the sequences may be empty. If there
* are several equal elements across the split, the ones on the
* left side will be chosen from sequences with smaller number.
* @param begin_seqs Begin of the sequence of iterator pairs.
* @param end_seqs End of the sequence of iterator pairs.
* @param rank The global rank to partition at.
* @param begin_offsets A random-access sequence begin where the
* result will be stored in. Each element of the sequence is an
* iterator that points to the first element on the greater part of
* the respective sequence.
* @param comp The ordering functor, defaults to std::less<T>.
*/
template<typename RanSeqs, typename RankType, typename RankIterator,
typename Comparator>
void
multiseq_partition(RanSeqs begin_seqs, RanSeqs end_seqs,
RankType rank,
RankIterator begin_offsets,
Comparator comp = std::less<
typename std::iterator_traits<typename
std::iterator_traits<RanSeqs>::value_type::
first_type>::value_type>()) // std::less<T>
{
_GLIBCXX_CALL(end_seqs - begin_seqs)
typedef typename std::iterator_traits<RanSeqs>::value_type::first_type
It;
typedef typename std::iterator_traits<It>::difference_type
difference_type;
typedef typename std::iterator_traits<It>::value_type value_type;
lexicographic<value_type, int, Comparator> lcomp(comp);
lexicographic_reverse<value_type, int, Comparator> lrcomp(comp);
// Number of sequences, number of elements in total (possibly
// including padding).
difference_type m = std::distance(begin_seqs, end_seqs), N = 0,
nmax, n, r;
for (int i = 0; i < m; i++)
{
N += std::distance(begin_seqs[i].first, begin_seqs[i].second);
_GLIBCXX_PARALLEL_ASSERT(
std::distance(begin_seqs[i].first, begin_seqs[i].second) > 0);
}
if (rank == N)
{
for (int i = 0; i < m; i++)
begin_offsets[i] = begin_seqs[i].second; // Very end.
// Return m - 1;
return;
}
_GLIBCXX_PARALLEL_ASSERT(m != 0);
_GLIBCXX_PARALLEL_ASSERT(N != 0);
_GLIBCXX_PARALLEL_ASSERT(rank >= 0);
_GLIBCXX_PARALLEL_ASSERT(rank < N);
difference_type* ns = new difference_type[m];
difference_type* a = new difference_type[m];
difference_type* b = new difference_type[m];
difference_type l;
ns[0] = std::distance(begin_seqs[0].first, begin_seqs[0].second);
nmax = ns[0];
for (int i = 0; i < m; i++)
{
ns[i] = std::distance(begin_seqs[i].first, begin_seqs[i].second);
nmax = std::max(nmax, ns[i]);
}
r = __log2(nmax) + 1;
// Pad all lists to this length, at least as long as any ns[i],
// equality iff nmax = 2^k - 1.
l = (1ULL << r) - 1;
// From now on, including padding.
N = l * m;
for (int i = 0; i < m; i++)
{
a[i] = 0;
b[i] = l;
}
n = l / 2;
// Invariants:
// 0 <= a[i] <= ns[i], 0 <= b[i] <= l
#define S(i) (begin_seqs[i].first)
// Initial partition.
std::vector<std::pair<value_type, int> > sample;
for (int i = 0; i < m; i++)
if (n < ns[i]) //sequence long enough
sample.push_back(std::make_pair(S(i)[n], i));
__gnu_sequential::sort(sample.begin(), sample.end(), lcomp);
for (int i = 0; i < m; i++) //conceptual infinity
if (n >= ns[i]) //sequence too short, conceptual infinity
sample.push_back(std::make_pair(S(i)[0] /*dummy element*/, i));
difference_type localrank = rank * m / N ;
int j;
for (j = 0; j < localrank && ((n + 1) <= ns[sample[j].second]); ++j)
a[sample[j].second] += n + 1;
for (; j < m; j++)
b[sample[j].second] -= n + 1;
// Further refinement.
while (n > 0)
{
n /= 2;
int lmax_seq = -1; // to avoid warning
const value_type* lmax = NULL; // impossible to avoid the warning?
for (int i = 0; i < m; i++)
{
if (a[i] > 0)
{
if (!lmax)
{
lmax = &(S(i)[a[i] - 1]);
lmax_seq = i;
}
else
{
// Max, favor rear sequences.
if (!comp(S(i)[a[i] - 1], *lmax))
{
lmax = &(S(i)[a[i] - 1]);
lmax_seq = i;
}
}
}
}
int i;
for (i = 0; i < m; i++)
{
difference_type middle = (b[i] + a[i]) / 2;
if (lmax && middle < ns[i] &&
lcomp(std::make_pair(S(i)[middle], i),
std::make_pair(*lmax, lmax_seq)))
a[i] = std::min(a[i] + n + 1, ns[i]);
else
b[i] -= n + 1;
}
difference_type leftsize = 0, total = 0;
for (int i = 0; i < m; i++)
{
leftsize += a[i] / (n + 1);
total += l / (n + 1);
}
difference_type skew = static_cast<difference_type>
(static_cast<uint64>(total) * rank / N - leftsize);
if (skew > 0)
{
// Move to the left, find smallest.
std::priority_queue<std::pair<value_type, int>,
std::vector<std::pair<value_type, int> >,
lexicographic_reverse<value_type, int, Comparator> >
pq(lrcomp);
for (int i = 0; i < m; i++)
if (b[i] < ns[i])
pq.push(std::make_pair(S(i)[b[i]], i));
for (; skew != 0 && !pq.empty(); --skew)
{
int source = pq.top().second;
pq.pop();
a[source] = std::min(a[source] + n + 1, ns[source]);
b[source] += n + 1;
if (b[source] < ns[source])
pq.push(std::make_pair(S(source)[b[source]], source));
}
}
else if (skew < 0)
{
// Move to the right, find greatest.
std::priority_queue<std::pair<value_type, int>,
std::vector<std::pair<value_type, int> >,
lexicographic<value_type, int, Comparator> > pq(lcomp);
for (int i = 0; i < m; i++)
if (a[i] > 0)
pq.push(std::make_pair(S(i)[a[i] - 1], i));
for (; skew != 0; ++skew)
{
int source = pq.top().second;
pq.pop();
a[source] -= n + 1;
b[source] -= n + 1;
if (a[source] > 0)
pq.push(std::make_pair(S(source)[a[source] - 1], source));
}
}
}
// Postconditions:
// a[i] == b[i] in most cases, except when a[i] has been clamped
// because of having reached the boundary
// Now return the result, calculate the offset.
// Compare the keys on both edges of the border.
// Maximum of left edge, minimum of right edge.
value_type* maxleft = NULL;
value_type* minright = NULL;
for (int i = 0; i < m; i++)
{
if (a[i] > 0)
{
if (!maxleft)
maxleft = &(S(i)[a[i] - 1]);
else
{
// Max, favor rear sequences.
if (!comp(S(i)[a[i] - 1], *maxleft))
maxleft = &(S(i)[a[i] - 1]);
}
}
if (b[i] < ns[i])
{
if (!minright)
minright = &(S(i)[b[i]]);
else
{
// Min, favor fore sequences.
if (comp(S(i)[b[i]], *minright))
minright = &(S(i)[b[i]]);
}
}
}
int seq = 0;
for (int i = 0; i < m; i++)
begin_offsets[i] = S(i) + a[i];
delete[] ns;
delete[] a;
delete[] b;
}
/**
* @brief Selects the element at a certain global rank from several
* sorted sequences.
*
* The sequences are passed via a sequence of random-access
* iterator pairs, none of the sequences may be empty.
* @param begin_seqs Begin of the sequence of iterator pairs.
* @param end_seqs End of the sequence of iterator pairs.
* @param rank The global rank to partition at.
* @param offset The rank of the selected element in the global
* subsequence of elements equal to the selected element. If the
* selected element is unique, this number is 0.
* @param comp The ordering functor, defaults to std::less.
*/
template<typename T, typename RanSeqs, typename RankType,
typename Comparator>
T
multiseq_selection(RanSeqs begin_seqs, RanSeqs end_seqs, RankType rank,
RankType& offset, Comparator comp = std::less<T>())
{
_GLIBCXX_CALL(end_seqs - begin_seqs)
typedef typename std::iterator_traits<RanSeqs>::value_type::first_type
It;
typedef typename std::iterator_traits<It>::difference_type
difference_type;
lexicographic<T, int, Comparator> lcomp(comp);
lexicographic_reverse<T, int, Comparator> lrcomp(comp);
// Number of sequences, number of elements in total (possibly
// including padding).
difference_type m = std::distance(begin_seqs, end_seqs);
difference_type N = 0;
difference_type nmax, n, r;
for (int i = 0; i < m; i++)
N += std::distance(begin_seqs[i].first, begin_seqs[i].second);
if (m == 0 || N == 0 || rank < 0 || rank >= N)
{
// Result undefined when there is no data or rank is outside bounds.
throw std::exception();
}
difference_type* ns = new difference_type[m];
difference_type* a = new difference_type[m];
difference_type* b = new difference_type[m];
difference_type l;
ns[0] = std::distance(begin_seqs[0].first, begin_seqs[0].second);
nmax = ns[0];
for (int i = 0; i < m; ++i)
{
ns[i] = std::distance(begin_seqs[i].first, begin_seqs[i].second);
nmax = std::max(nmax, ns[i]);
}
r = __log2(nmax) + 1;
// Pad all lists to this length, at least as long as any ns[i],
// equality iff nmax = 2^k - 1
l = pow2(r) - 1;
// From now on, including padding.
N = l * m;
for (int i = 0; i < m; ++i)
{
a[i] = 0;
b[i] = l;
}
n = l / 2;
// Invariants:
// 0 <= a[i] <= ns[i], 0 <= b[i] <= l
#define S(i) (begin_seqs[i].first)
// Initial partition.
std::vector<std::pair<T, int> > sample;
for (int i = 0; i < m; i++)
if (n < ns[i])
sample.push_back(std::make_pair(S(i)[n], i));
__gnu_sequential::sort(sample.begin(), sample.end(),
lcomp, sequential_tag());
// Conceptual infinity.
for (int i = 0; i < m; i++)
if (n >= ns[i])
sample.push_back(std::make_pair(S(i)[0] /*dummy element*/, i));
difference_type localrank = rank * m / N ;
int j;
for (j = 0; j < localrank && ((n + 1) <= ns[sample[j].second]); ++j)
a[sample[j].second] += n + 1;
for (; j < m; ++j)
b[sample[j].second] -= n + 1;
// Further refinement.
while (n > 0)
{
n /= 2;
const T* lmax = NULL;
for (int i = 0; i < m; ++i)
{
if (a[i] > 0)
{
if (!lmax)
lmax = &(S(i)[a[i] - 1]);
else
{
if (comp(*lmax, S(i)[a[i] - 1])) //max
lmax = &(S(i)[a[i] - 1]);
}
}
}
int i;
for (i = 0; i < m; i++)
{
difference_type middle = (b[i] + a[i]) / 2;
if (lmax && middle < ns[i] && comp(S(i)[middle], *lmax))
a[i] = std::min(a[i] + n + 1, ns[i]);
else
b[i] -= n + 1;
}
difference_type leftsize = 0, total = 0;
for (int i = 0; i < m; ++i)
{
leftsize += a[i] / (n + 1);
total += l / (n + 1);
}
difference_type skew = ((unsigned long long)total * rank / N
- leftsize);
if (skew > 0)
{
// Move to the left, find smallest.
std::priority_queue<std::pair<T, int>,
std::vector<std::pair<T, int> >,
lexicographic_reverse<T, int, Comparator> > pq(lrcomp);
for (int i = 0; i < m; ++i)
if (b[i] < ns[i])
pq.push(std::make_pair(S(i)[b[i]], i));
for (; skew != 0 && !pq.empty(); --skew)
{
int source = pq.top().second;
pq.pop();
a[source] = std::min(a[source] + n + 1, ns[source]);
b[source] += n + 1;
if (b[source] < ns[source])
pq.push(std::make_pair(S(source)[b[source]], source));
}
}
else if (skew < 0)
{
// Move to the right, find greatest.
std::priority_queue<std::pair<T, int>,
std::vector<std::pair<T, int> >,
lexicographic<T, int, Comparator> > pq(lcomp);
for (int i = 0; i < m; ++i)
if (a[i] > 0)
pq.push(std::make_pair(S(i)[a[i] - 1], i));
for (; skew != 0; ++skew)
{
int source = pq.top().second;
pq.pop();
a[source] -= n + 1;
b[source] -= n + 1;
if (a[source] > 0)
pq.push(std::make_pair(S(source)[a[source] - 1], source));
}
}
}
// Postconditions:
// a[i] == b[i] in most cases, except when a[i] has been clamped
// because of having reached the boundary
// Now return the result, calculate the offset.
// Compare the keys on both edges of the border.
// Maximum of left edge, minimum of right edge.
bool maxleftset = false, minrightset = false;
// Impossible to avoid the warning?
T maxleft, minright;
for (int i = 0; i < m; ++i)
{
if (a[i] > 0)
{
if (!maxleftset)
{
maxleft = S(i)[a[i] - 1];
maxleftset = true;
}
else
{
// Max.
if (comp(maxleft, S(i)[a[i] - 1]))
maxleft = S(i)[a[i] - 1];
}
}
if (b[i] < ns[i])
{
if (!minrightset)
{
minright = S(i)[b[i]];
minrightset = true;
}
else
{
// Min.
if (comp(S(i)[b[i]], minright))
minright = S(i)[b[i]];
}
}
}
// Minright is the splitter, in any case.
if (!maxleftset || comp(minright, maxleft))
{
// Good luck, everything is split unambiguously.
offset = 0;
}
else
{
// We have to calculate an offset.
offset = 0;
for (int i = 0; i < m; ++i)
{
difference_type lb = std::lower_bound(S(i), S(i) + ns[i],
minright,
comp) - S(i);
offset += a[i] - lb;
}
}
delete[] ns;
delete[] a;
delete[] b;
return minright;
}
}
#undef S
#endif /* _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H */