gcc/libgcc/config/msp430/lib2hw_mul.S
Jozef Lawrynowicz bf7b94d407 MSP430: Add 64-bit hardware multiply support
Hardware multipliers that support widening 32-bit multiplication can
be used to perform a 64-bit * 64-bit multiplication more efficiently
than a software implementation.

The following equation is used to perform 64-bit multiplication for
devices with "32bit" or "f5series" hardware multiply versions:

  64bit_result = (low32_op0 * lop32_op1)
    + ((low32_op0 * high32_op1) << 32)
       + ((high32_op0 * low32_op1) << 32)

libgcc/ChangeLog:

	* config/msp430/lib2hw_mul.S (mult64_hw): New.
	(if MUL_32): Use mult64_hw for __muldi3.
	(if MUL_F5): Use mult64_hw for __muldi3.
	* config/msp430/lib2mul.c (__muldi3): New.
	* config/msp430/t-msp430 (LIB2FUNCS_EXCLUDE): Define.
2020-11-18 11:05:27 +00:00

475 lines
16 KiB
ArmAsm

; Copyright (C) 2014-2020 Free Software Foundation, Inc.
; Contributed by Red Hat.
;
; This file is free software; you can redistribute it and/or modify it
; under the terms of the GNU General Public License as published by the
; Free Software Foundation; either version 3, or (at your option) any
; later version.
;
; This file is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; General Public License for more details.
;
; Under Section 7 of GPL version 3, you are granted additional
; permissions described in the GCC Runtime Library Exception, version
; 3.1, as published by the Free Software Foundation.
;
; You should have received a copy of the GNU General Public License and
; a copy of the GCC Runtime Library Exception along with this program;
; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
; <http://www.gnu.org/licenses/>.
;; Macro to start a multiply function. Each function has three
;; names, and hence three entry points - although they all go
;; through the same code. The first name is the version generated
;; by GCC. The second is the MSP430 EABI mandated name for the
;; *software* version of the function. The third is the EABI
;; mandated name for the *hardware* version of the function.
;;
;; Since we are using the hardware and software names to point
;; to the same code this effectively means that we are mapping
;; the software function onto the hardware function. Thus if
;; the library containing this code is linked into an application
;; (before the libgcc.a library) *all* multiply functions will
;; be mapped onto the hardware versions.
;;
;; We construct each function in its own section so that linker
;; garbage collection can be used to delete any unused functions
;; from this file.
.macro start_func gcc_name eabi_soft_name eabi_hard_name
.pushsection .text.\gcc_name,"ax",@progbits
.p2align 1
.global \eabi_hard_name
.type \eabi_hard_name , @function
\eabi_hard_name:
.global \eabi_soft_name
.type \eabi_soft_name , @function
\eabi_soft_name:
.global \gcc_name
.type \gcc_name , @function
\gcc_name:
PUSH.W sr ; Save current interrupt state
DINT ; Disable interrupts
NOP ; Account for latency
.endm
;; End a function started with the start_func macro.
.macro end_func name
#ifdef __MSP430X_LARGE__
POP.W sr
RETA
#else
RETI
#endif
.size \name , . - \name
.popsection
.endm
;; Like the start_func macro except that it is used to
;; create a false entry point that just jumps to the
;; software function (implemented elsewhere).
.macro fake_func gcc_name eabi_soft_name eabi_hard_name
.pushsection .text.\gcc_name,"ax",@progbits
.p2align 1
.global \eabi_hard_name
.type \eabi_hard_name , @function
\eabi_hard_name:
.global \gcc_name
.type \gcc_name , @function
\gcc_name:
#ifdef __MSP430X_LARGE__
BRA #\eabi_soft_name
#else
BR #\eabi_soft_name
#endif
.size \gcc_name , . - \gcc_name
.popsection
.endm
.macro mult16 OP1, OP2, RESULT
;* * 16-bit hardware multiply: int16 = int16 * int16
;*
;* - Operand 1 is in R12
;* - Operand 2 is in R13
;* - Result is in R12
;*
;* To ensure that the multiply is performed atomically, interrupts are
;* disabled upon routine entry. Interrupt state is restored upon exit.
;*
;* Registers used: R12, R13
;*
;* Macro arguments are the memory locations of the hardware registers.
MOV.W r12, &\OP1 ; Load operand 1 into multiplier
MOV.W r13, &\OP2 ; Load operand 2 which triggers MPY
MOV.W &\RESULT, r12 ; Move result into return register
.endm
.macro mult1632 OP1, OP2, RESLO, RESHI
;* * 16-bit hardware multiply with a 32-bit result:
;* int32 = int16 * int16
;* uint32 = uint16 * uint16
;*
;* - Operand 1 is in R12
;* - Operand 2 is in R13
;* - Result is in R12, R13
;*
;* To ensure that the multiply is performed atomically, interrupts are
;* disabled upon routine entry. Interrupt state is restored upon exit.
;*
;* Registers used: R12, R13
;*
;* Macro arguments are the memory locations of the hardware registers.
MOV.W r12, &\OP1 ; Load operand 1 into multiplier
MOV.W r13, &\OP2 ; Load operand 2 which triggers MPY
MOV.W &\RESLO, r12 ; Move low result into return register
MOV.W &\RESHI, r13 ; Move high result into return register
.endm
.macro mult32 OP1, OP2, MAC_OP1, MAC_OP2, RESLO, RESHI
;* * 32-bit hardware multiply with a 32-bit result using 16 multiply and accumulate:
;* int32 = int32 * int32
;*
;* - Operand 1 is in R12, R13
;* - Operand 2 is in R14, R15
;* - Result is in R12, R13
;*
;* To ensure that the multiply is performed atomically, interrupts are
;* disabled upon routine entry. Interrupt state is restored upon exit.
;*
;* Registers used: R12, R13, R14, R15
;*
;* Macro arguments are the memory locations of the hardware registers.
MOV.W r12, &\OP1 ; Load operand 1 Low into multiplier
MOV.W r14, &\OP2 ; Load operand 2 Low which triggers MPY
MOV.W r12, &\MAC_OP1 ; Load operand 1 Low into mac
MOV.W &\RESLO, r12 ; Low 16-bits of result ready for return
MOV.W &\RESHI, &\RESLO ; MOV intermediate mpy high into low
MOV.W r15, &\MAC_OP2 ; Load operand 2 High, trigger MAC
MOV.W r13, &\MAC_OP1 ; Load operand 1 High
MOV.W r14, &\MAC_OP2 ; Load operand 2 Lo, trigger MAC
MOV.W &\RESLO, r13 ; Upper 16-bits result ready for return
.endm
.macro mult32_hw OP1_LO OP1_HI OP2_LO OP2_HI RESLO RESHI
;* * 32-bit hardware multiply with a 32-bit result
;* int32 = int32 * int32
;*
;* - Operand 1 is in R12, R13
;* - Operand 2 is in R14, R15
;* - Result is in R12, R13
;*
;* To ensure that the multiply is performed atomically, interrupts are
;* disabled upon routine entry. Interrupt state is restored upon exit.
;*
;* Registers used: R12, R13, R14, R15
;*
;* Macro arguments are the memory locations of the hardware registers.
MOV.W r12, &\OP1_LO ; Load operand 1 Low into multiplier
MOV.W r13, &\OP1_HI ; Load operand 1 High into multiplier
MOV.W r14, &\OP2_LO ; Load operand 2 Low into multiplier
MOV.W r15, &\OP2_HI ; Load operand 2 High, trigger MPY
MOV.W &\RESLO, r12 ; Ready low 16-bits for return
MOV.W &\RESHI, r13 ; Ready high 16-bits for return
.endm
.macro mult3264_hw OP1_LO OP1_HI OP2_LO OP2_HI RES0 RES1 RES2 RES3
;* * 32-bit hardware multiply with a 64-bit result
;* int64 = int32 * int32
;* uint64 = uint32 * uint32
;*
;* - Operand 1 is in R12, R13
;* - Operand 2 is in R14, R15
;* - Result is in R12, R13, R14, R15
;*
;* To ensure that the multiply is performed atomically, interrupts are
;* disabled upon routine entry. Interrupt state is restored upon exit.
;*
;* Registers used: R12, R13, R14, R15
;*
;* Macro arguments are the memory locations of the hardware registers.
MOV.W r12, &\OP1_LO ; Load operand 1 Low into multiplier
MOV.W r13, &\OP1_HI ; Load operand 1 High into multiplier
MOV.W r14, &\OP2_LO ; Load operand 2 Low into multiplier
MOV.W r15, &\OP2_HI ; Load operand 2 High, trigger MPY
MOV.W &\RES0, R12 ; Ready low 16-bits for return
MOV.W &\RES1, R13 ;
MOV.W &\RES2, R14 ;
MOV.W &\RES3, R15 ; Ready high 16-bits for return
.endm
.macro mult64_hw MPY32_LO MPY32_HI OP2_LO OP2_HI RES0 RES1 RES2 RES3
;* * 64-bit hardware multiply with a 64-bit result
;* int64 = int64 * int64
;*
;* - Operand 1 is in R8, R9, R10, R11
;* - Operand 2 is in R12, R13, R14, R15
;* - Result is in R12, R13, R14, R15
;*
;* 64-bit multiplication is achieved using the 32-bit hardware multiplier with
;* the following equation:
;* R12:R15 = (R8:R9 * R12:R13) + ((R8:R9 * R14:R15) << 32) + ((R10:R11 * R12:R13) << 32)
;*
;* The left shift by 32 is handled with minimal cost by saving the two low
;* words and discarding the two high words.
;*
;* To ensure that the multiply is performed atomically, interrupts are
;* disabled upon routine entry. Interrupt state is restored upon exit.
;*
;* Registers used: R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
;*
;* Macro arguments are the memory locations of the hardware registers.
;*
#if defined(__MSP430X_LARGE__)
PUSHM.A #5, R10
#elif defined(__MSP430X__)
PUSHM.W #5, R10
#else
PUSH R10 { PUSH R9 { PUSH R8 { PUSH R7 { PUSH R6
#endif
; Multiply the low 32-bits of op0 and the high 32-bits of op1.
MOV.W R8, &\MPY32_LO
MOV.W R9, &\MPY32_HI
MOV.W R14, &\OP2_LO
MOV.W R15, &\OP2_HI
; Save the low 32-bits of the result.
MOV.W &\RES0, R6
MOV.W &\RES1, R7
; Multiply the high 32-bits of op0 and the low 32-bits of op1.
MOV.W R10, &\MPY32_LO
MOV.W R11, &\MPY32_HI
MOV.W R12, &\OP2_LO
MOV.W R13, &\OP2_HI
; Add the low 32-bits of the result to the previously saved result.
ADD.W &\RES0, R6
ADDC.W &\RES1, R7
; Multiply the low 32-bits of op0 and op1.
MOV.W R8, &\MPY32_LO
MOV.W R9, &\MPY32_HI
MOV.W R12, &\OP2_LO
MOV.W R13, &\OP2_HI
; Write the return values
MOV.W &\RES0, R12
MOV.W &\RES1, R13
MOV.W &\RES2, R14
MOV.W &\RES3, R15
; Add the saved low 32-bit results from earlier to the high 32-bits of
; this result, effectively shifting those two results left by 32 bits.
ADD.W R6, R14
ADDC.W R7, R15
#if defined(__MSP430X_LARGE__)
POPM.A #5, R10
#elif defined(__MSP430X__)
POPM.W #5, R10
#else
POP R6 { POP R7 { POP R8 { POP R9 { POP R10
#endif
.endm
;; EABI mandated names:
;;
;; int16 __mspabi_mpyi (int16 x, int16 y)
;; Multiply int by int.
;; int16 __mspabi_mpyi_hw (int16 x, int16 y)
;; Multiply int by int. Uses hardware MPY16 or MPY32.
;; int16 __mspabi_mpyi_f5hw (int16 x, int16 y)
;; Multiply int by int. Uses hardware MPY32 (F5xx devices and up).
;;
;; int32 __mspabi_mpyl (int32 x, int32 y);
;; Multiply long by long.
;; int32 __mspabi_mpyl_hw (int32 x, int32 y)
;; Multiply long by long. Uses hardware MPY16.
;; int32 __mspabi_mpyl_hw32 (int32 x, int32 y)
;; Multiply long by long. Uses hardware MPY32 (F4xx devices).
;; int32 __mspabi_mpyl_f5hw (int32 x, int32 y)
;; Multiply long by long. Uses hardware MPY32 (F5xx devices and up).
;;
;; int64 __mspabi_mpyll (int64 x, int64 y)
;; Multiply long long by long long.
;; int64 __mspabi_mpyll_hw (int64 x, int64 y)
;; Multiply long long by long long. Uses hardware MPY16.
;; int64 __mspabi_mpyll_hw32 (int64 x, int64 y)
;; Multiply long long by long long. Uses hardware MPY32 (F4xx devices).
;; int64 __mspabi_mpyll_f5hw (int64 x, int64 y)
;; Multiply long long by long long. Uses hardware MPY32 (F5xx devices and up).
;;
;; int32 __mspabi_mpysl (int16 x, int16 y)
;; Multiply int by int; result is long.
;; int32 __mspabi_mpysl_hw(int16 x, int16 y)
;; Multiply int by int; result is long. Uses hardware MPY16 or MPY32
;; int32 __mspabi_mpysl_f5hw(int16 x, int16 y)
;; Multiply int by int; result is long. Uses hardware MPY32 (F5xx devices and up).
;;
;; int64 __mspabi_mpysll(int32 x, int32 y)
;; Multiply long by long; result is long long.
;; int64 __mspabi_mpysll_hw(int32 x, int32 y)
;; Multiply long by long; result is long long. Uses hardware MPY16.
;; int64 __mspabi_mpysll_hw32(int32 x, int32 y)
;; Multiply long by long; result is long long. Uses hardware MPY32 (F4xx devices).
;; int64 __mspabi_mpysll_f5hw(int32 x, int32 y)
;; Multiply long by long; result is long long. Uses hardware MPY32 (F5xx devices and up).
;;
;; uint32 __mspabi_mpyul(uint16 x, uint16 y)
;; Multiply unsigned int by unsigned int; result is unsigned long.
;; uint32 __mspabi_mpyul_hw(uint16 x, uint16 y)
;; Multiply unsigned int by unsigned int; result is unsigned long. Uses hardware MPY16 or MPY32
;; uint32 __mspabi_mpyul_f5hw(uint16 x, uint16 y)
;; Multiply unsigned int by unsigned int; result is unsigned long. Uses hardware MPY32 (F5xx devices and up).
;;
;; uint64 __mspabi_mpyull(uint32 x, uint32 y)
;; Multiply unsigned long by unsigned long; result is unsigned long long.
;; uint64 __mspabi_mpyull_hw(uint32 x, uint32 y)
;; Multiply unsigned long by unsigned long; result is unsigned long long. Uses hardware MPY16
;; uint64 __mspabi_mpyull_hw32(uint32 x, uint32 y)
;; Multiply unsigned long by unsigned long; result is unsigned long long. Uses hardware MPY32 (F4xx devices).
;; uint64 __mspabi_mpyull_f5hw(uint32 x, uint32 y)
;; Multiply unsigned long by unsigned long; result is unsigned long long. Uses hardware MPY32 (F5xx devices and up)
;;;; The register names below are the standardised versions used across TI
;;;; literature.
;; Hardware multiply register addresses for devices with 16-bit hardware
;; multiply.
.set MPY, 0x0130
.set MPYS, 0x0132
.set MAC, 0x0134
.set OP2, 0x0138
.set RESLO, 0x013A
.set RESHI, 0x013C
;; Hardware multiply register addresses for devices with 32-bit (non-f5)
;; hardware multiply.
.set MPY32L, 0x0140
.set MPY32H, 0x0142
.set MPYS32L, 0x0144
.set MPYS32H, 0x0146
.set OP2L, 0x0150
.set OP2H, 0x0152
.set RES0, 0x0154
.set RES1, 0x0156
.set RES2, 0x0158
.set RES3, 0x015A
;; Hardware multiply register addresses for devices with f5series hardware
;; multiply.
;; The F5xxx series of MCUs support the same 16-bit and 32-bit multiply
;; as the second generation hardware, but they are accessed from different
;; memory registers.
;; These names AREN'T standard. We've appended _F5 to the standard names.
.set MPY_F5, 0x04C0
.set MPYS_F5, 0x04C2
.set MAC_F5, 0x04C4
.set OP2_F5, 0x04C8
.set RESLO_F5, 0x04CA
.set RESHI_F5, 0x04CC
.set MPY32L_F5, 0x04D0
.set MPY32H_F5, 0x04D2
.set MPYS32L_F5, 0x04D4
.set MPYS32H_F5, 0x04D6
.set OP2L_F5, 0x04E0
.set OP2H_F5, 0x04E2
.set RES0_F5, 0x04E4
.set RES1_F5, 0x04E6
.set RES2_F5, 0x04E8
.set RES3_F5, 0x04EA
#if defined MUL_16
;; First generation MSP430 hardware multiplies ...
start_func __mulhi2 __mspabi_mpyi __mspabi_mpyi_hw
mult16 MPY, OP2, RESLO
end_func __mulhi2
start_func __mulhisi2 __mspabi_mpysl __mspabi_mpysl_hw
mult1632 MPYS, OP2, RESLO, RESHI
end_func __mulhisi2
start_func __umulhisi2 __mspabi_mpyul __mspabi_mpyul_hw
mult1632 MPY, OP2, RESLO, RESHI
end_func __umulhisi2
start_func __mulsi2 __mspabi_mpyl __mspabi_mpyl_hw
mult32 MPY, OP2, MAC, OP2, RESLO, RESHI
end_func __mulsi2
;; FIXME: We do not have hardware implementations of these
;; routines, so just jump to the software versions instead.
fake_func __mulsidi2 __mspabi_mpysll __mspabi_mpysll_hw
fake_func __umulsidi2 __mspabi_mpyull __mspabi_mpyull_hw
fake_func __muldi3 __mspabi_mpyll __mspabi_mpyll_hw
#elif defined MUL_32
;; Second generation MSP430 hardware multiplies ...
start_func __mulhi2 __mspabi_mpyi __mspabi_mpyi_hw
mult16 MPY, OP2, RESLO
end_func __mulhi2
start_func __mulhisi2 __mspabi_mpysl __mspabi_mpysl_hw
mult1632 MPYS, OP2, RESLO, RESHI
end_func __mulhisi2
start_func __umulhisi2 __mspabi_mpyul __mspabi_mpyul_hw
mult1632 MPY, OP2, RESLO, RESHI
end_func __umulhisi2
start_func __mulsi2 __mspabi_mpyl __mspabi_mpyl_hw32
mult32_hw MPY32L, MPY32H, OP2L, OP2H, RES0, RES1
end_func __mulsi2
start_func __mulsidi2 __mspabi_mpysll __mspabi_mpysll_hw32
mult3264_hw MPYS32L, MPYS32H, OP2L, OP2H, RES0, RES1, RES2, RES3
end_func __mulsidi2
start_func __umulsidi2 __mspabi_mpyull __mspabi_mpyull_hw32
mult3264_hw MPY32L, MPY32H, OP2L, OP2H, RES0, RES1, RES2, RES3
end_func __umulsidi2
start_func __muldi3 __mspabi_mpyll __mspabi_mpyll_hw32
mult64_hw MPY32L, MPY32H, OP2L, OP2H, RES0, RES1, RES2, RES3
end_func __muldi3
#elif defined MUL_F5
/* The F5xxx series of MCUs support the same 16-bit and 32-bit multiply
as the second generation hardware, but they are accessed from different
memory registers. */
start_func __mulhi2 __mspabi_mpyi __mspabi_mpyi_f5hw
mult16 MPY_F5, OP2_F5, RESLO_F5
end_func __mulhi2
start_func __mulhisi2 __mspabi_mpysl __mspabi_mpysl_f5hw
mult1632 MPYS_F5, OP2_F5, RESLO_F5, RESHI_F5
end_func __mulhisi2
start_func __umulhisi2 __mspabi_mpyul __mspabi_mpyul_f5hw
mult1632 MPY_F5, OP2_F5, RESLO_F5, RESHI_F5
end_func __umulhisi2
start_func __mulsi2 __mspabi_mpyl __mspabi_mpyl_f5hw
mult32_hw MPY32L_F5, MPY32H_F5, OP2L_F5, OP2H_F5, RES0_F5, RES1_F5
end_func __mulsi2
start_func __mulsidi2 __mspabi_mpysll __mspabi_mpysll_f5hw
mult3264_hw MPYS32L_F5, MPYS32H_F5, OP2L_F5, OP2H_F5, RES0_F5, RES1_F5, RES2_F5, RES3_F5
end_func __mulsidi2
start_func __umulsidi2 __mspabi_mpyull __mspabi_mpyull_f5hw
mult3264_hw MPY32L_F5, MPY32H_F5, OP2L_F5, OP2H_F5, RES0_F5, RES1_F5, RES2_F5, RES3_F5
end_func __umulsidi2
start_func __muldi3 __mspabi_mpyll __mspabi_mpyll_f5hw
mult64_hw MPY32L_F5, MPY32H_F5, OP2L_F5, OP2H_F5, RES0_F5, RES1_F5, RES2_F5, RES3_F5
end_func __muldi3
#else
#error MUL type not defined
#endif