a554497024
From-SVN: r267494
1032 lines
29 KiB
C
1032 lines
29 KiB
C
/* Data flow functions for trees.
|
|
Copyright (C) 2001-2019 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "langhooks.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-walk.h"
|
|
#include "tree-dfa.h"
|
|
|
|
/* Build and maintain data flow information for trees. */
|
|
|
|
/* Counters used to display DFA and SSA statistics. */
|
|
struct dfa_stats_d
|
|
{
|
|
long num_defs;
|
|
long num_uses;
|
|
long num_phis;
|
|
long num_phi_args;
|
|
size_t max_num_phi_args;
|
|
long num_vdefs;
|
|
long num_vuses;
|
|
};
|
|
|
|
|
|
/* Local functions. */
|
|
static void collect_dfa_stats (struct dfa_stats_d *);
|
|
|
|
|
|
/*---------------------------------------------------------------------------
|
|
Dataflow analysis (DFA) routines
|
|
---------------------------------------------------------------------------*/
|
|
|
|
/* Renumber all of the gimple stmt uids. */
|
|
|
|
void
|
|
renumber_gimple_stmt_uids (void)
|
|
{
|
|
basic_block bb;
|
|
|
|
set_gimple_stmt_max_uid (cfun, 0);
|
|
FOR_ALL_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator bsi;
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (bsi);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (bsi);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
|
|
in BLOCKS, of which there are N_BLOCKS. Also renumbers PHIs. */
|
|
|
|
void
|
|
renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
|
|
{
|
|
int i;
|
|
|
|
set_gimple_stmt_max_uid (cfun, 0);
|
|
for (i = 0; i < n_blocks; i++)
|
|
{
|
|
basic_block bb = blocks[i];
|
|
gimple_stmt_iterator bsi;
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (bsi);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (bsi);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------
|
|
Debugging functions
|
|
---------------------------------------------------------------------------*/
|
|
|
|
/* Dump variable VAR and its may-aliases to FILE. */
|
|
|
|
void
|
|
dump_variable (FILE *file, tree var)
|
|
{
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
{
|
|
if (POINTER_TYPE_P (TREE_TYPE (var)))
|
|
dump_points_to_info_for (file, var);
|
|
var = SSA_NAME_VAR (var);
|
|
}
|
|
|
|
if (var == NULL_TREE)
|
|
{
|
|
fprintf (file, "<nil>");
|
|
return;
|
|
}
|
|
|
|
print_generic_expr (file, var, dump_flags);
|
|
|
|
fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
|
|
if (DECL_PT_UID (var) != DECL_UID (var))
|
|
fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));
|
|
|
|
fprintf (file, ", ");
|
|
print_generic_expr (file, TREE_TYPE (var), dump_flags);
|
|
|
|
if (TREE_ADDRESSABLE (var))
|
|
fprintf (file, ", is addressable");
|
|
|
|
if (is_global_var (var))
|
|
fprintf (file, ", is global");
|
|
|
|
if (TREE_THIS_VOLATILE (var))
|
|
fprintf (file, ", is volatile");
|
|
|
|
if (cfun && ssa_default_def (cfun, var))
|
|
{
|
|
fprintf (file, ", default def: ");
|
|
print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
|
|
}
|
|
|
|
if (DECL_INITIAL (var))
|
|
{
|
|
fprintf (file, ", initial: ");
|
|
print_generic_expr (file, DECL_INITIAL (var), dump_flags);
|
|
}
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
|
|
/* Dump variable VAR and its may-aliases to stderr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_variable (tree var)
|
|
{
|
|
dump_variable (stderr, var);
|
|
}
|
|
|
|
|
|
/* Dump various DFA statistics to FILE. */
|
|
|
|
void
|
|
dump_dfa_stats (FILE *file)
|
|
{
|
|
struct dfa_stats_d dfa_stats;
|
|
|
|
unsigned long size, total = 0;
|
|
const char * const fmt_str = "%-30s%-13s%12s\n";
|
|
const char * const fmt_str_1 = "%-30s%13lu" PRsa (11) "\n";
|
|
const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
|
|
const char *funcname
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
|
|
|
collect_dfa_stats (&dfa_stats);
|
|
|
|
fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
|
|
|
|
fprintf (file, "---------------------------------------------------------\n");
|
|
fprintf (file, fmt_str, "", " Number of ", "Memory");
|
|
fprintf (file, fmt_str, "", " instances ", "used ");
|
|
fprintf (file, "---------------------------------------------------------\n");
|
|
|
|
size = dfa_stats.num_uses * sizeof (tree *);
|
|
total += size;
|
|
fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
|
|
SIZE_AMOUNT (size));
|
|
|
|
size = dfa_stats.num_defs * sizeof (tree *);
|
|
total += size;
|
|
fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
|
|
SIZE_AMOUNT (size));
|
|
|
|
size = dfa_stats.num_vuses * sizeof (tree *);
|
|
total += size;
|
|
fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
|
|
SIZE_AMOUNT (size));
|
|
|
|
size = dfa_stats.num_vdefs * sizeof (tree *);
|
|
total += size;
|
|
fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
|
|
SIZE_AMOUNT (size));
|
|
|
|
size = dfa_stats.num_phis * sizeof (struct gphi);
|
|
total += size;
|
|
fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
|
|
SIZE_AMOUNT (size));
|
|
|
|
size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
|
|
total += size;
|
|
fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
|
|
SIZE_AMOUNT (size));
|
|
|
|
fprintf (file, "---------------------------------------------------------\n");
|
|
fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data",
|
|
SIZE_AMOUNT (total));
|
|
fprintf (file, "---------------------------------------------------------\n");
|
|
fprintf (file, "\n");
|
|
|
|
if (dfa_stats.num_phis)
|
|
fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
|
|
(float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
|
|
(long) dfa_stats.max_num_phi_args);
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
|
|
/* Dump DFA statistics on stderr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_dfa_stats (void)
|
|
{
|
|
dump_dfa_stats (stderr);
|
|
}
|
|
|
|
|
|
/* Collect DFA statistics and store them in the structure pointed to by
|
|
DFA_STATS_P. */
|
|
|
|
static void
|
|
collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
|
|
{
|
|
basic_block bb;
|
|
|
|
gcc_assert (dfa_stats_p);
|
|
|
|
memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
|
|
|
|
/* Walk all the statements in the function counting references. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
dfa_stats_p->num_phis++;
|
|
dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
|
|
if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
|
|
dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
|
|
dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
|
|
dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
|
|
dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------
|
|
Miscellaneous helpers
|
|
---------------------------------------------------------------------------*/
|
|
|
|
/* Lookup VAR UID in the default_defs hashtable and return the associated
|
|
variable. */
|
|
|
|
tree
|
|
ssa_default_def (struct function *fn, tree var)
|
|
{
|
|
struct tree_decl_minimal ind;
|
|
struct tree_ssa_name in;
|
|
gcc_assert (VAR_P (var)
|
|
|| TREE_CODE (var) == PARM_DECL
|
|
|| TREE_CODE (var) == RESULT_DECL);
|
|
|
|
/* Always NULL_TREE for rtl function dumps. */
|
|
if (!fn->gimple_df)
|
|
return NULL_TREE;
|
|
|
|
in.var = (tree)&ind;
|
|
ind.uid = DECL_UID (var);
|
|
return DEFAULT_DEFS (fn)->find_with_hash ((tree)&in, DECL_UID (var));
|
|
}
|
|
|
|
/* Insert the pair VAR's UID, DEF into the default_defs hashtable
|
|
of function FN. */
|
|
|
|
void
|
|
set_ssa_default_def (struct function *fn, tree var, tree def)
|
|
{
|
|
struct tree_decl_minimal ind;
|
|
struct tree_ssa_name in;
|
|
|
|
gcc_assert (VAR_P (var)
|
|
|| TREE_CODE (var) == PARM_DECL
|
|
|| TREE_CODE (var) == RESULT_DECL);
|
|
in.var = (tree)&ind;
|
|
ind.uid = DECL_UID (var);
|
|
if (!def)
|
|
{
|
|
tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
|
|
DECL_UID (var),
|
|
NO_INSERT);
|
|
if (loc)
|
|
{
|
|
SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
|
|
DEFAULT_DEFS (fn)->clear_slot (loc);
|
|
}
|
|
return;
|
|
}
|
|
gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
|
|
tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
|
|
DECL_UID (var), INSERT);
|
|
|
|
/* Default definition might be changed by tail call optimization. */
|
|
if (*loc)
|
|
SSA_NAME_IS_DEFAULT_DEF (*loc) = false;
|
|
|
|
/* Mark DEF as the default definition for VAR. */
|
|
*loc = def;
|
|
SSA_NAME_IS_DEFAULT_DEF (def) = true;
|
|
}
|
|
|
|
/* Retrieve or create a default definition for VAR. */
|
|
|
|
tree
|
|
get_or_create_ssa_default_def (struct function *fn, tree var)
|
|
{
|
|
tree ddef = ssa_default_def (fn, var);
|
|
if (ddef == NULL_TREE)
|
|
{
|
|
ddef = make_ssa_name_fn (fn, var, gimple_build_nop ());
|
|
set_ssa_default_def (fn, var, ddef);
|
|
}
|
|
return ddef;
|
|
}
|
|
|
|
|
|
/* If EXP is a handled component reference for a structure, return the
|
|
base variable. The access range is delimited by bit positions *POFFSET and
|
|
*POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either
|
|
*PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE
|
|
and *PMAX_SIZE are equal, the access is non-variable. If *PREVERSE is
|
|
true, the storage order of the reference is reversed. */
|
|
|
|
tree
|
|
get_ref_base_and_extent (tree exp, poly_int64_pod *poffset,
|
|
poly_int64_pod *psize,
|
|
poly_int64_pod *pmax_size,
|
|
bool *preverse)
|
|
{
|
|
poly_offset_int bitsize = -1;
|
|
poly_offset_int maxsize;
|
|
tree size_tree = NULL_TREE;
|
|
poly_offset_int bit_offset = 0;
|
|
bool seen_variable_array_ref = false;
|
|
|
|
/* First get the final access size and the storage order from just the
|
|
outermost expression. */
|
|
if (TREE_CODE (exp) == COMPONENT_REF)
|
|
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
|
|
else if (TREE_CODE (exp) == BIT_FIELD_REF)
|
|
size_tree = TREE_OPERAND (exp, 1);
|
|
else if (!VOID_TYPE_P (TREE_TYPE (exp)))
|
|
{
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
|
|
if (mode == BLKmode)
|
|
size_tree = TYPE_SIZE (TREE_TYPE (exp));
|
|
else
|
|
bitsize = GET_MODE_BITSIZE (mode);
|
|
}
|
|
if (size_tree != NULL_TREE
|
|
&& poly_int_tree_p (size_tree))
|
|
bitsize = wi::to_poly_offset (size_tree);
|
|
|
|
*preverse = reverse_storage_order_for_component_p (exp);
|
|
|
|
/* Initially, maxsize is the same as the accessed element size.
|
|
In the following it will only grow (or become -1). */
|
|
maxsize = bitsize;
|
|
|
|
/* Compute cumulative bit-offset for nested component-refs and array-refs,
|
|
and find the ultimate containing object. */
|
|
while (1)
|
|
{
|
|
switch (TREE_CODE (exp))
|
|
{
|
|
case BIT_FIELD_REF:
|
|
bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
|
|
break;
|
|
|
|
case COMPONENT_REF:
|
|
{
|
|
tree field = TREE_OPERAND (exp, 1);
|
|
tree this_offset = component_ref_field_offset (exp);
|
|
|
|
if (this_offset && poly_int_tree_p (this_offset))
|
|
{
|
|
poly_offset_int woffset = (wi::to_poly_offset (this_offset)
|
|
<< LOG2_BITS_PER_UNIT);
|
|
woffset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
|
|
bit_offset += woffset;
|
|
|
|
/* If we had seen a variable array ref already and we just
|
|
referenced the last field of a struct or a union member
|
|
then we have to adjust maxsize by the padding at the end
|
|
of our field. */
|
|
if (seen_variable_array_ref)
|
|
{
|
|
tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
|
|
tree next = DECL_CHAIN (field);
|
|
while (next && TREE_CODE (next) != FIELD_DECL)
|
|
next = DECL_CHAIN (next);
|
|
if (!next
|
|
|| TREE_CODE (stype) != RECORD_TYPE)
|
|
{
|
|
tree fsize = DECL_SIZE_UNIT (field);
|
|
tree ssize = TYPE_SIZE_UNIT (stype);
|
|
if (fsize == NULL
|
|
|| !poly_int_tree_p (fsize)
|
|
|| ssize == NULL
|
|
|| !poly_int_tree_p (ssize))
|
|
maxsize = -1;
|
|
else if (known_size_p (maxsize))
|
|
{
|
|
poly_offset_int tem
|
|
= (wi::to_poly_offset (ssize)
|
|
- wi::to_poly_offset (fsize));
|
|
tem <<= LOG2_BITS_PER_UNIT;
|
|
tem -= woffset;
|
|
maxsize += tem;
|
|
}
|
|
}
|
|
/* An component ref with an adjacent field up in the
|
|
structure hierarchy constrains the size of any variable
|
|
array ref lower in the access hierarchy. */
|
|
else
|
|
seen_variable_array_ref = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
|
/* We need to adjust maxsize to the whole structure bitsize.
|
|
But we can subtract any constant offset seen so far,
|
|
because that would get us out of the structure otherwise. */
|
|
if (known_size_p (maxsize)
|
|
&& csize
|
|
&& poly_int_tree_p (csize))
|
|
maxsize = wi::to_poly_offset (csize) - bit_offset;
|
|
else
|
|
maxsize = -1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
{
|
|
tree index = TREE_OPERAND (exp, 1);
|
|
tree low_bound, unit_size;
|
|
|
|
/* If the resulting bit-offset is constant, track it. */
|
|
if (poly_int_tree_p (index)
|
|
&& (low_bound = array_ref_low_bound (exp),
|
|
poly_int_tree_p (low_bound))
|
|
&& (unit_size = array_ref_element_size (exp),
|
|
TREE_CODE (unit_size) == INTEGER_CST))
|
|
{
|
|
poly_offset_int woffset
|
|
= wi::sext (wi::to_poly_offset (index)
|
|
- wi::to_poly_offset (low_bound),
|
|
TYPE_PRECISION (TREE_TYPE (index)));
|
|
woffset *= wi::to_offset (unit_size);
|
|
woffset <<= LOG2_BITS_PER_UNIT;
|
|
bit_offset += woffset;
|
|
|
|
/* An array ref with a constant index up in the structure
|
|
hierarchy will constrain the size of any variable array ref
|
|
lower in the access hierarchy. */
|
|
seen_variable_array_ref = false;
|
|
}
|
|
else
|
|
{
|
|
tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
|
/* We need to adjust maxsize to the whole array bitsize.
|
|
But we can subtract any constant offset seen so far,
|
|
because that would get us outside of the array otherwise. */
|
|
if (known_size_p (maxsize)
|
|
&& asize
|
|
&& poly_int_tree_p (asize))
|
|
maxsize = wi::to_poly_offset (asize) - bit_offset;
|
|
else
|
|
maxsize = -1;
|
|
|
|
/* Remember that we have seen an array ref with a variable
|
|
index. */
|
|
seen_variable_array_ref = true;
|
|
|
|
wide_int min, max;
|
|
if (TREE_CODE (index) == SSA_NAME
|
|
&& (low_bound = array_ref_low_bound (exp),
|
|
poly_int_tree_p (low_bound))
|
|
&& (unit_size = array_ref_element_size (exp),
|
|
TREE_CODE (unit_size) == INTEGER_CST)
|
|
&& get_range_info (index, &min, &max) == VR_RANGE)
|
|
{
|
|
poly_offset_int lbound = wi::to_poly_offset (low_bound);
|
|
/* Try to constrain maxsize with range information. */
|
|
offset_int omax
|
|
= offset_int::from (max, TYPE_SIGN (TREE_TYPE (index)));
|
|
if (known_lt (lbound, omax))
|
|
{
|
|
poly_offset_int rmaxsize;
|
|
rmaxsize = (omax - lbound + 1)
|
|
* wi::to_offset (unit_size) << LOG2_BITS_PER_UNIT;
|
|
if (!known_size_p (maxsize)
|
|
|| known_lt (rmaxsize, maxsize))
|
|
{
|
|
/* If we know an upper bound below the declared
|
|
one this is no longer variable. */
|
|
if (known_size_p (maxsize))
|
|
seen_variable_array_ref = false;
|
|
maxsize = rmaxsize;
|
|
}
|
|
}
|
|
/* Try to adjust bit_offset with range information. */
|
|
offset_int omin
|
|
= offset_int::from (min, TYPE_SIGN (TREE_TYPE (index)));
|
|
if (known_le (lbound, omin))
|
|
{
|
|
poly_offset_int woffset
|
|
= wi::sext (omin - lbound,
|
|
TYPE_PRECISION (TREE_TYPE (index)));
|
|
woffset *= wi::to_offset (unit_size);
|
|
woffset <<= LOG2_BITS_PER_UNIT;
|
|
bit_offset += woffset;
|
|
if (known_size_p (maxsize))
|
|
maxsize -= woffset;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case REALPART_EXPR:
|
|
break;
|
|
|
|
case IMAGPART_EXPR:
|
|
bit_offset += bitsize;
|
|
break;
|
|
|
|
case VIEW_CONVERT_EXPR:
|
|
break;
|
|
|
|
case TARGET_MEM_REF:
|
|
/* Via the variable index or index2 we can reach the
|
|
whole object. Still hand back the decl here. */
|
|
if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
|
|
&& (TMR_INDEX (exp) || TMR_INDEX2 (exp)))
|
|
{
|
|
exp = TREE_OPERAND (TMR_BASE (exp), 0);
|
|
bit_offset = 0;
|
|
maxsize = -1;
|
|
goto done;
|
|
}
|
|
/* Fallthru. */
|
|
case MEM_REF:
|
|
/* We need to deal with variable arrays ending structures such as
|
|
struct { int length; int a[1]; } x; x.a[d]
|
|
struct { struct { int a; int b; } a[1]; } x; x.a[d].a
|
|
struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0]
|
|
struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
|
|
where we do not know maxsize for variable index accesses to
|
|
the array. The simplest way to conservatively deal with this
|
|
is to punt in the case that offset + maxsize reaches the
|
|
base type boundary. This needs to include possible trailing
|
|
padding that is there for alignment purposes. */
|
|
if (seen_variable_array_ref
|
|
&& known_size_p (maxsize)
|
|
&& (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
|
|
|| !poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
|
|
|| (maybe_eq
|
|
(bit_offset + maxsize,
|
|
wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))))))
|
|
maxsize = -1;
|
|
|
|
/* Hand back the decl for MEM[&decl, off]. */
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
|
|
{
|
|
if (integer_zerop (TREE_OPERAND (exp, 1)))
|
|
exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
|
else
|
|
{
|
|
poly_offset_int off = mem_ref_offset (exp);
|
|
off <<= LOG2_BITS_PER_UNIT;
|
|
off += bit_offset;
|
|
poly_int64 off_hwi;
|
|
if (off.to_shwi (&off_hwi))
|
|
{
|
|
bit_offset = off_hwi;
|
|
exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
|
}
|
|
}
|
|
}
|
|
goto done;
|
|
|
|
default:
|
|
goto done;
|
|
}
|
|
|
|
exp = TREE_OPERAND (exp, 0);
|
|
}
|
|
|
|
done:
|
|
if (!bitsize.to_shwi (psize) || maybe_lt (*psize, 0))
|
|
{
|
|
*poffset = 0;
|
|
*psize = -1;
|
|
*pmax_size = -1;
|
|
|
|
return exp;
|
|
}
|
|
|
|
/* ??? Due to negative offsets in ARRAY_REF we can end up with
|
|
negative bit_offset here. We might want to store a zero offset
|
|
in this case. */
|
|
if (!bit_offset.to_shwi (poffset))
|
|
{
|
|
*poffset = 0;
|
|
*pmax_size = -1;
|
|
|
|
return exp;
|
|
}
|
|
|
|
/* In case of a decl or constant base object we can do better. */
|
|
|
|
if (DECL_P (exp))
|
|
{
|
|
if (VAR_P (exp)
|
|
&& ((flag_unconstrained_commons && DECL_COMMON (exp))
|
|
|| (DECL_EXTERNAL (exp) && seen_variable_array_ref)))
|
|
{
|
|
tree sz_tree = TYPE_SIZE (TREE_TYPE (exp));
|
|
/* If size is unknown, or we have read to the end, assume there
|
|
may be more to the structure than we are told. */
|
|
if (TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE
|
|
|| (seen_variable_array_ref
|
|
&& (sz_tree == NULL_TREE
|
|
|| !poly_int_tree_p (sz_tree)
|
|
|| maybe_eq (bit_offset + maxsize,
|
|
wi::to_poly_offset (sz_tree)))))
|
|
maxsize = -1;
|
|
}
|
|
/* If maxsize is unknown adjust it according to the size of the
|
|
base decl. */
|
|
else if (!known_size_p (maxsize)
|
|
&& DECL_SIZE (exp)
|
|
&& poly_int_tree_p (DECL_SIZE (exp)))
|
|
maxsize = wi::to_poly_offset (DECL_SIZE (exp)) - bit_offset;
|
|
}
|
|
else if (CONSTANT_CLASS_P (exp))
|
|
{
|
|
/* If maxsize is unknown adjust it according to the size of the
|
|
base type constant. */
|
|
if (!known_size_p (maxsize)
|
|
&& TYPE_SIZE (TREE_TYPE (exp))
|
|
&& poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp))))
|
|
maxsize = (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))
|
|
- bit_offset);
|
|
}
|
|
|
|
if (!maxsize.to_shwi (pmax_size)
|
|
|| maybe_lt (*pmax_size, 0)
|
|
|| !endpoint_representable_p (*poffset, *pmax_size))
|
|
*pmax_size = -1;
|
|
|
|
/* Punt if *POFFSET + *PSIZE overflows in HOST_WIDE_INT, the callers don't
|
|
check for such overflows individually and assume it works. */
|
|
if (!endpoint_representable_p (*poffset, *psize))
|
|
{
|
|
*poffset = 0;
|
|
*psize = -1;
|
|
*pmax_size = -1;
|
|
|
|
return exp;
|
|
}
|
|
|
|
return exp;
|
|
}
|
|
|
|
/* Like get_ref_base_and_extent, but for cases in which we only care
|
|
about constant-width accesses at constant offsets. Return null
|
|
if the access is anything else. */
|
|
|
|
tree
|
|
get_ref_base_and_extent_hwi (tree exp, HOST_WIDE_INT *poffset,
|
|
HOST_WIDE_INT *psize, bool *preverse)
|
|
{
|
|
poly_int64 offset, size, max_size;
|
|
HOST_WIDE_INT const_offset, const_size;
|
|
bool reverse;
|
|
tree decl = get_ref_base_and_extent (exp, &offset, &size, &max_size,
|
|
&reverse);
|
|
if (!offset.is_constant (&const_offset)
|
|
|| !size.is_constant (&const_size)
|
|
|| const_offset < 0
|
|
|| !known_size_p (max_size)
|
|
|| maybe_ne (max_size, const_size))
|
|
return NULL_TREE;
|
|
|
|
*poffset = const_offset;
|
|
*psize = const_size;
|
|
*preverse = reverse;
|
|
return decl;
|
|
}
|
|
|
|
/* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
|
|
denotes the starting address of the memory access EXP.
|
|
Returns NULL_TREE if the offset is not constant or any component
|
|
is not BITS_PER_UNIT-aligned.
|
|
VALUEIZE if non-NULL is used to valueize SSA names. It should return
|
|
its argument or a constant if the argument is known to be constant. */
|
|
|
|
tree
|
|
get_addr_base_and_unit_offset_1 (tree exp, poly_int64_pod *poffset,
|
|
tree (*valueize) (tree))
|
|
{
|
|
poly_int64 byte_offset = 0;
|
|
|
|
/* Compute cumulative byte-offset for nested component-refs and array-refs,
|
|
and find the ultimate containing object. */
|
|
while (1)
|
|
{
|
|
switch (TREE_CODE (exp))
|
|
{
|
|
case BIT_FIELD_REF:
|
|
{
|
|
poly_int64 this_byte_offset;
|
|
poly_uint64 this_bit_offset;
|
|
if (!poly_int_tree_p (TREE_OPERAND (exp, 2), &this_bit_offset)
|
|
|| !multiple_p (this_bit_offset, BITS_PER_UNIT,
|
|
&this_byte_offset))
|
|
return NULL_TREE;
|
|
byte_offset += this_byte_offset;
|
|
}
|
|
break;
|
|
|
|
case COMPONENT_REF:
|
|
{
|
|
tree field = TREE_OPERAND (exp, 1);
|
|
tree this_offset = component_ref_field_offset (exp);
|
|
poly_int64 hthis_offset;
|
|
|
|
if (!this_offset
|
|
|| !poly_int_tree_p (this_offset, &hthis_offset)
|
|
|| (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
|
|
% BITS_PER_UNIT))
|
|
return NULL_TREE;
|
|
|
|
hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
|
|
/ BITS_PER_UNIT);
|
|
byte_offset += hthis_offset;
|
|
}
|
|
break;
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
{
|
|
tree index = TREE_OPERAND (exp, 1);
|
|
tree low_bound, unit_size;
|
|
|
|
if (valueize
|
|
&& TREE_CODE (index) == SSA_NAME)
|
|
index = (*valueize) (index);
|
|
|
|
/* If the resulting bit-offset is constant, track it. */
|
|
if (poly_int_tree_p (index)
|
|
&& (low_bound = array_ref_low_bound (exp),
|
|
poly_int_tree_p (low_bound))
|
|
&& (unit_size = array_ref_element_size (exp),
|
|
TREE_CODE (unit_size) == INTEGER_CST))
|
|
{
|
|
poly_offset_int woffset
|
|
= wi::sext (wi::to_poly_offset (index)
|
|
- wi::to_poly_offset (low_bound),
|
|
TYPE_PRECISION (TREE_TYPE (index)));
|
|
woffset *= wi::to_offset (unit_size);
|
|
byte_offset += woffset.force_shwi ();
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
break;
|
|
|
|
case REALPART_EXPR:
|
|
break;
|
|
|
|
case IMAGPART_EXPR:
|
|
byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
|
|
break;
|
|
|
|
case VIEW_CONVERT_EXPR:
|
|
break;
|
|
|
|
case MEM_REF:
|
|
{
|
|
tree base = TREE_OPERAND (exp, 0);
|
|
if (valueize
|
|
&& TREE_CODE (base) == SSA_NAME)
|
|
base = (*valueize) (base);
|
|
|
|
/* Hand back the decl for MEM[&decl, off]. */
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
{
|
|
if (!integer_zerop (TREE_OPERAND (exp, 1)))
|
|
{
|
|
poly_offset_int off = mem_ref_offset (exp);
|
|
byte_offset += off.force_shwi ();
|
|
}
|
|
exp = TREE_OPERAND (base, 0);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
case TARGET_MEM_REF:
|
|
{
|
|
tree base = TREE_OPERAND (exp, 0);
|
|
if (valueize
|
|
&& TREE_CODE (base) == SSA_NAME)
|
|
base = (*valueize) (base);
|
|
|
|
/* Hand back the decl for MEM[&decl, off]. */
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
{
|
|
if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
|
|
return NULL_TREE;
|
|
if (!integer_zerop (TMR_OFFSET (exp)))
|
|
{
|
|
poly_offset_int off = mem_ref_offset (exp);
|
|
byte_offset += off.force_shwi ();
|
|
}
|
|
exp = TREE_OPERAND (base, 0);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
default:
|
|
goto done;
|
|
}
|
|
|
|
exp = TREE_OPERAND (exp, 0);
|
|
}
|
|
done:
|
|
|
|
*poffset = byte_offset;
|
|
return exp;
|
|
}
|
|
|
|
/* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
|
|
denotes the starting address of the memory access EXP.
|
|
Returns NULL_TREE if the offset is not constant or any component
|
|
is not BITS_PER_UNIT-aligned. */
|
|
|
|
tree
|
|
get_addr_base_and_unit_offset (tree exp, poly_int64_pod *poffset)
|
|
{
|
|
return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
|
|
}
|
|
|
|
/* Returns true if STMT references an SSA_NAME that has
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false. */
|
|
|
|
bool
|
|
stmt_references_abnormal_ssa_name (gimple *stmt)
|
|
{
|
|
ssa_op_iter oi;
|
|
use_operand_p use_p;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
|
|
{
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If STMT takes any abnormal PHI values as input, replace them with
|
|
local copies. */
|
|
|
|
void
|
|
replace_abnormal_ssa_names (gimple *stmt)
|
|
{
|
|
ssa_op_iter oi;
|
|
use_operand_p use_p;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
|
|
{
|
|
tree op = USE_FROM_PTR (use_p);
|
|
if (TREE_CODE (op) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
tree new_name = make_ssa_name (TREE_TYPE (op));
|
|
gassign *assign = gimple_build_assign (new_name, op);
|
|
gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
|
|
SET_USE (use_p, new_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Pair of tree and a sorting index, for dump_enumerated_decls. */
|
|
struct GTY(()) numbered_tree
|
|
{
|
|
tree t;
|
|
int num;
|
|
};
|
|
|
|
|
|
/* Compare two declarations references by their DECL_UID / sequence number.
|
|
Called via qsort. */
|
|
|
|
static int
|
|
compare_decls_by_uid (const void *pa, const void *pb)
|
|
{
|
|
const numbered_tree *nt_a = ((const numbered_tree *)pa);
|
|
const numbered_tree *nt_b = ((const numbered_tree *)pb);
|
|
|
|
if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
|
|
return DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
|
|
return nt_a->num - nt_b->num;
|
|
}
|
|
|
|
/* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls. */
|
|
static tree
|
|
dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
|
|
{
|
|
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
|
vec<numbered_tree> *list = (vec<numbered_tree> *) wi->info;
|
|
numbered_tree nt;
|
|
|
|
if (!DECL_P (*tp))
|
|
return NULL_TREE;
|
|
nt.t = *tp;
|
|
nt.num = list->length ();
|
|
list->safe_push (nt);
|
|
*walk_subtrees = 0;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Find all the declarations used by the current function, sort them by uid,
|
|
and emit the sorted list. Each declaration is tagged with a sequence
|
|
number indicating when it was found during statement / tree walking,
|
|
so that TDF_NOUID comparisons of anonymous declarations are still
|
|
meaningful. Where a declaration was encountered more than once, we
|
|
emit only the sequence number of the first encounter.
|
|
FILE is the dump file where to output the list and FLAGS is as in
|
|
print_generic_expr. */
|
|
void
|
|
dump_enumerated_decls (FILE *file, dump_flags_t flags)
|
|
{
|
|
if (!cfun->cfg)
|
|
return;
|
|
|
|
basic_block bb;
|
|
struct walk_stmt_info wi;
|
|
auto_vec<numbered_tree, 40> decl_list;
|
|
|
|
memset (&wi, '\0', sizeof (wi));
|
|
wi.info = (void *) &decl_list;
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (!is_gimple_debug (gsi_stmt (gsi)))
|
|
walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
|
|
}
|
|
decl_list.qsort (compare_decls_by_uid);
|
|
if (decl_list.length ())
|
|
{
|
|
unsigned ix;
|
|
numbered_tree *ntp;
|
|
tree last = NULL_TREE;
|
|
|
|
fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
|
|
current_function_name ());
|
|
FOR_EACH_VEC_ELT (decl_list, ix, ntp)
|
|
{
|
|
if (ntp->t == last)
|
|
continue;
|
|
fprintf (file, "%d: ", ntp->num);
|
|
print_generic_decl (file, ntp->t, flags);
|
|
fprintf (file, "\n");
|
|
last = ntp->t;
|
|
}
|
|
}
|
|
}
|