386 lines
12 KiB
Go
386 lines
12 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// Should be a built-in for unsafe.Pointer?
|
|
//go:nosplit
|
|
func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
|
|
return unsafe.Pointer(uintptr(p) + x)
|
|
}
|
|
|
|
// getg returns the pointer to the current g.
|
|
// The compiler rewrites calls to this function into instructions
|
|
// that fetch the g directly (from TLS or from the dedicated register).
|
|
func getg() *g
|
|
|
|
// mcall switches from the g to the g0 stack and invokes fn(g),
|
|
// where g is the goroutine that made the call.
|
|
// mcall saves g's current PC/SP in g->sched so that it can be restored later.
|
|
// It is up to fn to arrange for that later execution, typically by recording
|
|
// g in a data structure, causing something to call ready(g) later.
|
|
// mcall returns to the original goroutine g later, when g has been rescheduled.
|
|
// fn must not return at all; typically it ends by calling schedule, to let the m
|
|
// run other goroutines.
|
|
//
|
|
// mcall can only be called from g stacks (not g0, not gsignal).
|
|
//
|
|
// This must NOT be go:noescape: if fn is a stack-allocated closure,
|
|
// fn puts g on a run queue, and g executes before fn returns, the
|
|
// closure will be invalidated while it is still executing.
|
|
func mcall(fn func(*g))
|
|
|
|
// systemstack runs fn on a system stack.
|
|
//
|
|
// It is common to use a func literal as the argument, in order
|
|
// to share inputs and outputs with the code around the call
|
|
// to system stack:
|
|
//
|
|
// ... set up y ...
|
|
// systemstack(func() {
|
|
// x = bigcall(y)
|
|
// })
|
|
// ... use x ...
|
|
//
|
|
// For the gc toolchain this permits running a function that requires
|
|
// additional stack space in a context where the stack can not be
|
|
// split. We don't really need additional stack space in gccgo, since
|
|
// stack splitting is handled separately. But to keep things looking
|
|
// the same, we do switch to the g0 stack here if necessary.
|
|
func systemstack(fn func()) {
|
|
gp := getg()
|
|
mp := gp.m
|
|
if gp == mp.g0 || gp == mp.gsignal {
|
|
fn()
|
|
} else if gp == mp.curg {
|
|
fn1 := func(origg *g) {
|
|
fn()
|
|
gogo(origg)
|
|
}
|
|
mcall(*(*func(*g))(noescape(unsafe.Pointer(&fn1))))
|
|
} else {
|
|
badsystemstack()
|
|
}
|
|
}
|
|
|
|
var badsystemstackMsg = "fatal: systemstack called from unexpected goroutine"
|
|
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func badsystemstack() {
|
|
sp := stringStructOf(&badsystemstackMsg)
|
|
write(2, sp.str, int32(sp.len))
|
|
}
|
|
|
|
// memclrNoHeapPointers clears n bytes starting at ptr.
|
|
//
|
|
// Usually you should use typedmemclr. memclrNoHeapPointers should be
|
|
// used only when the caller knows that *ptr contains no heap pointers
|
|
// because either:
|
|
//
|
|
// *ptr is initialized memory and its type is pointer-free, or
|
|
//
|
|
// *ptr is uninitialized memory (e.g., memory that's being reused
|
|
// for a new allocation) and hence contains only "junk".
|
|
//
|
|
// memclrNoHeapPointers ensures that if ptr is pointer-aligned, and n
|
|
// is a multiple of the pointer size, then any pointer-aligned,
|
|
// pointer-sized portion is cleared atomically. Despite the function
|
|
// name, this is necessary because this function is the underlying
|
|
// implementation of typedmemclr and memclrHasPointers. See the doc of
|
|
// memmove for more details.
|
|
//
|
|
// The (CPU-specific) implementations of this function are in memclr_*.s.
|
|
//
|
|
//go:noescape
|
|
func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
|
|
|
|
//go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers
|
|
func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) {
|
|
memclrNoHeapPointers(ptr, n)
|
|
}
|
|
|
|
//go:noescape
|
|
func memmove(to, from unsafe.Pointer, n uintptr)
|
|
|
|
//go:linkname reflect_memmove reflect.memmove
|
|
func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
|
|
memmove(to, from, n)
|
|
}
|
|
|
|
//go:noescape
|
|
//extern __builtin_memcmp
|
|
func memcmp(a, b unsafe.Pointer, size uintptr) int32
|
|
|
|
// exported value for testing
|
|
var hashLoad = float32(loadFactorNum) / float32(loadFactorDen)
|
|
|
|
//go:nosplit
|
|
func fastrand() uint32 {
|
|
mp := getg().m
|
|
// Implement xorshift64+: 2 32-bit xorshift sequences added together.
|
|
// Shift triplet [17,7,16] was calculated as indicated in Marsaglia's
|
|
// Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
|
|
// This generator passes the SmallCrush suite, part of TestU01 framework:
|
|
// http://simul.iro.umontreal.ca/testu01/tu01.html
|
|
s1, s0 := mp.fastrand[0], mp.fastrand[1]
|
|
s1 ^= s1 << 17
|
|
s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
|
|
mp.fastrand[0], mp.fastrand[1] = s0, s1
|
|
return s0 + s1
|
|
}
|
|
|
|
//go:nosplit
|
|
func fastrandn(n uint32) uint32 {
|
|
// This is similar to fastrand() % n, but faster.
|
|
// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
|
return uint32(uint64(fastrand()) * uint64(n) >> 32)
|
|
}
|
|
|
|
//go:linkname sync_fastrand sync.fastrand
|
|
func sync_fastrand() uint32 { return fastrand() }
|
|
|
|
//go:linkname net_fastrand net.fastrand
|
|
func net_fastrand() uint32 { return fastrand() }
|
|
|
|
//go:linkname os_fastrand os.fastrand
|
|
func os_fastrand() uint32 { return fastrand() }
|
|
|
|
// in internal/bytealg/equal_*.s
|
|
//go:noescape
|
|
func memequal(a, b unsafe.Pointer, size uintptr) bool
|
|
|
|
// noescape hides a pointer from escape analysis. noescape is
|
|
// the identity function but escape analysis doesn't think the
|
|
// output depends on the input. noescape is inlined and currently
|
|
// compiles down to zero instructions.
|
|
// USE CAREFULLY!
|
|
//go:nosplit
|
|
func noescape(p unsafe.Pointer) unsafe.Pointer {
|
|
x := uintptr(p)
|
|
return unsafe.Pointer(x ^ 0)
|
|
}
|
|
|
|
//go:noescape
|
|
func jmpdefer(fv *funcval, argp uintptr)
|
|
func exit1(code int32)
|
|
func setg(gg *g)
|
|
|
|
//extern __builtin_trap
|
|
func breakpoint()
|
|
|
|
func asminit() {}
|
|
|
|
//go:noescape
|
|
func reflectcall(fntype *functype, fn *funcval, isInterface, isMethod bool, params, results *unsafe.Pointer)
|
|
|
|
func procyield(cycles uint32)
|
|
|
|
type neverCallThisFunction struct{}
|
|
|
|
// goexit is the return stub at the top of every goroutine call stack.
|
|
// Each goroutine stack is constructed as if goexit called the
|
|
// goroutine's entry point function, so that when the entry point
|
|
// function returns, it will return to goexit, which will call goexit1
|
|
// to perform the actual exit.
|
|
//
|
|
// This function must never be called directly. Call goexit1 instead.
|
|
// gentraceback assumes that goexit terminates the stack. A direct
|
|
// call on the stack will cause gentraceback to stop walking the stack
|
|
// prematurely and if there is leftover state it may panic.
|
|
func goexit(neverCallThisFunction)
|
|
|
|
// publicationBarrier performs a store/store barrier (a "publication"
|
|
// or "export" barrier). Some form of synchronization is required
|
|
// between initializing an object and making that object accessible to
|
|
// another processor. Without synchronization, the initialization
|
|
// writes and the "publication" write may be reordered, allowing the
|
|
// other processor to follow the pointer and observe an uninitialized
|
|
// object. In general, higher-level synchronization should be used,
|
|
// such as locking or an atomic pointer write. publicationBarrier is
|
|
// for when those aren't an option, such as in the implementation of
|
|
// the memory manager.
|
|
//
|
|
// There's no corresponding barrier for the read side because the read
|
|
// side naturally has a data dependency order. All architectures that
|
|
// Go supports or seems likely to ever support automatically enforce
|
|
// data dependency ordering.
|
|
func publicationBarrier()
|
|
|
|
// getcallerpc returns the program counter (PC) of its caller's caller.
|
|
// getcallersp returns the stack pointer (SP) of its caller's caller.
|
|
// The implementation may be a compiler intrinsic; there is not
|
|
// necessarily code implementing this on every platform.
|
|
//
|
|
// For example:
|
|
//
|
|
// func f(arg1, arg2, arg3 int) {
|
|
// pc := getcallerpc()
|
|
// sp := getcallersp()
|
|
// }
|
|
//
|
|
// These two lines find the PC and SP immediately following
|
|
// the call to f (where f will return).
|
|
//
|
|
// The call to getcallerpc and getcallersp must be done in the
|
|
// frame being asked about.
|
|
//
|
|
// The result of getcallersp is correct at the time of the return,
|
|
// but it may be invalidated by any subsequent call to a function
|
|
// that might relocate the stack in order to grow or shrink it.
|
|
// A general rule is that the result of getcallersp should be used
|
|
// immediately and can only be passed to nosplit functions.
|
|
|
|
//go:noescape
|
|
func getcallerpc() uintptr
|
|
|
|
//go:noescape
|
|
func getcallersp() uintptr // implemented as an intrinsic on all platforms
|
|
|
|
// getsp returns the stack pointer (SP) of the caller of getsp.
|
|
//go:noinline
|
|
func getsp() uintptr { return getcallersp() }
|
|
|
|
func asmcgocall(fn, arg unsafe.Pointer) int32 {
|
|
throw("asmcgocall")
|
|
return 0
|
|
}
|
|
|
|
// alignUp rounds n up to a multiple of a. a must be a power of 2.
|
|
func alignUp(n, a uintptr) uintptr {
|
|
return (n + a - 1) &^ (a - 1)
|
|
}
|
|
|
|
// alignDown rounds n down to a multiple of a. a must be a power of 2.
|
|
func alignDown(n, a uintptr) uintptr {
|
|
return n &^ (a - 1)
|
|
}
|
|
|
|
// divRoundUp returns ceil(n / a).
|
|
func divRoundUp(n, a uintptr) uintptr {
|
|
// a is generally a power of two. This will get inlined and
|
|
// the compiler will optimize the division.
|
|
return (n + a - 1) / a
|
|
}
|
|
|
|
// checkASM returns whether assembly runtime checks have passed.
|
|
func checkASM() bool {
|
|
return true
|
|
}
|
|
|
|
//extern __go_syscall6
|
|
func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr
|
|
|
|
// For gccgo, to communicate from the C code to the Go code.
|
|
//go:linkname setIsCgo
|
|
func setIsCgo() {
|
|
iscgo = true
|
|
}
|
|
|
|
// For gccgo, to communicate from the C code to the Go code.
|
|
//go:linkname setSupportAES
|
|
func setSupportAES(v bool) {
|
|
support_aes = v
|
|
}
|
|
|
|
// Here for gccgo.
|
|
func errno() int
|
|
|
|
// For gccgo these are written in C.
|
|
func entersyscall()
|
|
func entersyscallblock()
|
|
|
|
// Get signal trampoline, written in C.
|
|
func getSigtramp() uintptr
|
|
|
|
// The sa_handler field is generally hidden in a union, so use C accessors.
|
|
//go:noescape
|
|
func getSigactionHandler(*_sigaction) uintptr
|
|
|
|
//go:noescape
|
|
func setSigactionHandler(*_sigaction, uintptr)
|
|
|
|
// Get signal code, written in C.
|
|
//go:noescape
|
|
func getSiginfoCode(*_siginfo_t) uintptr
|
|
|
|
// Retrieve fields from the siginfo_t and ucontext_t pointers passed
|
|
// to a signal handler using C, as they are often hidden in a union.
|
|
// Returns and, if available, PC where signal occurred.
|
|
func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr)
|
|
|
|
// Implemented in C for gccgo.
|
|
func dumpregs(*_siginfo_t, unsafe.Pointer)
|
|
|
|
// Implemented in C for gccgo.
|
|
func setRandomNumber(uint32)
|
|
|
|
// Called by gccgo's proc.c.
|
|
//go:linkname allocg
|
|
func allocg() *g {
|
|
return new(g)
|
|
}
|
|
|
|
// Throw and rethrow an exception.
|
|
func throwException()
|
|
func rethrowException()
|
|
|
|
// Fetch the size and required alignment of the _Unwind_Exception type
|
|
// used by the stack unwinder.
|
|
func unwindExceptionSize() uintptr
|
|
|
|
const uintptrMask = 1<<(8*sys.PtrSize) - 1
|
|
|
|
type bitvector struct {
|
|
n int32 // # of bits
|
|
bytedata *uint8
|
|
}
|
|
|
|
// ptrbit returns the i'th bit in bv.
|
|
// ptrbit is less efficient than iterating directly over bitvector bits,
|
|
// and should only be used in non-performance-critical code.
|
|
// See adjustpointers for an example of a high-efficiency walk of a bitvector.
|
|
func (bv *bitvector) ptrbit(i uintptr) uint8 {
|
|
b := *(addb(bv.bytedata, i/8))
|
|
return (b >> (i % 8)) & 1
|
|
}
|
|
|
|
// bool2int returns 0 if x is false or 1 if x is true.
|
|
func bool2int(x bool) int {
|
|
if x {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// abort crashes the runtime in situations where even throw might not
|
|
// work. In general it should do something a debugger will recognize
|
|
// (e.g., an INT3 on x86). A crash in abort is recognized by the
|
|
// signal handler, which will attempt to tear down the runtime
|
|
// immediately.
|
|
func abort()
|
|
|
|
// usestackmaps is true if stack map (precise stack scan) is enabled.
|
|
var usestackmaps bool
|
|
|
|
// probestackmaps detects whether there are stack maps.
|
|
func probestackmaps() bool
|
|
|
|
// For the math/bits packages for gccgo.
|
|
//go:linkname getDivideError
|
|
func getDivideError() error {
|
|
return divideError
|
|
}
|
|
|
|
// For the math/bits packages for gccgo.
|
|
//go:linkname getOverflowError
|
|
func getOverflowError() error {
|
|
return overflowError
|
|
}
|