gcc/libjava/prims.cc
Tom Tromey c74e221410 prims.cc (DECLARE_PRIM_TYPE): Define a vtable as well.
* prims.cc (DECLARE_PRIM_TYPE): Define a vtable as well.
	(_Jv_PrimClass): Set `methods' by calling _Jv_FindArrayClass.
	* include/jvm.h (struct _Jv_ArrayVTable): Declare.
	(NUM_OBJECT_METHODS): New define.
	* java/lang/natClassLoader.cc (_Jv_FindArrayClass): Added
	`array_vtable' parameter.  Added assertion.
	* java/lang/Class.h (_Jv_FindArrayClass): Added `array_vtable'
	parameter.

From-SVN: r34312
2000-05-31 23:50:37 +00:00

1044 lines
24 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// prims.cc - Code for core of runtime environment.
/* Copyright (C) 1998, 1999, 2000 Free Software Foundation
This file is part of libgcj.
This software is copyrighted work licensed under the terms of the
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
details. */
#include <config.h>
#ifdef USE_WIN32_SIGNALLING
#include <windows.h>
#endif /* USE_WIN32_SIGNALLING */
#ifdef USE_WINSOCK
#undef __INSIDE_CYGWIN__
#include <winsock.h>
#endif /* USE_WINSOCK */
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <gcj/cni.h>
#include <jvm.h>
#include <java-signal.h>
#include <java-threads.h>
#ifdef ENABLE_JVMPI
#include <jvmpi.h>
#endif
#ifndef DISABLE_GETENV_PROPERTIES
#include <ctype.h>
#include <java-props.h>
#define PROCESS_GCJ_PROPERTIES process_gcj_properties()
#else
#define PROCESS_GCJ_PROPERTIES
#endif // DISABLE_GETENV_PROPERTIES
#include <java/lang/Class.h>
#include <java/lang/Runtime.h>
#include <java/lang/String.h>
#include <java/lang/Thread.h>
#include <java/lang/ThreadGroup.h>
#include <gnu/gcj/runtime/FirstThread.h>
#include <java/lang/ArrayIndexOutOfBoundsException.h>
#include <java/lang/ArithmeticException.h>
#include <java/lang/ClassFormatError.h>
#include <java/lang/NegativeArraySizeException.h>
#include <java/lang/NullPointerException.h>
#include <java/lang/OutOfMemoryError.h>
#include <java/lang/System.h>
#include <java/lang/reflect/Modifier.h>
#include <java/io/PrintStream.h>
#ifdef USE_LTDL
#include <ltdl.h>
#endif
#define ObjectClass _CL_Q34java4lang6Object
extern java::lang::Class ObjectClass;
// We allocate a single OutOfMemoryError exception which we keep
// around for use if we run out of memory.
static java::lang::OutOfMemoryError *no_memory;
// Largest representable size_t.
#define SIZE_T_MAX ((size_t) (~ (size_t) 0))
// Properties set at compile time.
const char **_Jv_Compiler_Properties;
#ifndef DISABLE_GETENV_PROPERTIES
// Property key/value pairs.
property_pair *_Jv_Environment_Properties;
#endif
// The name of this executable.
static char * _Jv_execName;
#ifdef ENABLE_JVMPI
// Pointer to JVMPI notification functions.
void (*_Jv_JVMPI_Notify_OBJECT_ALLOC) (JVMPI_Event *event);
void (*_Jv_JVMPI_Notify_THREAD_START) (JVMPI_Event *event);
void (*_Jv_JVMPI_Notify_THREAD_END) (JVMPI_Event *event);
#endif
extern "C" void _Jv_ThrowSignal (void *) __attribute ((noreturn));
// Just like _Jv_Throw, but fill in the stack trace first. Although
// this is declared extern in order that its name not be mangled, it
// is not intended to be used outside this file.
void
_Jv_ThrowSignal (void *e)
{
java::lang::Throwable *throwable = (java::lang::Throwable *)e;
throwable->fillInStackTrace ();
_Jv_Throw (throwable);
}
#ifdef HANDLE_SEGV
static java::lang::NullPointerException *nullp;
SIGNAL_HANDLER (catch_segv)
{
MAKE_THROW_FRAME (nullp);
_Jv_ThrowSignal (nullp);
}
#endif
static java::lang::ArithmeticException *arithexception;
#ifdef HANDLE_FPE
SIGNAL_HANDLER (catch_fpe)
{
#ifdef HANDLE_DIVIDE_OVERFLOW
HANDLE_DIVIDE_OVERFLOW;
#else
MAKE_THROW_FRAME (arithexception);
#endif
_Jv_ThrowSignal (arithexception);
}
#endif
jboolean
_Jv_equalUtf8Consts (Utf8Const* a, Utf8Const *b)
{
int len;
_Jv_ushort *aptr, *bptr;
if (a == b)
return true;
if (a->hash != b->hash)
return false;
len = a->length;
if (b->length != len)
return false;
aptr = (_Jv_ushort *)a->data;
bptr = (_Jv_ushort *)b->data;
len = (len + 1) >> 1;
while (--len >= 0)
if (*aptr++ != *bptr++)
return false;
return true;
}
/* True iff A is equal to STR.
HASH is STR->hashCode().
*/
jboolean
_Jv_equal (Utf8Const* a, jstring str, jint hash)
{
if (a->hash != (_Jv_ushort) hash)
return false;
jint len = str->length();
jint i = 0;
jchar *sptr = _Jv_GetStringChars (str);
unsigned char* ptr = (unsigned char*) a->data;
unsigned char* limit = ptr + a->length;
for (;; i++, sptr++)
{
int ch = UTF8_GET (ptr, limit);
if (i == len)
return ch < 0;
if (ch != *sptr)
return false;
}
return true;
}
/* Like _Jv_equal, but stop after N characters. */
jboolean
_Jv_equaln (Utf8Const *a, jstring str, jint n)
{
jint len = str->length();
jint i = 0;
jchar *sptr = _Jv_GetStringChars (str);
unsigned char* ptr = (unsigned char*) a->data;
unsigned char* limit = ptr + a->length;
for (; n-- > 0; i++, sptr++)
{
int ch = UTF8_GET (ptr, limit);
if (i == len)
return ch < 0;
if (ch != *sptr)
return false;
}
return true;
}
/* Count the number of Unicode chars encoded in a given Ut8 string. */
int
_Jv_strLengthUtf8(char* str, int len)
{
unsigned char* ptr;
unsigned char* limit;
int str_length;
ptr = (unsigned char*) str;
limit = ptr + len;
str_length = 0;
for (; ptr < limit; str_length++) {
if (UTF8_GET (ptr, limit) < 0) {
return (-1);
}
}
return (str_length);
}
/* Calculate a hash value for a string encoded in Utf8 format.
* This returns the same hash value as specified or java.lang.String.hashCode.
*/
static jint
hashUtf8String (char* str, int len)
{
unsigned char* ptr = (unsigned char*) str;
unsigned char* limit = ptr + len;
jint hash = 0;
for (; ptr < limit;)
{
int ch = UTF8_GET (ptr, limit);
/* Updated specification from
http://www.javasoft.com/docs/books/jls/clarify.html. */
hash = (31 * hash) + ch;
}
return hash;
}
_Jv_Utf8Const *
_Jv_makeUtf8Const (char* s, int len)
{
if (len < 0)
len = strlen (s);
Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
if (! m)
JvThrow (no_memory);
memcpy (m->data, s, len);
m->data[len] = 0;
m->length = len;
m->hash = hashUtf8String (s, len) & 0xFFFF;
return (m);
}
_Jv_Utf8Const *
_Jv_makeUtf8Const (jstring string)
{
jint hash = string->hashCode ();
jint len = _Jv_GetStringUTFLength (string);
Utf8Const* m = (Utf8Const*)
_Jv_AllocBytesChecked (sizeof(Utf8Const) + len + 1);
m->hash = hash;
m->length = len;
_Jv_GetStringUTFRegion (string, 0, string->length (), m->data);
m->data[len] = 0;
return m;
}
#ifdef DEBUG
void
_Jv_Abort (const char *function, const char *file, int line,
const char *message)
#else
void
_Jv_Abort (const char *, const char *, int, const char *message)
#endif
{
#ifdef DEBUG
fprintf (stderr,
"libgcj failure: %s\n in function %s, file %s, line %d\n",
message, function, file, line);
#else
java::io::PrintStream *err = java::lang::System::err;
err->print(JvNewStringLatin1 ("libgcj failure: "));
err->println(JvNewStringLatin1 (message));
err->flush();
#endif
abort ();
}
static void
fail_on_finalization (jobject)
{
JvFail ("object was finalized");
}
void
_Jv_GCWatch (jobject obj)
{
_Jv_RegisterFinalizer (obj, fail_on_finalization);
}
void
_Jv_ThrowBadArrayIndex(jint bad_index)
{
JvThrow (new java::lang::ArrayIndexOutOfBoundsException
(java::lang::String::valueOf(bad_index)));
}
void
_Jv_ThrowNullPointerException ()
{
throw new java::lang::NullPointerException ();
}
// Allocate some unscanned memory and throw an exception if no memory.
void *
_Jv_AllocBytesChecked (jsize size)
{
void *r = _Jv_AllocBytes (size);
if (! r)
_Jv_Throw (no_memory);
return r;
}
// Allocate a new object of class C. SIZE is the size of the object
// to allocate. You might think this is redundant, but it isn't; some
// classes, such as String, aren't of fixed size.
jobject
_Jv_AllocObject (jclass c, jint size)
{
_Jv_InitClass (c);
jobject obj = (jobject) _Jv_AllocObj (size);
if (__builtin_expect (! obj, false))
JvThrow (no_memory);
*((_Jv_VTable **) obj) = c->vtable;
// If this class has inherited finalize from Object, then don't
// bother registering a finalizer. We know that finalize() is the
// very first method after the dummy entry. If this turns out to be
// unreliable, a more robust implementation can be written. Such an
// implementation would look for Object.finalize in Object's method
// table at startup, and then use that information to find the
// appropriate index in the method vector.
if (c->vtable->method[1] != ObjectClass.vtable->method[1])
_Jv_RegisterFinalizer (obj, _Jv_FinalizeObject);
#ifdef ENABLE_JVMPI
// Service JVMPI request.
if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
{
JVMPI_Event event;
event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
event.env_id = NULL;
event.u.obj_alloc.arena_id = 0;
event.u.obj_alloc.class_id = (jobjectID) c;
event.u.obj_alloc.is_array = 0;
event.u.obj_alloc.size = size;
event.u.obj_alloc.obj_id = (jobjectID) obj;
_Jv_DisableGC ();
(*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
_Jv_EnableGC ();
}
#endif
return obj;
}
// Allocate a new array of Java objects. Each object is of type
// `elementClass'. `init' is used to initialize each slot in the
// array.
jobjectArray
_Jv_NewObjectArray (jsize count, jclass elementClass, jobject init)
{
if (__builtin_expect (count < 0, false))
JvThrow (new java::lang::NegativeArraySizeException);
JvAssert (! elementClass->isPrimitive ());
jobjectArray obj = NULL;
size_t size = (size_t) _Jv_GetArrayElementFromElementType (obj,
elementClass);
// Check for overflow.
if (__builtin_expect ((size_t) count >
(SIZE_T_MAX - size) / sizeof (jobject), false))
JvThrow (no_memory);
size += count * sizeof (jobject);
// FIXME: second argument should be "current loader" //
jclass clas = _Jv_FindArrayClass (elementClass, 0);
obj = (jobjectArray) _Jv_AllocArray (size);
if (__builtin_expect (! obj, false))
JvThrow (no_memory);
obj->length = count;
jobject* ptr = elements(obj);
// We know the allocator returns zeroed memory. So don't bother
// zeroing it again.
if (init)
{
while (--count >= 0)
*ptr++ = init;
}
// Set the vtbl last to avoid problems if the GC happens during the
// window in this function between the allocation and this
// assignment.
*((_Jv_VTable **) obj) = clas->vtable;
return obj;
}
// Allocate a new array of primitives. ELTYPE is the type of the
// element, COUNT is the size of the array.
jobject
_Jv_NewPrimArray (jclass eltype, jint count)
{
int elsize = eltype->size();
if (__builtin_expect (count < 0, false))
JvThrow (new java::lang::NegativeArraySizeException ());
JvAssert (eltype->isPrimitive ());
jobject dummy = NULL;
size_t size = (size_t) _Jv_GetArrayElementFromElementType (dummy, eltype);
// Check for overflow.
if (__builtin_expect ((size_t) count >
(SIZE_T_MAX - size) / elsize, false))
JvThrow (no_memory);
__JArray *arr = (__JArray*) _Jv_AllocObj (size + elsize * count);
if (__builtin_expect (! arr, false))
JvThrow (no_memory);
arr->length = count;
// Note that we assume we are given zeroed memory by the allocator.
jclass klass = _Jv_FindArrayClass (eltype, 0);
// Set the vtbl last to avoid problems if the GC happens during the
// window in this function between the allocation and this
// assignment.
*((_Jv_VTable **) arr) = klass->vtable;
return arr;
}
jobject
_Jv_NewArray (jint type, jint size)
{
switch (type)
{
case 4: return JvNewBooleanArray (size);
case 5: return JvNewCharArray (size);
case 6: return JvNewFloatArray (size);
case 7: return JvNewDoubleArray (size);
case 8: return JvNewByteArray (size);
case 9: return JvNewShortArray (size);
case 10: return JvNewIntArray (size);
case 11: return JvNewLongArray (size);
}
JvFail ("newarray - bad type code");
return NULL; // Placate compiler.
}
jobject
_Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes)
{
JvAssert (type->isArray());
jclass element_type = type->getComponentType();
jobject result;
if (element_type->isPrimitive())
result = _Jv_NewPrimArray (element_type, sizes[0]);
else
result = _Jv_NewObjectArray (sizes[0], element_type, NULL);
if (dimensions > 1)
{
JvAssert (! element_type->isPrimitive());
JvAssert (element_type->isArray());
jobject *contents = elements ((jobjectArray) result);
for (int i = 0; i < sizes[0]; ++i)
contents[i] = _Jv_NewMultiArray (element_type, dimensions - 1,
sizes + 1);
}
return result;
}
jobject
_Jv_NewMultiArray (jclass array_type, jint dimensions, ...)
{
va_list args;
jint sizes[dimensions];
va_start (args, dimensions);
for (int i = 0; i < dimensions; ++i)
{
jint size = va_arg (args, jint);
sizes[i] = size;
}
va_end (args);
return _Jv_NewMultiArray (array_type, dimensions, sizes);
}
class _Jv_PrimClass : public java::lang::Class
{
public:
// FIXME: calling convention is weird. If we use the natural types
// then the compiler will complain because they aren't Java types.
_Jv_PrimClass (jobject cname, jbyte sig, jint len, jobject array_vtable)
{
using namespace java::lang::reflect;
// We must initialize every field of the class. We do this in
// the same order they are declared in Class.h.
next = NULL;
name = _Jv_makeUtf8Const ((char *) cname, -1);
accflags = Modifier::PUBLIC | Modifier::FINAL;
superclass = NULL;
constants.size = 0;
constants.tags = NULL;
constants.data = NULL;
methods = NULL;
method_count = sig;
vtable_method_count = 0;
fields = NULL;
size_in_bytes = len;
field_count = 0;
static_field_count = 0;
vtable = JV_PRIMITIVE_VTABLE;
interfaces = NULL;
loader = NULL;
interface_count = 0;
state = JV_STATE_NOTHING;
thread = NULL;
// Note that we have to set `methods' to NULL.
if (sig != 'V')
_Jv_FindArrayClass (this, NULL, (_Jv_VTable *) array_vtable);
}
};
// We use this to define both primitive classes and the vtables for
// arrays of primitive classes. The latter are given names so that we
// can refer to them from the compiler, allowing us to construct
// arrays of primitives statically.
#define DECLARE_PRIM_TYPE(NAME, SIG, LEN) \
_Jv_ArrayVTable _Jv_##NAME##VTable; \
_Jv_PrimClass _Jv_##NAME##Class((jobject) #NAME, (jbyte) SIG, (jint) LEN, \
(jobject) &_Jv_##NAME##VTable)
DECLARE_PRIM_TYPE(byte, 'B', 1);
DECLARE_PRIM_TYPE(short, 'S', 2);
DECLARE_PRIM_TYPE(int, 'I', 4);
DECLARE_PRIM_TYPE(long, 'J', 8);
DECLARE_PRIM_TYPE(boolean, 'Z', 1);
DECLARE_PRIM_TYPE(char, 'C', 2);
DECLARE_PRIM_TYPE(float, 'F', 4);
DECLARE_PRIM_TYPE(double, 'D', 8);
DECLARE_PRIM_TYPE(void, 'V', 0);
jclass
_Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader)
{
switch (*sig)
{
case 'B':
return JvPrimClass (byte);
case 'S':
return JvPrimClass (short);
case 'I':
return JvPrimClass (int);
case 'J':
return JvPrimClass (long);
case 'Z':
return JvPrimClass (boolean);
case 'C':
return JvPrimClass (char);
case 'F':
return JvPrimClass (float);
case 'D':
return JvPrimClass (double);
case 'V':
return JvPrimClass (void);
case 'L':
{
int i;
for (i = 1; sig[i] && sig[i] != ';'; ++i)
;
_Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1);
return _Jv_FindClass (name, loader);
}
case '[':
return _Jv_FindArrayClass (_Jv_FindClassFromSignature (&sig[1], loader),
loader);
}
JvFail ("couldn't understand class signature");
return NULL; // Placate compiler.
}
JArray<jstring> *
JvConvertArgv (int argc, const char **argv)
{
if (argc < 0)
argc = 0;
jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL);
jobject* ptr = elements(ar);
for (int i = 0; i < argc; i++)
{
const char *arg = argv[i];
// FIXME - should probably use JvNewStringUTF.
*ptr++ = JvNewStringLatin1(arg, strlen(arg));
}
return (JArray<jstring>*) ar;
}
// FIXME: These variables are static so that they will be
// automatically scanned by the Boehm collector. This is needed
// because with qthreads the collector won't scan the initial stack --
// it will only scan the qthreads stacks.
// Command line arguments.
static jobject arg_vec;
// The primary threadgroup.
static java::lang::ThreadGroup *main_group;
// The primary thread.
static java::lang::Thread *main_thread;
char *
_Jv_ThisExecutable (void)
{
return _Jv_execName;
}
void
_Jv_ThisExecutable (const char *name)
{
if (name)
{
_Jv_execName = new char[strlen (name) + 1];
strcpy (_Jv_execName, name);
}
}
#ifdef USE_WIN32_SIGNALLING
extern "C" int* win32_get_restart_frame (void *);
LONG CALLBACK
win32_exception_handler (LPEXCEPTION_POINTERS e)
{
int* setjmp_buf;
if (e->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
setjmp_buf = win32_get_restart_frame (nullp);
else if (e->ExceptionRecord->ExceptionCode == EXCEPTION_INT_DIVIDE_BY_ZERO)
setjmp_buf = win32_get_restart_frame (arithexception);
else
return EXCEPTION_CONTINUE_SEARCH;
e->ContextRecord->Ebp = setjmp_buf[0];
// FIXME: Why does i386-signal.h increment the PC here, do we need to do it?
e->ContextRecord->Eip = setjmp_buf[1];
// FIXME: Is this the stack pointer? Do we need it?
e->ContextRecord->Esp = setjmp_buf[2];
return EXCEPTION_CONTINUE_EXECUTION;
}
#endif
static void
main_init ()
{
INIT_SEGV;
#ifdef HANDLE_FPE
INIT_FPE;
#else
arithexception = new java::lang::ArithmeticException
(JvNewStringLatin1 ("/ by zero"));
#endif
no_memory = new java::lang::OutOfMemoryError;
#ifdef USE_LTDL
LTDL_SET_PRELOADED_SYMBOLS ();
#endif
#ifdef USE_WINSOCK
// Initialise winsock for networking
WSADATA data;
if (WSAStartup (MAKEWORD (1, 1), &data))
MessageBox (NULL, "Error initialising winsock library.", "Error", MB_OK | MB_ICONEXCLAMATION);
#endif /* USE_WINSOCK */
#ifdef USE_WIN32_SIGNALLING
// Install exception handler
SetUnhandledExceptionFilter (win32_exception_handler);
#else
// We only want this on POSIX systems.
struct sigaction act;
act.sa_handler = SIG_IGN;
sigemptyset (&act.sa_mask);
act.sa_flags = 0;
sigaction (SIGPIPE, &act, NULL);
#endif /* USE_WIN32_SIGNALLING */
_Jv_JNI_Init ();
}
#ifndef DISABLE_GETENV_PROPERTIES
static char *
next_property_key (char *s, size_t *length)
{
size_t l = 0;
JvAssert (s);
// Skip over whitespace
while (isspace (*s))
s++;
// If we've reached the end, return NULL. Also return NULL if for
// some reason we've come across a malformed property string.
if (*s == 0
|| *s == ':'
|| *s == '=')
return NULL;
// Determine the length of the property key.
while (s[l] != 0
&& ! isspace (s[l])
&& s[l] != ':'
&& s[l] != '=')
{
if (s[l] == '\\'
&& s[l+1] != 0)
l++;
l++;
}
*length = l;
return s;
}
static char *
next_property_value (char *s, size_t *length)
{
size_t l = 0;
JvAssert (s);
while (isspace (*s))
s++;
if (*s == ':'
|| *s == '=')
s++;
while (isspace (*s))
s++;
// If we've reached the end, return NULL.
if (*s == 0)
return NULL;
// Determine the length of the property value.
while (s[l] != 0
&& ! isspace (s[l])
&& s[l] != ':'
&& s[l] != '=')
{
if (s[l] == '\\'
&& s[l+1] != 0)
l += 2;
else
l++;
}
*length = l;
return s;
}
static void
process_gcj_properties ()
{
char *props = getenv("GCJ_PROPERTIES");
char *p = props;
size_t length;
size_t property_count = 0;
if (NULL == props)
return;
// Whip through props quickly in order to count the number of
// property values.
while (p && (p = next_property_key (p, &length)))
{
// Skip to the end of the key
p += length;
p = next_property_value (p, &length);
if (p)
p += length;
property_count++;
}
// Allocate an array of property value/key pairs.
_Jv_Environment_Properties =
(property_pair *) malloc (sizeof(property_pair)
* (property_count + 1));
// Go through the properties again, initializing _Jv_Properties
// along the way.
p = props;
property_count = 0;
while (p && (p = next_property_key (p, &length)))
{
_Jv_Environment_Properties[property_count].key = p;
_Jv_Environment_Properties[property_count].key_length = length;
// Skip to the end of the key
p += length;
p = next_property_value (p, &length);
_Jv_Environment_Properties[property_count].value = p;
_Jv_Environment_Properties[property_count].value_length = length;
if (p)
p += length;
property_count++;
}
memset ((void *) &_Jv_Environment_Properties[property_count],
0, sizeof (property_pair));
{
size_t i = 0;
// Null terminate the strings.
while (_Jv_Environment_Properties[i].key)
{
_Jv_Environment_Properties[i].key[_Jv_Environment_Properties[i].key_length] = 0;
_Jv_Environment_Properties[i++].value[_Jv_Environment_Properties[i].value_length] = 0;
}
}
}
#endif // DISABLE_GETENV_PROPERTIES
void
JvRunMain (jclass klass, int argc, const char **argv)
{
PROCESS_GCJ_PROPERTIES;
main_init ();
#ifdef HAVE_PROC_SELF_EXE
char exec_name[20];
sprintf (exec_name, "/proc/%d/exe", getpid ());
_Jv_ThisExecutable (exec_name);
#else
_Jv_ThisExecutable (argv[0]);
#endif
arg_vec = JvConvertArgv (argc - 1, argv + 1);
main_group = new java::lang::ThreadGroup (23);
main_thread = new gnu::gcj::runtime::FirstThread (main_group,
klass, arg_vec);
main_thread->start();
_Jv_ThreadWait ();
java::lang::Runtime::getRuntime ()->exit (0);
}
void
_Jv_RunMain (const char *class_name, int argc, const char **argv)
{
PROCESS_GCJ_PROPERTIES;
main_init ();
#ifdef HAVE_PROC_SELF_EXE
char exec_name[20];
sprintf (exec_name, "/proc/%d/exe", getpid ());
_Jv_ThisExecutable (exec_name);
#endif
arg_vec = JvConvertArgv (argc - 1, argv + 1);
main_group = new java::lang::ThreadGroup (23);
main_thread = new gnu::gcj::runtime::FirstThread (main_group,
JvNewStringLatin1 (class_name),
arg_vec);
main_thread->start();
_Jv_ThreadWait ();
java::lang::Runtime::getRuntime ()->exit (0);
}
// Parse a string and return a heap size.
static size_t
parse_heap_size (const char *spec)
{
char *end;
unsigned long val = strtoul (spec, &end, 10);
if (*end == 'k' || *end == 'K')
val *= 1024;
else if (*end == 'm' || *end == 'M')
val *= 1048576;
return (size_t) val;
}
// Set the initial heap size. This might be ignored by the GC layer.
// This must be called before _Jv_RunMain.
void
_Jv_SetInitialHeapSize (const char *arg)
{
size_t size = parse_heap_size (arg);
_Jv_GCSetInitialHeapSize (size);
}
// Set the maximum heap size. This might be ignored by the GC layer.
// This must be called before _Jv_RunMain.
void
_Jv_SetMaximumHeapSize (const char *arg)
{
size_t size = parse_heap_size (arg);
_Jv_GCSetMaximumHeapSize (size);
}
void *
_Jv_Malloc (jsize size)
{
if (__builtin_expect (size == 0, false))
size = 1;
void *ptr = malloc ((size_t) size);
if (__builtin_expect (ptr == NULL, false))
JvThrow (no_memory);
return ptr;
}
void *
_Jv_Realloc (void *ptr, jsize size)
{
if (__builtin_expect (size == 0, false))
size = 1;
ptr = realloc (ptr, (size_t) size);
if (__builtin_expect (ptr == NULL, false))
JvThrow (no_memory);
return ptr;
}
void *
_Jv_MallocUnchecked (jsize size)
{
if (__builtin_expect (size == 0, false))
size = 1;
return malloc ((size_t) size);
}
void
_Jv_Free (void* ptr)
{
return free (ptr);
}
// In theory, these routines can be #ifdef'd away on machines which
// support divide overflow signals. However, we never know if some
// code might have been compiled with "-fuse-divide-subroutine", so we
// always include them in libgcj.
jint
_Jv_divI (jint dividend, jint divisor)
{
if (__builtin_expect (divisor == 0, false))
_Jv_ThrowSignal (arithexception);
if (dividend == (jint) 0x80000000L && divisor == -1)
return dividend;
return dividend / divisor;
}
jint
_Jv_remI (jint dividend, jint divisor)
{
if (__builtin_expect (divisor == 0, false))
_Jv_ThrowSignal (arithexception);
if (dividend == (jint) 0x80000000L && divisor == -1)
return 0;
return dividend % divisor;
}
jlong
_Jv_divJ (jlong dividend, jlong divisor)
{
if (__builtin_expect (divisor == 0, false))
_Jv_ThrowSignal (arithexception);
if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
return dividend;
return dividend / divisor;
}
jlong
_Jv_remJ (jlong dividend, jlong divisor)
{
if (__builtin_expect (divisor == 0, false))
_Jv_ThrowSignal (arithexception);
if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
return 0;
return dividend % divisor;
}