d9fd7154ec
2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/BitSet.java (and): Fix off-by-one bug, don't skip part of the bitset. (andNot): Likewise. (xor): Likewise. 2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/LinkedList.java (LinkedListItr.add): Don't skip the next entry. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/TreeMap.java (removeNode): Fix bug in node removal. 2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/AbstractCollection.java (containsAll): Use size of the correct collection for loop bound. * java/util/AbstractList.java (iterator.next): Increment pos after calling get on backing list. (listIterator.next): Likewise. * java/util/LinkedList.java (addLastEntry): Don't increment size before checking for size == 0. (addFirstEntry): Rearrange to match addLastEntry. (add): Do not increment size before inserting the new entry. * java/util/AbstractCollection.java (addAll): Use size of the correct collection for loop bound. 2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/AbstractSet.java (removeAll): Fix scoping thinko. * java/util/HashMap.java (putAllInternal): Set size here. * java/util/Hashtable.java (putAllInternal): New method. Copy contents of a map efficiently without calling put() or putAll(). (Hashtable (map)): Use putAllInternal. (clone): Likewise. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/Collections.java: * java/util/Vector.java: * java/util/WeakHashMap.java: Fix spelling errors. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/AbstractCollection.java (removeAllInternal), (retainAllInternal): Add hooks for use by ArrayList. * java/util/AbstractList.java: Minor code updates. Fix some scoping. * java/util/AbstractMap.java: ditto * java/util/ArrayList.java (readObject, writeObject): ditto (removeAllInternal, retainAllInternal): Optimize. * java/util/Arrays.java: ditto * java/util/Collections.java: ditto. Change order of parameters to equals(Object, Object) to match specs. * java/util/Dictionary.java: Improve javadoc. (Dictionary): Add explicit constructor. * java/util/HashMap.java: Improve javadoc. Rearrange methods to follow order in JDK. Cleanups related to recent code migration to AbstractMap. Fix some scoping. (entrySet): Cache the result. (modCount): Ensure that this is updated correctly. * java/util/HashSet.java: Improve javadoc. Fix some scoping. (init): Add hooks for LinkedHashSet. (map): Use "" instead of Boolean.TRUE in backing map. Use package-private API where possible for less overhead. (readObject, writeObject): Fix serialization. * java/util/Hashtable.java: Improve javadoc. Fix some scoping. (entrySet, keySet, values): Cache the result. (modCount): Ensure that this is updated correctly. (contains, remove): Fix NullPointer checking to match specs. (class Enumeration): Make more like HashIterator. * java/util/IdentityHashMap.java: Minor code updates. (modCount): Ensure that this is updated correctly. (readObject, writeObject): Fix serialization. * java/util/LinkedHashMap.java: Minor code updates. Cleanups related to recent code migration to AbstractMap. * java/util/LinkedHashSet.java: New file. * java/util/LinkedList.java: (readObject, writeObject): Fix serialization. * java/util/Makefile.am: List recently added files. * java/util/Stack.java: Minor code updates. * java/util/TreeMap.java: Improve javadoc. Overhaul the class to be more efficient. Fix some scoping. Rearrange the methods. (nil): Ensure that this can be thread-safe, and make it a static final. Initialize it to be more useful as a sentinal node. (Node): Specify color in constructor. (deleteFixup, insertFixup): Improve comments and algorithm. (fabricateTree): Redesign with less overhead. (lowestGreaterThan): Add parameter first to make SubMap easier. (removeNode): Patch hole where nil was being modified. Choose predecessor instead of successor so in-place swap works. (class VerifyResult, verifyTree, verifySub, verifyError): Remove this dead code after verifying the class works. (class SubMap): Rewrite several algorithms to avoid problems with comparing nil. * java/util/TreeSet.java: Improve javadoc. Fix some scoping. (clone): Fix ClassCastException when cloning subSet(). (readObject, writeObject): Fix serialization. * java/util/WeakHashMap.java: Improve javadoc. Fix some scoping. (NULL_KEY): Make it compare as null, for ease elsewhere. (Class WeakEntry): Rename from Entry, to avoid shadowing Map.Entry. Add missing toString. (modCount): Ensure that this is updated correctly. (clear, containsValue, keySet, putAll, values, WeakHashMap(Map)): Add missing methods and constructor. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/ArrayList.java (checkBoundExclusive), (checkBoundInclusive): Rename from range??clusive, to match AbstractList. * java/util/LinkedList.java (checkBoundsExclusive), (checkBoundsInclusive): ditto * java/util/Vector.java (checkBoundExclusive), (checkBoundInclusive): Move bounds checking into common methods. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/AbstractList.java: (modCount): Make sure it is updated in all needed places. * java/util/ArrayList.java: Improve javadoc. Implements RandomAccess. Add serialVersionUID. Reorder methods. (modCount): Make sure it is updated in all needed places. (rangeExclusive, rangeInclusive): Add common methods for bounds check. (isEmpty): Add missing method. * java/util/Collections.java: (class SynchronizedList): Make package visible. * java/util/ConcurrentModificationException.java: Improve javadoc. * java/util/EmptyStackException.java: Improve javadoc. * java/util/LinkedList.java: Improve javadoc. (modCount): Make sure it is updated in all needed places. (rangeExclusive, rangeInclusive): Add common methods for bounds check. * java/util/NoSuchElementException.java: Improve javadoc. * java/util/Stack.java: Improve javadoc. Fix synchronization issues. (modCount): Make sure it is updated in all needed places. * java/util/Vector.java: Improve javadoc. Fix synchronization issues. Implements RandomAccess. Reorder methods. (modCount): Make sure it is updated in all needed places. (setSize): Fix according to specifications: this does not dictate the backing array size. (removeAll, retainAll): Faster implementations. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/BitSet.java: Improve javadoc. (cardinality(), clear(), clear(int, int), flip(int)), (flip(int, int), get(int, int), intersects(BitSet), isEmpty()), (nextClearBit(int), nextSetBit(int), set(int, boolean)), (set(int, int), set(int, int, boolean)): Add new JDK 1.4 methods. (clone): Fix so subclasses clone correctly. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/AbstractCollection.java: Improve javadoc. (AbstractCollection()): Make constructor protected. (equals(Object, Object), hashCode(Object)): Add utility methods. * java/util/AbstractList.java: Improve javadoc. (AbstractList()): Make constructor protected. (indexOf(Object)): Call listIterator(), not listIterator(int). (iterator()): Follow Sun's requirement to not use listIterator(0). (listIterator(int)): Make AbstractListItr anonymous. (subList(int, int)): Add support for RandomAccess. (SubList.add(int, Object), SubList.remove(Object)): Fix bug with modCount tracking. (SubList.addAll(Collection)): Add missing method. (SubList.listIterator(int)): Fix bugs in indexing, modCount tracking. (class RandomAccessSubList): Add new class. * java/util/AbstractMap.java: Improve javadoc. (keys, values, KEYS, VALUES, ENTRIES): Consolidate common map fields. (AbstractMap()): Make constructor protected. (equals(Object, Object), hashCode(Object)): Add utility methods. (equals(Object)): Change algorithm to entrySet().equals(m.entrySet()), as documented by Sun. (keySet(), values()): Cache the collections. * java/util/AbstractSequentialList.java: Improve javadoc. (AbstractSequentialList()): Make constructor protected. * java/util/AbstractSet.java: Improve javadoc. (AbstractSet()): Make constructor protected. (removeAll(Collection)): Add missing method. * java/util/Arrays.java: Improve javadoc, rearrange method orders. (defaultComparator): Remove, in favor of Collections.compare(Object, Object, Comparator). (binarySearch, equals, sort): Fix natural order comparison of floats and doubles. Also improve Object comparison - when comparator is null, use natural order. (fill, sort): Add missing checks for IllegalArgumentException. (sort, qsort): Fix sorting bugs, rework the code for more legibility. (mergeSort): Inline into sort(Object[], int, int, Comparator). (class ArrayList): Rename from ListImpl, and make compatible with JDK serialization. Add methods which more efficiently override those of AbstractList. * java/util/Collections: Improve javadoc. (isSequential(List)): Add and use a method for deciding between RandomAccess and sequential algorithms on lists. (class Empty*, class Synchronized*, class Unmodifiable*): Make compliant with JDK serializability. (class Singleton*, class CopiesList, class RevereseComparator), (class UnmodifiableMap.UnmodifiableEntrySet), (class *RandomAccessList): New classes for serial compatibility. (class Empty*, class Singleton*, class CopiesList): Add methods which more efficiently override those of Abstract*. (search): Inline into binarySearch(List, Object, Comparator). (binarySearch): Make sequential search only do log(n) comparisons, instead of n. (copy(List, List)): Do bounds checking before starting. (indexOfSubList, lastIndexOfSubList, list, replaceAll, rotate), (swap): Add new JDK 1.4 methods. (binarySearch, max, min, sort): Allow null comparator to represent natural ordering. (reverse(List)): Avoid unnecessary swap. (shuffle(List, Random)): Do shuffle in-place for RandomAccess lists. (SingletonList.get): Fix logic bug. (SingletonMap.entrySet): Make the entry immutable, and cache the returned set. (SynchronizedCollection, SynchronizedMap, UnmodifiableCollection), (UnmodifiableMap): Detect null pointer in construction. (SynchronizedMap, UnmodifiableMap): Cache collection views. * java/util/BasicMapEntry: Improve javadoc. From-SVN: r48035
477 lines
15 KiB
Java
477 lines
15 KiB
Java
/* LinkedHashMap.java -- a class providing hashtable data structure,
|
|
mapping Object --> Object, with linked list traversal
|
|
Copyright (C) 2001 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA.
|
|
|
|
As a special exception, if you link this library with other files to
|
|
produce an executable, this library does not by itself cause the
|
|
resulting executable to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why the
|
|
executable file might be covered by the GNU General Public License. */
|
|
|
|
|
|
package java.util;
|
|
|
|
/**
|
|
* This class provides a hashtable-backed implementation of the
|
|
* Map interface, with predictable traversal order.
|
|
* <p>
|
|
*
|
|
* It uses a hash-bucket approach; that is, hash collisions are handled
|
|
* by linking the new node off of the pre-existing node (or list of
|
|
* nodes). In this manner, techniques such as linear probing (which
|
|
* can cause primary clustering) and rehashing (which does not fit very
|
|
* well with Java's method of precomputing hash codes) are avoided. In
|
|
* addition, this maintains a doubly-linked list which tracks either
|
|
* insertion or access order. Note that the insertion order is not
|
|
* modified if a <code>put</code> simply reinserts a key in the map.
|
|
* <p>
|
|
*
|
|
* One of the nice features of tracking insertion order is that you can
|
|
* copy a hashtable, and regardless of the implementation of the original,
|
|
* produce the same results when iterating over the copy. This is possible
|
|
* without needing the overhead of <code>TreeMap</code>.
|
|
* <p>
|
|
*
|
|
* When using this {@link #LinkedHashMap(int, float, boolean) constructor},
|
|
* you build an access-order mapping. This can be used to implement LRU
|
|
* caches, for example. In this case, every invocation of <code>put</code>,
|
|
* <code>putAll</code>, or <code>get</code> moves the accessed entry to
|
|
* the end of the iteration list. By overriding
|
|
* {@link #removeEldestEntry(Map.Entry)}, you can also control the
|
|
* removal of the oldest entry, and thereby do things like keep the map
|
|
* at a fixed size.
|
|
* <p>
|
|
*
|
|
* Under ideal circumstances (no collisions), LinkedHashMap offers O(1)
|
|
* performance on most operations (<pre>containsValue()</pre> is,
|
|
* of course, O(n)). In the worst case (all keys map to the same
|
|
* hash code -- very unlikely), most operations are O(n).
|
|
* <p>
|
|
*
|
|
* LinkedHashMap accepts the null key and null values. It is not
|
|
* synchronized, so if you need multi-threaded access, consider using:<br>
|
|
* <code>Map m = Collections.synchronizedMap(new LinkedHashMap(...));</code>
|
|
* <p>
|
|
*
|
|
* The iterators are <i>fail-fast</i>, meaning that any structural
|
|
* modification, except for <code>remove()</code> called on the iterator
|
|
* itself, cause the iterator to throw a
|
|
* {@link ConcurrentModificationException} rather than exhibit
|
|
* non-deterministic behavior.
|
|
*
|
|
* @author Eric Blake <ebb9@email.byu.edu>
|
|
* @see Object#hashCode()
|
|
* @see Collection
|
|
* @see Map
|
|
* @see HashMap
|
|
* @see TreeMap
|
|
* @see Hashtable
|
|
* @since 1.4
|
|
* @status updated to 1.4
|
|
*/
|
|
public class LinkedHashMap extends HashMap
|
|
{
|
|
/**
|
|
* Compatible with JDK 1.4.
|
|
*/
|
|
private static final long serialVersionUID = 3801124242820219131L;
|
|
|
|
/**
|
|
* The first Entry to iterate over.
|
|
*/
|
|
transient LinkedHashEntry head;
|
|
|
|
/**
|
|
* The last Entry to iterate over.
|
|
*/
|
|
transient LinkedHashEntry tail;
|
|
|
|
/**
|
|
* The iteration order of this linked hash map: <code>true</code> for
|
|
* access-order, <code>false</code> for insertion-order.
|
|
* @serial
|
|
*/
|
|
final boolean accessOrder;
|
|
|
|
/**
|
|
* Class to represent an entry in the hash table. Holds a single key-value
|
|
* pair and the doubly-linked insertion order list.
|
|
*/
|
|
class LinkedHashEntry extends HashEntry
|
|
{
|
|
/** The predecessor in the iteration list, null if this is the eldest. */
|
|
LinkedHashEntry pred;
|
|
/** The successor in the iteration list, null if this is the newest. */
|
|
LinkedHashEntry succ;
|
|
|
|
/**
|
|
* Simple constructor.
|
|
* @param key the key
|
|
* @param value the value
|
|
*/
|
|
LinkedHashEntry(Object key, Object value)
|
|
{
|
|
super(key, value);
|
|
if (head == null)
|
|
head = this;
|
|
pred = tail;
|
|
tail = this;
|
|
if (pred != null)
|
|
pred.succ = this;
|
|
}
|
|
|
|
/**
|
|
* Sets the value of this entry, and shuffles it to the end of
|
|
* the list if this is in access-order.
|
|
* @param value the new value
|
|
* @return the prior value
|
|
*/
|
|
public Object setValue(Object value)
|
|
{
|
|
if (accessOrder && succ != null)
|
|
{
|
|
succ.pred = pred;
|
|
if (pred == null)
|
|
head = succ;
|
|
else
|
|
pred.succ = succ;
|
|
succ = null;
|
|
pred = tail;
|
|
pred.succ = this;
|
|
tail = this;
|
|
}
|
|
return super.setValue(value);
|
|
}
|
|
|
|
/**
|
|
* Called when this entry is removed from the map. This version does
|
|
* the necessary bookkeeping to keep the doubly-linked list in order.
|
|
* @return the value of this key as it is removed
|
|
*/
|
|
Object cleanup()
|
|
{
|
|
if (pred == null)
|
|
head = succ;
|
|
else
|
|
pred.succ = succ;
|
|
if (succ == null)
|
|
tail = pred;
|
|
else
|
|
succ.pred = pred;
|
|
|
|
return value;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Construct a new insertion-ordered LinkedHashMap with the default
|
|
* capacity (11) and the default load factor (0.75).
|
|
*/
|
|
public LinkedHashMap()
|
|
{
|
|
super();
|
|
accessOrder = false;
|
|
}
|
|
|
|
/**
|
|
* Construct a new insertion-ordered LinkedHashMap from the given Map,
|
|
* with initial capacity the greater of the size of <code>m</code> or
|
|
* the default of 11.
|
|
* <p>
|
|
*
|
|
* Every element in Map m will be put into this new HashMap, in the
|
|
* order of m's iterator.
|
|
*
|
|
* @param m a Map whose key / value pairs will be put into
|
|
* the new HashMap. <b>NOTE: key / value pairs
|
|
* are not cloned in this constructor.</b>
|
|
* @throws NullPointerException if m is null
|
|
*/
|
|
public LinkedHashMap(Map m)
|
|
{
|
|
super(m);
|
|
accessOrder = false;
|
|
}
|
|
|
|
/**
|
|
* Construct a new insertion-ordered LinkedHashMap with a specific
|
|
* inital capacity and default load factor of 0.75.
|
|
*
|
|
* @param initialCapacity the initial capacity of this HashMap (>= 0)
|
|
* @throws IllegalArgumentException if (initialCapacity < 0)
|
|
*/
|
|
public LinkedHashMap(int initialCapacity)
|
|
{
|
|
super(initialCapacity);
|
|
accessOrder = false;
|
|
}
|
|
|
|
/**
|
|
* Construct a new insertion-orderd LinkedHashMap with a specific
|
|
* inital capacity and load factor.
|
|
*
|
|
* @param initialCapacity the initial capacity (>= 0)
|
|
* @param loadFactor the load factor (> 0, not NaN)
|
|
* @throws IllegalArgumentException if (initialCapacity < 0) ||
|
|
* ! (loadFactor > 0.0)
|
|
*/
|
|
public LinkedHashMap(int initialCapacity, float loadFactor)
|
|
{
|
|
super(initialCapacity, loadFactor);
|
|
accessOrder = false;
|
|
}
|
|
|
|
/**
|
|
* Construct a new LinkedHashMap with a specific inital capacity, load
|
|
* factor, and ordering mode.
|
|
*
|
|
* @param initialCapacity the initial capacity (>=0)
|
|
* @param loadFactor the load factor (>0, not NaN)
|
|
* @param accessOrder true for access-order, false for insertion-order
|
|
* @throws IllegalArgumentException if (initialCapacity < 0) ||
|
|
* ! (loadFactor > 0.0)
|
|
*/
|
|
public LinkedHashMap(int initialCapacity, float loadFactor,
|
|
boolean accessOrder)
|
|
{
|
|
super(initialCapacity, loadFactor);
|
|
this.accessOrder = accessOrder;
|
|
}
|
|
|
|
/**
|
|
* Clears the Map so it has no keys. This is O(1).
|
|
*/
|
|
public void clear()
|
|
{
|
|
super.clear();
|
|
head = null;
|
|
tail = null;
|
|
}
|
|
|
|
/**
|
|
* Returns true if this HashMap contains a value <pre>o</pre>, such that
|
|
* <pre>o.equals(value)</pre>.
|
|
*
|
|
* @param value the value to search for in this HashMap
|
|
* @return true if at least one key maps to the value
|
|
*/
|
|
public boolean containsValue(Object value)
|
|
{
|
|
LinkedHashEntry e = head;
|
|
while (e != null)
|
|
{
|
|
if (equals(value, e.value))
|
|
return true;
|
|
e = e.succ;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Return the value in this Map associated with the supplied key,
|
|
* or <pre>null</pre> if the key maps to nothing. If this is an
|
|
* access-ordered Map and the key is found, this performs structural
|
|
* modification, moving the key to the newest end of the list. NOTE:
|
|
* Since the value could also be null, you must use containsKey to
|
|
* see if this key actually maps to something.
|
|
*
|
|
* @param key the key for which to fetch an associated value
|
|
* @return what the key maps to, if present
|
|
* @see #put(Object, Object)
|
|
* @see #containsKey(Object)
|
|
*/
|
|
public Object get(Object key)
|
|
{
|
|
int idx = hash(key);
|
|
HashEntry e = buckets[idx];
|
|
while (e != null)
|
|
{
|
|
if (equals(key, e.key))
|
|
{
|
|
if (accessOrder)
|
|
{
|
|
modCount++;
|
|
LinkedHashEntry l = (LinkedHashEntry) e;
|
|
if (l.succ != null)
|
|
{
|
|
l.succ.pred = l.pred;
|
|
if (l.pred == null)
|
|
head = l.succ;
|
|
else
|
|
l.pred.succ = l.succ;
|
|
l.succ = null;
|
|
l.pred = tail;
|
|
tail.succ = l;
|
|
tail = l;
|
|
}
|
|
}
|
|
return e.value;
|
|
}
|
|
e = e.next;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns <code>true</code> if this map should remove the eldest entry.
|
|
* This method is invoked by all calls to <code>put</code> and
|
|
* <code>putAll</code> which place a new entry in the map, providing
|
|
* the implementer an opportunity to remove the eldest entry any time
|
|
* a new one is added. This can be used to save memory usage of the
|
|
* hashtable, as well as emulating a cache, by deleting stale entries.
|
|
* <p>
|
|
*
|
|
* For example, to keep the Map limited to 100 entries, override as follows:
|
|
* <pre>
|
|
* private static final int MAX_ENTRIES = 100;
|
|
*
|
|
* protected boolean removeEldestEntry(Map.Entry eldest)
|
|
* {
|
|
* return size() > MAX_ENTRIES;
|
|
* }
|
|
* </pre><p>
|
|
*
|
|
* Typically, this method does not modify the map, but just uses the
|
|
* return value as an indication to <code>put</code> whether to proceed.
|
|
* However, if you override it to modify the map, you must return false
|
|
* (indicating that <code>put</code> should do nothing), or face
|
|
* unspecified behavior.
|
|
* <p>
|
|
*
|
|
* This method is called after the eldest entry has been inserted, so
|
|
* if <code>put</code> was called on a previously empty map, the eldest
|
|
* entry is the one you just put in! The default implementation just
|
|
* returns <code>false</code>, so that this map always behaves like
|
|
* a normal one with unbounded growth.
|
|
*
|
|
* @param eldest the eldest element which would be removed if this
|
|
* returns true. For an access-order map, this is the least
|
|
* recently accessed; for an insertion-order map, this is the
|
|
* earliest element inserted.
|
|
* @return true if <code>eldest</code> should be removed
|
|
*/
|
|
protected boolean removeEldestEntry(Map.Entry eldest)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Helper method called by <code>put</code>, which creates and adds a
|
|
* new Entry, followed by performing bookkeeping (like removeEldestEntry).
|
|
*
|
|
* @param key the key of the new Entry
|
|
* @param value the value
|
|
* @param idx the index in buckets where the new Entry belongs
|
|
* @param callRemove whether to call the removeEldestEntry method
|
|
* @see #put(Object, Object)
|
|
* @see #removeEldestEntry(Map.Entry)
|
|
*/
|
|
void addEntry(Object key, Object value, int idx, boolean callRemove)
|
|
{
|
|
LinkedHashEntry e = new LinkedHashEntry(key, value);
|
|
|
|
e.next = buckets[idx];
|
|
buckets[idx] = e;
|
|
|
|
if (callRemove && removeEldestEntry(head))
|
|
remove(head);
|
|
}
|
|
|
|
/**
|
|
* Helper method, called by clone() to reset the doubly-linked list.
|
|
* @param m the map to add entries from
|
|
* @see #clone()
|
|
*/
|
|
void putAllInternal(Map m)
|
|
{
|
|
head = null;
|
|
tail = null;
|
|
super.putAllInternal(m);
|
|
}
|
|
|
|
/**
|
|
* Generates a parameterized iterator. This allows traversal to follow
|
|
* the doubly-linked list instead of the random bin order of HashMap.
|
|
* @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
|
|
* @return the appropriate iterator
|
|
*/
|
|
Iterator iterator(final int type)
|
|
{
|
|
return new Iterator()
|
|
{
|
|
/** The current Entry */
|
|
LinkedHashEntry current = head;
|
|
|
|
/** The previous Entry returned by next() */
|
|
LinkedHashEntry last;
|
|
|
|
/** The number of known modifications to the backing HashMap */
|
|
int knownMod = modCount;
|
|
|
|
/**
|
|
* Returns true if the Iterator has more elements.
|
|
* @return true if there are more elements
|
|
* @throws ConcurrentModificationException if the HashMap was modified
|
|
*/
|
|
public boolean hasNext()
|
|
{
|
|
if (knownMod != modCount)
|
|
throw new ConcurrentModificationException();
|
|
return current != null;
|
|
}
|
|
|
|
/**
|
|
* Returns the next element in the Iterator's sequential view.
|
|
* @return the next element
|
|
* @throws ConcurrentModificationException if the HashMap was modified
|
|
* @throws NoSuchElementException if there is none
|
|
*/
|
|
public Object next()
|
|
{
|
|
if (knownMod != modCount)
|
|
throw new ConcurrentModificationException();
|
|
if (current == null)
|
|
throw new NoSuchElementException();
|
|
last = current;
|
|
current = current.succ;
|
|
return type == VALUES ? last.value : type == KEYS ? last.key : last;
|
|
}
|
|
|
|
/**
|
|
* Removes from the backing HashMap the last element which was fetched
|
|
* with the <pre>next()</pre> method.
|
|
* @throws ConcurrentModificationException if the HashMap was modified
|
|
* @throws IllegalStateException if called when there is no last element
|
|
*/
|
|
public void remove()
|
|
{
|
|
if (knownMod != modCount)
|
|
throw new ConcurrentModificationException();
|
|
if (last == null)
|
|
throw new IllegalStateException();
|
|
|
|
LinkedHashMap.this.remove(last.key);
|
|
last = null;
|
|
knownMod++;
|
|
}
|
|
};
|
|
}
|
|
}
|