8d9254fc8a
From-SVN: r279813
7726 lines
241 KiB
C
7726 lines
241 KiB
C
/* Instruction scheduling pass. Selective scheduler and pipeliner.
|
||
Copyright (C) 2006-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "cfgbuild.h"
|
||
#include "cfgcleanup.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "target.h"
|
||
#include "sched-int.h"
|
||
#include "rtlhooks-def.h"
|
||
#include "ira.h"
|
||
#include "ira-int.h"
|
||
#include "rtl-iter.h"
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
#include "regset.h"
|
||
#include "cfgloop.h"
|
||
#include "sel-sched-ir.h"
|
||
#include "sel-sched-dump.h"
|
||
#include "sel-sched.h"
|
||
#include "dbgcnt.h"
|
||
#include "function-abi.h"
|
||
|
||
/* Implementation of selective scheduling approach.
|
||
The below implementation follows the original approach with the following
|
||
changes:
|
||
|
||
o the scheduler works after register allocation (but can be also tuned
|
||
to work before RA);
|
||
o some instructions are not copied or register renamed;
|
||
o conditional jumps are not moved with code duplication;
|
||
o several jumps in one parallel group are not supported;
|
||
o when pipelining outer loops, code motion through inner loops
|
||
is not supported;
|
||
o control and data speculation are supported;
|
||
o some improvements for better compile time/performance were made.
|
||
|
||
Terminology
|
||
===========
|
||
|
||
A vinsn, or virtual insn, is an insn with additional data characterizing
|
||
insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
|
||
Vinsns also act as smart pointers to save memory by reusing them in
|
||
different expressions. A vinsn is described by vinsn_t type.
|
||
|
||
An expression is a vinsn with additional data characterizing its properties
|
||
at some point in the control flow graph. The data may be its usefulness,
|
||
priority, speculative status, whether it was renamed/subsituted, etc.
|
||
An expression is described by expr_t type.
|
||
|
||
Availability set (av_set) is a set of expressions at a given control flow
|
||
point. It is represented as av_set_t. The expressions in av sets are kept
|
||
sorted in the terms of expr_greater_p function. It allows to truncate
|
||
the set while leaving the best expressions.
|
||
|
||
A fence is a point through which code motion is prohibited. On each step,
|
||
we gather a parallel group of insns at a fence. It is possible to have
|
||
multiple fences. A fence is represented via fence_t.
|
||
|
||
A boundary is the border between the fence group and the rest of the code.
|
||
Currently, we never have more than one boundary per fence, as we finalize
|
||
the fence group when a jump is scheduled. A boundary is represented
|
||
via bnd_t.
|
||
|
||
High-level overview
|
||
===================
|
||
|
||
The scheduler finds regions to schedule, schedules each one, and finalizes.
|
||
The regions are formed starting from innermost loops, so that when the inner
|
||
loop is pipelined, its prologue can be scheduled together with yet unprocessed
|
||
outer loop. The rest of acyclic regions are found using extend_rgns:
|
||
the blocks that are not yet allocated to any regions are traversed in top-down
|
||
order, and a block is added to a region to which all its predecessors belong;
|
||
otherwise, the block starts its own region.
|
||
|
||
The main scheduling loop (sel_sched_region_2) consists of just
|
||
scheduling on each fence and updating fences. For each fence,
|
||
we fill a parallel group of insns (fill_insns) until some insns can be added.
|
||
First, we compute available exprs (av-set) at the boundary of the current
|
||
group. Second, we choose the best expression from it. If the stall is
|
||
required to schedule any of the expressions, we advance the current cycle
|
||
appropriately. So, the final group does not exactly correspond to a VLIW
|
||
word. Third, we move the chosen expression to the boundary (move_op)
|
||
and update the intermediate av sets and liveness sets. We quit fill_insns
|
||
when either no insns left for scheduling or we have scheduled enough insns
|
||
so we feel like advancing a scheduling point.
|
||
|
||
Computing available expressions
|
||
===============================
|
||
|
||
The computation (compute_av_set) is a bottom-up traversal. At each insn,
|
||
we're moving the union of its successors' sets through it via
|
||
moveup_expr_set. The dependent expressions are removed. Local
|
||
transformations (substitution, speculation) are applied to move more
|
||
exprs. Then the expr corresponding to the current insn is added.
|
||
The result is saved on each basic block header.
|
||
|
||
When traversing the CFG, we're moving down for no more than max_ws insns.
|
||
Also, we do not move down to ineligible successors (is_ineligible_successor),
|
||
which include moving along a back-edge, moving to already scheduled code,
|
||
and moving to another fence. The first two restrictions are lifted during
|
||
pipelining, which allows us to move insns along a back-edge. We always have
|
||
an acyclic region for scheduling because we forbid motion through fences.
|
||
|
||
Choosing the best expression
|
||
============================
|
||
|
||
We sort the final availability set via sel_rank_for_schedule, then we remove
|
||
expressions which are not yet ready (tick_check_p) or which dest registers
|
||
cannot be used. For some of them, we choose another register via
|
||
find_best_reg. To do this, we run find_used_regs to calculate the set of
|
||
registers which cannot be used. The find_used_regs function performs
|
||
a traversal of code motion paths for an expr. We consider for renaming
|
||
only registers which are from the same regclass as the original one and
|
||
using which does not interfere with any live ranges. Finally, we convert
|
||
the resulting set to the ready list format and use max_issue and reorder*
|
||
hooks similarly to the Haifa scheduler.
|
||
|
||
Scheduling the best expression
|
||
==============================
|
||
|
||
We run the move_op routine to perform the same type of code motion paths
|
||
traversal as in find_used_regs. (These are working via the same driver,
|
||
code_motion_path_driver.) When moving down the CFG, we look for original
|
||
instruction that gave birth to a chosen expression. We undo
|
||
the transformations performed on an expression via the history saved in it.
|
||
When found, we remove the instruction or leave a reg-reg copy/speculation
|
||
check if needed. On a way up, we insert bookkeeping copies at each join
|
||
point. If a copy is not needed, it will be removed later during this
|
||
traversal. We update the saved av sets and liveness sets on the way up, too.
|
||
|
||
Finalizing the schedule
|
||
=======================
|
||
|
||
When pipelining, we reschedule the blocks from which insns were pipelined
|
||
to get a tighter schedule. On Itanium, we also perform bundling via
|
||
the same routine from ia64.c.
|
||
|
||
Dependence analysis changes
|
||
===========================
|
||
|
||
We augmented the sched-deps.c with hooks that get called when a particular
|
||
dependence is found in a particular part of an insn. Using these hooks, we
|
||
can do several actions such as: determine whether an insn can be moved through
|
||
another (has_dependence_p, moveup_expr); find out whether an insn can be
|
||
scheduled on the current cycle (tick_check_p); find out registers that
|
||
are set/used/clobbered by an insn and find out all the strange stuff that
|
||
restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
|
||
init_global_and_expr_for_insn).
|
||
|
||
Initialization changes
|
||
======================
|
||
|
||
There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
|
||
reused in all of the schedulers. We have split up the initialization of data
|
||
of such parts into different functions prefixed with scheduler type and
|
||
postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
|
||
sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
|
||
The same splitting is done with current_sched_info structure:
|
||
dependence-related parts are in sched_deps_info, common part is in
|
||
common_sched_info, and haifa/sel/etc part is in current_sched_info.
|
||
|
||
Target contexts
|
||
===============
|
||
|
||
As we now have multiple-point scheduling, this would not work with backends
|
||
which save some of the scheduler state to use it in the target hooks.
|
||
For this purpose, we introduce a concept of target contexts, which
|
||
encapsulate such information. The backend should implement simple routines
|
||
of allocating/freeing/setting such a context. The scheduler calls these
|
||
as target hooks and handles the target context as an opaque pointer (similar
|
||
to the DFA state type, state_t).
|
||
|
||
Various speedups
|
||
================
|
||
|
||
As the correct data dependence graph is not supported during scheduling (which
|
||
is to be changed in mid-term), we cache as much of the dependence analysis
|
||
results as possible to avoid reanalyzing. This includes: bitmap caches on
|
||
each insn in stream of the region saying yes/no for a query with a pair of
|
||
UIDs; hashtables with the previously done transformations on each insn in
|
||
stream; a vector keeping a history of transformations on each expr.
|
||
|
||
Also, we try to minimize the dependence context used on each fence to check
|
||
whether the given expression is ready for scheduling by removing from it
|
||
insns that are definitely completed the execution. The results of
|
||
tick_check_p checks are also cached in a vector on each fence.
|
||
|
||
We keep a valid liveness set on each insn in a region to avoid the high
|
||
cost of recomputation on large basic blocks.
|
||
|
||
Finally, we try to minimize the number of needed updates to the availability
|
||
sets. The updates happen in two cases: when fill_insns terminates,
|
||
we advance all fences and increase the stage number to show that the region
|
||
has changed and the sets are to be recomputed; and when the next iteration
|
||
of a loop in fill_insns happens (but this one reuses the saved av sets
|
||
on bb headers.) Thus, we try to break the fill_insns loop only when
|
||
"significant" number of insns from the current scheduling window was
|
||
scheduled. This should be made a target param.
|
||
|
||
|
||
TODO: correctly support the data dependence graph at all stages and get rid
|
||
of all caches. This should speed up the scheduler.
|
||
TODO: implement moving cond jumps with bookkeeping copies on both targets.
|
||
TODO: tune the scheduler before RA so it does not create too much pseudos.
|
||
|
||
|
||
References:
|
||
S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
|
||
selective scheduling and software pipelining.
|
||
ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
|
||
|
||
Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
|
||
and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
|
||
for GCC. In Proceedings of GCC Developers' Summit 2006.
|
||
|
||
Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
|
||
Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
|
||
http://rogue.colorado.edu/EPIC7/.
|
||
|
||
*/
|
||
|
||
/* True when pipelining is enabled. */
|
||
bool pipelining_p;
|
||
|
||
/* True if bookkeeping is enabled. */
|
||
bool bookkeeping_p;
|
||
|
||
/* Maximum number of insns that are eligible for renaming. */
|
||
int max_insns_to_rename;
|
||
|
||
|
||
/* Definitions of local types and macros. */
|
||
|
||
/* Represents possible outcomes of moving an expression through an insn. */
|
||
enum MOVEUP_EXPR_CODE
|
||
{
|
||
/* The expression is not changed. */
|
||
MOVEUP_EXPR_SAME,
|
||
|
||
/* Not changed, but requires a new destination register. */
|
||
MOVEUP_EXPR_AS_RHS,
|
||
|
||
/* Cannot be moved. */
|
||
MOVEUP_EXPR_NULL,
|
||
|
||
/* Changed (substituted or speculated). */
|
||
MOVEUP_EXPR_CHANGED
|
||
};
|
||
|
||
/* The container to be passed into rtx search & replace functions. */
|
||
struct rtx_search_arg
|
||
{
|
||
/* What we are searching for. */
|
||
rtx x;
|
||
|
||
/* The occurrence counter. */
|
||
int n;
|
||
};
|
||
|
||
typedef struct rtx_search_arg *rtx_search_arg_p;
|
||
|
||
/* This struct contains precomputed hard reg sets that are needed when
|
||
computing registers available for renaming. */
|
||
struct hard_regs_data
|
||
{
|
||
/* For every mode, this stores registers available for use with
|
||
that mode. */
|
||
HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
|
||
|
||
/* True when regs_for_mode[mode] is initialized. */
|
||
bool regs_for_mode_ok[NUM_MACHINE_MODES];
|
||
|
||
/* For every register, it has regs that are ok to rename into it.
|
||
The register in question is always set. If not, this means
|
||
that the whole set is not computed yet. */
|
||
HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* All registers that are used or call used. */
|
||
HARD_REG_SET regs_ever_used;
|
||
|
||
#ifdef STACK_REGS
|
||
/* Stack registers. */
|
||
HARD_REG_SET stack_regs;
|
||
#endif
|
||
};
|
||
|
||
/* Holds the results of computation of available for renaming and
|
||
unavailable hard registers. */
|
||
struct reg_rename
|
||
{
|
||
/* These are unavailable due to calls crossing, globalness, etc. */
|
||
HARD_REG_SET unavailable_hard_regs;
|
||
|
||
/* These are *available* for renaming. */
|
||
HARD_REG_SET available_for_renaming;
|
||
|
||
/* The set of ABIs used by calls that the code motion path crosses. */
|
||
unsigned int crossed_call_abis : NUM_ABI_IDS;
|
||
};
|
||
|
||
/* A global structure that contains the needed information about harg
|
||
regs. */
|
||
static struct hard_regs_data sel_hrd;
|
||
|
||
|
||
/* This structure holds local data used in code_motion_path_driver hooks on
|
||
the same or adjacent levels of recursion. Here we keep those parameters
|
||
that are not used in code_motion_path_driver routine itself, but only in
|
||
its hooks. Moreover, all parameters that can be modified in hooks are
|
||
in this structure, so all other parameters passed explicitly to hooks are
|
||
read-only. */
|
||
struct cmpd_local_params
|
||
{
|
||
/* Local params used in move_op_* functions. */
|
||
|
||
/* Edges for bookkeeping generation. */
|
||
edge e1, e2;
|
||
|
||
/* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
|
||
expr_t c_expr_merged, c_expr_local;
|
||
|
||
/* Local params used in fur_* functions. */
|
||
/* Copy of the ORIGINAL_INSN list, stores the original insns already
|
||
found before entering the current level of code_motion_path_driver. */
|
||
def_list_t old_original_insns;
|
||
|
||
/* Local params used in move_op_* functions. */
|
||
/* True when we have removed last insn in the block which was
|
||
also a boundary. Do not update anything or create bookkeeping copies. */
|
||
BOOL_BITFIELD removed_last_insn : 1;
|
||
};
|
||
|
||
/* Stores the static parameters for move_op_* calls. */
|
||
struct moveop_static_params
|
||
{
|
||
/* Destination register. */
|
||
rtx dest;
|
||
|
||
/* Current C_EXPR. */
|
||
expr_t c_expr;
|
||
|
||
/* An UID of expr_vliw which is to be moved up. If we find other exprs,
|
||
they are to be removed. */
|
||
int uid;
|
||
|
||
/* This is initialized to the insn on which the driver stopped its traversal. */
|
||
insn_t failed_insn;
|
||
|
||
/* True if we scheduled an insn with different register. */
|
||
bool was_renamed;
|
||
};
|
||
|
||
/* Stores the static parameters for fur_* calls. */
|
||
struct fur_static_params
|
||
{
|
||
/* Set of registers unavailable on the code motion path. */
|
||
regset used_regs;
|
||
|
||
/* Pointer to the list of original insns definitions. */
|
||
def_list_t *original_insns;
|
||
|
||
/* The set of ABIs used by calls that the code motion path crosses. */
|
||
unsigned int crossed_call_abis : NUM_ABI_IDS;
|
||
};
|
||
|
||
typedef struct fur_static_params *fur_static_params_p;
|
||
typedef struct cmpd_local_params *cmpd_local_params_p;
|
||
typedef struct moveop_static_params *moveop_static_params_p;
|
||
|
||
/* Set of hooks and parameters that determine behavior specific to
|
||
move_op or find_used_regs functions. */
|
||
struct code_motion_path_driver_info_def
|
||
{
|
||
/* Called on enter to the basic block. */
|
||
int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
|
||
|
||
/* Called when original expr is found. */
|
||
void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
|
||
|
||
/* Called while descending current basic block if current insn is not
|
||
the original EXPR we're searching for. */
|
||
bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
|
||
|
||
/* Function to merge C_EXPRes from different successors. */
|
||
void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
|
||
|
||
/* Function to finalize merge from different successors and possibly
|
||
deallocate temporary data structures used for merging. */
|
||
void (*after_merge_succs) (cmpd_local_params_p, void *);
|
||
|
||
/* Called on the backward stage of recursion to do moveup_expr.
|
||
Used only with move_op_*. */
|
||
void (*ascend) (insn_t, void *);
|
||
|
||
/* Called on the ascending pass, before returning from the current basic
|
||
block or from the whole traversal. */
|
||
void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
|
||
|
||
/* When processing successors in move_op we need only descend into
|
||
SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
|
||
int succ_flags;
|
||
|
||
/* The routine name to print in dumps ("move_op" of "find_used_regs"). */
|
||
const char *routine_name;
|
||
};
|
||
|
||
/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
|
||
FUR_HOOKS. */
|
||
struct code_motion_path_driver_info_def *code_motion_path_driver_info;
|
||
|
||
/* Set of hooks for performing move_op and find_used_regs routines with
|
||
code_motion_path_driver. */
|
||
extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
|
||
|
||
/* True if/when we want to emulate Haifa scheduler in the common code.
|
||
This is used in sched_rgn_local_init and in various places in
|
||
sched-deps.c. */
|
||
int sched_emulate_haifa_p;
|
||
|
||
/* GLOBAL_LEVEL is used to discard information stored in basic block headers
|
||
av_sets. Av_set of bb header is valid if its (bb header's) level is equal
|
||
to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
|
||
scheduling window. */
|
||
int global_level;
|
||
|
||
/* Current fences. */
|
||
flist_t fences;
|
||
|
||
/* True when separable insns should be scheduled as RHSes. */
|
||
static bool enable_schedule_as_rhs_p;
|
||
|
||
/* Used in verify_target_availability to assert that target reg is reported
|
||
unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
|
||
we haven't scheduled anything on the previous fence.
|
||
if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
|
||
have more conservative value than the one returned by the
|
||
find_used_regs, thus we shouldn't assert that these values are equal. */
|
||
static bool scheduled_something_on_previous_fence;
|
||
|
||
/* All newly emitted insns will have their uids greater than this value. */
|
||
static int first_emitted_uid;
|
||
|
||
/* Set of basic blocks that are forced to start new ebbs. This is a subset
|
||
of all the ebb heads. */
|
||
bitmap forced_ebb_heads;
|
||
|
||
/* Blocks that need to be rescheduled after pipelining. */
|
||
bitmap blocks_to_reschedule = NULL;
|
||
|
||
/* True when the first lv set should be ignored when updating liveness. */
|
||
static bool ignore_first = false;
|
||
|
||
/* Number of insns max_issue has initialized data structures for. */
|
||
static int max_issue_size = 0;
|
||
|
||
/* Whether we can issue more instructions. */
|
||
static int can_issue_more;
|
||
|
||
/* Maximum software lookahead window size, reduced when rescheduling after
|
||
pipelining. */
|
||
static int max_ws;
|
||
|
||
/* Number of insns scheduled in current region. */
|
||
static int num_insns_scheduled;
|
||
|
||
/* A vector of expressions is used to be able to sort them. */
|
||
static vec<expr_t> vec_av_set;
|
||
|
||
/* A vector of vinsns is used to hold temporary lists of vinsns. */
|
||
typedef vec<vinsn_t> vinsn_vec_t;
|
||
|
||
/* This vector has the exprs which may still present in av_sets, but actually
|
||
can't be moved up due to bookkeeping created during code motion to another
|
||
fence. See comment near the call to update_and_record_unavailable_insns
|
||
for the detailed explanations. */
|
||
static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
|
||
|
||
/* This vector has vinsns which are scheduled with renaming on the first fence
|
||
and then seen on the second. For expressions with such vinsns, target
|
||
availability information may be wrong. */
|
||
static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
|
||
|
||
/* Vector to store temporary nops inserted in move_op to prevent removal
|
||
of empty bbs. */
|
||
static vec<insn_t> vec_temp_moveop_nops;
|
||
|
||
/* These bitmaps record original instructions scheduled on the current
|
||
iteration and bookkeeping copies created by them. */
|
||
static bitmap current_originators = NULL;
|
||
static bitmap current_copies = NULL;
|
||
|
||
/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
|
||
visit them afterwards. */
|
||
static bitmap code_motion_visited_blocks = NULL;
|
||
|
||
/* Variables to accumulate different statistics. */
|
||
|
||
/* The number of bookkeeping copies created. */
|
||
static int stat_bookkeeping_copies;
|
||
|
||
/* The number of insns that required bookkeeiping for their scheduling. */
|
||
static int stat_insns_needed_bookkeeping;
|
||
|
||
/* The number of insns that got renamed. */
|
||
static int stat_renamed_scheduled;
|
||
|
||
/* The number of substitutions made during scheduling. */
|
||
static int stat_substitutions_total;
|
||
|
||
|
||
/* Forward declarations of static functions. */
|
||
static bool rtx_ok_for_substitution_p (rtx, rtx);
|
||
static int sel_rank_for_schedule (const void *, const void *);
|
||
static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
|
||
static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
|
||
|
||
static rtx get_dest_from_orig_ops (av_set_t);
|
||
static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
|
||
static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
|
||
def_list_t *);
|
||
static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
|
||
static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
|
||
cmpd_local_params_p, void *);
|
||
static void sel_sched_region_1 (void);
|
||
static void sel_sched_region_2 (int);
|
||
static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
|
||
|
||
static void debug_state (state_t);
|
||
|
||
|
||
/* Functions that work with fences. */
|
||
|
||
/* Advance one cycle on FENCE. */
|
||
static void
|
||
advance_one_cycle (fence_t fence)
|
||
{
|
||
unsigned i;
|
||
int cycle;
|
||
rtx_insn *insn;
|
||
|
||
advance_state (FENCE_STATE (fence));
|
||
cycle = ++FENCE_CYCLE (fence);
|
||
FENCE_ISSUED_INSNS (fence) = 0;
|
||
FENCE_STARTS_CYCLE_P (fence) = 1;
|
||
can_issue_more = issue_rate;
|
||
FENCE_ISSUE_MORE (fence) = can_issue_more;
|
||
|
||
for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
|
||
{
|
||
if (INSN_READY_CYCLE (insn) < cycle)
|
||
{
|
||
remove_from_deps (FENCE_DC (fence), insn);
|
||
FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
|
||
continue;
|
||
}
|
||
i++;
|
||
}
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
|
||
debug_state (FENCE_STATE (fence));
|
||
}
|
||
}
|
||
|
||
/* Returns true when SUCC in a fallthru bb of INSN, possibly
|
||
skipping empty basic blocks. */
|
||
static bool
|
||
in_fallthru_bb_p (rtx_insn *insn, rtx succ)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
edge e;
|
||
|
||
if (bb == BLOCK_FOR_INSN (succ))
|
||
return true;
|
||
|
||
e = find_fallthru_edge_from (bb);
|
||
if (e)
|
||
bb = e->dest;
|
||
else
|
||
return false;
|
||
|
||
while (sel_bb_empty_p (bb))
|
||
bb = bb->next_bb;
|
||
|
||
return bb == BLOCK_FOR_INSN (succ);
|
||
}
|
||
|
||
/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
|
||
When a successor will continue a ebb, transfer all parameters of a fence
|
||
to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
|
||
of scheduling helping to distinguish between the old and the new code. */
|
||
static void
|
||
extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
|
||
int orig_max_seqno)
|
||
{
|
||
bool was_here_p = false;
|
||
insn_t insn = NULL;
|
||
insn_t succ;
|
||
succ_iterator si;
|
||
ilist_iterator ii;
|
||
fence_t fence = FLIST_FENCE (old_fences);
|
||
basic_block bb;
|
||
|
||
/* Get the only element of FENCE_BNDS (fence). */
|
||
FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
|
||
{
|
||
gcc_assert (!was_here_p);
|
||
was_here_p = true;
|
||
}
|
||
gcc_assert (was_here_p && insn != NULL_RTX);
|
||
|
||
/* When in the "middle" of the block, just move this fence
|
||
to the new list. */
|
||
bb = BLOCK_FOR_INSN (insn);
|
||
if (! sel_bb_end_p (insn)
|
||
|| (single_succ_p (bb)
|
||
&& single_pred_p (single_succ (bb))))
|
||
{
|
||
insn_t succ;
|
||
|
||
succ = (sel_bb_end_p (insn)
|
||
? sel_bb_head (single_succ (bb))
|
||
: NEXT_INSN (insn));
|
||
|
||
if (INSN_SEQNO (succ) > 0
|
||
&& INSN_SEQNO (succ) <= orig_max_seqno
|
||
&& INSN_SCHED_TIMES (succ) <= 0)
|
||
{
|
||
FENCE_INSN (fence) = succ;
|
||
move_fence_to_fences (old_fences, new_fences);
|
||
|
||
if (sched_verbose >= 1)
|
||
sel_print ("Fence %d continues as %d[%d] (state continue)\n",
|
||
INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Otherwise copy fence's structures to (possibly) multiple successors. */
|
||
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
int seqno = INSN_SEQNO (succ);
|
||
|
||
if (seqno > 0 && seqno <= orig_max_seqno
|
||
&& (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
|
||
{
|
||
bool b = (in_same_ebb_p (insn, succ)
|
||
|| in_fallthru_bb_p (insn, succ));
|
||
|
||
if (sched_verbose >= 1)
|
||
sel_print ("Fence %d continues as %d[%d] (state %s)\n",
|
||
INSN_UID (insn), INSN_UID (succ),
|
||
BLOCK_NUM (succ), b ? "continue" : "reset");
|
||
|
||
if (b)
|
||
add_dirty_fence_to_fences (new_fences, succ, fence);
|
||
else
|
||
{
|
||
/* Mark block of the SUCC as head of the new ebb. */
|
||
bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
|
||
add_clean_fence_to_fences (new_fences, succ, fence);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Functions to support substitution. */
|
||
|
||
/* Returns whether INSN with dependence status DS is eligible for
|
||
substitution, i.e. it's a copy operation x := y, and RHS that is
|
||
moved up through this insn should be substituted. */
|
||
static bool
|
||
can_substitute_through_p (insn_t insn, ds_t ds)
|
||
{
|
||
/* We can substitute only true dependencies. */
|
||
if ((ds & DEP_OUTPUT)
|
||
|| (ds & DEP_ANTI)
|
||
|| ! INSN_RHS (insn)
|
||
|| ! INSN_LHS (insn))
|
||
return false;
|
||
|
||
/* Now we just need to make sure the INSN_RHS consists of only one
|
||
simple REG rtx. */
|
||
if (REG_P (INSN_LHS (insn))
|
||
&& REG_P (INSN_RHS (insn)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
|
||
source (if INSN is eligible for substitution). Returns TRUE if
|
||
substitution was actually performed, FALSE otherwise. Substitution might
|
||
be not performed because it's either EXPR' vinsn doesn't contain INSN's
|
||
destination or the resulting insn is invalid for the target machine.
|
||
When UNDO is true, perform unsubstitution instead (the difference is in
|
||
the part of rtx on which validate_replace_rtx is called). */
|
||
static bool
|
||
substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
|
||
{
|
||
rtx *where;
|
||
bool new_insn_valid;
|
||
vinsn_t *vi = &EXPR_VINSN (expr);
|
||
bool has_rhs = VINSN_RHS (*vi) != NULL;
|
||
rtx old, new_rtx;
|
||
|
||
/* Do not try to replace in SET_DEST. Although we'll choose new
|
||
register for the RHS, we don't want to change RHS' original reg.
|
||
If the insn is not SET, we may still be able to substitute something
|
||
in it, and if we're here (don't have deps), it doesn't write INSN's
|
||
dest. */
|
||
where = (has_rhs
|
||
? &VINSN_RHS (*vi)
|
||
: &PATTERN (VINSN_INSN_RTX (*vi)));
|
||
old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
|
||
|
||
/* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
|
||
if (rtx_ok_for_substitution_p (old, *where))
|
||
{
|
||
rtx_insn *new_insn;
|
||
rtx *where_replace;
|
||
|
||
/* We should copy these rtxes before substitution. */
|
||
new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
|
||
new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
|
||
|
||
/* Where we'll replace.
|
||
WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
|
||
used instead of SET_SRC. */
|
||
where_replace = (has_rhs
|
||
? &SET_SRC (PATTERN (new_insn))
|
||
: &PATTERN (new_insn));
|
||
|
||
new_insn_valid
|
||
= validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
|
||
new_insn);
|
||
|
||
/* ??? Actually, constrain_operands result depends upon choice of
|
||
destination register. E.g. if we allow single register to be an rhs,
|
||
and if we try to move dx=ax(as rhs) through ax=dx, we'll result
|
||
in invalid insn dx=dx, so we'll loose this rhs here.
|
||
Just can't come up with significant testcase for this, so just
|
||
leaving it for now. */
|
||
if (new_insn_valid)
|
||
{
|
||
change_vinsn_in_expr (expr,
|
||
create_vinsn_from_insn_rtx (new_insn, false));
|
||
|
||
/* Do not allow clobbering the address register of speculative
|
||
insns. */
|
||
if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
|
||
&& register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
|
||
expr_dest_reg (expr)))
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
|
||
return true;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Return the number of places WHAT appears within WHERE.
|
||
Bail out when we found a reference occupying several hard registers. */
|
||
static int
|
||
count_occurrences_equiv (const_rtx what, const_rtx where)
|
||
{
|
||
int count = 0;
|
||
subrtx_iterator::array_type array;
|
||
FOR_EACH_SUBRTX (iter, array, where, NONCONST)
|
||
{
|
||
const_rtx x = *iter;
|
||
if (REG_P (x) && REGNO (x) == REGNO (what))
|
||
{
|
||
/* Bail out if mode is different or more than one register is
|
||
used. */
|
||
if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
|
||
return 0;
|
||
count += 1;
|
||
}
|
||
else if (GET_CODE (x) == SUBREG
|
||
&& (!REG_P (SUBREG_REG (x))
|
||
|| REGNO (SUBREG_REG (x)) == REGNO (what)))
|
||
/* ??? Do not support substituting regs inside subregs. In that case,
|
||
simplify_subreg will be called by validate_replace_rtx, and
|
||
unsubstitution will fail later. */
|
||
return 0;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* Returns TRUE if WHAT is found in WHERE rtx tree. */
|
||
static bool
|
||
rtx_ok_for_substitution_p (rtx what, rtx where)
|
||
{
|
||
return (count_occurrences_equiv (what, where) > 0);
|
||
}
|
||
|
||
|
||
/* Functions to support register renaming. */
|
||
|
||
/* Substitute VI's set source with REGNO. Returns newly created pattern
|
||
that has REGNO as its source. */
|
||
static rtx_insn *
|
||
create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
|
||
{
|
||
rtx lhs_rtx;
|
||
rtx pattern;
|
||
rtx_insn *insn_rtx;
|
||
|
||
lhs_rtx = copy_rtx (VINSN_LHS (vi));
|
||
|
||
pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
|
||
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
|
||
|
||
return insn_rtx;
|
||
}
|
||
|
||
/* Returns whether INSN's src can be replaced with register number
|
||
NEW_SRC_REG. E.g. the following insn is valid for i386:
|
||
|
||
(insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
|
||
(set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
|
||
(reg:SI 0 ax [orig:770 c1 ] [770]))
|
||
(const_int 288 [0x120])) [0 str S1 A8])
|
||
(const_int 0 [0x0])) 43 {*movqi_1} (nil)
|
||
(nil))
|
||
|
||
But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
|
||
because of operand constraints:
|
||
|
||
(define_insn "*movqi_1"
|
||
[(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
|
||
(match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
|
||
)]
|
||
|
||
So do constrain_operands here, before choosing NEW_SRC_REG as best
|
||
reg for rhs. */
|
||
|
||
static bool
|
||
replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
|
||
{
|
||
vinsn_t vi = INSN_VINSN (insn);
|
||
machine_mode mode;
|
||
rtx dst_loc;
|
||
bool res;
|
||
|
||
gcc_assert (VINSN_SEPARABLE_P (vi));
|
||
|
||
get_dest_and_mode (insn, &dst_loc, &mode);
|
||
gcc_assert (mode == GET_MODE (new_src_reg));
|
||
|
||
if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
|
||
return true;
|
||
|
||
/* See whether SET_SRC can be replaced with this register. */
|
||
validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
|
||
res = verify_changes (0);
|
||
cancel_changes (0);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Returns whether INSN still be valid after replacing it's DEST with
|
||
register NEW_REG. */
|
||
static bool
|
||
replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
|
||
{
|
||
vinsn_t vi = INSN_VINSN (insn);
|
||
bool res;
|
||
|
||
/* We should deal here only with separable insns. */
|
||
gcc_assert (VINSN_SEPARABLE_P (vi));
|
||
gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
|
||
|
||
/* See whether SET_DEST can be replaced with this register. */
|
||
validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
|
||
res = verify_changes (0);
|
||
cancel_changes (0);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
|
||
static rtx_insn *
|
||
create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
|
||
{
|
||
rtx rhs_rtx;
|
||
rtx pattern;
|
||
rtx_insn *insn_rtx;
|
||
|
||
rhs_rtx = copy_rtx (VINSN_RHS (vi));
|
||
|
||
pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
|
||
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
|
||
|
||
return insn_rtx;
|
||
}
|
||
|
||
/* Substitute lhs in the given expression EXPR for the register with number
|
||
NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
|
||
static void
|
||
replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
|
||
{
|
||
rtx_insn *insn_rtx;
|
||
vinsn_t vinsn;
|
||
|
||
insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
|
||
vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
|
||
|
||
change_vinsn_in_expr (expr, vinsn);
|
||
EXPR_WAS_RENAMED (expr) = 1;
|
||
EXPR_TARGET_AVAILABLE (expr) = 1;
|
||
}
|
||
|
||
/* Returns whether VI writes either one of the USED_REGS registers or,
|
||
if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
|
||
static bool
|
||
vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
|
||
HARD_REG_SET unavailable_hard_regs)
|
||
{
|
||
unsigned regno;
|
||
reg_set_iterator rsi;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
|
||
{
|
||
if (REGNO_REG_SET_P (used_regs, regno))
|
||
return true;
|
||
if (HARD_REGISTER_NUM_P (regno)
|
||
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
|
||
return true;
|
||
}
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
|
||
{
|
||
if (REGNO_REG_SET_P (used_regs, regno))
|
||
return true;
|
||
if (HARD_REGISTER_NUM_P (regno)
|
||
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns register class of the output register in INSN.
|
||
Returns NO_REGS for call insns because some targets have constraints on
|
||
destination register of a call insn.
|
||
|
||
Code adopted from regrename.c::build_def_use. */
|
||
static enum reg_class
|
||
get_reg_class (rtx_insn *insn)
|
||
{
|
||
int i, n_ops;
|
||
|
||
extract_constrain_insn (insn);
|
||
preprocess_constraints (insn);
|
||
n_ops = recog_data.n_operands;
|
||
|
||
const operand_alternative *op_alt = which_op_alt ();
|
||
if (asm_noperands (PATTERN (insn)) > 0)
|
||
{
|
||
for (i = 0; i < n_ops; i++)
|
||
if (recog_data.operand_type[i] == OP_OUT)
|
||
{
|
||
rtx *loc = recog_data.operand_loc[i];
|
||
rtx op = *loc;
|
||
enum reg_class cl = alternative_class (op_alt, i);
|
||
|
||
if (REG_P (op)
|
||
&& REGNO (op) == ORIGINAL_REGNO (op))
|
||
continue;
|
||
|
||
return cl;
|
||
}
|
||
}
|
||
else if (!CALL_P (insn))
|
||
{
|
||
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
||
{
|
||
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
||
enum reg_class cl = alternative_class (op_alt, opn);
|
||
|
||
if (recog_data.operand_type[opn] == OP_OUT ||
|
||
recog_data.operand_type[opn] == OP_INOUT)
|
||
return cl;
|
||
}
|
||
}
|
||
|
||
/* Insns like
|
||
(insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
|
||
may result in returning NO_REGS, cause flags is written implicitly through
|
||
CMP insn, which has no OP_OUT | OP_INOUT operands. */
|
||
return NO_REGS;
|
||
}
|
||
|
||
/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
|
||
static void
|
||
init_hard_regno_rename (int regno)
|
||
{
|
||
int cur_reg;
|
||
|
||
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
|
||
|
||
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
||
{
|
||
/* We are not interested in renaming in other regs. */
|
||
if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
|
||
continue;
|
||
|
||
if (HARD_REGNO_RENAME_OK (regno, cur_reg))
|
||
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
|
||
}
|
||
}
|
||
|
||
/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
|
||
data first. */
|
||
static inline bool
|
||
sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Check whether this is all calculated. */
|
||
if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
|
||
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
|
||
|
||
init_hard_regno_rename (from);
|
||
|
||
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
|
||
}
|
||
|
||
/* Calculate set of registers that are capable of holding MODE. */
|
||
static void
|
||
init_regs_for_mode (machine_mode mode)
|
||
{
|
||
int cur_reg;
|
||
|
||
CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
|
||
|
||
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
||
{
|
||
int nregs;
|
||
int i;
|
||
|
||
/* See whether it accepts all modes that occur in
|
||
original insns. */
|
||
if (!targetm.hard_regno_mode_ok (cur_reg, mode))
|
||
continue;
|
||
|
||
nregs = hard_regno_nregs (cur_reg, mode);
|
||
|
||
for (i = nregs - 1; i >= 0; --i)
|
||
if (fixed_regs[cur_reg + i]
|
||
|| global_regs[cur_reg + i]
|
||
/* Can't use regs which aren't saved by
|
||
the prologue. */
|
||
|| !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
|
||
/* Can't use regs with non-null REG_BASE_VALUE, because adjusting
|
||
it affects aliasing globally and invalidates all AV sets. */
|
||
|| get_reg_base_value (cur_reg + i)
|
||
#ifdef LEAF_REGISTERS
|
||
/* We can't use a non-leaf register if we're in a
|
||
leaf function. */
|
||
|| (crtl->is_leaf
|
||
&& !LEAF_REGISTERS[cur_reg + i])
|
||
#endif
|
||
)
|
||
break;
|
||
|
||
if (i >= 0)
|
||
continue;
|
||
|
||
/* If the CUR_REG passed all the checks above,
|
||
then it's ok. */
|
||
SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
|
||
}
|
||
|
||
sel_hrd.regs_for_mode_ok[mode] = true;
|
||
}
|
||
|
||
/* Init all register sets gathered in HRD. */
|
||
static void
|
||
init_hard_regs_data (void)
|
||
{
|
||
int cur_reg = 0;
|
||
int cur_mode = 0;
|
||
|
||
CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
|
||
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
||
if (df_regs_ever_live_p (cur_reg)
|
||
|| crtl->abi->clobbers_full_reg_p (cur_reg))
|
||
SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
|
||
|
||
/* Initialize registers that are valid based on mode when this is
|
||
really needed. */
|
||
for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
|
||
sel_hrd.regs_for_mode_ok[cur_mode] = false;
|
||
|
||
/* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
|
||
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
||
CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
|
||
|
||
#ifdef STACK_REGS
|
||
CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
|
||
|
||
for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
|
||
SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
|
||
#endif
|
||
}
|
||
|
||
/* Mark hardware regs in REG_RENAME_P that are not suitable
|
||
for renaming rhs in INSN due to hardware restrictions (register class,
|
||
modes compatibility etc). This doesn't affect original insn's dest reg,
|
||
if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
|
||
destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
|
||
Registers that are in used_regs are always marked in
|
||
unavailable_hard_regs as well. */
|
||
|
||
static void
|
||
mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
|
||
regset used_regs ATTRIBUTE_UNUSED)
|
||
{
|
||
machine_mode mode;
|
||
enum reg_class cl = NO_REGS;
|
||
rtx orig_dest;
|
||
unsigned cur_reg, regno;
|
||
hard_reg_set_iterator hrsi;
|
||
|
||
gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
|
||
gcc_assert (reg_rename_p);
|
||
|
||
orig_dest = SET_DEST (PATTERN (def->orig_insn));
|
||
|
||
/* We have decided not to rename 'mem = something;' insns, as 'something'
|
||
is usually a register. */
|
||
if (!REG_P (orig_dest))
|
||
return;
|
||
|
||
regno = REGNO (orig_dest);
|
||
|
||
/* If before reload, don't try to work with pseudos. */
|
||
if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
|
||
return;
|
||
|
||
if (reload_completed)
|
||
cl = get_reg_class (def->orig_insn);
|
||
|
||
/* Stop if the original register is one of the fixed_regs, global_regs or
|
||
frame pointer, or we could not discover its class. */
|
||
if (fixed_regs[regno]
|
||
|| global_regs[regno]
|
||
|| (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
|
||
&& regno == HARD_FRAME_POINTER_REGNUM)
|
||
|| (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
|
||
&& regno == FRAME_POINTER_REGNUM)
|
||
|| (reload_completed && cl == NO_REGS))
|
||
{
|
||
SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
|
||
|
||
/* Give a chance for original register, if it isn't in used_regs. */
|
||
if (!def->crossed_call_abis)
|
||
CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
|
||
|
||
return;
|
||
}
|
||
|
||
/* If something allocated on stack in this function, mark frame pointer
|
||
register unavailable, considering also modes.
|
||
FIXME: it is enough to do this once per all original defs. */
|
||
if (frame_pointer_needed)
|
||
{
|
||
add_to_hard_reg_set (®_rename_p->unavailable_hard_regs,
|
||
Pmode, FRAME_POINTER_REGNUM);
|
||
|
||
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
|
||
add_to_hard_reg_set (®_rename_p->unavailable_hard_regs,
|
||
Pmode, HARD_FRAME_POINTER_REGNUM);
|
||
}
|
||
|
||
#ifdef STACK_REGS
|
||
/* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
|
||
is equivalent to as if all stack regs were in this set.
|
||
I.e. no stack register can be renamed, and even if it's an original
|
||
register here we make sure it won't be lifted over it's previous def
|
||
(it's previous def will appear as if it's a FIRST_STACK_REG def.
|
||
The HARD_REGNO_RENAME_OK covers other cases in condition below. */
|
||
if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
|
||
&& REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
|
||
reg_rename_p->unavailable_hard_regs |= sel_hrd.stack_regs;
|
||
#endif
|
||
|
||
mode = GET_MODE (orig_dest);
|
||
|
||
/* If there's a call on this path, make regs from full_reg_clobbers
|
||
unavailable.
|
||
|
||
??? It would be better to track the set of clobbered registers
|
||
directly, but that would be quite expensive in a def_t. */
|
||
if (def->crossed_call_abis)
|
||
reg_rename_p->unavailable_hard_regs
|
||
|= call_clobbers_in_region (def->crossed_call_abis,
|
||
reg_class_contents[ALL_REGS], mode);
|
||
|
||
/* Stop here before reload: we need FRAME_REGS, STACK_REGS, and
|
||
crossed_call_abis, but not register classes. */
|
||
if (!reload_completed)
|
||
return;
|
||
|
||
/* Leave regs as 'available' only from the current
|
||
register class. */
|
||
reg_rename_p->available_for_renaming = reg_class_contents[cl];
|
||
|
||
/* Leave only registers available for this mode. */
|
||
if (!sel_hrd.regs_for_mode_ok[mode])
|
||
init_regs_for_mode (mode);
|
||
reg_rename_p->available_for_renaming &= sel_hrd.regs_for_mode[mode];
|
||
|
||
/* Leave only those that are ok to rename. */
|
||
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
||
0, cur_reg, hrsi)
|
||
{
|
||
int nregs;
|
||
int i;
|
||
|
||
nregs = hard_regno_nregs (cur_reg, mode);
|
||
gcc_assert (nregs > 0);
|
||
|
||
for (i = nregs - 1; i >= 0; --i)
|
||
if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
|
||
break;
|
||
|
||
if (i >= 0)
|
||
CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
|
||
cur_reg);
|
||
}
|
||
|
||
reg_rename_p->available_for_renaming &= ~reg_rename_p->unavailable_hard_regs;
|
||
|
||
/* Regno is always ok from the renaming part of view, but it really
|
||
could be in *unavailable_hard_regs already, so set it here instead
|
||
of there. */
|
||
SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
|
||
}
|
||
|
||
/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
|
||
best register more recently than REG2. */
|
||
static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Indicates the number of times renaming happened before the current one. */
|
||
static int reg_rename_this_tick;
|
||
|
||
/* Choose the register among free, that is suitable for storing
|
||
the rhs value.
|
||
|
||
ORIGINAL_INSNS is the list of insns where the operation (rhs)
|
||
originally appears. There could be multiple original operations
|
||
for single rhs since we moving it up and merging along different
|
||
paths.
|
||
|
||
Some code is adapted from regrename.c (regrename_optimize).
|
||
If original register is available, function returns it.
|
||
Otherwise it performs the checks, so the new register should
|
||
comply with the following:
|
||
- it should not violate any live ranges (such registers are in
|
||
REG_RENAME_P->available_for_renaming set);
|
||
- it should not be in the HARD_REGS_USED regset;
|
||
- it should be in the class compatible with original uses;
|
||
- it should not be clobbered through reference with different mode;
|
||
- if we're in the leaf function, then the new register should
|
||
not be in the LEAF_REGISTERS;
|
||
- etc.
|
||
|
||
If several registers meet the conditions, the register with smallest
|
||
tick is returned to achieve more even register allocation.
|
||
|
||
If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
|
||
|
||
If no register satisfies the above conditions, NULL_RTX is returned. */
|
||
static rtx
|
||
choose_best_reg_1 (HARD_REG_SET hard_regs_used,
|
||
struct reg_rename *reg_rename_p,
|
||
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
||
{
|
||
int best_new_reg;
|
||
unsigned cur_reg;
|
||
machine_mode mode = VOIDmode;
|
||
unsigned regno, i, n;
|
||
hard_reg_set_iterator hrsi;
|
||
def_list_iterator di;
|
||
def_t def;
|
||
|
||
/* If original register is available, return it. */
|
||
*is_orig_reg_p_ptr = true;
|
||
|
||
FOR_EACH_DEF (def, di, original_insns)
|
||
{
|
||
rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
|
||
|
||
gcc_assert (REG_P (orig_dest));
|
||
|
||
/* Check that all original operations have the same mode.
|
||
This is done for the next loop; if we'd return from this
|
||
loop, we'd check only part of them, but in this case
|
||
it doesn't matter. */
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (orig_dest);
|
||
gcc_assert (mode == GET_MODE (orig_dest));
|
||
|
||
regno = REGNO (orig_dest);
|
||
for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
|
||
break;
|
||
|
||
/* All hard registers are available. */
|
||
if (i == n)
|
||
{
|
||
gcc_assert (mode != VOIDmode);
|
||
|
||
/* Hard registers should not be shared. */
|
||
return gen_rtx_REG (mode, regno);
|
||
}
|
||
}
|
||
|
||
*is_orig_reg_p_ptr = false;
|
||
best_new_reg = -1;
|
||
|
||
/* Among all available regs choose the register that was
|
||
allocated earliest. */
|
||
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
||
0, cur_reg, hrsi)
|
||
if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
|
||
{
|
||
/* Check that all hard regs for mode are available. */
|
||
for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
|
||
|| !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
|
||
cur_reg + i))
|
||
break;
|
||
|
||
if (i < n)
|
||
continue;
|
||
|
||
/* All hard registers are available. */
|
||
if (best_new_reg < 0
|
||
|| reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
|
||
{
|
||
best_new_reg = cur_reg;
|
||
|
||
/* Return immediately when we know there's no better reg. */
|
||
if (! reg_rename_tick[best_new_reg])
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (best_new_reg >= 0)
|
||
{
|
||
/* Use the check from the above loop. */
|
||
gcc_assert (mode != VOIDmode);
|
||
return gen_rtx_REG (mode, best_new_reg);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* A wrapper around choose_best_reg_1 () to verify that we make correct
|
||
assumptions about available registers in the function. */
|
||
static rtx
|
||
choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
|
||
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
||
{
|
||
rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
|
||
original_insns, is_orig_reg_p_ptr);
|
||
|
||
/* FIXME loop over hard_regno_nregs here. */
|
||
gcc_assert (best_reg == NULL_RTX
|
||
|| TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
|
||
|
||
return best_reg;
|
||
}
|
||
|
||
/* Choose the pseudo register for storing rhs value. As this is supposed
|
||
to work before reload, we return either the original register or make
|
||
the new one. The parameters are the same that in choose_nest_reg_1
|
||
functions, except that USED_REGS may contain pseudos.
|
||
If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
|
||
|
||
TODO: take into account register pressure while doing this. Up to this
|
||
moment, this function would never return NULL for pseudos, but we should
|
||
not rely on this. */
|
||
static rtx
|
||
choose_best_pseudo_reg (regset used_regs,
|
||
struct reg_rename *reg_rename_p,
|
||
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
||
{
|
||
def_list_iterator i;
|
||
def_t def;
|
||
machine_mode mode = VOIDmode;
|
||
bool bad_hard_regs = false;
|
||
|
||
/* We should not use this after reload. */
|
||
gcc_assert (!reload_completed);
|
||
|
||
/* If original register is available, return it. */
|
||
*is_orig_reg_p_ptr = true;
|
||
|
||
FOR_EACH_DEF (def, i, original_insns)
|
||
{
|
||
rtx dest = SET_DEST (PATTERN (def->orig_insn));
|
||
int orig_regno;
|
||
|
||
gcc_assert (REG_P (dest));
|
||
|
||
/* Check that all original operations have the same mode. */
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (dest);
|
||
else
|
||
gcc_assert (mode == GET_MODE (dest));
|
||
orig_regno = REGNO (dest);
|
||
|
||
/* Check that nothing in used_regs intersects with orig_regno. When
|
||
we have a hard reg here, still loop over hard_regno_nregs. */
|
||
if (HARD_REGISTER_NUM_P (orig_regno))
|
||
{
|
||
int j, n;
|
||
for (j = 0, n = REG_NREGS (dest); j < n; j++)
|
||
if (REGNO_REG_SET_P (used_regs, orig_regno + j))
|
||
break;
|
||
if (j < n)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if (REGNO_REG_SET_P (used_regs, orig_regno))
|
||
continue;
|
||
}
|
||
if (HARD_REGISTER_NUM_P (orig_regno))
|
||
{
|
||
gcc_assert (df_regs_ever_live_p (orig_regno));
|
||
|
||
/* For hard registers, we have to check hardware imposed
|
||
limitations (frame/stack registers, calls crossed). */
|
||
if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
|
||
orig_regno))
|
||
{
|
||
/* Don't let register cross a call if it doesn't already
|
||
cross one. This condition is written in accordance with
|
||
that in sched-deps.c sched_analyze_reg(). */
|
||
if (!reg_rename_p->crossed_call_abis
|
||
|| REG_N_CALLS_CROSSED (orig_regno) > 0)
|
||
return gen_rtx_REG (mode, orig_regno);
|
||
}
|
||
|
||
bad_hard_regs = true;
|
||
}
|
||
else
|
||
return dest;
|
||
}
|
||
|
||
*is_orig_reg_p_ptr = false;
|
||
|
||
/* We had some original hard registers that couldn't be used.
|
||
Those were likely special. Don't try to create a pseudo. */
|
||
if (bad_hard_regs)
|
||
return NULL_RTX;
|
||
|
||
/* We haven't found a register from original operations. Get a new one.
|
||
FIXME: control register pressure somehow. */
|
||
{
|
||
rtx new_reg = gen_reg_rtx (mode);
|
||
|
||
gcc_assert (mode != VOIDmode);
|
||
|
||
max_regno = max_reg_num ();
|
||
maybe_extend_reg_info_p ();
|
||
REG_N_CALLS_CROSSED (REGNO (new_reg))
|
||
= reg_rename_p->crossed_call_abis ? 1 : 0;
|
||
|
||
return new_reg;
|
||
}
|
||
}
|
||
|
||
/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
|
||
USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
|
||
static void
|
||
verify_target_availability (expr_t expr, regset used_regs,
|
||
struct reg_rename *reg_rename_p)
|
||
{
|
||
unsigned n, i, regno;
|
||
machine_mode mode;
|
||
bool target_available, live_available, hard_available;
|
||
|
||
if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
|
||
return;
|
||
|
||
regno = expr_dest_regno (expr);
|
||
mode = GET_MODE (EXPR_LHS (expr));
|
||
target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
|
||
n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
|
||
|
||
live_available = hard_available = true;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
if (bitmap_bit_p (used_regs, regno + i))
|
||
live_available = false;
|
||
if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
|
||
hard_available = false;
|
||
}
|
||
|
||
/* When target is not available, it may be due to hard register
|
||
restrictions, e.g. crosses calls, so we check hard_available too. */
|
||
if (target_available)
|
||
gcc_assert (live_available);
|
||
else
|
||
/* Check only if we haven't scheduled something on the previous fence,
|
||
cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
|
||
and having more than one fence, we may end having targ_un in a block
|
||
in which successors target register is actually available.
|
||
|
||
The last condition handles the case when a dependence from a call insn
|
||
was created in sched-deps.c for insns with destination registers that
|
||
never crossed a call before, but do cross one after our code motion.
|
||
|
||
FIXME: in the latter case, we just uselessly called find_used_regs,
|
||
because we can't move this expression with any other register
|
||
as well. */
|
||
gcc_assert (scheduled_something_on_previous_fence || !live_available
|
||
|| !hard_available
|
||
|| (!reload_completed
|
||
&& reg_rename_p->crossed_call_abis
|
||
&& REG_N_CALLS_CROSSED (regno) == 0));
|
||
}
|
||
|
||
/* Collect unavailable registers due to liveness for EXPR from BNDS
|
||
into USED_REGS. Save additional information about available
|
||
registers and unavailable due to hardware restriction registers
|
||
into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
|
||
list. */
|
||
static void
|
||
collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
|
||
struct reg_rename *reg_rename_p,
|
||
def_list_t *original_insns)
|
||
{
|
||
for (; bnds; bnds = BLIST_NEXT (bnds))
|
||
{
|
||
bool res;
|
||
av_set_t orig_ops = NULL;
|
||
bnd_t bnd = BLIST_BND (bnds);
|
||
|
||
/* If the chosen best expr doesn't belong to current boundary,
|
||
skip it. */
|
||
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
|
||
continue;
|
||
|
||
/* Put in ORIG_OPS all exprs from this boundary that became
|
||
RES on top. */
|
||
orig_ops = find_sequential_best_exprs (bnd, expr, false);
|
||
|
||
/* Compute used regs and OR it into the USED_REGS. */
|
||
res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
|
||
reg_rename_p, original_insns);
|
||
|
||
/* FIXME: the assert is true until we'd have several boundaries. */
|
||
gcc_assert (res);
|
||
av_set_clear (&orig_ops);
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
|
||
If BEST_REG is valid, replace LHS of EXPR with it. */
|
||
static bool
|
||
try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
|
||
{
|
||
/* Try whether we'll be able to generate the insn
|
||
'dest := best_reg' at the place of the original operation. */
|
||
for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
|
||
{
|
||
insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
|
||
|
||
gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
|
||
|
||
if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
|
||
&& (! replace_src_with_reg_ok_p (orig_insn, best_reg)
|
||
|| ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
|
||
return false;
|
||
}
|
||
|
||
/* Make sure that EXPR has the right destination
|
||
register. */
|
||
if (expr_dest_regno (expr) != REGNO (best_reg))
|
||
replace_dest_with_reg_in_expr (expr, best_reg);
|
||
else
|
||
EXPR_TARGET_AVAILABLE (expr) = 1;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Select and assign best register to EXPR searching from BNDS.
|
||
Set *IS_ORIG_REG_P to TRUE if original register was selected.
|
||
Return FALSE if no register can be chosen, which could happen when:
|
||
* EXPR_SEPARABLE_P is true but we were unable to find suitable register;
|
||
* EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
|
||
that are used on the moving path. */
|
||
static bool
|
||
find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
|
||
{
|
||
static struct reg_rename reg_rename_data;
|
||
|
||
regset used_regs;
|
||
def_list_t original_insns = NULL;
|
||
bool reg_ok;
|
||
|
||
*is_orig_reg_p = false;
|
||
|
||
/* Don't bother to do anything if this insn doesn't set any registers. */
|
||
if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
|
||
&& bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
|
||
return true;
|
||
|
||
used_regs = get_clear_regset_from_pool ();
|
||
CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
|
||
|
||
collect_unavailable_regs_from_bnds (expr, bnds, used_regs, ®_rename_data,
|
||
&original_insns);
|
||
|
||
/* If after reload, make sure we're working with hard regs here. */
|
||
if (flag_checking && reload_completed)
|
||
{
|
||
reg_set_iterator rsi;
|
||
unsigned i;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (EXPR_SEPARABLE_P (expr))
|
||
{
|
||
rtx best_reg = NULL_RTX;
|
||
/* Check that we have computed availability of a target register
|
||
correctly. */
|
||
verify_target_availability (expr, used_regs, ®_rename_data);
|
||
|
||
/* Turn everything in hard regs after reload. */
|
||
if (reload_completed)
|
||
{
|
||
HARD_REG_SET hard_regs_used;
|
||
REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
|
||
|
||
/* Join hard registers unavailable due to register class
|
||
restrictions and live range intersection. */
|
||
hard_regs_used |= reg_rename_data.unavailable_hard_regs;
|
||
|
||
best_reg = choose_best_reg (hard_regs_used, ®_rename_data,
|
||
original_insns, is_orig_reg_p);
|
||
}
|
||
else
|
||
best_reg = choose_best_pseudo_reg (used_regs, ®_rename_data,
|
||
original_insns, is_orig_reg_p);
|
||
|
||
if (!best_reg)
|
||
reg_ok = false;
|
||
else if (*is_orig_reg_p)
|
||
{
|
||
/* In case of unification BEST_REG may be different from EXPR's LHS
|
||
when EXPR's LHS is unavailable, and there is another LHS among
|
||
ORIGINAL_INSNS. */
|
||
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
|
||
}
|
||
else
|
||
{
|
||
/* Forbid renaming of low-cost insns. */
|
||
if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
|
||
reg_ok = false;
|
||
else
|
||
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
|
||
any of the HARD_REGS_USED set. */
|
||
if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
|
||
reg_rename_data.unavailable_hard_regs))
|
||
{
|
||
reg_ok = false;
|
||
gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
|
||
}
|
||
else
|
||
{
|
||
reg_ok = true;
|
||
gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
|
||
}
|
||
}
|
||
|
||
ilist_clear (&original_insns);
|
||
return_regset_to_pool (used_regs);
|
||
|
||
return reg_ok;
|
||
}
|
||
|
||
|
||
/* Return true if dependence described by DS can be overcomed. */
|
||
static bool
|
||
can_speculate_dep_p (ds_t ds)
|
||
{
|
||
if (spec_info == NULL)
|
||
return false;
|
||
|
||
/* Leave only speculative data. */
|
||
ds &= SPECULATIVE;
|
||
|
||
if (ds == 0)
|
||
return false;
|
||
|
||
{
|
||
/* FIXME: make sched-deps.c produce only those non-hard dependencies,
|
||
that we can overcome. */
|
||
ds_t spec_mask = spec_info->mask;
|
||
|
||
if ((ds & spec_mask) != ds)
|
||
return false;
|
||
}
|
||
|
||
if (ds_weak (ds) < spec_info->data_weakness_cutoff)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Get a speculation check instruction.
|
||
C_EXPR is a speculative expression,
|
||
CHECK_DS describes speculations that should be checked,
|
||
ORIG_INSN is the original non-speculative insn in the stream. */
|
||
static insn_t
|
||
create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
|
||
{
|
||
rtx check_pattern;
|
||
rtx_insn *insn_rtx;
|
||
insn_t insn;
|
||
basic_block recovery_block;
|
||
rtx_insn *label;
|
||
|
||
/* Create a recovery block if target is going to emit branchy check, or if
|
||
ORIG_INSN was speculative already. */
|
||
if (targetm.sched.needs_block_p (check_ds)
|
||
|| EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
|
||
{
|
||
recovery_block = sel_create_recovery_block (orig_insn);
|
||
label = BB_HEAD (recovery_block);
|
||
}
|
||
else
|
||
{
|
||
recovery_block = NULL;
|
||
label = NULL;
|
||
}
|
||
|
||
/* Get pattern of the check. */
|
||
check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
|
||
check_ds);
|
||
|
||
gcc_assert (check_pattern != NULL);
|
||
|
||
/* Emit check. */
|
||
insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
|
||
|
||
insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
|
||
INSN_SEQNO (orig_insn), orig_insn);
|
||
|
||
/* Make check to be non-speculative. */
|
||
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
|
||
INSN_SPEC_CHECKED_DS (insn) = check_ds;
|
||
|
||
/* Decrease priority of check by difference of load/check instruction
|
||
latencies. */
|
||
EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
|
||
- sel_vinsn_cost (INSN_VINSN (insn)));
|
||
|
||
/* Emit copy of original insn (though with replaced target register,
|
||
if needed) to the recovery block. */
|
||
if (recovery_block != NULL)
|
||
{
|
||
rtx twin_rtx;
|
||
|
||
twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
|
||
twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
|
||
sel_gen_recovery_insn_from_rtx_after (twin_rtx,
|
||
INSN_EXPR (orig_insn),
|
||
INSN_SEQNO (insn),
|
||
bb_note (recovery_block));
|
||
}
|
||
|
||
/* If we've generated a data speculation check, make sure
|
||
that all the bookkeeping instruction we'll create during
|
||
this move_op () will allocate an ALAT entry so that the
|
||
check won't fail.
|
||
In case of control speculation we must convert C_EXPR to control
|
||
speculative mode, because failing to do so will bring us an exception
|
||
thrown by the non-control-speculative load. */
|
||
check_ds = ds_get_max_dep_weak (check_ds);
|
||
speculate_expr (c_expr, check_ds);
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* True when INSN is a "regN = regN" copy. */
|
||
static bool
|
||
identical_copy_p (rtx_insn *insn)
|
||
{
|
||
rtx lhs, rhs, pat;
|
||
|
||
pat = PATTERN (insn);
|
||
|
||
if (GET_CODE (pat) != SET)
|
||
return false;
|
||
|
||
lhs = SET_DEST (pat);
|
||
if (!REG_P (lhs))
|
||
return false;
|
||
|
||
rhs = SET_SRC (pat);
|
||
if (!REG_P (rhs))
|
||
return false;
|
||
|
||
return REGNO (lhs) == REGNO (rhs);
|
||
}
|
||
|
||
/* Undo all transformations on *AV_PTR that were done when
|
||
moving through INSN. */
|
||
static void
|
||
undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
|
||
{
|
||
av_set_iterator av_iter;
|
||
expr_t expr;
|
||
av_set_t new_set = NULL;
|
||
|
||
/* First, kill any EXPR that uses registers set by an insn. This is
|
||
required for correctness. */
|
||
FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
|
||
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
|
||
&& bitmap_intersect_p (INSN_REG_SETS (insn),
|
||
VINSN_REG_USES (EXPR_VINSN (expr)))
|
||
/* When an insn looks like 'r1 = r1', we could substitute through
|
||
it, but the above condition will still hold. This happened with
|
||
gcc.c-torture/execute/961125-1.c. */
|
||
&& !identical_copy_p (insn))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Expr %d removed due to use/set conflict\n",
|
||
INSN_UID (EXPR_INSN_RTX (expr)));
|
||
av_set_iter_remove (&av_iter);
|
||
}
|
||
|
||
/* Undo transformations looking at the history vector. */
|
||
FOR_EACH_EXPR (expr, av_iter, *av_ptr)
|
||
{
|
||
int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
|
||
insn, EXPR_VINSN (expr), true);
|
||
|
||
if (index >= 0)
|
||
{
|
||
expr_history_def *phist;
|
||
|
||
phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
|
||
|
||
switch (phist->type)
|
||
{
|
||
case TRANS_SPECULATION:
|
||
{
|
||
ds_t old_ds, new_ds;
|
||
|
||
/* Compute the difference between old and new speculative
|
||
statuses: that's what we need to check.
|
||
Earlier we used to assert that the status will really
|
||
change. This no longer works because only the probability
|
||
bits in the status may have changed during compute_av_set,
|
||
and in the case of merging different probabilities of the
|
||
same speculative status along different paths we do not
|
||
record this in the history vector. */
|
||
old_ds = phist->spec_ds;
|
||
new_ds = EXPR_SPEC_DONE_DS (expr);
|
||
|
||
old_ds &= SPECULATIVE;
|
||
new_ds &= SPECULATIVE;
|
||
new_ds &= ~old_ds;
|
||
|
||
EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
|
||
break;
|
||
}
|
||
case TRANS_SUBSTITUTION:
|
||
{
|
||
expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
|
||
vinsn_t new_vi;
|
||
bool add = true;
|
||
|
||
new_vi = phist->old_expr_vinsn;
|
||
|
||
gcc_assert (VINSN_SEPARABLE_P (new_vi)
|
||
== EXPR_SEPARABLE_P (expr));
|
||
copy_expr (tmp_expr, expr);
|
||
|
||
if (vinsn_equal_p (phist->new_expr_vinsn,
|
||
EXPR_VINSN (tmp_expr)))
|
||
change_vinsn_in_expr (tmp_expr, new_vi);
|
||
else
|
||
/* This happens when we're unsubstituting on a bookkeeping
|
||
copy, which was in turn substituted. The history is wrong
|
||
in this case. Do it the hard way. */
|
||
add = substitute_reg_in_expr (tmp_expr, insn, true);
|
||
if (add)
|
||
av_set_add (&new_set, tmp_expr);
|
||
clear_expr (tmp_expr);
|
||
break;
|
||
}
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
av_set_union_and_clear (av_ptr, &new_set, NULL);
|
||
}
|
||
|
||
|
||
/* Moveup_* helpers for code motion and computing av sets. */
|
||
|
||
/* Propagates EXPR inside an insn group through THROUGH_INSN.
|
||
The difference from the below function is that only substitution is
|
||
performed. */
|
||
static enum MOVEUP_EXPR_CODE
|
||
moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
|
||
{
|
||
vinsn_t vi = EXPR_VINSN (expr);
|
||
ds_t *has_dep_p;
|
||
ds_t full_ds;
|
||
|
||
/* Do this only inside insn group. */
|
||
gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
|
||
|
||
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
|
||
if (full_ds == 0)
|
||
return MOVEUP_EXPR_SAME;
|
||
|
||
/* Substitution is the possible choice in this case. */
|
||
if (has_dep_p[DEPS_IN_RHS])
|
||
{
|
||
/* Can't substitute UNIQUE VINSNs. */
|
||
gcc_assert (!VINSN_UNIQUE_P (vi));
|
||
|
||
if (can_substitute_through_p (through_insn,
|
||
has_dep_p[DEPS_IN_RHS])
|
||
&& substitute_reg_in_expr (expr, through_insn, false))
|
||
{
|
||
EXPR_WAS_SUBSTITUTED (expr) = true;
|
||
return MOVEUP_EXPR_CHANGED;
|
||
}
|
||
|
||
/* Don't care about this, as even true dependencies may be allowed
|
||
in an insn group. */
|
||
return MOVEUP_EXPR_SAME;
|
||
}
|
||
|
||
/* This can catch output dependencies in COND_EXECs. */
|
||
if (has_dep_p[DEPS_IN_INSN])
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* This is either an output or an anti dependence, which usually have
|
||
a zero latency. Allow this here, if we'd be wrong, tick_check_p
|
||
will fix this. */
|
||
gcc_assert (has_dep_p[DEPS_IN_LHS]);
|
||
return MOVEUP_EXPR_AS_RHS;
|
||
}
|
||
|
||
/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
|
||
#define CANT_MOVE_TRAPPING(expr, through_insn) \
|
||
(VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
|
||
&& !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
|
||
&& !sel_insn_is_speculation_check (through_insn))
|
||
|
||
/* True when a conflict on a target register was found during moveup_expr. */
|
||
static bool was_target_conflict = false;
|
||
|
||
/* Return true when moving a debug INSN across THROUGH_INSN will
|
||
create a bookkeeping block. We don't want to create such blocks,
|
||
for they would cause codegen differences between compilations with
|
||
and without debug info. */
|
||
|
||
static bool
|
||
moving_insn_creates_bookkeeping_block_p (insn_t insn,
|
||
insn_t through_insn)
|
||
{
|
||
basic_block bbi, bbt;
|
||
edge e1, e2;
|
||
edge_iterator ei1, ei2;
|
||
|
||
if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
|
||
{
|
||
if (sched_verbose >= 9)
|
||
sel_print ("no bookkeeping required: ");
|
||
return FALSE;
|
||
}
|
||
|
||
bbi = BLOCK_FOR_INSN (insn);
|
||
|
||
if (EDGE_COUNT (bbi->preds) == 1)
|
||
{
|
||
if (sched_verbose >= 9)
|
||
sel_print ("only one pred edge: ");
|
||
return TRUE;
|
||
}
|
||
|
||
bbt = BLOCK_FOR_INSN (through_insn);
|
||
|
||
FOR_EACH_EDGE (e1, ei1, bbt->succs)
|
||
{
|
||
FOR_EACH_EDGE (e2, ei2, bbi->preds)
|
||
{
|
||
if (find_block_for_bookkeeping (e1, e2, TRUE))
|
||
{
|
||
if (sched_verbose >= 9)
|
||
sel_print ("found existing block: ");
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (sched_verbose >= 9)
|
||
sel_print ("would create bookkeeping block: ");
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return true when the conflict with newly created implicit clobbers
|
||
between EXPR and THROUGH_INSN is found because of renaming. */
|
||
static bool
|
||
implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
|
||
{
|
||
HARD_REG_SET temp;
|
||
rtx_insn *insn;
|
||
rtx reg, rhs, pat;
|
||
hard_reg_set_iterator hrsi;
|
||
unsigned regno;
|
||
bool valid;
|
||
|
||
/* Make a new pseudo register. */
|
||
reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
|
||
max_regno = max_reg_num ();
|
||
maybe_extend_reg_info_p ();
|
||
|
||
/* Validate a change and bail out early. */
|
||
insn = EXPR_INSN_RTX (expr);
|
||
validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
|
||
valid = verify_changes (0);
|
||
cancel_changes (0);
|
||
if (!valid)
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("implicit clobbers failed validation, ");
|
||
return true;
|
||
}
|
||
|
||
/* Make a new insn with it. */
|
||
rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
|
||
pat = gen_rtx_SET (reg, rhs);
|
||
start_sequence ();
|
||
insn = emit_insn (pat);
|
||
end_sequence ();
|
||
|
||
/* Calculate implicit clobbers. */
|
||
extract_insn (insn);
|
||
preprocess_constraints (insn);
|
||
alternative_mask prefrred = get_preferred_alternatives (insn);
|
||
ira_implicitly_set_insn_hard_regs (&temp, prefrred);
|
||
temp &= ~ira_no_alloc_regs;
|
||
|
||
/* If any implicit clobber registers intersect with regular ones in
|
||
through_insn, we have a dependency and thus bail out. */
|
||
EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
|
||
{
|
||
vinsn_t vi = INSN_VINSN (through_insn);
|
||
if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
|
||
|| bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
|
||
|| bitmap_bit_p (VINSN_REG_USES (vi), regno))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Modifies EXPR so it can be moved through the THROUGH_INSN,
|
||
performing necessary transformations. Record the type of transformation
|
||
made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
|
||
permit all dependencies except true ones, and try to remove those
|
||
too via forward substitution. All cases when a non-eliminable
|
||
non-zero cost dependency exists inside an insn group will be fixed
|
||
in tick_check_p instead. */
|
||
static enum MOVEUP_EXPR_CODE
|
||
moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
|
||
enum local_trans_type *ptrans_type)
|
||
{
|
||
vinsn_t vi = EXPR_VINSN (expr);
|
||
insn_t insn = VINSN_INSN_RTX (vi);
|
||
bool was_changed = false;
|
||
bool as_rhs = false;
|
||
ds_t *has_dep_p;
|
||
ds_t full_ds;
|
||
|
||
/* ??? We use dependencies of non-debug insns on debug insns to
|
||
indicate that the debug insns need to be reset if the non-debug
|
||
insn is pulled ahead of it. It's hard to figure out how to
|
||
introduce such a notion in sel-sched, but it already fails to
|
||
support debug insns in other ways, so we just go ahead and
|
||
let the deug insns go corrupt for now. */
|
||
if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
|
||
return MOVEUP_EXPR_SAME;
|
||
|
||
/* When inside_insn_group, delegate to the helper. */
|
||
if (inside_insn_group)
|
||
return moveup_expr_inside_insn_group (expr, through_insn);
|
||
|
||
/* Deal with unique insns and control dependencies. */
|
||
if (VINSN_UNIQUE_P (vi))
|
||
{
|
||
/* We can move jumps without side-effects or jumps that are
|
||
mutually exclusive with instruction THROUGH_INSN (all in cases
|
||
dependencies allow to do so and jump is not speculative). */
|
||
if (control_flow_insn_p (insn))
|
||
{
|
||
basic_block fallthru_bb;
|
||
|
||
/* Do not move checks and do not move jumps through other
|
||
jumps. */
|
||
if (control_flow_insn_p (through_insn)
|
||
|| sel_insn_is_speculation_check (insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* Don't move jumps through CFG joins. */
|
||
if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* The jump should have a clear fallthru block, and
|
||
this block should be in the current region. */
|
||
if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
|
||
|| ! in_current_region_p (fallthru_bb))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* And it should be mutually exclusive with through_insn. */
|
||
if (! sched_insns_conditions_mutex_p (insn, through_insn)
|
||
&& ! DEBUG_INSN_P (through_insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
}
|
||
|
||
/* Don't move what we can't move. */
|
||
if (EXPR_CANT_MOVE (expr)
|
||
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* Don't move SCHED_GROUP instruction through anything.
|
||
If we don't force this, then it will be possible to start
|
||
scheduling a sched_group before all its dependencies are
|
||
resolved.
|
||
??? Haifa deals with this issue by delaying the SCHED_GROUP
|
||
as late as possible through rank_for_schedule. */
|
||
if (SCHED_GROUP_P (insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
}
|
||
else
|
||
gcc_assert (!control_flow_insn_p (insn));
|
||
|
||
/* Don't move debug insns if this would require bookkeeping. */
|
||
if (DEBUG_INSN_P (insn)
|
||
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
|
||
&& moving_insn_creates_bookkeeping_block_p (insn, through_insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* Deal with data dependencies. */
|
||
was_target_conflict = false;
|
||
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
|
||
if (full_ds == 0)
|
||
{
|
||
if (!CANT_MOVE_TRAPPING (expr, through_insn))
|
||
return MOVEUP_EXPR_SAME;
|
||
}
|
||
else
|
||
{
|
||
/* We can move UNIQUE insn up only as a whole and unchanged,
|
||
so it shouldn't have any dependencies. */
|
||
if (VINSN_UNIQUE_P (vi))
|
||
return MOVEUP_EXPR_NULL;
|
||
}
|
||
|
||
if (full_ds != 0 && can_speculate_dep_p (full_ds))
|
||
{
|
||
int res;
|
||
|
||
res = speculate_expr (expr, full_ds);
|
||
if (res >= 0)
|
||
{
|
||
/* Speculation was successful. */
|
||
full_ds = 0;
|
||
was_changed = (res > 0);
|
||
if (res == 2)
|
||
was_target_conflict = true;
|
||
if (ptrans_type)
|
||
*ptrans_type = TRANS_SPECULATION;
|
||
sel_clear_has_dependence ();
|
||
}
|
||
}
|
||
|
||
if (has_dep_p[DEPS_IN_INSN])
|
||
/* We have some dependency that cannot be discarded. */
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
if (has_dep_p[DEPS_IN_LHS])
|
||
{
|
||
/* Only separable insns can be moved up with the new register.
|
||
Anyways, we should mark that the original register is
|
||
unavailable. */
|
||
if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
/* When renaming a hard register to a pseudo before reload, extra
|
||
dependencies can occur from the implicit clobbers of the insn.
|
||
Filter out such cases here. */
|
||
if (!reload_completed && REG_P (EXPR_LHS (expr))
|
||
&& HARD_REGISTER_P (EXPR_LHS (expr))
|
||
&& implicit_clobber_conflict_p (through_insn, expr))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("implicit clobbers conflict detected, ");
|
||
return MOVEUP_EXPR_NULL;
|
||
}
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
was_target_conflict = true;
|
||
as_rhs = true;
|
||
}
|
||
|
||
/* At this point we have either separable insns, that will be lifted
|
||
up only as RHSes, or non-separable insns with no dependency in lhs.
|
||
If dependency is in RHS, then try to perform substitution and move up
|
||
substituted RHS:
|
||
|
||
Ex. 1: Ex.2
|
||
y = x; y = x;
|
||
z = y*2; y = y*2;
|
||
|
||
In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
|
||
moved above y=x assignment as z=x*2.
|
||
|
||
In Ex.2 y*2 also can be substituted for x*2, but only the right hand
|
||
side can be moved because of the output dependency. The operation was
|
||
cropped to its rhs above. */
|
||
if (has_dep_p[DEPS_IN_RHS])
|
||
{
|
||
ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
|
||
|
||
/* Can't substitute UNIQUE VINSNs. */
|
||
gcc_assert (!VINSN_UNIQUE_P (vi));
|
||
|
||
if (can_speculate_dep_p (*rhs_dsp))
|
||
{
|
||
int res;
|
||
|
||
res = speculate_expr (expr, *rhs_dsp);
|
||
if (res >= 0)
|
||
{
|
||
/* Speculation was successful. */
|
||
*rhs_dsp = 0;
|
||
was_changed = (res > 0);
|
||
if (res == 2)
|
||
was_target_conflict = true;
|
||
if (ptrans_type)
|
||
*ptrans_type = TRANS_SPECULATION;
|
||
}
|
||
else
|
||
return MOVEUP_EXPR_NULL;
|
||
}
|
||
else if (can_substitute_through_p (through_insn,
|
||
*rhs_dsp)
|
||
&& substitute_reg_in_expr (expr, through_insn, false))
|
||
{
|
||
/* ??? We cannot perform substitution AND speculation on the same
|
||
insn. */
|
||
gcc_assert (!was_changed);
|
||
was_changed = true;
|
||
if (ptrans_type)
|
||
*ptrans_type = TRANS_SUBSTITUTION;
|
||
EXPR_WAS_SUBSTITUTED (expr) = true;
|
||
}
|
||
else
|
||
return MOVEUP_EXPR_NULL;
|
||
}
|
||
|
||
/* Don't move trapping insns through jumps.
|
||
This check should be at the end to give a chance to control speculation
|
||
to perform its duties. */
|
||
if (CANT_MOVE_TRAPPING (expr, through_insn))
|
||
return MOVEUP_EXPR_NULL;
|
||
|
||
return (was_changed
|
||
? MOVEUP_EXPR_CHANGED
|
||
: (as_rhs
|
||
? MOVEUP_EXPR_AS_RHS
|
||
: MOVEUP_EXPR_SAME));
|
||
}
|
||
|
||
/* Try to look at bitmap caches for EXPR and INSN pair, return true
|
||
if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
|
||
that can exist within a parallel group. Write to RES the resulting
|
||
code for moveup_expr. */
|
||
static bool
|
||
try_bitmap_cache (expr_t expr, insn_t insn,
|
||
bool inside_insn_group,
|
||
enum MOVEUP_EXPR_CODE *res)
|
||
{
|
||
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
|
||
|
||
/* First check whether we've analyzed this situation already. */
|
||
if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
|
||
{
|
||
if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("removed (cached)\n");
|
||
*res = MOVEUP_EXPR_NULL;
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("unchanged (cached)\n");
|
||
*res = MOVEUP_EXPR_SAME;
|
||
return true;
|
||
}
|
||
}
|
||
else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
|
||
{
|
||
if (inside_insn_group)
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("unchanged (as RHS, cached, inside insn group)\n");
|
||
*res = MOVEUP_EXPR_SAME;
|
||
return true;
|
||
|
||
}
|
||
else
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
|
||
/* This is the only case when propagation result can change over time,
|
||
as we can dynamically switch off scheduling as RHS. In this case,
|
||
just check the flag to reach the correct decision. */
|
||
if (enable_schedule_as_rhs_p)
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("unchanged (as RHS, cached)\n");
|
||
*res = MOVEUP_EXPR_AS_RHS;
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("removed (cached as RHS, but renaming"
|
||
" is now disabled)\n");
|
||
*res = MOVEUP_EXPR_NULL;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Try to look at bitmap caches for EXPR and INSN pair, return true
|
||
if successful. Write to RES the resulting code for moveup_expr. */
|
||
static bool
|
||
try_transformation_cache (expr_t expr, insn_t insn,
|
||
enum MOVEUP_EXPR_CODE *res)
|
||
{
|
||
struct transformed_insns *pti
|
||
= (struct transformed_insns *)
|
||
htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
|
||
&EXPR_VINSN (expr),
|
||
VINSN_HASH_RTX (EXPR_VINSN (expr)));
|
||
if (pti)
|
||
{
|
||
/* This EXPR was already moved through this insn and was
|
||
changed as a result. Fetch the proper data from
|
||
the hashtable. */
|
||
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
||
INSN_UID (insn), pti->type,
|
||
pti->vinsn_old, pti->vinsn_new,
|
||
EXPR_SPEC_DONE_DS (expr));
|
||
|
||
if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
|
||
pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
|
||
change_vinsn_in_expr (expr, pti->vinsn_new);
|
||
if (pti->was_target_conflict)
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
if (pti->type == TRANS_SPECULATION)
|
||
{
|
||
EXPR_SPEC_DONE_DS (expr) = pti->ds;
|
||
EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
|
||
}
|
||
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("changed (cached): ");
|
||
dump_expr (expr);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
*res = MOVEUP_EXPR_CHANGED;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Update bitmap caches on INSN with result RES of propagating EXPR. */
|
||
static void
|
||
update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
|
||
enum MOVEUP_EXPR_CODE res)
|
||
{
|
||
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
|
||
|
||
/* Do not cache result of propagating jumps through an insn group,
|
||
as it is always true, which is not useful outside the group. */
|
||
if (inside_insn_group)
|
||
return;
|
||
|
||
if (res == MOVEUP_EXPR_NULL)
|
||
{
|
||
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
||
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
||
}
|
||
else if (res == MOVEUP_EXPR_SAME)
|
||
{
|
||
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
||
bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
||
}
|
||
else if (res == MOVEUP_EXPR_AS_RHS)
|
||
{
|
||
bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
||
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
|
||
and transformation type TRANS_TYPE. */
|
||
static void
|
||
update_transformation_cache (expr_t expr, insn_t insn,
|
||
bool inside_insn_group,
|
||
enum local_trans_type trans_type,
|
||
vinsn_t expr_old_vinsn)
|
||
{
|
||
struct transformed_insns *pti;
|
||
|
||
if (inside_insn_group)
|
||
return;
|
||
|
||
pti = XNEW (struct transformed_insns);
|
||
pti->vinsn_old = expr_old_vinsn;
|
||
pti->vinsn_new = EXPR_VINSN (expr);
|
||
pti->type = trans_type;
|
||
pti->was_target_conflict = was_target_conflict;
|
||
pti->ds = EXPR_SPEC_DONE_DS (expr);
|
||
pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
|
||
vinsn_attach (pti->vinsn_old);
|
||
vinsn_attach (pti->vinsn_new);
|
||
*((struct transformed_insns **)
|
||
htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
|
||
pti, VINSN_HASH_RTX (expr_old_vinsn),
|
||
INSERT)) = pti;
|
||
}
|
||
|
||
/* Same as moveup_expr, but first looks up the result of
|
||
transformation in caches. */
|
||
static enum MOVEUP_EXPR_CODE
|
||
moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
|
||
{
|
||
enum MOVEUP_EXPR_CODE res;
|
||
bool got_answer = false;
|
||
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("Moving ");
|
||
dump_expr (expr);
|
||
sel_print (" through %d: ", INSN_UID (insn));
|
||
}
|
||
|
||
if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
|
||
&& BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
|
||
&& (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
|
||
== EXPR_INSN_RTX (expr)))
|
||
/* Don't use cached information for debug insns that are heads of
|
||
basic blocks. */;
|
||
else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
|
||
/* When inside insn group, we do not want remove stores conflicting
|
||
with previosly issued loads. */
|
||
got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
|
||
else if (try_transformation_cache (expr, insn, &res))
|
||
got_answer = true;
|
||
|
||
if (! got_answer)
|
||
{
|
||
/* Invoke moveup_expr and record the results. */
|
||
vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
|
||
ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
|
||
int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
|
||
bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
|
||
enum local_trans_type trans_type = TRANS_SUBSTITUTION;
|
||
|
||
/* ??? Invent something better than this. We can't allow old_vinsn
|
||
to go, we need it for the history vector. */
|
||
vinsn_attach (expr_old_vinsn);
|
||
|
||
res = moveup_expr (expr, insn, inside_insn_group,
|
||
&trans_type);
|
||
switch (res)
|
||
{
|
||
case MOVEUP_EXPR_NULL:
|
||
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
||
if (sched_verbose >= 6)
|
||
sel_print ("removed\n");
|
||
break;
|
||
|
||
case MOVEUP_EXPR_SAME:
|
||
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
||
if (sched_verbose >= 6)
|
||
sel_print ("unchanged\n");
|
||
break;
|
||
|
||
case MOVEUP_EXPR_AS_RHS:
|
||
gcc_assert (!unique_p || inside_insn_group);
|
||
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
||
if (sched_verbose >= 6)
|
||
sel_print ("unchanged (as RHS)\n");
|
||
break;
|
||
|
||
case MOVEUP_EXPR_CHANGED:
|
||
gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
|
||
|| EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
|
||
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
||
INSN_UID (insn), trans_type,
|
||
expr_old_vinsn, EXPR_VINSN (expr),
|
||
expr_old_spec_ds);
|
||
update_transformation_cache (expr, insn, inside_insn_group,
|
||
trans_type, expr_old_vinsn);
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("changed: ");
|
||
dump_expr (expr);
|
||
sel_print ("\n");
|
||
}
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
vinsn_detach (expr_old_vinsn);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Moves an av set AVP up through INSN, performing necessary
|
||
transformations. */
|
||
static void
|
||
moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
|
||
{
|
||
av_set_iterator i;
|
||
expr_t expr;
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, avp)
|
||
{
|
||
|
||
switch (moveup_expr_cached (expr, insn, inside_insn_group))
|
||
{
|
||
case MOVEUP_EXPR_SAME:
|
||
case MOVEUP_EXPR_AS_RHS:
|
||
break;
|
||
|
||
case MOVEUP_EXPR_NULL:
|
||
av_set_iter_remove (&i);
|
||
break;
|
||
|
||
case MOVEUP_EXPR_CHANGED:
|
||
expr = merge_with_other_exprs (avp, &i, expr);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Moves AVP set along PATH. */
|
||
static void
|
||
moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
|
||
{
|
||
int last_cycle;
|
||
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Moving expressions up in the insn group...\n");
|
||
if (! path)
|
||
return;
|
||
last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
|
||
while (path
|
||
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
|
||
{
|
||
moveup_set_expr (avp, ILIST_INSN (path), true);
|
||
path = ILIST_NEXT (path);
|
||
}
|
||
}
|
||
|
||
/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
|
||
static bool
|
||
equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
|
||
{
|
||
expr_def _tmp, *tmp = &_tmp;
|
||
int last_cycle;
|
||
bool res = true;
|
||
|
||
copy_expr_onside (tmp, expr);
|
||
last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
|
||
while (path
|
||
&& res
|
||
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
|
||
{
|
||
res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
|
||
!= MOVEUP_EXPR_NULL);
|
||
path = ILIST_NEXT (path);
|
||
}
|
||
|
||
if (res)
|
||
{
|
||
vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
|
||
vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
|
||
|
||
if (tmp_vinsn != expr_vliw_vinsn)
|
||
res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
|
||
}
|
||
|
||
clear_expr (tmp);
|
||
return res;
|
||
}
|
||
|
||
|
||
/* Functions that compute av and lv sets. */
|
||
|
||
/* Returns true if INSN is not a downward continuation of the given path P in
|
||
the current stage. */
|
||
static bool
|
||
is_ineligible_successor (insn_t insn, ilist_t p)
|
||
{
|
||
insn_t prev_insn;
|
||
|
||
/* Check if insn is not deleted. */
|
||
if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
|
||
gcc_unreachable ();
|
||
else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
|
||
gcc_unreachable ();
|
||
|
||
/* If it's the first insn visited, then the successor is ok. */
|
||
if (!p)
|
||
return false;
|
||
|
||
prev_insn = ILIST_INSN (p);
|
||
|
||
if (/* a backward edge. */
|
||
INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
|
||
/* is already visited. */
|
||
|| (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
|
||
&& (ilist_is_in_p (p, insn)
|
||
/* We can reach another fence here and still seqno of insn
|
||
would be equal to seqno of prev_insn. This is possible
|
||
when prev_insn is a previously created bookkeeping copy.
|
||
In that case it'd get a seqno of insn. Thus, check here
|
||
whether insn is in current fence too. */
|
||
|| IN_CURRENT_FENCE_P (insn)))
|
||
/* Was already scheduled on this round. */
|
||
|| (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
|
||
&& IN_CURRENT_FENCE_P (insn))
|
||
/* An insn from another fence could also be
|
||
scheduled earlier even if this insn is not in
|
||
a fence list right now. Check INSN_SCHED_CYCLE instead. */
|
||
|| (!pipelining_p
|
||
&& INSN_SCHED_TIMES (insn) > 0))
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
|
||
of handling multiple successors and properly merging its av_sets. P is
|
||
the current path traversed. WS is the size of lookahead window.
|
||
Return the av set computed. */
|
||
static av_set_t
|
||
compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
|
||
{
|
||
struct succs_info *sinfo;
|
||
av_set_t expr_in_all_succ_branches = NULL;
|
||
int is;
|
||
insn_t succ, zero_succ = NULL;
|
||
av_set_t av1 = NULL;
|
||
|
||
gcc_assert (sel_bb_end_p (insn));
|
||
|
||
/* Find different kind of successors needed for correct computing of
|
||
SPEC and TARGET_AVAILABLE attributes. */
|
||
sinfo = compute_succs_info (insn, SUCCS_NORMAL);
|
||
|
||
/* Debug output. */
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("successors of bb end (%d): ", INSN_UID (insn));
|
||
dump_insn_vector (sinfo->succs_ok);
|
||
sel_print ("\n");
|
||
if (sinfo->succs_ok_n != sinfo->all_succs_n)
|
||
sel_print ("real successors num: %d\n", sinfo->all_succs_n);
|
||
}
|
||
|
||
/* Add insn to the tail of current path. */
|
||
ilist_add (&p, insn);
|
||
|
||
FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
|
||
{
|
||
av_set_t succ_set;
|
||
|
||
/* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
|
||
succ_set = compute_av_set_inside_bb (succ, p, ws, true);
|
||
|
||
av_set_split_usefulness (succ_set,
|
||
sinfo->probs_ok[is],
|
||
sinfo->all_prob);
|
||
|
||
if (sinfo->all_succs_n > 1)
|
||
{
|
||
/* Find EXPR'es that came from *all* successors and save them
|
||
into expr_in_all_succ_branches. This set will be used later
|
||
for calculating speculation attributes of EXPR'es. */
|
||
if (is == 0)
|
||
{
|
||
expr_in_all_succ_branches = av_set_copy (succ_set);
|
||
|
||
/* Remember the first successor for later. */
|
||
zero_succ = succ;
|
||
}
|
||
else
|
||
{
|
||
av_set_iterator i;
|
||
expr_t expr;
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
|
||
if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
|
||
av_set_iter_remove (&i);
|
||
}
|
||
}
|
||
|
||
/* Union the av_sets. Check liveness restrictions on target registers
|
||
in special case of two successors. */
|
||
if (sinfo->succs_ok_n == 2 && is == 1)
|
||
{
|
||
basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
|
||
basic_block bb1 = BLOCK_FOR_INSN (succ);
|
||
|
||
gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
|
||
av_set_union_and_live (&av1, &succ_set,
|
||
BB_LV_SET (bb0),
|
||
BB_LV_SET (bb1),
|
||
insn);
|
||
}
|
||
else
|
||
av_set_union_and_clear (&av1, &succ_set, insn);
|
||
}
|
||
|
||
/* Check liveness restrictions via hard way when there are more than
|
||
two successors. */
|
||
if (sinfo->succs_ok_n > 2)
|
||
FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
|
||
{
|
||
basic_block succ_bb = BLOCK_FOR_INSN (succ);
|
||
av_set_t av_succ = (is_ineligible_successor (succ, p)
|
||
? NULL
|
||
: BB_AV_SET (succ_bb));
|
||
|
||
gcc_assert (BB_LV_SET_VALID_P (succ_bb));
|
||
mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
|
||
}
|
||
|
||
/* Finally, check liveness restrictions on paths leaving the region. */
|
||
if (sinfo->all_succs_n > sinfo->succs_ok_n)
|
||
FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
|
||
mark_unavailable_targets
|
||
(av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
|
||
|
||
if (sinfo->all_succs_n > 1)
|
||
{
|
||
av_set_iterator i;
|
||
expr_t expr;
|
||
|
||
/* Increase the spec attribute of all EXPR'es that didn't come
|
||
from all successors. */
|
||
FOR_EACH_EXPR (expr, i, av1)
|
||
if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
|
||
EXPR_SPEC (expr)++;
|
||
|
||
av_set_clear (&expr_in_all_succ_branches);
|
||
|
||
/* Do not move conditional branches through other
|
||
conditional branches. So, remove all conditional
|
||
branches from av_set if current operator is a conditional
|
||
branch. */
|
||
av_set_substract_cond_branches (&av1);
|
||
}
|
||
|
||
ilist_remove (&p);
|
||
free_succs_info (sinfo);
|
||
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("av_succs (%d): ", INSN_UID (insn));
|
||
dump_av_set (av1);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
return av1;
|
||
}
|
||
|
||
/* This function computes av_set for the FIRST_INSN by dragging valid
|
||
av_set through all basic block insns either from the end of basic block
|
||
(computed using compute_av_set_at_bb_end) or from the insn on which
|
||
MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
|
||
below the basic block and handling conditional branches.
|
||
FIRST_INSN - the basic block head, P - path consisting of the insns
|
||
traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
|
||
and bb ends are added to the path), WS - current window size,
|
||
NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
|
||
static av_set_t
|
||
compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
|
||
bool need_copy_p)
|
||
{
|
||
insn_t cur_insn;
|
||
int end_ws = ws;
|
||
insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
|
||
insn_t after_bb_end = NEXT_INSN (bb_end);
|
||
insn_t last_insn;
|
||
av_set_t av = NULL;
|
||
basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
|
||
|
||
/* Return NULL if insn is not on the legitimate downward path. */
|
||
if (is_ineligible_successor (first_insn, p))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* If insn already has valid av(insn) computed, just return it. */
|
||
if (AV_SET_VALID_P (first_insn))
|
||
{
|
||
av_set_t av_set;
|
||
|
||
if (sel_bb_head_p (first_insn))
|
||
av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
|
||
else
|
||
av_set = NULL;
|
||
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
|
||
dump_av_set (av_set);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
return need_copy_p ? av_set_copy (av_set) : av_set;
|
||
}
|
||
|
||
ilist_add (&p, first_insn);
|
||
|
||
/* As the result after this loop have completed, in LAST_INSN we'll
|
||
have the insn which has valid av_set to start backward computation
|
||
from: it either will be NULL because on it the window size was exceeded
|
||
or other valid av_set as returned by compute_av_set for the last insn
|
||
of the basic block. */
|
||
for (last_insn = first_insn; last_insn != after_bb_end;
|
||
last_insn = NEXT_INSN (last_insn))
|
||
{
|
||
/* We may encounter valid av_set not only on bb_head, but also on
|
||
those insns on which previously MAX_WS was exceeded. */
|
||
if (AV_SET_VALID_P (last_insn))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
|
||
break;
|
||
}
|
||
|
||
/* The special case: the last insn of the BB may be an
|
||
ineligible_successor due to its SEQ_NO that was set on
|
||
it as a bookkeeping. */
|
||
if (last_insn != first_insn
|
||
&& is_ineligible_successor (last_insn, p))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
|
||
break;
|
||
}
|
||
|
||
if (DEBUG_INSN_P (last_insn))
|
||
continue;
|
||
|
||
if (end_ws > max_ws)
|
||
{
|
||
/* We can reach max lookahead size at bb_header, so clean av_set
|
||
first. */
|
||
INSN_WS_LEVEL (last_insn) = global_level;
|
||
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Insn %d is beyond the software lookahead window size\n",
|
||
INSN_UID (last_insn));
|
||
break;
|
||
}
|
||
|
||
end_ws++;
|
||
}
|
||
|
||
/* Get the valid av_set into AV above the LAST_INSN to start backward
|
||
computation from. It either will be empty av_set or av_set computed from
|
||
the successors on the last insn of the current bb. */
|
||
if (last_insn != after_bb_end)
|
||
{
|
||
av = NULL;
|
||
|
||
/* This is needed only to obtain av_sets that are identical to
|
||
those computed by the old compute_av_set version. */
|
||
if (last_insn == first_insn && !INSN_NOP_P (last_insn))
|
||
av_set_add (&av, INSN_EXPR (last_insn));
|
||
}
|
||
else
|
||
/* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
|
||
av = compute_av_set_at_bb_end (bb_end, p, end_ws);
|
||
|
||
/* Compute av_set in AV starting from below the LAST_INSN up to
|
||
location above the FIRST_INSN. */
|
||
for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
|
||
cur_insn = PREV_INSN (cur_insn))
|
||
if (!INSN_NOP_P (cur_insn))
|
||
{
|
||
expr_t expr;
|
||
|
||
moveup_set_expr (&av, cur_insn, false);
|
||
|
||
/* If the expression for CUR_INSN is already in the set,
|
||
replace it by the new one. */
|
||
expr = av_set_lookup (av, INSN_VINSN (cur_insn));
|
||
if (expr != NULL)
|
||
{
|
||
clear_expr (expr);
|
||
copy_expr (expr, INSN_EXPR (cur_insn));
|
||
}
|
||
else
|
||
av_set_add (&av, INSN_EXPR (cur_insn));
|
||
}
|
||
|
||
/* Clear stale bb_av_set. */
|
||
if (sel_bb_head_p (first_insn))
|
||
{
|
||
av_set_clear (&BB_AV_SET (cur_bb));
|
||
BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
|
||
BB_AV_LEVEL (cur_bb) = global_level;
|
||
}
|
||
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
|
||
dump_av_set (av);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
ilist_remove (&p);
|
||
return av;
|
||
}
|
||
|
||
/* Compute av set before INSN.
|
||
INSN - the current operation (actual rtx INSN)
|
||
P - the current path, which is list of insns visited so far
|
||
WS - software lookahead window size.
|
||
UNIQUE_P - TRUE, if returned av_set will be changed, hence
|
||
if we want to save computed av_set in s_i_d, we should make a copy of it.
|
||
|
||
In the resulting set we will have only expressions that don't have delay
|
||
stalls and nonsubstitutable dependences. */
|
||
static av_set_t
|
||
compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
|
||
{
|
||
return compute_av_set_inside_bb (insn, p, ws, unique_p);
|
||
}
|
||
|
||
/* Propagate a liveness set LV through INSN. */
|
||
static void
|
||
propagate_lv_set (regset lv, insn_t insn)
|
||
{
|
||
gcc_assert (INSN_P (insn));
|
||
|
||
if (INSN_NOP_P (insn))
|
||
return;
|
||
|
||
df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
|
||
}
|
||
|
||
/* Return livness set at the end of BB. */
|
||
static regset
|
||
compute_live_after_bb (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
regset lv = get_clear_regset_from_pool ();
|
||
|
||
gcc_assert (!ignore_first);
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (sel_bb_empty_p (e->dest))
|
||
{
|
||
if (! BB_LV_SET_VALID_P (e->dest))
|
||
{
|
||
gcc_unreachable ();
|
||
gcc_assert (BB_LV_SET (e->dest) == NULL);
|
||
BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
|
||
BB_LV_SET_VALID_P (e->dest) = true;
|
||
}
|
||
IOR_REG_SET (lv, BB_LV_SET (e->dest));
|
||
}
|
||
else
|
||
IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
|
||
|
||
return lv;
|
||
}
|
||
|
||
/* Compute the set of all live registers at the point before INSN and save
|
||
it at INSN if INSN is bb header. */
|
||
regset
|
||
compute_live (insn_t insn)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
insn_t final, temp;
|
||
regset lv;
|
||
|
||
/* Return the valid set if we're already on it. */
|
||
if (!ignore_first)
|
||
{
|
||
regset src = NULL;
|
||
|
||
if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
|
||
src = BB_LV_SET (bb);
|
||
else
|
||
{
|
||
gcc_assert (in_current_region_p (bb));
|
||
if (INSN_LIVE_VALID_P (insn))
|
||
src = INSN_LIVE (insn);
|
||
}
|
||
|
||
if (src)
|
||
{
|
||
lv = get_regset_from_pool ();
|
||
COPY_REG_SET (lv, src);
|
||
|
||
if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
|
||
{
|
||
COPY_REG_SET (BB_LV_SET (bb), lv);
|
||
BB_LV_SET_VALID_P (bb) = true;
|
||
}
|
||
|
||
return_regset_to_pool (lv);
|
||
return lv;
|
||
}
|
||
}
|
||
|
||
/* We've skipped the wrong lv_set. Don't skip the right one. */
|
||
ignore_first = false;
|
||
gcc_assert (in_current_region_p (bb));
|
||
|
||
/* Find a valid LV set in this block or below, if needed.
|
||
Start searching from the next insn: either ignore_first is true, or
|
||
INSN doesn't have a correct live set. */
|
||
temp = NEXT_INSN (insn);
|
||
final = NEXT_INSN (BB_END (bb));
|
||
while (temp != final && ! INSN_LIVE_VALID_P (temp))
|
||
temp = NEXT_INSN (temp);
|
||
if (temp == final)
|
||
{
|
||
lv = compute_live_after_bb (bb);
|
||
temp = PREV_INSN (temp);
|
||
}
|
||
else
|
||
{
|
||
lv = get_regset_from_pool ();
|
||
COPY_REG_SET (lv, INSN_LIVE (temp));
|
||
}
|
||
|
||
/* Put correct lv sets on the insns which have bad sets. */
|
||
final = PREV_INSN (insn);
|
||
while (temp != final)
|
||
{
|
||
propagate_lv_set (lv, temp);
|
||
COPY_REG_SET (INSN_LIVE (temp), lv);
|
||
INSN_LIVE_VALID_P (temp) = true;
|
||
temp = PREV_INSN (temp);
|
||
}
|
||
|
||
/* Also put it in a BB. */
|
||
if (sel_bb_head_p (insn))
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
COPY_REG_SET (BB_LV_SET (bb), lv);
|
||
BB_LV_SET_VALID_P (bb) = true;
|
||
}
|
||
|
||
/* We return LV to the pool, but will not clear it there. Thus we can
|
||
legimatelly use LV till the next use of regset_pool_get (). */
|
||
return_regset_to_pool (lv);
|
||
return lv;
|
||
}
|
||
|
||
/* Update liveness sets for INSN. */
|
||
static inline void
|
||
update_liveness_on_insn (rtx_insn *insn)
|
||
{
|
||
ignore_first = true;
|
||
compute_live (insn);
|
||
}
|
||
|
||
/* Compute liveness below INSN and write it into REGS. */
|
||
static inline void
|
||
compute_live_below_insn (rtx_insn *insn, regset regs)
|
||
{
|
||
rtx_insn *succ;
|
||
succ_iterator si;
|
||
|
||
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
|
||
IOR_REG_SET (regs, compute_live (succ));
|
||
}
|
||
|
||
/* Update the data gathered in av and lv sets starting from INSN. */
|
||
static void
|
||
update_data_sets (rtx_insn *insn)
|
||
{
|
||
update_liveness_on_insn (insn);
|
||
if (sel_bb_head_p (insn))
|
||
{
|
||
gcc_assert (AV_LEVEL (insn) != 0);
|
||
BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
|
||
compute_av_set (insn, NULL, 0, 0);
|
||
}
|
||
}
|
||
|
||
|
||
/* Helper for move_op () and find_used_regs ().
|
||
Return speculation type for which a check should be created on the place
|
||
of INSN. EXPR is one of the original ops we are searching for. */
|
||
static ds_t
|
||
get_spec_check_type_for_insn (insn_t insn, expr_t expr)
|
||
{
|
||
ds_t to_check_ds;
|
||
ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
|
||
|
||
to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
|
||
|
||
if (targetm.sched.get_insn_checked_ds)
|
||
already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
|
||
|
||
if (spec_info != NULL
|
||
&& (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
|
||
already_checked_ds |= BEGIN_CONTROL;
|
||
|
||
already_checked_ds = ds_get_speculation_types (already_checked_ds);
|
||
|
||
to_check_ds &= ~already_checked_ds;
|
||
|
||
return to_check_ds;
|
||
}
|
||
|
||
/* Find the set of registers that are unavailable for storing expres
|
||
while moving ORIG_OPS up on the path starting from INSN due to
|
||
liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
|
||
|
||
All the original operations found during the traversal are saved in the
|
||
ORIGINAL_INSNS list.
|
||
|
||
REG_RENAME_P denotes the set of hardware registers that
|
||
cannot be used with renaming due to the register class restrictions,
|
||
mode restrictions and other (the register we'll choose should be
|
||
compatible class with the original uses, shouldn't be in call_used_regs,
|
||
should be HARD_REGNO_RENAME_OK etc).
|
||
|
||
Returns TRUE if we've found all original insns, FALSE otherwise.
|
||
|
||
This function utilizes code_motion_path_driver (formerly find_used_regs_1)
|
||
to traverse the code motion paths. This helper function finds registers
|
||
that are not available for storing expres while moving ORIG_OPS up on the
|
||
path starting from INSN. A register considered as used on the moving path,
|
||
if one of the following conditions is not satisfied:
|
||
|
||
(1) a register not set or read on any path from xi to an instance of
|
||
the original operation,
|
||
(2) not among the live registers of the point immediately following the
|
||
first original operation on a given downward path, except for the
|
||
original target register of the operation,
|
||
(3) not live on the other path of any conditional branch that is passed
|
||
by the operation, in case original operations are not present on
|
||
both paths of the conditional branch.
|
||
|
||
All the original operations found during the traversal are saved in the
|
||
ORIGINAL_INSNS list.
|
||
|
||
REG_RENAME_P->CROSSED_CALL_ABIS is true, if there is a call insn on the path
|
||
from INSN to original insn. In this case CALL_USED_REG_SET will be added
|
||
to unavailable hard regs at the point original operation is found. */
|
||
|
||
static bool
|
||
find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
|
||
struct reg_rename *reg_rename_p, def_list_t *original_insns)
|
||
{
|
||
def_list_iterator i;
|
||
def_t def;
|
||
int res;
|
||
bool needs_spec_check_p = false;
|
||
expr_t expr;
|
||
av_set_iterator expr_iter;
|
||
struct fur_static_params sparams;
|
||
struct cmpd_local_params lparams;
|
||
|
||
/* We haven't visited any blocks yet. */
|
||
bitmap_clear (code_motion_visited_blocks);
|
||
|
||
/* Init parameters for code_motion_path_driver. */
|
||
sparams.crossed_call_abis = 0;
|
||
sparams.original_insns = original_insns;
|
||
sparams.used_regs = used_regs;
|
||
|
||
/* Set the appropriate hooks and data. */
|
||
code_motion_path_driver_info = &fur_hooks;
|
||
|
||
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
|
||
|
||
reg_rename_p->crossed_call_abis |= sparams.crossed_call_abis;
|
||
|
||
gcc_assert (res == 1);
|
||
gcc_assert (original_insns && *original_insns);
|
||
|
||
/* ??? We calculate whether an expression needs a check when computing
|
||
av sets. This information is not as precise as it could be due to
|
||
merging this bit in merge_expr. We can do better in find_used_regs,
|
||
but we want to avoid multiple traversals of the same code motion
|
||
paths. */
|
||
FOR_EACH_EXPR (expr, expr_iter, orig_ops)
|
||
needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
|
||
|
||
/* Mark hardware regs in REG_RENAME_P that are not suitable
|
||
for renaming expr in INSN due to hardware restrictions (register class,
|
||
modes compatibility etc). */
|
||
FOR_EACH_DEF (def, i, *original_insns)
|
||
{
|
||
vinsn_t vinsn = INSN_VINSN (def->orig_insn);
|
||
|
||
if (VINSN_SEPARABLE_P (vinsn))
|
||
mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
|
||
|
||
/* Do not allow clobbering of ld.[sa] address in case some of the
|
||
original operations need a check. */
|
||
if (needs_spec_check_p)
|
||
IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Functions to choose the best insn from available ones. */
|
||
|
||
/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
|
||
static int
|
||
sel_target_adjust_priority (expr_t expr)
|
||
{
|
||
int priority = EXPR_PRIORITY (expr);
|
||
int new_priority;
|
||
|
||
if (targetm.sched.adjust_priority)
|
||
new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
|
||
else
|
||
new_priority = priority;
|
||
|
||
/* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
|
||
EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
|
||
INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
|
||
EXPR_PRIORITY_ADJ (expr), new_priority);
|
||
|
||
return new_priority;
|
||
}
|
||
|
||
/* Rank two available exprs for schedule. Never return 0 here. */
|
||
static int
|
||
sel_rank_for_schedule (const void *x, const void *y)
|
||
{
|
||
expr_t tmp = *(const expr_t *) y;
|
||
expr_t tmp2 = *(const expr_t *) x;
|
||
insn_t tmp_insn, tmp2_insn;
|
||
vinsn_t tmp_vinsn, tmp2_vinsn;
|
||
int val;
|
||
|
||
tmp_vinsn = EXPR_VINSN (tmp);
|
||
tmp2_vinsn = EXPR_VINSN (tmp2);
|
||
tmp_insn = EXPR_INSN_RTX (tmp);
|
||
tmp2_insn = EXPR_INSN_RTX (tmp2);
|
||
|
||
/* Schedule debug insns as early as possible. */
|
||
if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
|
||
return -1;
|
||
else if (DEBUG_INSN_P (tmp2_insn))
|
||
return 1;
|
||
|
||
/* Prefer SCHED_GROUP_P insns to any others. */
|
||
if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
|
||
{
|
||
if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
|
||
return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
|
||
|
||
/* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
|
||
cannot be cloned. */
|
||
if (VINSN_UNIQUE_P (tmp2_vinsn))
|
||
return 1;
|
||
return -1;
|
||
}
|
||
|
||
/* Discourage scheduling of speculative checks. */
|
||
val = (sel_insn_is_speculation_check (tmp_insn)
|
||
- sel_insn_is_speculation_check (tmp2_insn));
|
||
if (val)
|
||
return val;
|
||
|
||
/* Prefer not scheduled insn over scheduled one. */
|
||
if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
|
||
{
|
||
val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
|
||
if (val)
|
||
return val;
|
||
}
|
||
|
||
/* Prefer jump over non-jump instruction. */
|
||
if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
|
||
return -1;
|
||
else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
|
||
return 1;
|
||
|
||
/* Prefer an expr with non-zero usefulness. */
|
||
int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
|
||
|
||
if (u1 == 0)
|
||
{
|
||
if (u2 == 0)
|
||
u1 = u2 = 1;
|
||
else
|
||
return 1;
|
||
}
|
||
else if (u2 == 0)
|
||
return -1;
|
||
|
||
/* Prefer an expr with greater priority. */
|
||
val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
|
||
- u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
|
||
if (val)
|
||
return val;
|
||
|
||
if (spec_info != NULL && spec_info->mask != 0)
|
||
/* This code was taken from haifa-sched.c: rank_for_schedule (). */
|
||
{
|
||
ds_t ds1, ds2;
|
||
dw_t dw1, dw2;
|
||
int dw;
|
||
|
||
ds1 = EXPR_SPEC_DONE_DS (tmp);
|
||
if (ds1)
|
||
dw1 = ds_weak (ds1);
|
||
else
|
||
dw1 = NO_DEP_WEAK;
|
||
|
||
ds2 = EXPR_SPEC_DONE_DS (tmp2);
|
||
if (ds2)
|
||
dw2 = ds_weak (ds2);
|
||
else
|
||
dw2 = NO_DEP_WEAK;
|
||
|
||
dw = dw2 - dw1;
|
||
if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
|
||
return dw;
|
||
}
|
||
|
||
/* Prefer an old insn to a bookkeeping insn. */
|
||
if (INSN_UID (tmp_insn) < first_emitted_uid
|
||
&& INSN_UID (tmp2_insn) >= first_emitted_uid)
|
||
return -1;
|
||
if (INSN_UID (tmp_insn) >= first_emitted_uid
|
||
&& INSN_UID (tmp2_insn) < first_emitted_uid)
|
||
return 1;
|
||
|
||
/* Prefer an insn with smaller UID, as a last resort.
|
||
We can't safely use INSN_LUID as it is defined only for those insns
|
||
that are in the stream. */
|
||
return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
|
||
}
|
||
|
||
/* Filter out expressions from av set pointed to by AV_PTR
|
||
that are pipelined too many times. */
|
||
static void
|
||
process_pipelined_exprs (av_set_t *av_ptr)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator si;
|
||
|
||
/* Don't pipeline already pipelined code as that would increase
|
||
number of unnecessary register moves. */
|
||
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
||
{
|
||
if (EXPR_SCHED_TIMES (expr)
|
||
>= param_selsched_max_sched_times)
|
||
av_set_iter_remove (&si);
|
||
}
|
||
}
|
||
|
||
/* Filter speculative insns from AV_PTR if we don't want them. */
|
||
static void
|
||
process_spec_exprs (av_set_t *av_ptr)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator si;
|
||
|
||
if (spec_info == NULL)
|
||
return;
|
||
|
||
/* Scan *AV_PTR to find out if we want to consider speculative
|
||
instructions for scheduling. */
|
||
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
||
{
|
||
ds_t ds;
|
||
|
||
ds = EXPR_SPEC_DONE_DS (expr);
|
||
|
||
/* The probability of a success is too low - don't speculate. */
|
||
if ((ds & SPECULATIVE)
|
||
&& (ds_weak (ds) < spec_info->data_weakness_cutoff
|
||
|| EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
|
||
|| (pipelining_p && false
|
||
&& (ds & DATA_SPEC)
|
||
&& (ds & CONTROL_SPEC))))
|
||
{
|
||
av_set_iter_remove (&si);
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Search for any use-like insns in AV_PTR and decide on scheduling
|
||
them. Return one when found, and NULL otherwise.
|
||
Note that we check here whether a USE could be scheduled to avoid
|
||
an infinite loop later. */
|
||
static expr_t
|
||
process_use_exprs (av_set_t *av_ptr)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator si;
|
||
bool uses_present_p = false;
|
||
bool try_uses_p = true;
|
||
|
||
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
||
{
|
||
/* This will also initialize INSN_CODE for later use. */
|
||
if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
|
||
{
|
||
/* If we have a USE in *AV_PTR that was not scheduled yet,
|
||
do so because it will do good only. */
|
||
if (EXPR_SCHED_TIMES (expr) <= 0)
|
||
{
|
||
if (EXPR_TARGET_AVAILABLE (expr) == 1)
|
||
return expr;
|
||
|
||
av_set_iter_remove (&si);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (pipelining_p);
|
||
|
||
uses_present_p = true;
|
||
}
|
||
}
|
||
else
|
||
try_uses_p = false;
|
||
}
|
||
|
||
if (uses_present_p)
|
||
{
|
||
/* If we don't want to schedule any USEs right now and we have some
|
||
in *AV_PTR, remove them, else just return the first one found. */
|
||
if (!try_uses_p)
|
||
{
|
||
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
||
if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
|
||
av_set_iter_remove (&si);
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
||
{
|
||
gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
|
||
|
||
if (EXPR_TARGET_AVAILABLE (expr) == 1)
|
||
return expr;
|
||
|
||
av_set_iter_remove (&si);
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
|
||
EXPR's history of changes. */
|
||
static bool
|
||
vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
|
||
{
|
||
vinsn_t vinsn, expr_vinsn;
|
||
int n;
|
||
unsigned i;
|
||
|
||
/* Start with checking expr itself and then proceed with all the old forms
|
||
of expr taken from its history vector. */
|
||
for (i = 0, expr_vinsn = EXPR_VINSN (expr);
|
||
expr_vinsn;
|
||
expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
|
||
? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
|
||
: NULL))
|
||
FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
|
||
if (VINSN_SEPARABLE_P (vinsn))
|
||
{
|
||
if (vinsn_equal_p (vinsn, expr_vinsn))
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
/* For non-separable instructions, the blocking insn can have
|
||
another pattern due to substitution, and we can't choose
|
||
different register as in the above case. Check all registers
|
||
being written instead. */
|
||
if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
|
||
VINSN_REG_SETS (expr_vinsn)))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if either of expressions from ORIG_OPS can be blocked
|
||
by previously created bookkeeping code. STATIC_PARAMS points to static
|
||
parameters of move_op. */
|
||
static bool
|
||
av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator iter;
|
||
moveop_static_params_p sparams;
|
||
|
||
/* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
|
||
created while scheduling on another fence. */
|
||
FOR_EACH_EXPR (expr, iter, orig_ops)
|
||
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
|
||
return true;
|
||
|
||
gcc_assert (code_motion_path_driver_info == &move_op_hooks);
|
||
sparams = (moveop_static_params_p) static_params;
|
||
|
||
/* Expressions can be also blocked by bookkeeping created during current
|
||
move_op. */
|
||
if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
|
||
FOR_EACH_EXPR (expr, iter, orig_ops)
|
||
if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
|
||
return true;
|
||
|
||
/* Expressions in ORIG_OPS may have wrong destination register due to
|
||
renaming. Check with the right register instead. */
|
||
if (sparams->dest && REG_P (sparams->dest))
|
||
{
|
||
rtx reg = sparams->dest;
|
||
vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
|
||
|
||
if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
|
||
|| register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
|
||
|| register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Clear VINSN_VEC and detach vinsns. */
|
||
static void
|
||
vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
|
||
{
|
||
unsigned len = vinsn_vec->length ();
|
||
if (len > 0)
|
||
{
|
||
vinsn_t vinsn;
|
||
int n;
|
||
|
||
FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
|
||
vinsn_detach (vinsn);
|
||
vinsn_vec->block_remove (0, len);
|
||
}
|
||
}
|
||
|
||
/* Add the vinsn of EXPR to the VINSN_VEC. */
|
||
static void
|
||
vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
|
||
{
|
||
vinsn_attach (EXPR_VINSN (expr));
|
||
vinsn_vec->safe_push (EXPR_VINSN (expr));
|
||
}
|
||
|
||
/* Free the vector representing blocked expressions. */
|
||
static void
|
||
vinsn_vec_free (vinsn_vec_t &vinsn_vec)
|
||
{
|
||
vinsn_vec.release ();
|
||
}
|
||
|
||
/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
|
||
|
||
void sel_add_to_insn_priority (rtx insn, int amount)
|
||
{
|
||
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
|
||
INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
|
||
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
|
||
}
|
||
|
||
/* Turn AV into a vector, filter inappropriate insns and sort it. Return
|
||
true if there is something to schedule. BNDS and FENCE are current
|
||
boundaries and fence, respectively. If we need to stall for some cycles
|
||
before an expr from AV would become available, write this number to
|
||
*PNEED_STALL. */
|
||
static bool
|
||
fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
|
||
int *pneed_stall)
|
||
{
|
||
av_set_iterator si;
|
||
expr_t expr;
|
||
int sched_next_worked = 0, stalled, n;
|
||
static int av_max_prio, est_ticks_till_branch;
|
||
int min_need_stall = -1;
|
||
deps_t dc = BND_DC (BLIST_BND (bnds));
|
||
|
||
/* Bail out early when the ready list contained only USEs/CLOBBERs that are
|
||
already scheduled. */
|
||
if (av == NULL)
|
||
return false;
|
||
|
||
/* Empty vector from the previous stuff. */
|
||
if (vec_av_set.length () > 0)
|
||
vec_av_set.block_remove (0, vec_av_set.length ());
|
||
|
||
/* Turn the set into a vector for sorting and call sel_target_adjust_priority
|
||
for each insn. */
|
||
gcc_assert (vec_av_set.is_empty ());
|
||
FOR_EACH_EXPR (expr, si, av)
|
||
{
|
||
vec_av_set.safe_push (expr);
|
||
|
||
gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
|
||
|
||
/* Adjust priority using target backend hook. */
|
||
sel_target_adjust_priority (expr);
|
||
}
|
||
|
||
/* Sort the vector. */
|
||
vec_av_set.qsort (sel_rank_for_schedule);
|
||
|
||
/* We record maximal priority of insns in av set for current instruction
|
||
group. */
|
||
if (FENCE_STARTS_CYCLE_P (fence))
|
||
av_max_prio = est_ticks_till_branch = INT_MIN;
|
||
|
||
/* Filter out inappropriate expressions. Loop's direction is reversed to
|
||
visit "best" instructions first. We assume that vec::unordered_remove
|
||
moves last element in place of one being deleted. */
|
||
for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
|
||
{
|
||
expr_t expr = vec_av_set[n];
|
||
insn_t insn = EXPR_INSN_RTX (expr);
|
||
signed char target_available;
|
||
bool is_orig_reg_p = true;
|
||
int need_cycles, new_prio;
|
||
bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
|
||
|
||
/* Don't allow any insns other than from SCHED_GROUP if we have one. */
|
||
if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
|
||
{
|
||
vec_av_set.unordered_remove (n);
|
||
continue;
|
||
}
|
||
|
||
/* Set number of sched_next insns (just in case there
|
||
could be several). */
|
||
if (FENCE_SCHED_NEXT (fence))
|
||
sched_next_worked++;
|
||
|
||
/* Check all liveness requirements and try renaming.
|
||
FIXME: try to minimize calls to this. */
|
||
target_available = EXPR_TARGET_AVAILABLE (expr);
|
||
|
||
/* If insn was already scheduled on the current fence,
|
||
set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
|
||
if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
|
||
&& !fence_insn_p)
|
||
target_available = -1;
|
||
|
||
/* If the availability of the EXPR is invalidated by the insertion of
|
||
bookkeeping earlier, make sure that we won't choose this expr for
|
||
scheduling if it's not separable, and if it is separable, then
|
||
we have to recompute the set of available registers for it. */
|
||
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
|
||
{
|
||
vec_av_set.unordered_remove (n);
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
|
||
INSN_UID (insn));
|
||
continue;
|
||
}
|
||
|
||
if (target_available == true)
|
||
{
|
||
/* Do nothing -- we can use an existing register. */
|
||
is_orig_reg_p = EXPR_SEPARABLE_P (expr);
|
||
}
|
||
else if (/* Non-separable instruction will never
|
||
get another register. */
|
||
(target_available == false
|
||
&& !EXPR_SEPARABLE_P (expr))
|
||
/* Don't try to find a register for low-priority expression. */
|
||
|| (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
|
||
/* ??? FIXME: Don't try to rename data speculation. */
|
||
|| (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
|
||
|| ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
|
||
{
|
||
vec_av_set.unordered_remove (n);
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Expr %d has no suitable target register\n",
|
||
INSN_UID (insn));
|
||
|
||
/* A fence insn should not get here. */
|
||
gcc_assert (!fence_insn_p);
|
||
continue;
|
||
}
|
||
|
||
/* At this point a fence insn should always be available. */
|
||
gcc_assert (!fence_insn_p
|
||
|| INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
|
||
|
||
/* Filter expressions that need to be renamed or speculated when
|
||
pipelining, because compensating register copies or speculation
|
||
checks are likely to be placed near the beginning of the loop,
|
||
causing a stall. */
|
||
if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
|
||
&& (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
|
||
{
|
||
/* Estimation of number of cycles until loop branch for
|
||
renaming/speculation to be successful. */
|
||
int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
|
||
|
||
if ((int) current_loop_nest->ninsns < 9)
|
||
{
|
||
vec_av_set.unordered_remove (n);
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Pipelining expr %d will likely cause stall\n",
|
||
INSN_UID (insn));
|
||
continue;
|
||
}
|
||
|
||
if ((int) current_loop_nest->ninsns - num_insns_scheduled
|
||
< need_n_ticks_till_branch * issue_rate / 2
|
||
&& est_ticks_till_branch < need_n_ticks_till_branch)
|
||
{
|
||
vec_av_set.unordered_remove (n);
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Pipelining expr %d will likely cause stall\n",
|
||
INSN_UID (insn));
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* We want to schedule speculation checks as late as possible. Discard
|
||
them from av set if there are instructions with higher priority. */
|
||
if (sel_insn_is_speculation_check (insn)
|
||
&& EXPR_PRIORITY (expr) < av_max_prio)
|
||
{
|
||
stalled++;
|
||
min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
|
||
vec_av_set.unordered_remove (n);
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Delaying speculation check %d until its first use\n",
|
||
INSN_UID (insn));
|
||
continue;
|
||
}
|
||
|
||
/* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
|
||
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
||
av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
|
||
|
||
/* Don't allow any insns whose data is not yet ready.
|
||
Check first whether we've already tried them and failed. */
|
||
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
|
||
{
|
||
need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
|
||
- FENCE_CYCLE (fence));
|
||
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
||
est_ticks_till_branch = MAX (est_ticks_till_branch,
|
||
EXPR_PRIORITY (expr) + need_cycles);
|
||
|
||
if (need_cycles > 0)
|
||
{
|
||
stalled++;
|
||
min_need_stall = (min_need_stall < 0
|
||
? need_cycles
|
||
: MIN (min_need_stall, need_cycles));
|
||
vec_av_set.unordered_remove (n);
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Expr %d is not ready until cycle %d (cached)\n",
|
||
INSN_UID (insn),
|
||
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Now resort to dependence analysis to find whether EXPR might be
|
||
stalled due to dependencies from FENCE's context. */
|
||
need_cycles = tick_check_p (expr, dc, fence);
|
||
new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
|
||
|
||
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
||
est_ticks_till_branch = MAX (est_ticks_till_branch,
|
||
new_prio);
|
||
|
||
if (need_cycles > 0)
|
||
{
|
||
if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
|
||
{
|
||
int new_size = INSN_UID (insn) * 3 / 2;
|
||
|
||
FENCE_READY_TICKS (fence)
|
||
= (int *) xrecalloc (FENCE_READY_TICKS (fence),
|
||
new_size, FENCE_READY_TICKS_SIZE (fence),
|
||
sizeof (int));
|
||
}
|
||
FENCE_READY_TICKS (fence)[INSN_UID (insn)]
|
||
= FENCE_CYCLE (fence) + need_cycles;
|
||
|
||
stalled++;
|
||
min_need_stall = (min_need_stall < 0
|
||
? need_cycles
|
||
: MIN (min_need_stall, need_cycles));
|
||
|
||
vec_av_set.unordered_remove (n);
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Expr %d is not ready yet until cycle %d\n",
|
||
INSN_UID (insn),
|
||
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
|
||
continue;
|
||
}
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Expr %d is ok\n", INSN_UID (insn));
|
||
min_need_stall = 0;
|
||
}
|
||
|
||
/* Clear SCHED_NEXT. */
|
||
if (FENCE_SCHED_NEXT (fence))
|
||
{
|
||
gcc_assert (sched_next_worked == 1);
|
||
FENCE_SCHED_NEXT (fence) = NULL;
|
||
}
|
||
|
||
/* No need to stall if this variable was not initialized. */
|
||
if (min_need_stall < 0)
|
||
min_need_stall = 0;
|
||
|
||
if (vec_av_set.is_empty ())
|
||
{
|
||
/* We need to set *pneed_stall here, because later we skip this code
|
||
when ready list is empty. */
|
||
*pneed_stall = min_need_stall;
|
||
return false;
|
||
}
|
||
else
|
||
gcc_assert (min_need_stall == 0);
|
||
|
||
/* Sort the vector. */
|
||
vec_av_set.qsort (sel_rank_for_schedule);
|
||
|
||
if (sched_verbose >= 4)
|
||
{
|
||
sel_print ("Total ready exprs: %d, stalled: %d\n",
|
||
vec_av_set.length (), stalled);
|
||
sel_print ("Sorted av set (%d): ", vec_av_set.length ());
|
||
FOR_EACH_VEC_ELT (vec_av_set, n, expr)
|
||
dump_expr (expr);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
*pneed_stall = 0;
|
||
return true;
|
||
}
|
||
|
||
/* Convert a vectored and sorted av set to the ready list that
|
||
the rest of the backend wants to see. */
|
||
static void
|
||
convert_vec_av_set_to_ready (void)
|
||
{
|
||
int n;
|
||
expr_t expr;
|
||
|
||
/* Allocate and fill the ready list from the sorted vector. */
|
||
ready.n_ready = vec_av_set.length ();
|
||
ready.first = ready.n_ready - 1;
|
||
|
||
gcc_assert (ready.n_ready > 0);
|
||
|
||
if (ready.n_ready > max_issue_size)
|
||
{
|
||
max_issue_size = ready.n_ready;
|
||
sched_extend_ready_list (ready.n_ready);
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (vec_av_set, n, expr)
|
||
{
|
||
vinsn_t vi = EXPR_VINSN (expr);
|
||
insn_t insn = VINSN_INSN_RTX (vi);
|
||
|
||
ready_try[n] = 0;
|
||
ready.vec[n] = insn;
|
||
}
|
||
}
|
||
|
||
/* Initialize ready list from *AV_PTR for the max_issue () call.
|
||
If any unrecognizable insn found in *AV_PTR, return it (and skip
|
||
max_issue). BND and FENCE are current boundary and fence,
|
||
respectively. If we need to stall for some cycles before an expr
|
||
from *AV_PTR would become available, write this number to *PNEED_STALL. */
|
||
static expr_t
|
||
fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
|
||
int *pneed_stall)
|
||
{
|
||
expr_t expr;
|
||
|
||
/* We do not support multiple boundaries per fence. */
|
||
gcc_assert (BLIST_NEXT (bnds) == NULL);
|
||
|
||
/* Process expressions required special handling, i.e. pipelined,
|
||
speculative and recog() < 0 expressions first. */
|
||
process_pipelined_exprs (av_ptr);
|
||
process_spec_exprs (av_ptr);
|
||
|
||
/* A USE could be scheduled immediately. */
|
||
expr = process_use_exprs (av_ptr);
|
||
if (expr)
|
||
{
|
||
*pneed_stall = 0;
|
||
return expr;
|
||
}
|
||
|
||
/* Turn the av set to a vector for sorting. */
|
||
if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
|
||
{
|
||
ready.n_ready = 0;
|
||
return NULL;
|
||
}
|
||
|
||
/* Build the final ready list. */
|
||
convert_vec_av_set_to_ready ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
|
||
static bool
|
||
sel_dfa_new_cycle (insn_t insn, fence_t fence)
|
||
{
|
||
int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
|
||
? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
|
||
: FENCE_CYCLE (fence) - 1;
|
||
bool res = false;
|
||
int sort_p = 0;
|
||
|
||
if (!targetm.sched.dfa_new_cycle)
|
||
return false;
|
||
|
||
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
||
|
||
while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
|
||
insn, last_scheduled_cycle,
|
||
FENCE_CYCLE (fence), &sort_p))
|
||
{
|
||
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
|
||
advance_one_cycle (fence);
|
||
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
||
res = true;
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Invoke reorder* target hooks on the ready list. Return the number of insns
|
||
we can issue. FENCE is the current fence. */
|
||
static int
|
||
invoke_reorder_hooks (fence_t fence)
|
||
{
|
||
int issue_more;
|
||
bool ran_hook = false;
|
||
|
||
/* Call the reorder hook at the beginning of the cycle, and call
|
||
the reorder2 hook in the middle of the cycle. */
|
||
if (FENCE_ISSUED_INSNS (fence) == 0)
|
||
{
|
||
if (targetm.sched.reorder
|
||
&& !SCHED_GROUP_P (ready_element (&ready, 0))
|
||
&& ready.n_ready > 1)
|
||
{
|
||
/* Don't give reorder the most prioritized insn as it can break
|
||
pipelining. */
|
||
if (pipelining_p)
|
||
--ready.n_ready;
|
||
|
||
issue_more
|
||
= targetm.sched.reorder (sched_dump, sched_verbose,
|
||
ready_lastpos (&ready),
|
||
&ready.n_ready, FENCE_CYCLE (fence));
|
||
|
||
if (pipelining_p)
|
||
++ready.n_ready;
|
||
|
||
ran_hook = true;
|
||
}
|
||
else
|
||
/* Initialize can_issue_more for variable_issue. */
|
||
issue_more = issue_rate;
|
||
}
|
||
else if (targetm.sched.reorder2
|
||
&& !SCHED_GROUP_P (ready_element (&ready, 0)))
|
||
{
|
||
if (ready.n_ready == 1)
|
||
issue_more =
|
||
targetm.sched.reorder2 (sched_dump, sched_verbose,
|
||
ready_lastpos (&ready),
|
||
&ready.n_ready, FENCE_CYCLE (fence));
|
||
else
|
||
{
|
||
if (pipelining_p)
|
||
--ready.n_ready;
|
||
|
||
issue_more =
|
||
targetm.sched.reorder2 (sched_dump, sched_verbose,
|
||
ready.n_ready
|
||
? ready_lastpos (&ready) : NULL,
|
||
&ready.n_ready, FENCE_CYCLE (fence));
|
||
|
||
if (pipelining_p)
|
||
++ready.n_ready;
|
||
}
|
||
|
||
ran_hook = true;
|
||
}
|
||
else
|
||
issue_more = FENCE_ISSUE_MORE (fence);
|
||
|
||
/* Ensure that ready list and vec_av_set are in line with each other,
|
||
i.e. vec_av_set[i] == ready_element (&ready, i). */
|
||
if (issue_more && ran_hook)
|
||
{
|
||
int i, j, n;
|
||
rtx_insn **arr = ready.vec;
|
||
expr_t *vec = vec_av_set.address ();
|
||
|
||
for (i = 0, n = ready.n_ready; i < n; i++)
|
||
if (EXPR_INSN_RTX (vec[i]) != arr[i])
|
||
{
|
||
for (j = i; j < n; j++)
|
||
if (EXPR_INSN_RTX (vec[j]) == arr[i])
|
||
break;
|
||
gcc_assert (j < n);
|
||
|
||
std::swap (vec[i], vec[j]);
|
||
}
|
||
}
|
||
|
||
return issue_more;
|
||
}
|
||
|
||
/* Return an EXPR corresponding to INDEX element of ready list, if
|
||
FOLLOW_READY_ELEMENT is true (i.e., an expr of
|
||
ready_element (&ready, INDEX) will be returned), and to INDEX element of
|
||
ready.vec otherwise. */
|
||
static inline expr_t
|
||
find_expr_for_ready (int index, bool follow_ready_element)
|
||
{
|
||
expr_t expr;
|
||
int real_index;
|
||
|
||
real_index = follow_ready_element ? ready.first - index : index;
|
||
|
||
expr = vec_av_set[real_index];
|
||
gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Calculate insns worth trying via lookahead_guard hook. Return a number
|
||
of such insns found. */
|
||
static int
|
||
invoke_dfa_lookahead_guard (void)
|
||
{
|
||
int i, n;
|
||
bool have_hook
|
||
= targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("ready after reorder: ");
|
||
|
||
for (i = 0, n = 0; i < ready.n_ready; i++)
|
||
{
|
||
expr_t expr;
|
||
insn_t insn;
|
||
int r;
|
||
|
||
/* In this loop insn is Ith element of the ready list given by
|
||
ready_element, not Ith element of ready.vec. */
|
||
insn = ready_element (&ready, i);
|
||
|
||
if (! have_hook || i == 0)
|
||
r = 0;
|
||
else
|
||
r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
|
||
|
||
gcc_assert (INSN_CODE (insn) >= 0);
|
||
|
||
/* Only insns with ready_try = 0 can get here
|
||
from fill_ready_list. */
|
||
gcc_assert (ready_try [i] == 0);
|
||
ready_try[i] = r;
|
||
if (!r)
|
||
n++;
|
||
|
||
expr = find_expr_for_ready (i, true);
|
||
|
||
if (sched_verbose >= 2)
|
||
{
|
||
dump_vinsn (EXPR_VINSN (expr));
|
||
sel_print (":%d; ", ready_try[i]);
|
||
}
|
||
}
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("\n");
|
||
return n;
|
||
}
|
||
|
||
/* Calculate the number of privileged insns and return it. */
|
||
static int
|
||
calculate_privileged_insns (void)
|
||
{
|
||
expr_t cur_expr, min_spec_expr = NULL;
|
||
int privileged_n = 0, i;
|
||
|
||
for (i = 0; i < ready.n_ready; i++)
|
||
{
|
||
if (ready_try[i])
|
||
continue;
|
||
|
||
if (! min_spec_expr)
|
||
min_spec_expr = find_expr_for_ready (i, true);
|
||
|
||
cur_expr = find_expr_for_ready (i, true);
|
||
|
||
if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
|
||
break;
|
||
|
||
++privileged_n;
|
||
}
|
||
|
||
if (i == ready.n_ready)
|
||
privileged_n = 0;
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("privileged_n: %d insns with SPEC %d\n",
|
||
privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
|
||
return privileged_n;
|
||
}
|
||
|
||
/* Call the rest of the hooks after the choice was made. Return
|
||
the number of insns that still can be issued given that the current
|
||
number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
|
||
and the insn chosen for scheduling, respectively. */
|
||
static int
|
||
invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
|
||
{
|
||
gcc_assert (INSN_P (best_insn));
|
||
|
||
/* First, call dfa_new_cycle, and then variable_issue, if available. */
|
||
sel_dfa_new_cycle (best_insn, fence);
|
||
|
||
if (targetm.sched.variable_issue)
|
||
{
|
||
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
||
issue_more =
|
||
targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
|
||
issue_more);
|
||
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
|
||
}
|
||
else if (!DEBUG_INSN_P (best_insn)
|
||
&& GET_CODE (PATTERN (best_insn)) != USE
|
||
&& GET_CODE (PATTERN (best_insn)) != CLOBBER)
|
||
issue_more--;
|
||
|
||
return issue_more;
|
||
}
|
||
|
||
/* Estimate the cost of issuing INSN on DFA state STATE. */
|
||
static int
|
||
estimate_insn_cost (rtx_insn *insn, state_t state)
|
||
{
|
||
static state_t temp = NULL;
|
||
int cost;
|
||
|
||
if (!temp)
|
||
temp = xmalloc (dfa_state_size);
|
||
|
||
memcpy (temp, state, dfa_state_size);
|
||
cost = state_transition (temp, insn);
|
||
|
||
if (cost < 0)
|
||
return 0;
|
||
else if (cost == 0)
|
||
return 1;
|
||
return cost;
|
||
}
|
||
|
||
/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
|
||
This function properly handles ASMs, USEs etc. */
|
||
static int
|
||
get_expr_cost (expr_t expr, fence_t fence)
|
||
{
|
||
rtx_insn *insn = EXPR_INSN_RTX (expr);
|
||
|
||
if (recog_memoized (insn) < 0)
|
||
{
|
||
if (!FENCE_STARTS_CYCLE_P (fence)
|
||
&& INSN_ASM_P (insn))
|
||
/* This is asm insn which is tryed to be issued on the
|
||
cycle not first. Issue it on the next cycle. */
|
||
return 1;
|
||
else
|
||
/* A USE insn, or something else we don't need to
|
||
understand. We can't pass these directly to
|
||
state_transition because it will trigger a
|
||
fatal error for unrecognizable insns. */
|
||
return 0;
|
||
}
|
||
else
|
||
return estimate_insn_cost (insn, FENCE_STATE (fence));
|
||
}
|
||
|
||
/* Find the best insn for scheduling, either via max_issue or just take
|
||
the most prioritized available. */
|
||
static int
|
||
choose_best_insn (fence_t fence, int privileged_n, int *index)
|
||
{
|
||
int can_issue = 0;
|
||
|
||
if (dfa_lookahead > 0)
|
||
{
|
||
cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
|
||
/* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
|
||
can_issue = max_issue (&ready, privileged_n,
|
||
FENCE_STATE (fence), true, index);
|
||
if (sched_verbose >= 2)
|
||
sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
|
||
can_issue, FENCE_ISSUED_INSNS (fence));
|
||
}
|
||
else
|
||
{
|
||
/* We can't use max_issue; just return the first available element. */
|
||
int i;
|
||
|
||
for (i = 0; i < ready.n_ready; i++)
|
||
{
|
||
expr_t expr = find_expr_for_ready (i, true);
|
||
|
||
if (get_expr_cost (expr, fence) < 1)
|
||
{
|
||
can_issue = can_issue_more;
|
||
*index = i;
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("using %dth insn from the ready list\n", i + 1);
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (i == ready.n_ready)
|
||
{
|
||
can_issue = 0;
|
||
*index = -1;
|
||
}
|
||
}
|
||
|
||
return can_issue;
|
||
}
|
||
|
||
/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
|
||
BNDS and FENCE are current boundaries and scheduling fence respectively.
|
||
Return the expr found and NULL if nothing can be issued atm.
|
||
Write to PNEED_STALL the number of cycles to stall if no expr was found. */
|
||
static expr_t
|
||
find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
|
||
int *pneed_stall)
|
||
{
|
||
expr_t best;
|
||
|
||
/* Choose the best insn for scheduling via:
|
||
1) sorting the ready list based on priority;
|
||
2) calling the reorder hook;
|
||
3) calling max_issue. */
|
||
best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
|
||
if (best == NULL && ready.n_ready > 0)
|
||
{
|
||
int privileged_n, index;
|
||
|
||
can_issue_more = invoke_reorder_hooks (fence);
|
||
if (can_issue_more > 0)
|
||
{
|
||
/* Try choosing the best insn until we find one that is could be
|
||
scheduled due to liveness restrictions on its destination register.
|
||
In the future, we'd like to choose once and then just probe insns
|
||
in the order of their priority. */
|
||
invoke_dfa_lookahead_guard ();
|
||
privileged_n = calculate_privileged_insns ();
|
||
can_issue_more = choose_best_insn (fence, privileged_n, &index);
|
||
if (can_issue_more)
|
||
best = find_expr_for_ready (index, true);
|
||
}
|
||
/* We had some available insns, so if we can't issue them,
|
||
we have a stall. */
|
||
if (can_issue_more == 0)
|
||
{
|
||
best = NULL;
|
||
*pneed_stall = 1;
|
||
}
|
||
}
|
||
|
||
if (best != NULL)
|
||
{
|
||
can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
|
||
can_issue_more);
|
||
if (targetm.sched.variable_issue
|
||
&& can_issue_more == 0)
|
||
*pneed_stall = 1;
|
||
}
|
||
|
||
if (sched_verbose >= 2)
|
||
{
|
||
if (best != NULL)
|
||
{
|
||
sel_print ("Best expression (vliw form): ");
|
||
dump_expr (best);
|
||
sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
|
||
}
|
||
else
|
||
sel_print ("No best expr found!\n");
|
||
}
|
||
|
||
return best;
|
||
}
|
||
|
||
|
||
/* Functions that implement the core of the scheduler. */
|
||
|
||
|
||
/* Emit an instruction from EXPR with SEQNO and VINSN after
|
||
PLACE_TO_INSERT. */
|
||
static insn_t
|
||
emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
|
||
insn_t place_to_insert)
|
||
{
|
||
/* This assert fails when we have identical instructions
|
||
one of which dominates the other. In this case move_op ()
|
||
finds the first instruction and doesn't search for second one.
|
||
The solution would be to compute av_set after the first found
|
||
insn and, if insn present in that set, continue searching.
|
||
For now we workaround this issue in move_op. */
|
||
gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
|
||
|
||
if (EXPR_WAS_RENAMED (expr))
|
||
{
|
||
unsigned regno = expr_dest_regno (expr);
|
||
|
||
if (HARD_REGISTER_NUM_P (regno))
|
||
{
|
||
df_set_regs_ever_live (regno, true);
|
||
reg_rename_tick[regno] = ++reg_rename_this_tick;
|
||
}
|
||
}
|
||
|
||
return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
|
||
place_to_insert);
|
||
}
|
||
|
||
/* Return TRUE if BB can hold bookkeeping code. */
|
||
static bool
|
||
block_valid_for_bookkeeping_p (basic_block bb)
|
||
{
|
||
insn_t bb_end = BB_END (bb);
|
||
|
||
if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
|
||
return false;
|
||
|
||
if (INSN_P (bb_end))
|
||
{
|
||
if (INSN_SCHED_TIMES (bb_end) > 0)
|
||
return false;
|
||
}
|
||
else
|
||
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
|
||
into E2->dest, except from E1->src (there may be a sequence of empty basic
|
||
blocks between E1->src and E2->dest). Return found block, or NULL if new
|
||
one must be created. If LAX holds, don't assume there is a simple path
|
||
from E1->src to E2->dest. */
|
||
static basic_block
|
||
find_block_for_bookkeeping (edge e1, edge e2, bool lax)
|
||
{
|
||
basic_block candidate_block = NULL;
|
||
edge e;
|
||
|
||
/* Loop over edges from E1 to E2, inclusive. */
|
||
for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
|
||
EDGE_SUCC (e->dest, 0))
|
||
{
|
||
if (EDGE_COUNT (e->dest->preds) == 2)
|
||
{
|
||
if (candidate_block == NULL)
|
||
candidate_block = (EDGE_PRED (e->dest, 0) == e
|
||
? EDGE_PRED (e->dest, 1)->src
|
||
: EDGE_PRED (e->dest, 0)->src);
|
||
else
|
||
/* Found additional edge leading to path from e1 to e2
|
||
from aside. */
|
||
return NULL;
|
||
}
|
||
else if (EDGE_COUNT (e->dest->preds) > 2)
|
||
/* Several edges leading to path from e1 to e2 from aside. */
|
||
return NULL;
|
||
|
||
if (e == e2)
|
||
return ((!lax || candidate_block)
|
||
&& block_valid_for_bookkeeping_p (candidate_block)
|
||
? candidate_block
|
||
: NULL);
|
||
|
||
if (lax && EDGE_COUNT (e->dest->succs) != 1)
|
||
return NULL;
|
||
}
|
||
|
||
if (lax)
|
||
return NULL;
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Create new basic block for bookkeeping code for path(s) incoming into
|
||
E2->dest, except from E1->src. Return created block. */
|
||
static basic_block
|
||
create_block_for_bookkeeping (edge e1, edge e2)
|
||
{
|
||
basic_block new_bb, bb = e2->dest;
|
||
|
||
/* Check that we don't spoil the loop structure. */
|
||
if (current_loop_nest)
|
||
{
|
||
basic_block latch = current_loop_nest->latch;
|
||
|
||
/* We do not split header. */
|
||
gcc_assert (e2->dest != current_loop_nest->header);
|
||
|
||
/* We do not redirect the only edge to the latch block. */
|
||
gcc_assert (e1->dest != latch
|
||
|| !single_pred_p (latch)
|
||
|| e1 != single_pred_edge (latch));
|
||
}
|
||
|
||
/* Split BB to insert BOOK_INSN there. */
|
||
new_bb = sched_split_block (bb, NULL);
|
||
|
||
/* Move note_list from the upper bb. */
|
||
gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
|
||
BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
|
||
BB_NOTE_LIST (bb) = NULL;
|
||
|
||
gcc_assert (e2->dest == bb);
|
||
|
||
/* Skip block for bookkeeping copy when leaving E1->src. */
|
||
if (e1->flags & EDGE_FALLTHRU)
|
||
sel_redirect_edge_and_branch_force (e1, new_bb);
|
||
else
|
||
sel_redirect_edge_and_branch (e1, new_bb);
|
||
|
||
gcc_assert (e1->dest == new_bb);
|
||
gcc_assert (sel_bb_empty_p (bb));
|
||
|
||
/* To keep basic block numbers in sync between debug and non-debug
|
||
compilations, we have to rotate blocks here. Consider that we
|
||
started from (a,b)->d, (c,d)->e, and d contained only debug
|
||
insns. It would have been removed before if the debug insns
|
||
weren't there, so we'd have split e rather than d. So what we do
|
||
now is to swap the block numbers of new_bb and
|
||
single_succ(new_bb) == e, so that the insns that were in e before
|
||
get the new block number. */
|
||
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
basic_block succ;
|
||
insn_t insn = sel_bb_head (new_bb);
|
||
insn_t last;
|
||
|
||
if (DEBUG_INSN_P (insn)
|
||
&& single_succ_p (new_bb)
|
||
&& (succ = single_succ (new_bb))
|
||
&& succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
|
||
{
|
||
while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
|
||
insn = NEXT_INSN (insn);
|
||
|
||
if (insn == last)
|
||
{
|
||
sel_global_bb_info_def gbi;
|
||
sel_region_bb_info_def rbi;
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("Swapping block ids %i and %i\n",
|
||
new_bb->index, succ->index);
|
||
|
||
std::swap (new_bb->index, succ->index);
|
||
|
||
SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
|
||
SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
|
||
|
||
memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
|
||
memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
|
||
sizeof (gbi));
|
||
memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
|
||
|
||
memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
|
||
memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
|
||
sizeof (rbi));
|
||
memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
|
||
|
||
std::swap (BLOCK_TO_BB (new_bb->index),
|
||
BLOCK_TO_BB (succ->index));
|
||
|
||
std::swap (CONTAINING_RGN (new_bb->index),
|
||
CONTAINING_RGN (succ->index));
|
||
|
||
for (int i = 0; i < current_nr_blocks; i++)
|
||
if (BB_TO_BLOCK (i) == succ->index)
|
||
BB_TO_BLOCK (i) = new_bb->index;
|
||
else if (BB_TO_BLOCK (i) == new_bb->index)
|
||
BB_TO_BLOCK (i) = succ->index;
|
||
|
||
FOR_BB_INSNS (new_bb, insn)
|
||
if (INSN_P (insn))
|
||
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
|
||
|
||
FOR_BB_INSNS (succ, insn)
|
||
if (INSN_P (insn))
|
||
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
|
||
|
||
if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
|
||
bitmap_set_bit (code_motion_visited_blocks, succ->index);
|
||
|
||
gcc_assert (LABEL_P (BB_HEAD (new_bb))
|
||
&& LABEL_P (BB_HEAD (succ)));
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Swapping code labels %i and %i\n",
|
||
CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
|
||
CODE_LABEL_NUMBER (BB_HEAD (succ)));
|
||
|
||
std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
|
||
CODE_LABEL_NUMBER (BB_HEAD (succ)));
|
||
}
|
||
}
|
||
}
|
||
|
||
return bb;
|
||
}
|
||
|
||
/* Return insn after which we must insert bookkeeping code for path(s) incoming
|
||
into E2->dest, except from E1->src. If the returned insn immediately
|
||
precedes a fence, assign that fence to *FENCE_TO_REWIND. */
|
||
static insn_t
|
||
find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
|
||
{
|
||
insn_t place_to_insert;
|
||
/* Find a basic block that can hold bookkeeping. If it can be found, do not
|
||
create new basic block, but insert bookkeeping there. */
|
||
basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
|
||
|
||
if (book_block)
|
||
{
|
||
place_to_insert = BB_END (book_block);
|
||
|
||
/* Don't use a block containing only debug insns for
|
||
bookkeeping, this causes scheduling differences between debug
|
||
and non-debug compilations, for the block would have been
|
||
removed already. */
|
||
if (DEBUG_INSN_P (place_to_insert))
|
||
{
|
||
rtx_insn *insn = sel_bb_head (book_block);
|
||
|
||
while (insn != place_to_insert &&
|
||
(DEBUG_INSN_P (insn) || NOTE_P (insn)))
|
||
insn = NEXT_INSN (insn);
|
||
|
||
if (insn == place_to_insert)
|
||
book_block = NULL;
|
||
}
|
||
}
|
||
|
||
if (!book_block)
|
||
{
|
||
book_block = create_block_for_bookkeeping (e1, e2);
|
||
place_to_insert = BB_END (book_block);
|
||
if (sched_verbose >= 9)
|
||
sel_print ("New block is %i, split from bookkeeping block %i\n",
|
||
EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
|
||
}
|
||
else
|
||
{
|
||
if (sched_verbose >= 9)
|
||
sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
|
||
}
|
||
|
||
*fence_to_rewind = NULL;
|
||
/* If basic block ends with a jump, insert bookkeeping code right before it.
|
||
Notice if we are crossing a fence when taking PREV_INSN. */
|
||
if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
|
||
{
|
||
*fence_to_rewind = flist_lookup (fences, place_to_insert);
|
||
place_to_insert = PREV_INSN (place_to_insert);
|
||
}
|
||
|
||
return place_to_insert;
|
||
}
|
||
|
||
/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
|
||
for JOIN_POINT. */
|
||
static int
|
||
find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
|
||
{
|
||
int seqno;
|
||
|
||
/* Check if we are about to insert bookkeeping copy before a jump, and use
|
||
jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
|
||
rtx_insn *next = NEXT_INSN (place_to_insert);
|
||
if (INSN_P (next)
|
||
&& JUMP_P (next)
|
||
&& BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
|
||
{
|
||
gcc_assert (INSN_SCHED_TIMES (next) == 0);
|
||
seqno = INSN_SEQNO (next);
|
||
}
|
||
else if (INSN_SEQNO (join_point) > 0)
|
||
seqno = INSN_SEQNO (join_point);
|
||
else
|
||
{
|
||
seqno = get_seqno_by_preds (place_to_insert);
|
||
|
||
/* Sometimes the fences can move in such a way that there will be
|
||
no instructions with positive seqno around this bookkeeping.
|
||
This means that there will be no way to get to it by a regular
|
||
fence movement. Never mind because we pick up such pieces for
|
||
rescheduling anyways, so any positive value will do for now. */
|
||
if (seqno < 0)
|
||
{
|
||
gcc_assert (pipelining_p);
|
||
seqno = 1;
|
||
}
|
||
}
|
||
|
||
gcc_assert (seqno > 0);
|
||
return seqno;
|
||
}
|
||
|
||
/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
|
||
NEW_SEQNO to it. Return created insn. */
|
||
static insn_t
|
||
emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
|
||
{
|
||
rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
|
||
|
||
vinsn_t new_vinsn
|
||
= create_vinsn_from_insn_rtx (new_insn_rtx,
|
||
VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
|
||
|
||
insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
|
||
place_to_insert);
|
||
|
||
INSN_SCHED_TIMES (new_insn) = 0;
|
||
bitmap_set_bit (current_copies, INSN_UID (new_insn));
|
||
|
||
return new_insn;
|
||
}
|
||
|
||
/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
|
||
E2->dest, except from E1->src (there may be a sequence of empty blocks
|
||
between E1->src and E2->dest). Return block containing the copy.
|
||
All scheduler data is initialized for the newly created insn. */
|
||
static basic_block
|
||
generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
|
||
{
|
||
insn_t join_point, place_to_insert, new_insn;
|
||
int new_seqno;
|
||
bool need_to_exchange_data_sets;
|
||
fence_t fence_to_rewind;
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
|
||
e2->dest->index);
|
||
|
||
join_point = sel_bb_head (e2->dest);
|
||
place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
|
||
new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
|
||
need_to_exchange_data_sets
|
||
= sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
|
||
|
||
new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
|
||
|
||
if (fence_to_rewind)
|
||
FENCE_INSN (fence_to_rewind) = new_insn;
|
||
|
||
/* When inserting bookkeeping insn in new block, av sets should be
|
||
following: old basic block (that now holds bookkeeping) data sets are
|
||
the same as was before generation of bookkeeping, and new basic block
|
||
(that now hold all other insns of old basic block) data sets are
|
||
invalid. So exchange data sets for these basic blocks as sel_split_block
|
||
mistakenly exchanges them in this case. Cannot do it earlier because
|
||
when single instruction is added to new basic block it should hold NULL
|
||
lv_set. */
|
||
if (need_to_exchange_data_sets)
|
||
exchange_data_sets (BLOCK_FOR_INSN (new_insn),
|
||
BLOCK_FOR_INSN (join_point));
|
||
|
||
stat_bookkeeping_copies++;
|
||
return BLOCK_FOR_INSN (new_insn);
|
||
}
|
||
|
||
/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
|
||
on FENCE, but we are unable to copy them. */
|
||
static void
|
||
remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
/* An expression does not need bookkeeping if it is available on all paths
|
||
from current block to original block and current block dominates
|
||
original block. We check availability on all paths by examining
|
||
EXPR_SPEC; this is not equivalent, because it may be positive even
|
||
if expr is available on all paths (but if expr is not available on
|
||
any path, EXPR_SPEC will be positive). */
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, av_ptr)
|
||
{
|
||
if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
|
||
&& (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
|
||
&& (EXPR_SPEC (expr)
|
||
|| !EXPR_ORIG_BB_INDEX (expr)
|
||
|| !dominated_by_p (CDI_DOMINATORS,
|
||
BASIC_BLOCK_FOR_FN (cfun,
|
||
EXPR_ORIG_BB_INDEX (expr)),
|
||
BLOCK_FOR_INSN (FENCE_INSN (fence)))))
|
||
{
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Expr %d removed because it would need bookkeeping, which "
|
||
"cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
|
||
av_set_iter_remove (&i);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Moving conditional jump through some instructions.
|
||
|
||
Consider example:
|
||
|
||
... <- current scheduling point
|
||
NOTE BASIC BLOCK: <- bb header
|
||
(p8) add r14=r14+0x9;;
|
||
(p8) mov [r14]=r23
|
||
(!p8) jump L1;;
|
||
NOTE BASIC BLOCK:
|
||
...
|
||
|
||
We can schedule jump one cycle earlier, than mov, because they cannot be
|
||
executed together as their predicates are mutually exclusive.
|
||
|
||
This is done in this way: first, new fallthrough basic block is created
|
||
after jump (it is always can be done, because there already should be a
|
||
fallthrough block, where control flow goes in case of predicate being true -
|
||
in our example; otherwise there should be a dependence between those
|
||
instructions and jump and we cannot schedule jump right now);
|
||
next, all instructions between jump and current scheduling point are moved
|
||
to this new block. And the result is this:
|
||
|
||
NOTE BASIC BLOCK:
|
||
(!p8) jump L1 <- current scheduling point
|
||
NOTE BASIC BLOCK: <- bb header
|
||
(p8) add r14=r14+0x9;;
|
||
(p8) mov [r14]=r23
|
||
NOTE BASIC BLOCK:
|
||
...
|
||
*/
|
||
static void
|
||
move_cond_jump (rtx_insn *insn, bnd_t bnd)
|
||
{
|
||
edge ft_edge;
|
||
basic_block block_from, block_next, block_new, block_bnd, bb;
|
||
rtx_insn *next, *prev, *link, *head;
|
||
|
||
block_from = BLOCK_FOR_INSN (insn);
|
||
block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
|
||
prev = BND_TO (bnd);
|
||
|
||
/* Moving of jump should not cross any other jumps or beginnings of new
|
||
basic blocks. The only exception is when we move a jump through
|
||
mutually exclusive insns along fallthru edges. */
|
||
if (flag_checking && block_from != block_bnd)
|
||
{
|
||
bb = block_from;
|
||
for (link = PREV_INSN (insn); link != PREV_INSN (prev);
|
||
link = PREV_INSN (link))
|
||
{
|
||
if (INSN_P (link))
|
||
gcc_assert (sched_insns_conditions_mutex_p (insn, link));
|
||
if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
|
||
{
|
||
gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
|
||
bb = BLOCK_FOR_INSN (link);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Jump is moved to the boundary. */
|
||
next = PREV_INSN (insn);
|
||
BND_TO (bnd) = insn;
|
||
|
||
ft_edge = find_fallthru_edge_from (block_from);
|
||
block_next = ft_edge->dest;
|
||
/* There must be a fallthrough block (or where should go
|
||
control flow in case of false jump predicate otherwise?). */
|
||
gcc_assert (block_next);
|
||
|
||
/* Create new empty basic block after source block. */
|
||
block_new = sel_split_edge (ft_edge);
|
||
gcc_assert (block_new->next_bb == block_next
|
||
&& block_from->next_bb == block_new);
|
||
|
||
/* Move all instructions except INSN to BLOCK_NEW. */
|
||
bb = block_bnd;
|
||
head = BB_HEAD (block_new);
|
||
while (bb != block_from->next_bb)
|
||
{
|
||
rtx_insn *from, *to;
|
||
from = bb == block_bnd ? prev : sel_bb_head (bb);
|
||
to = bb == block_from ? next : sel_bb_end (bb);
|
||
|
||
/* The jump being moved can be the first insn in the block.
|
||
In this case we don't have to move anything in this block. */
|
||
if (NEXT_INSN (to) != from)
|
||
{
|
||
reorder_insns (from, to, head);
|
||
|
||
for (link = to; link != head; link = PREV_INSN (link))
|
||
EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
|
||
head = to;
|
||
}
|
||
|
||
/* Cleanup possibly empty blocks left. */
|
||
block_next = bb->next_bb;
|
||
if (bb != block_from)
|
||
tidy_control_flow (bb, false);
|
||
bb = block_next;
|
||
}
|
||
|
||
/* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
|
||
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
|
||
|
||
gcc_assert (!sel_bb_empty_p (block_from)
|
||
&& !sel_bb_empty_p (block_new));
|
||
|
||
/* Update data sets for BLOCK_NEW to represent that INSN and
|
||
instructions from the other branch of INSN is no longer
|
||
available at BLOCK_NEW. */
|
||
BB_AV_LEVEL (block_new) = global_level;
|
||
gcc_assert (BB_LV_SET (block_new) == NULL);
|
||
BB_LV_SET (block_new) = get_clear_regset_from_pool ();
|
||
update_data_sets (sel_bb_head (block_new));
|
||
|
||
/* INSN is a new basic block header - so prepare its data
|
||
structures and update availability and liveness sets. */
|
||
update_data_sets (insn);
|
||
|
||
if (sched_verbose >= 4)
|
||
sel_print ("Moving jump %d\n", INSN_UID (insn));
|
||
}
|
||
|
||
/* Remove nops generated during move_op for preventing removal of empty
|
||
basic blocks. */
|
||
static void
|
||
remove_temp_moveop_nops (bool full_tidying)
|
||
{
|
||
int i;
|
||
insn_t insn;
|
||
|
||
FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
|
||
{
|
||
gcc_assert (INSN_NOP_P (insn));
|
||
return_nop_to_pool (insn, full_tidying);
|
||
}
|
||
|
||
/* Empty the vector. */
|
||
if (vec_temp_moveop_nops.length () > 0)
|
||
vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
|
||
}
|
||
|
||
/* Records the maximal UID before moving up an instruction. Used for
|
||
distinguishing between bookkeeping copies and original insns. */
|
||
static int max_uid_before_move_op = 0;
|
||
|
||
/* When true, we're always scheduling next insn on the already scheduled code
|
||
to get the right insn data for the following bundling or other passes. */
|
||
static int force_next_insn = 0;
|
||
|
||
/* Remove from AV_VLIW_P all instructions but next when debug counter
|
||
tells us so. Next instruction is fetched from BNDS. */
|
||
static void
|
||
remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
|
||
{
|
||
if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
|
||
/* Leave only the next insn in av_vliw. */
|
||
{
|
||
av_set_iterator av_it;
|
||
expr_t expr;
|
||
bnd_t bnd = BLIST_BND (bnds);
|
||
insn_t next = BND_TO (bnd);
|
||
|
||
gcc_assert (BLIST_NEXT (bnds) == NULL);
|
||
|
||
FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
|
||
if (EXPR_INSN_RTX (expr) != next)
|
||
av_set_iter_remove (&av_it);
|
||
}
|
||
}
|
||
|
||
/* Compute available instructions on BNDS. FENCE is the current fence. Write
|
||
the computed set to *AV_VLIW_P. */
|
||
static void
|
||
compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
|
||
{
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("Boundaries: ");
|
||
dump_blist (bnds);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
for (; bnds; bnds = BLIST_NEXT (bnds))
|
||
{
|
||
bnd_t bnd = BLIST_BND (bnds);
|
||
av_set_t av1_copy;
|
||
insn_t bnd_to = BND_TO (bnd);
|
||
|
||
/* Rewind BND->TO to the basic block header in case some bookkeeping
|
||
instructions were inserted before BND->TO and it needs to be
|
||
adjusted. */
|
||
if (sel_bb_head_p (bnd_to))
|
||
gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
|
||
else
|
||
while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
|
||
{
|
||
bnd_to = PREV_INSN (bnd_to);
|
||
if (sel_bb_head_p (bnd_to))
|
||
break;
|
||
}
|
||
|
||
if (BND_TO (bnd) != bnd_to)
|
||
{
|
||
gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
|
||
FENCE_INSN (fence) = bnd_to;
|
||
BND_TO (bnd) = bnd_to;
|
||
}
|
||
|
||
av_set_clear (&BND_AV (bnd));
|
||
BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
|
||
|
||
av_set_clear (&BND_AV1 (bnd));
|
||
BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
|
||
|
||
moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
|
||
|
||
av1_copy = av_set_copy (BND_AV1 (bnd));
|
||
av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
|
||
}
|
||
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("Available exprs (vliw form): ");
|
||
dump_av_set (*av_vliw_p);
|
||
sel_print ("\n");
|
||
}
|
||
}
|
||
|
||
/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
|
||
expression. When FOR_MOVEOP is true, also replace the register of
|
||
expressions found with the register from EXPR_VLIW. */
|
||
static av_set_t
|
||
find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
|
||
{
|
||
av_set_t expr_seq = NULL;
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
FOR_EACH_EXPR (expr, i, BND_AV (bnd))
|
||
{
|
||
if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
|
||
{
|
||
if (for_moveop)
|
||
{
|
||
/* The sequential expression has the right form to pass
|
||
to move_op except when renaming happened. Put the
|
||
correct register in EXPR then. */
|
||
if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
|
||
{
|
||
if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
|
||
{
|
||
replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
|
||
stat_renamed_scheduled++;
|
||
}
|
||
/* Also put the correct TARGET_AVAILABLE bit on the expr.
|
||
This is needed when renaming came up with original
|
||
register. */
|
||
else if (EXPR_TARGET_AVAILABLE (expr)
|
||
!= EXPR_TARGET_AVAILABLE (expr_vliw))
|
||
{
|
||
gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
|
||
EXPR_TARGET_AVAILABLE (expr) = 1;
|
||
}
|
||
}
|
||
if (EXPR_WAS_SUBSTITUTED (expr))
|
||
stat_substitutions_total++;
|
||
}
|
||
|
||
av_set_add (&expr_seq, expr);
|
||
|
||
/* With substitution inside insn group, it is possible
|
||
that more than one expression in expr_seq will correspond
|
||
to expr_vliw. In this case, choose one as the attempt to
|
||
move both leads to miscompiles. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (for_moveop && sched_verbose >= 2)
|
||
{
|
||
sel_print ("Best expression(s) (sequential form): ");
|
||
dump_av_set (expr_seq);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
return expr_seq;
|
||
}
|
||
|
||
|
||
/* Move nop to previous block. */
|
||
static void ATTRIBUTE_UNUSED
|
||
move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
|
||
{
|
||
insn_t prev_insn, next_insn;
|
||
|
||
gcc_assert (sel_bb_head_p (nop)
|
||
&& prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
|
||
rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
|
||
prev_insn = sel_bb_end (prev_bb);
|
||
next_insn = NEXT_INSN (nop);
|
||
gcc_assert (prev_insn != NULL_RTX
|
||
&& PREV_INSN (note) == prev_insn);
|
||
|
||
SET_NEXT_INSN (prev_insn) = nop;
|
||
SET_PREV_INSN (nop) = prev_insn;
|
||
|
||
SET_PREV_INSN (note) = nop;
|
||
SET_NEXT_INSN (note) = next_insn;
|
||
|
||
SET_NEXT_INSN (nop) = note;
|
||
SET_PREV_INSN (next_insn) = note;
|
||
|
||
BB_END (prev_bb) = nop;
|
||
BLOCK_FOR_INSN (nop) = prev_bb;
|
||
}
|
||
|
||
/* Prepare a place to insert the chosen expression on BND. */
|
||
static insn_t
|
||
prepare_place_to_insert (bnd_t bnd)
|
||
{
|
||
insn_t place_to_insert;
|
||
|
||
/* Init place_to_insert before calling move_op, as the later
|
||
can possibly remove BND_TO (bnd). */
|
||
if (/* If this is not the first insn scheduled. */
|
||
BND_PTR (bnd))
|
||
{
|
||
/* Add it after last scheduled. */
|
||
place_to_insert = ILIST_INSN (BND_PTR (bnd));
|
||
if (DEBUG_INSN_P (place_to_insert))
|
||
{
|
||
ilist_t l = BND_PTR (bnd);
|
||
while ((l = ILIST_NEXT (l)) &&
|
||
DEBUG_INSN_P (ILIST_INSN (l)))
|
||
;
|
||
if (!l)
|
||
place_to_insert = NULL;
|
||
}
|
||
}
|
||
else
|
||
place_to_insert = NULL;
|
||
|
||
if (!place_to_insert)
|
||
{
|
||
/* Add it before BND_TO. The difference is in the
|
||
basic block, where INSN will be added. */
|
||
place_to_insert = get_nop_from_pool (BND_TO (bnd));
|
||
gcc_assert (BLOCK_FOR_INSN (place_to_insert)
|
||
== BLOCK_FOR_INSN (BND_TO (bnd)));
|
||
}
|
||
|
||
return place_to_insert;
|
||
}
|
||
|
||
/* Find original instructions for EXPR_SEQ and move it to BND boundary.
|
||
Return the expression to emit in C_EXPR. */
|
||
static bool
|
||
move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
|
||
av_set_t expr_seq, expr_t c_expr)
|
||
{
|
||
bool b, should_move;
|
||
unsigned book_uid;
|
||
bitmap_iterator bi;
|
||
int n_bookkeeping_copies_before_moveop;
|
||
|
||
/* Make a move. This call will remove the original operation,
|
||
insert all necessary bookkeeping instructions and update the
|
||
data sets. After that all we have to do is add the operation
|
||
at before BND_TO (BND). */
|
||
n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
|
||
max_uid_before_move_op = get_max_uid ();
|
||
bitmap_clear (current_copies);
|
||
bitmap_clear (current_originators);
|
||
|
||
b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
|
||
get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
|
||
|
||
/* We should be able to find the expression we've chosen for
|
||
scheduling. */
|
||
gcc_assert (b);
|
||
|
||
if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
|
||
stat_insns_needed_bookkeeping++;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
|
||
{
|
||
unsigned uid;
|
||
bitmap_iterator bi;
|
||
|
||
/* We allocate these bitmaps lazily. */
|
||
if (! INSN_ORIGINATORS_BY_UID (book_uid))
|
||
INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
|
||
|
||
bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
|
||
current_originators);
|
||
|
||
/* Transitively add all originators' originators. */
|
||
EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
|
||
if (INSN_ORIGINATORS_BY_UID (uid))
|
||
bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
|
||
INSN_ORIGINATORS_BY_UID (uid));
|
||
}
|
||
|
||
return should_move;
|
||
}
|
||
|
||
|
||
/* Debug a DFA state as an array of bytes. */
|
||
static void
|
||
debug_state (state_t state)
|
||
{
|
||
unsigned char *p;
|
||
unsigned int i, size = dfa_state_size;
|
||
|
||
sel_print ("state (%u):", size);
|
||
for (i = 0, p = (unsigned char *) state; i < size; i++)
|
||
sel_print (" %d", p[i]);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
/* Advance state on FENCE with INSN. Return true if INSN is
|
||
an ASM, and we should advance state once more. */
|
||
static bool
|
||
advance_state_on_fence (fence_t fence, insn_t insn)
|
||
{
|
||
bool asm_p;
|
||
|
||
if (recog_memoized (insn) >= 0)
|
||
{
|
||
int res;
|
||
state_t temp_state = alloca (dfa_state_size);
|
||
|
||
gcc_assert (!INSN_ASM_P (insn));
|
||
asm_p = false;
|
||
|
||
memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
|
||
res = state_transition (FENCE_STATE (fence), insn);
|
||
gcc_assert (res < 0);
|
||
|
||
if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
|
||
{
|
||
FENCE_ISSUED_INSNS (fence)++;
|
||
|
||
/* We should never issue more than issue_rate insns. */
|
||
if (FENCE_ISSUED_INSNS (fence) > issue_rate)
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This could be an ASM insn which we'd like to schedule
|
||
on the next cycle. */
|
||
asm_p = INSN_ASM_P (insn);
|
||
if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
|
||
advance_one_cycle (fence);
|
||
}
|
||
|
||
if (sched_verbose >= 2)
|
||
debug_state (FENCE_STATE (fence));
|
||
if (!DEBUG_INSN_P (insn))
|
||
FENCE_STARTS_CYCLE_P (fence) = 0;
|
||
FENCE_ISSUE_MORE (fence) = can_issue_more;
|
||
return asm_p;
|
||
}
|
||
|
||
/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
|
||
is nonzero if we need to stall after issuing INSN. */
|
||
static void
|
||
update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
|
||
{
|
||
bool asm_p;
|
||
|
||
/* First, reflect that something is scheduled on this fence. */
|
||
asm_p = advance_state_on_fence (fence, insn);
|
||
FENCE_LAST_SCHEDULED_INSN (fence) = insn;
|
||
vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
|
||
if (SCHED_GROUP_P (insn))
|
||
{
|
||
FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
|
||
SCHED_GROUP_P (insn) = 0;
|
||
}
|
||
else
|
||
FENCE_SCHED_NEXT (fence) = NULL;
|
||
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
|
||
FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
|
||
|
||
/* Set instruction scheduling info. This will be used in bundling,
|
||
pipelining, tick computations etc. */
|
||
++INSN_SCHED_TIMES (insn);
|
||
EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
|
||
EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
|
||
INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
|
||
INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
|
||
|
||
/* This does not account for adjust_cost hooks, just add the biggest
|
||
constant the hook may add to the latency. TODO: make this
|
||
a target dependent constant. */
|
||
INSN_READY_CYCLE (insn)
|
||
= INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
|
||
? 1
|
||
: maximal_insn_latency (insn) + 1);
|
||
|
||
/* Change these fields last, as they're used above. */
|
||
FENCE_AFTER_STALL_P (fence) = 0;
|
||
if (asm_p || need_stall)
|
||
advance_one_cycle (fence);
|
||
|
||
/* Indicate that we've scheduled something on this fence. */
|
||
FENCE_SCHEDULED_P (fence) = true;
|
||
scheduled_something_on_previous_fence = true;
|
||
|
||
/* Print debug information when insn's fields are updated. */
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("Scheduling insn: ");
|
||
dump_insn_1 (insn, 1);
|
||
sel_print ("\n");
|
||
}
|
||
}
|
||
|
||
/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
|
||
old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
|
||
return it. */
|
||
static blist_t *
|
||
update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
|
||
blist_t *bnds_tailp)
|
||
{
|
||
succ_iterator si;
|
||
insn_t succ;
|
||
|
||
advance_deps_context (BND_DC (bnd), insn);
|
||
FOR_EACH_SUCC_1 (succ, si, insn,
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
ilist_t ptr = ilist_copy (BND_PTR (bnd));
|
||
|
||
ilist_add (&ptr, insn);
|
||
|
||
if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
|
||
&& is_ineligible_successor (succ, ptr))
|
||
{
|
||
ilist_clear (&ptr);
|
||
continue;
|
||
}
|
||
|
||
if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
|
||
{
|
||
if (sched_verbose >= 9)
|
||
sel_print ("Updating fence insn from %i to %i\n",
|
||
INSN_UID (insn), INSN_UID (succ));
|
||
FENCE_INSN (fence) = succ;
|
||
}
|
||
blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
|
||
bnds_tailp = &BLIST_NEXT (*bnds_tailp);
|
||
}
|
||
|
||
blist_remove (bndsp);
|
||
return bnds_tailp;
|
||
}
|
||
|
||
/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
|
||
static insn_t
|
||
schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
|
||
{
|
||
av_set_t expr_seq;
|
||
expr_t c_expr = XALLOCA (expr_def);
|
||
insn_t place_to_insert;
|
||
insn_t insn;
|
||
bool should_move;
|
||
|
||
expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
|
||
|
||
/* In case of scheduling a jump skipping some other instructions,
|
||
prepare CFG. After this, jump is at the boundary and can be
|
||
scheduled as usual insn by MOVE_OP. */
|
||
if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
|
||
{
|
||
insn = EXPR_INSN_RTX (expr_vliw);
|
||
|
||
/* Speculative jumps are not handled. */
|
||
if (insn != BND_TO (bnd)
|
||
&& !sel_insn_is_speculation_check (insn))
|
||
move_cond_jump (insn, bnd);
|
||
}
|
||
|
||
/* Find a place for C_EXPR to schedule. */
|
||
place_to_insert = prepare_place_to_insert (bnd);
|
||
should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
|
||
clear_expr (c_expr);
|
||
|
||
/* Add the instruction. The corner case to care about is when
|
||
the expr_seq set has more than one expr, and we chose the one that
|
||
is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
|
||
we can't use it. Generate the new vinsn. */
|
||
if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
|
||
{
|
||
vinsn_t vinsn_new;
|
||
|
||
vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
|
||
change_vinsn_in_expr (expr_vliw, vinsn_new);
|
||
should_move = false;
|
||
}
|
||
if (should_move)
|
||
insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
|
||
else
|
||
insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
|
||
place_to_insert);
|
||
|
||
/* Return the nops generated for preserving of data sets back
|
||
into pool. */
|
||
if (INSN_NOP_P (place_to_insert))
|
||
return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
|
||
remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
|
||
|
||
av_set_clear (&expr_seq);
|
||
|
||
/* Save the expression scheduled so to reset target availability if we'll
|
||
meet it later on the same fence. */
|
||
if (EXPR_WAS_RENAMED (expr_vliw))
|
||
vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
|
||
|
||
/* Check that the recent movement didn't destroyed loop
|
||
structure. */
|
||
gcc_assert (!pipelining_p
|
||
|| current_loop_nest == NULL
|
||
|| loop_latch_edge (current_loop_nest));
|
||
return insn;
|
||
}
|
||
|
||
/* Stall for N cycles on FENCE. */
|
||
static void
|
||
stall_for_cycles (fence_t fence, int n)
|
||
{
|
||
int could_more;
|
||
|
||
could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
|
||
while (n--)
|
||
advance_one_cycle (fence);
|
||
if (could_more)
|
||
FENCE_AFTER_STALL_P (fence) = 1;
|
||
}
|
||
|
||
/* Gather a parallel group of insns at FENCE and assign their seqno
|
||
to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
|
||
list for later recalculation of seqnos. */
|
||
static void
|
||
fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
|
||
{
|
||
blist_t bnds = NULL, *bnds_tailp;
|
||
av_set_t av_vliw = NULL;
|
||
insn_t insn = FENCE_INSN (fence);
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("Starting fill_insns for insn %d, cycle %d\n",
|
||
INSN_UID (insn), FENCE_CYCLE (fence));
|
||
|
||
blist_add (&bnds, insn, NULL, FENCE_DC (fence));
|
||
bnds_tailp = &BLIST_NEXT (bnds);
|
||
set_target_context (FENCE_TC (fence));
|
||
can_issue_more = FENCE_ISSUE_MORE (fence);
|
||
target_bb = INSN_BB (insn);
|
||
|
||
/* Do while we can add any operation to the current group. */
|
||
do
|
||
{
|
||
blist_t *bnds_tailp1, *bndsp;
|
||
expr_t expr_vliw;
|
||
int need_stall = false;
|
||
int was_stall = 0, scheduled_insns = 0;
|
||
int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
|
||
int max_stall = pipelining_p ? 1 : 3;
|
||
bool last_insn_was_debug = false;
|
||
bool was_debug_bb_end_p = false;
|
||
|
||
compute_av_set_on_boundaries (fence, bnds, &av_vliw);
|
||
remove_insns_that_need_bookkeeping (fence, &av_vliw);
|
||
remove_insns_for_debug (bnds, &av_vliw);
|
||
|
||
/* Return early if we have nothing to schedule. */
|
||
if (av_vliw == NULL)
|
||
break;
|
||
|
||
/* Choose the best expression and, if needed, destination register
|
||
for it. */
|
||
do
|
||
{
|
||
expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
|
||
if (! expr_vliw && need_stall)
|
||
{
|
||
/* All expressions required a stall. Do not recompute av sets
|
||
as we'll get the same answer (modulo the insns between
|
||
the fence and its boundary, which will not be available for
|
||
pipelining).
|
||
If we are going to stall for too long, break to recompute av
|
||
sets and bring more insns for pipelining. */
|
||
was_stall++;
|
||
if (need_stall <= 3)
|
||
stall_for_cycles (fence, need_stall);
|
||
else
|
||
{
|
||
stall_for_cycles (fence, 1);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (! expr_vliw && need_stall);
|
||
|
||
/* Now either we've selected expr_vliw or we have nothing to schedule. */
|
||
if (!expr_vliw)
|
||
{
|
||
av_set_clear (&av_vliw);
|
||
break;
|
||
}
|
||
|
||
bndsp = &bnds;
|
||
bnds_tailp1 = bnds_tailp;
|
||
|
||
do
|
||
/* This code will be executed only once until we'd have several
|
||
boundaries per fence. */
|
||
{
|
||
bnd_t bnd = BLIST_BND (*bndsp);
|
||
|
||
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
|
||
{
|
||
bndsp = &BLIST_NEXT (*bndsp);
|
||
continue;
|
||
}
|
||
|
||
insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
|
||
last_insn_was_debug = DEBUG_INSN_P (insn);
|
||
if (last_insn_was_debug)
|
||
was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
|
||
update_fence_and_insn (fence, insn, need_stall);
|
||
bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
|
||
|
||
/* Add insn to the list of scheduled on this cycle instructions. */
|
||
ilist_add (*scheduled_insns_tailpp, insn);
|
||
*scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
|
||
}
|
||
while (*bndsp != *bnds_tailp1);
|
||
|
||
av_set_clear (&av_vliw);
|
||
if (!last_insn_was_debug)
|
||
scheduled_insns++;
|
||
|
||
/* We currently support information about candidate blocks only for
|
||
one 'target_bb' block. Hence we can't schedule after jump insn,
|
||
as this will bring two boundaries and, hence, necessity to handle
|
||
information for two or more blocks concurrently. */
|
||
if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
|
||
|| (was_stall
|
||
&& (was_stall >= max_stall
|
||
|| scheduled_insns >= max_insns)))
|
||
break;
|
||
}
|
||
while (bnds);
|
||
|
||
gcc_assert (!FENCE_BNDS (fence));
|
||
|
||
/* Update boundaries of the FENCE. */
|
||
while (bnds)
|
||
{
|
||
ilist_t ptr = BND_PTR (BLIST_BND (bnds));
|
||
|
||
if (ptr)
|
||
{
|
||
insn = ILIST_INSN (ptr);
|
||
|
||
if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
|
||
ilist_add (&FENCE_BNDS (fence), insn);
|
||
}
|
||
|
||
blist_remove (&bnds);
|
||
}
|
||
|
||
/* Update target context on the fence. */
|
||
reset_target_context (FENCE_TC (fence), false);
|
||
}
|
||
|
||
/* All exprs in ORIG_OPS must have the same destination register or memory.
|
||
Return that destination. */
|
||
static rtx
|
||
get_dest_from_orig_ops (av_set_t orig_ops)
|
||
{
|
||
rtx dest = NULL_RTX;
|
||
av_set_iterator av_it;
|
||
expr_t expr;
|
||
bool first_p = true;
|
||
|
||
FOR_EACH_EXPR (expr, av_it, orig_ops)
|
||
{
|
||
rtx x = EXPR_LHS (expr);
|
||
|
||
if (first_p)
|
||
{
|
||
first_p = false;
|
||
dest = x;
|
||
}
|
||
else
|
||
gcc_assert (dest == x
|
||
|| (dest != NULL_RTX && x != NULL_RTX
|
||
&& rtx_equal_p (dest, x)));
|
||
}
|
||
|
||
return dest;
|
||
}
|
||
|
||
/* Update data sets for the bookkeeping block and record those expressions
|
||
which become no longer available after inserting this bookkeeping. */
|
||
static void
|
||
update_and_record_unavailable_insns (basic_block book_block)
|
||
{
|
||
av_set_iterator i;
|
||
av_set_t old_av_set = NULL;
|
||
expr_t cur_expr;
|
||
rtx_insn *bb_end = sel_bb_end (book_block);
|
||
|
||
/* First, get correct liveness in the bookkeeping block. The problem is
|
||
the range between the bookeeping insn and the end of block. */
|
||
update_liveness_on_insn (bb_end);
|
||
if (control_flow_insn_p (bb_end))
|
||
update_liveness_on_insn (PREV_INSN (bb_end));
|
||
|
||
/* If there's valid av_set on BOOK_BLOCK, then there might exist another
|
||
fence above, where we may choose to schedule an insn which is
|
||
actually blocked from moving up with the bookkeeping we create here. */
|
||
if (AV_SET_VALID_P (sel_bb_head (book_block)))
|
||
{
|
||
old_av_set = av_set_copy (BB_AV_SET (book_block));
|
||
update_data_sets (sel_bb_head (book_block));
|
||
|
||
/* Traverse all the expressions in the old av_set and check whether
|
||
CUR_EXPR is in new AV_SET. */
|
||
FOR_EACH_EXPR (cur_expr, i, old_av_set)
|
||
{
|
||
expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
|
||
EXPR_VINSN (cur_expr));
|
||
|
||
if (! new_expr
|
||
/* In this case, we can just turn off the E_T_A bit, but we can't
|
||
represent this information with the current vector. */
|
||
|| EXPR_TARGET_AVAILABLE (new_expr)
|
||
!= EXPR_TARGET_AVAILABLE (cur_expr))
|
||
/* Unfortunately, the below code could be also fired up on
|
||
separable insns, e.g. when moving insns through the new
|
||
speculation check as in PR 53701. */
|
||
vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
|
||
}
|
||
|
||
av_set_clear (&old_av_set);
|
||
}
|
||
}
|
||
|
||
/* The main effect of this function is that sparams->c_expr is merged
|
||
with (or copied to) lparams->c_expr_merged. If there's only one successor,
|
||
we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
|
||
lparams->c_expr_merged is copied back to sparams->c_expr after all
|
||
successors has been traversed. lparams->c_expr_local is an expr allocated
|
||
on stack in the caller function, and is used if there is more than one
|
||
successor.
|
||
|
||
SUCC is one of the SUCCS_NORMAL successors of INSN,
|
||
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
|
||
LPARAMS and STATIC_PARAMS contain the parameters described above. */
|
||
static void
|
||
move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
|
||
insn_t succ ATTRIBUTE_UNUSED,
|
||
int moveop_drv_call_res,
|
||
cmpd_local_params_p lparams, void *static_params)
|
||
{
|
||
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
||
|
||
/* Nothing to do, if original expr wasn't found below. */
|
||
if (moveop_drv_call_res != 1)
|
||
return;
|
||
|
||
/* If this is a first successor. */
|
||
if (!lparams->c_expr_merged)
|
||
{
|
||
lparams->c_expr_merged = sparams->c_expr;
|
||
sparams->c_expr = lparams->c_expr_local;
|
||
}
|
||
else
|
||
{
|
||
/* We must merge all found expressions to get reasonable
|
||
EXPR_SPEC_DONE_DS for the resulting insn. If we don't
|
||
do so then we can first find the expr with epsilon
|
||
speculation success probability and only then with the
|
||
good probability. As a result the insn will get epsilon
|
||
probability and will never be scheduled because of
|
||
weakness_cutoff in find_best_expr.
|
||
|
||
We call merge_expr_data here instead of merge_expr
|
||
because due to speculation C_EXPR and X may have the
|
||
same insns with different speculation types. And as of
|
||
now such insns are considered non-equal.
|
||
|
||
However, EXPR_SCHED_TIMES is different -- we must get
|
||
SCHED_TIMES from a real insn, not a bookkeeping copy.
|
||
We force this here. Instead, we may consider merging
|
||
SCHED_TIMES to the maximum instead of minimum in the
|
||
below function. */
|
||
int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
|
||
|
||
merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
|
||
if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
|
||
EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
|
||
|
||
clear_expr (sparams->c_expr);
|
||
}
|
||
}
|
||
|
||
/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
|
||
|
||
SUCC is one of the SUCCS_NORMAL successors of INSN,
|
||
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
|
||
if SUCC is one of SUCCS_BACK or SUCCS_OUT.
|
||
STATIC_PARAMS contain USED_REGS set. */
|
||
static void
|
||
fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
|
||
int moveop_drv_call_res,
|
||
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
||
void *static_params)
|
||
{
|
||
regset succ_live;
|
||
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
||
|
||
/* Here we compute live regsets only for branches that do not lie
|
||
on the code motion paths. These branches correspond to value
|
||
MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
|
||
for such branches code_motion_path_driver is not called. */
|
||
if (moveop_drv_call_res != 0)
|
||
return;
|
||
|
||
/* Mark all registers that do not meet the following condition:
|
||
(3) not live on the other path of any conditional branch
|
||
that is passed by the operation, in case original
|
||
operations are not present on both paths of the
|
||
conditional branch. */
|
||
succ_live = compute_live (succ);
|
||
IOR_REG_SET (sparams->used_regs, succ_live);
|
||
}
|
||
|
||
/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
|
||
into SP->CEXPR. */
|
||
static void
|
||
move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
|
||
{
|
||
moveop_static_params_p sp = (moveop_static_params_p) sparams;
|
||
|
||
sp->c_expr = lp->c_expr_merged;
|
||
}
|
||
|
||
/* Track bookkeeping copies created, insns scheduled, and blocks for
|
||
rescheduling when INSN is found by move_op. */
|
||
static void
|
||
track_scheduled_insns_and_blocks (rtx_insn *insn)
|
||
{
|
||
/* Even if this insn can be a copy that will be removed during current move_op,
|
||
we still need to count it as an originator. */
|
||
bitmap_set_bit (current_originators, INSN_UID (insn));
|
||
|
||
if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
|
||
{
|
||
/* Note that original block needs to be rescheduled, as we pulled an
|
||
instruction out of it. */
|
||
if (INSN_SCHED_TIMES (insn) > 0)
|
||
bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
|
||
else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
|
||
num_insns_scheduled++;
|
||
}
|
||
|
||
/* For instructions we must immediately remove insn from the
|
||
stream, so subsequent update_data_sets () won't include this
|
||
insn into av_set.
|
||
For expr we must make insn look like "INSN_REG (insn) := c_expr". */
|
||
if (INSN_UID (insn) > max_uid_before_move_op)
|
||
stat_bookkeeping_copies--;
|
||
}
|
||
|
||
/* Emit a register-register copy for INSN if needed. Return true if
|
||
emitted one. PARAMS is the move_op static parameters. */
|
||
static bool
|
||
maybe_emit_renaming_copy (rtx_insn *insn,
|
||
moveop_static_params_p params)
|
||
{
|
||
bool insn_emitted = false;
|
||
rtx cur_reg;
|
||
|
||
/* Bail out early when expression cannot be renamed at all. */
|
||
if (!EXPR_SEPARABLE_P (params->c_expr))
|
||
return false;
|
||
|
||
cur_reg = expr_dest_reg (params->c_expr);
|
||
gcc_assert (cur_reg && params->dest && REG_P (params->dest));
|
||
|
||
/* If original operation has expr and the register chosen for
|
||
that expr is not original operation's dest reg, substitute
|
||
operation's right hand side with the register chosen. */
|
||
if (REGNO (params->dest) != REGNO (cur_reg))
|
||
{
|
||
insn_t reg_move_insn, reg_move_insn_rtx;
|
||
|
||
reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
|
||
params->dest);
|
||
reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
|
||
INSN_EXPR (insn),
|
||
INSN_SEQNO (insn),
|
||
insn);
|
||
EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
|
||
replace_dest_with_reg_in_expr (params->c_expr, params->dest);
|
||
|
||
insn_emitted = true;
|
||
params->was_renamed = true;
|
||
}
|
||
|
||
return insn_emitted;
|
||
}
|
||
|
||
/* Emit a speculative check for INSN speculated as EXPR if needed.
|
||
Return true if we've emitted one. PARAMS is the move_op static
|
||
parameters. */
|
||
static bool
|
||
maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
|
||
moveop_static_params_p params)
|
||
{
|
||
bool insn_emitted = false;
|
||
insn_t x;
|
||
ds_t check_ds;
|
||
|
||
check_ds = get_spec_check_type_for_insn (insn, expr);
|
||
if (check_ds != 0)
|
||
{
|
||
/* A speculation check should be inserted. */
|
||
x = create_speculation_check (params->c_expr, check_ds, insn);
|
||
insn_emitted = true;
|
||
}
|
||
else
|
||
{
|
||
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
|
||
x = insn;
|
||
}
|
||
|
||
gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
|
||
&& EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
|
||
return insn_emitted;
|
||
}
|
||
|
||
/* Handle transformations that leave an insn in place of original
|
||
insn such as renaming/speculation. Return true if one of such
|
||
transformations actually happened, and we have emitted this insn. */
|
||
static bool
|
||
handle_emitting_transformations (rtx_insn *insn, expr_t expr,
|
||
moveop_static_params_p params)
|
||
{
|
||
bool insn_emitted = false;
|
||
|
||
insn_emitted = maybe_emit_renaming_copy (insn, params);
|
||
insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
|
||
|
||
return insn_emitted;
|
||
}
|
||
|
||
/* If INSN is the only insn in the basic block (not counting JUMP,
|
||
which may be a jump to next insn, and DEBUG_INSNs), we want to
|
||
leave a NOP there till the return to fill_insns. */
|
||
|
||
static bool
|
||
need_nop_to_preserve_insn_bb (rtx_insn *insn)
|
||
{
|
||
insn_t bb_head, bb_end, bb_next, in_next;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
bb_head = sel_bb_head (bb);
|
||
bb_end = sel_bb_end (bb);
|
||
|
||
if (bb_head == bb_end)
|
||
return true;
|
||
|
||
while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
|
||
bb_head = NEXT_INSN (bb_head);
|
||
|
||
if (bb_head == bb_end)
|
||
return true;
|
||
|
||
while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
|
||
bb_end = PREV_INSN (bb_end);
|
||
|
||
if (bb_head == bb_end)
|
||
return true;
|
||
|
||
bb_next = NEXT_INSN (bb_head);
|
||
while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
|
||
bb_next = NEXT_INSN (bb_next);
|
||
|
||
if (bb_next == bb_end && JUMP_P (bb_end))
|
||
return true;
|
||
|
||
in_next = NEXT_INSN (insn);
|
||
while (DEBUG_INSN_P (in_next))
|
||
in_next = NEXT_INSN (in_next);
|
||
|
||
if (IN_CURRENT_FENCE_P (in_next))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
|
||
is not removed but reused when INSN is re-emitted. */
|
||
static void
|
||
remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
|
||
{
|
||
/* If there's only one insn in the BB, make sure that a nop is
|
||
inserted into it, so the basic block won't disappear when we'll
|
||
delete INSN below with sel_remove_insn. It should also survive
|
||
till the return to fill_insns. */
|
||
if (need_nop_to_preserve_insn_bb (insn))
|
||
{
|
||
insn_t nop = get_nop_from_pool (insn);
|
||
gcc_assert (INSN_NOP_P (nop));
|
||
vec_temp_moveop_nops.safe_push (nop);
|
||
}
|
||
|
||
sel_remove_insn (insn, only_disconnect, false);
|
||
}
|
||
|
||
/* This function is called when original expr is found.
|
||
INSN - current insn traversed, EXPR - the corresponding expr found.
|
||
LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
|
||
is static parameters of move_op. */
|
||
static void
|
||
move_op_orig_expr_found (insn_t insn, expr_t expr,
|
||
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
||
void *static_params)
|
||
{
|
||
bool only_disconnect;
|
||
moveop_static_params_p params = (moveop_static_params_p) static_params;
|
||
|
||
copy_expr_onside (params->c_expr, INSN_EXPR (insn));
|
||
track_scheduled_insns_and_blocks (insn);
|
||
handle_emitting_transformations (insn, expr, params);
|
||
only_disconnect = params->uid == INSN_UID (insn);
|
||
|
||
/* Mark that we've disconnected an insn. */
|
||
if (only_disconnect)
|
||
params->uid = -1;
|
||
remove_insn_from_stream (insn, only_disconnect);
|
||
}
|
||
|
||
/* The function is called when original expr is found.
|
||
INSN - current insn traversed, EXPR - the corresponding expr found,
|
||
crossed_call_abis and original_insns in STATIC_PARAMS are updated. */
|
||
static void
|
||
fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
|
||
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
||
void *static_params)
|
||
{
|
||
fur_static_params_p params = (fur_static_params_p) static_params;
|
||
regset tmp;
|
||
|
||
if (CALL_P (insn))
|
||
params->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
|
||
|
||
def_list_add (params->original_insns, insn, params->crossed_call_abis);
|
||
|
||
/* Mark the registers that do not meet the following condition:
|
||
(2) not among the live registers of the point
|
||
immediately following the first original operation on
|
||
a given downward path, except for the original target
|
||
register of the operation. */
|
||
tmp = get_clear_regset_from_pool ();
|
||
compute_live_below_insn (insn, tmp);
|
||
AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
|
||
AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
|
||
IOR_REG_SET (params->used_regs, tmp);
|
||
return_regset_to_pool (tmp);
|
||
|
||
/* (*1) We need to add to USED_REGS registers that are read by
|
||
INSN's lhs. This may lead to choosing wrong src register.
|
||
E.g. (scheduling const expr enabled):
|
||
|
||
429: ax=0x0 <- Can't use AX for this expr (0x0)
|
||
433: dx=[bp-0x18]
|
||
427: [ax+dx+0x1]=ax
|
||
REG_DEAD: ax
|
||
168: di=dx
|
||
REG_DEAD: dx
|
||
*/
|
||
/* FIXME: see comment above and enable MEM_P
|
||
in vinsn_separable_p. */
|
||
gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
|
||
|| !MEM_P (INSN_LHS (insn)));
|
||
}
|
||
|
||
/* This function is called on the ascending pass, before returning from
|
||
current basic block. */
|
||
static void
|
||
move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
|
||
void *static_params)
|
||
{
|
||
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
||
basic_block book_block = NULL;
|
||
|
||
/* When we have removed the boundary insn for scheduling, which also
|
||
happened to be the end insn in its bb, we don't need to update sets. */
|
||
if (!lparams->removed_last_insn
|
||
&& lparams->e1
|
||
&& sel_bb_head_p (insn))
|
||
{
|
||
/* We should generate bookkeeping code only if we are not at the
|
||
top level of the move_op. */
|
||
if (sel_num_cfg_preds_gt_1 (insn))
|
||
book_block = generate_bookkeeping_insn (sparams->c_expr,
|
||
lparams->e1, lparams->e2);
|
||
/* Update data sets for the current insn. */
|
||
update_data_sets (insn);
|
||
}
|
||
|
||
/* If bookkeeping code was inserted, we need to update av sets of basic
|
||
block that received bookkeeping. After generation of bookkeeping insn,
|
||
bookkeeping block does not contain valid av set because we are not following
|
||
the original algorithm in every detail with regards to e.g. renaming
|
||
simple reg-reg copies. Consider example:
|
||
|
||
bookkeeping block scheduling fence
|
||
\ /
|
||
\ join /
|
||
----------
|
||
| |
|
||
----------
|
||
/ \
|
||
/ \
|
||
r1 := r2 r1 := r3
|
||
|
||
We try to schedule insn "r1 := r3" on the current
|
||
scheduling fence. Also, note that av set of bookkeeping block
|
||
contain both insns "r1 := r2" and "r1 := r3". When the insn has
|
||
been scheduled, the CFG is as follows:
|
||
|
||
r1 := r3 r1 := r3
|
||
bookkeeping block scheduling fence
|
||
\ /
|
||
\ join /
|
||
----------
|
||
| |
|
||
----------
|
||
/ \
|
||
/ \
|
||
r1 := r2
|
||
|
||
Here, insn "r1 := r3" was scheduled at the current scheduling point
|
||
and bookkeeping code was generated at the bookeeping block. This
|
||
way insn "r1 := r2" is no longer available as a whole instruction
|
||
(but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
|
||
This situation is handled by calling update_data_sets.
|
||
|
||
Since update_data_sets is called only on the bookkeeping block, and
|
||
it also may have predecessors with av_sets, containing instructions that
|
||
are no longer available, we save all such expressions that become
|
||
unavailable during data sets update on the bookkeeping block in
|
||
VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
|
||
expressions for scheduling. This allows us to avoid recomputation of
|
||
av_sets outside the code motion path. */
|
||
|
||
if (book_block)
|
||
update_and_record_unavailable_insns (book_block);
|
||
|
||
/* If INSN was previously marked for deletion, it's time to do it. */
|
||
if (lparams->removed_last_insn)
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* Do not tidy control flow at the topmost moveop, as we can erroneously
|
||
kill a block with a single nop in which the insn should be emitted. */
|
||
if (lparams->e1)
|
||
tidy_control_flow (BLOCK_FOR_INSN (insn), true);
|
||
}
|
||
|
||
/* This function is called on the ascending pass, before returning from the
|
||
current basic block. */
|
||
static void
|
||
fur_at_first_insn (insn_t insn,
|
||
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
||
void *static_params ATTRIBUTE_UNUSED)
|
||
{
|
||
gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
|
||
|| AV_LEVEL (insn) == -1);
|
||
}
|
||
|
||
/* Called on the backward stage of recursion to call moveup_expr for insn
|
||
and sparams->c_expr. */
|
||
static void
|
||
move_op_ascend (insn_t insn, void *static_params)
|
||
{
|
||
enum MOVEUP_EXPR_CODE res;
|
||
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
||
|
||
if (! INSN_NOP_P (insn))
|
||
{
|
||
res = moveup_expr_cached (sparams->c_expr, insn, false);
|
||
gcc_assert (res != MOVEUP_EXPR_NULL);
|
||
}
|
||
|
||
/* Update liveness for this insn as it was invalidated. */
|
||
update_liveness_on_insn (insn);
|
||
}
|
||
|
||
/* This function is called on enter to the basic block.
|
||
Returns TRUE if this block already have been visited and
|
||
code_motion_path_driver should return 1, FALSE otherwise. */
|
||
static int
|
||
fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
|
||
void *static_params, bool visited_p)
|
||
{
|
||
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
||
|
||
if (visited_p)
|
||
{
|
||
/* If we have found something below this block, there should be at
|
||
least one insn in ORIGINAL_INSNS. */
|
||
gcc_assert (*sparams->original_insns);
|
||
|
||
/* Adjust CROSSED_CALL_ABIS, since we may have come to this block along
|
||
different path. */
|
||
DEF_LIST_DEF (*sparams->original_insns)->crossed_call_abis
|
||
|= sparams->crossed_call_abis;
|
||
}
|
||
else
|
||
local_params->old_original_insns = *sparams->original_insns;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Same as above but for move_op. */
|
||
static int
|
||
move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
|
||
cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
|
||
void *static_params ATTRIBUTE_UNUSED, bool visited_p)
|
||
{
|
||
if (visited_p)
|
||
return -1;
|
||
return 1;
|
||
}
|
||
|
||
/* This function is called while descending current basic block if current
|
||
insn is not the original EXPR we're searching for.
|
||
|
||
Return value: FALSE, if code_motion_path_driver should perform a local
|
||
cleanup and return 0 itself;
|
||
TRUE, if code_motion_path_driver should continue. */
|
||
static bool
|
||
move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
|
||
void *static_params)
|
||
{
|
||
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
||
|
||
sparams->failed_insn = insn;
|
||
|
||
/* If we're scheduling separate expr, in order to generate correct code
|
||
we need to stop the search at bookkeeping code generated with the
|
||
same destination register or memory. */
|
||
if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* This function is called while descending current basic block if current
|
||
insn is not the original EXPR we're searching for.
|
||
|
||
Return value: TRUE (code_motion_path_driver should continue). */
|
||
static bool
|
||
fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
|
||
{
|
||
bool mutexed;
|
||
expr_t r;
|
||
av_set_iterator avi;
|
||
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
||
|
||
if (CALL_P (insn))
|
||
sparams->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
|
||
else if (DEBUG_INSN_P (insn))
|
||
return true;
|
||
|
||
/* If current insn we are looking at cannot be executed together
|
||
with original insn, then we can skip it safely.
|
||
|
||
Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
|
||
INSN = (!p6) r14 = r14 + 1;
|
||
|
||
Here we can schedule ORIG_OP with lhs = r14, though only
|
||
looking at the set of used and set registers of INSN we must
|
||
forbid it. So, add set/used in INSN registers to the
|
||
untouchable set only if there is an insn in ORIG_OPS that can
|
||
affect INSN. */
|
||
mutexed = true;
|
||
FOR_EACH_EXPR (r, avi, orig_ops)
|
||
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
|
||
{
|
||
mutexed = false;
|
||
break;
|
||
}
|
||
|
||
/* Mark all registers that do not meet the following condition:
|
||
(1) Not set or read on any path from xi to an instance of the
|
||
original operation. */
|
||
if (!mutexed)
|
||
{
|
||
IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
|
||
IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
|
||
IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Hooks and data to perform move_op operations with code_motion_path_driver. */
|
||
struct code_motion_path_driver_info_def move_op_hooks = {
|
||
move_op_on_enter,
|
||
move_op_orig_expr_found,
|
||
move_op_orig_expr_not_found,
|
||
move_op_merge_succs,
|
||
move_op_after_merge_succs,
|
||
move_op_ascend,
|
||
move_op_at_first_insn,
|
||
SUCCS_NORMAL,
|
||
"move_op"
|
||
};
|
||
|
||
/* Hooks and data to perform find_used_regs operations
|
||
with code_motion_path_driver. */
|
||
struct code_motion_path_driver_info_def fur_hooks = {
|
||
fur_on_enter,
|
||
fur_orig_expr_found,
|
||
fur_orig_expr_not_found,
|
||
fur_merge_succs,
|
||
NULL, /* fur_after_merge_succs */
|
||
NULL, /* fur_ascend */
|
||
fur_at_first_insn,
|
||
SUCCS_ALL,
|
||
"find_used_regs"
|
||
};
|
||
|
||
/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
|
||
code_motion_path_driver is called recursively. Original operation
|
||
was found at least on one path that is starting with one of INSN's
|
||
successors (this fact is asserted). ORIG_OPS is expressions we're looking
|
||
for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
|
||
of either move_op or find_used_regs depending on the caller.
|
||
|
||
Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
|
||
know for sure at this point. */
|
||
static int
|
||
code_motion_process_successors (insn_t insn, av_set_t orig_ops,
|
||
ilist_t path, void *static_params)
|
||
{
|
||
int res = 0;
|
||
succ_iterator succ_i;
|
||
insn_t succ;
|
||
basic_block bb;
|
||
int old_index;
|
||
unsigned old_succs;
|
||
|
||
struct cmpd_local_params lparams;
|
||
expr_def _x;
|
||
|
||
lparams.c_expr_local = &_x;
|
||
lparams.c_expr_merged = NULL;
|
||
|
||
/* We need to process only NORMAL succs for move_op, and collect live
|
||
registers from ALL branches (including those leading out of the
|
||
region) for find_used_regs.
|
||
|
||
In move_op, there can be a case when insn's bb number has changed
|
||
due to created bookkeeping. This happens very rare, as we need to
|
||
move expression from the beginning to the end of the same block.
|
||
Rescan successors in this case. */
|
||
|
||
rescan:
|
||
bb = BLOCK_FOR_INSN (insn);
|
||
old_index = bb->index;
|
||
old_succs = EDGE_COUNT (bb->succs);
|
||
|
||
FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
|
||
{
|
||
int b;
|
||
|
||
lparams.e1 = succ_i.e1;
|
||
lparams.e2 = succ_i.e2;
|
||
|
||
/* Go deep into recursion only for NORMAL edges (non-backedges within the
|
||
current region). */
|
||
if (succ_i.current_flags == SUCCS_NORMAL)
|
||
b = code_motion_path_driver (succ, orig_ops, path, &lparams,
|
||
static_params);
|
||
else
|
||
b = 0;
|
||
|
||
/* Merge c_expres found or unify live register sets from different
|
||
successors. */
|
||
code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
|
||
static_params);
|
||
if (b == 1)
|
||
res = b;
|
||
else if (b == -1 && res != 1)
|
||
res = b;
|
||
|
||
/* We have simplified the control flow below this point. In this case,
|
||
the iterator becomes invalid. We need to try again.
|
||
If we have removed the insn itself, it could be only an
|
||
unconditional jump. Thus, do not rescan but break immediately --
|
||
we have already visited the only successor block. */
|
||
if (!BLOCK_FOR_INSN (insn))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Not doing rescan: already visited the only successor"
|
||
" of block %d\n", old_index);
|
||
break;
|
||
}
|
||
if (BLOCK_FOR_INSN (insn)->index != old_index
|
||
|| EDGE_COUNT (bb->succs) != old_succs)
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
|
||
INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
|
||
insn = sel_bb_end (BLOCK_FOR_INSN (insn));
|
||
goto rescan;
|
||
}
|
||
}
|
||
|
||
/* Here, RES==1 if original expr was found at least for one of the
|
||
successors. After the loop, RES may happen to have zero value
|
||
only if at some point the expr searched is present in av_set, but is
|
||
not found below. In most cases, this situation is an error.
|
||
The exception is when the original operation is blocked by
|
||
bookkeeping generated for another fence or for another path in current
|
||
move_op. */
|
||
gcc_checking_assert (res == 1
|
||
|| (res == 0
|
||
&& av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
|
||
|| res == -1);
|
||
|
||
/* Merge data, clean up, etc. */
|
||
if (res != -1 && code_motion_path_driver_info->after_merge_succs)
|
||
code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
|
||
is the pointer to the av set with expressions we were looking for,
|
||
PATH_P is the pointer to the traversed path. */
|
||
static inline void
|
||
code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
|
||
{
|
||
ilist_remove (path_p);
|
||
av_set_clear (orig_ops_p);
|
||
}
|
||
|
||
/* The driver function that implements move_op or find_used_regs
|
||
functionality dependent whether code_motion_path_driver_INFO is set to
|
||
&MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
|
||
of code (CFG traversal etc) that are shared among both functions. INSN
|
||
is the insn we're starting the search from, ORIG_OPS are the expressions
|
||
we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
|
||
parameters of the driver, and STATIC_PARAMS are static parameters of
|
||
the caller.
|
||
|
||
Returns whether original instructions were found. Note that top-level
|
||
code_motion_path_driver always returns true. */
|
||
static int
|
||
code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
|
||
cmpd_local_params_p local_params_in,
|
||
void *static_params)
|
||
{
|
||
expr_t expr = NULL;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
insn_t first_insn, original_insn, bb_tail, before_first;
|
||
bool removed_last_insn = false;
|
||
|
||
if (sched_verbose >= 6)
|
||
{
|
||
sel_print ("%s (", code_motion_path_driver_info->routine_name);
|
||
dump_insn (insn);
|
||
sel_print (",");
|
||
dump_av_set (orig_ops);
|
||
sel_print (")\n");
|
||
}
|
||
|
||
gcc_assert (orig_ops);
|
||
|
||
/* If no original operations exist below this insn, return immediately. */
|
||
if (is_ineligible_successor (insn, path))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
|
||
return false;
|
||
}
|
||
|
||
/* The block can have invalid av set, in which case it was created earlier
|
||
during move_op. Return immediately. */
|
||
if (sel_bb_head_p (insn))
|
||
{
|
||
if (! AV_SET_VALID_P (insn))
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Returned from block %d as it had invalid av set\n",
|
||
bb->index);
|
||
return false;
|
||
}
|
||
|
||
if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
|
||
{
|
||
/* We have already found an original operation on this branch, do not
|
||
go any further and just return TRUE here. If we don't stop here,
|
||
function can have exponential behavior even on the small code
|
||
with many different paths (e.g. with data speculation and
|
||
recovery blocks). */
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Block %d already visited in this traversal\n", bb->index);
|
||
if (code_motion_path_driver_info->on_enter)
|
||
return code_motion_path_driver_info->on_enter (insn,
|
||
local_params_in,
|
||
static_params,
|
||
true);
|
||
}
|
||
}
|
||
|
||
if (code_motion_path_driver_info->on_enter)
|
||
code_motion_path_driver_info->on_enter (insn, local_params_in,
|
||
static_params, false);
|
||
orig_ops = av_set_copy (orig_ops);
|
||
|
||
/* Filter the orig_ops set. */
|
||
if (AV_SET_VALID_P (insn))
|
||
av_set_code_motion_filter (&orig_ops, AV_SET (insn));
|
||
|
||
/* If no more original ops, return immediately. */
|
||
if (!orig_ops)
|
||
{
|
||
if (sched_verbose >= 6)
|
||
sel_print ("No intersection with av set of block %d\n", bb->index);
|
||
return false;
|
||
}
|
||
|
||
/* For non-speculative insns we have to leave only one form of the
|
||
original operation, because if we don't, we may end up with
|
||
different C_EXPRes and, consequently, with bookkeepings for different
|
||
expression forms along the same code motion path. That may lead to
|
||
generation of incorrect code. So for each code motion we stick to
|
||
the single form of the instruction, except for speculative insns
|
||
which we need to keep in different forms with all speculation
|
||
types. */
|
||
av_set_leave_one_nonspec (&orig_ops);
|
||
|
||
/* It is not possible that all ORIG_OPS are filtered out. */
|
||
gcc_assert (orig_ops);
|
||
|
||
/* It is enough to place only heads and tails of visited basic blocks into
|
||
the PATH. */
|
||
ilist_add (&path, insn);
|
||
first_insn = original_insn = insn;
|
||
bb_tail = sel_bb_end (bb);
|
||
|
||
/* Descend the basic block in search of the original expr; this part
|
||
corresponds to the part of the original move_op procedure executed
|
||
before the recursive call. */
|
||
for (;;)
|
||
{
|
||
/* Look at the insn and decide if it could be an ancestor of currently
|
||
scheduling operation. If it is so, then the insn "dest = op" could
|
||
either be replaced with "dest = reg", because REG now holds the result
|
||
of OP, or just removed, if we've scheduled the insn as a whole.
|
||
|
||
If this insn doesn't contain currently scheduling OP, then proceed
|
||
with searching and look at its successors. Operations we're searching
|
||
for could have changed when moving up through this insn via
|
||
substituting. In this case, perform unsubstitution on them first.
|
||
|
||
When traversing the DAG below this insn is finished, insert
|
||
bookkeeping code, if the insn is a joint point, and remove
|
||
leftovers. */
|
||
|
||
expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
|
||
if (expr)
|
||
{
|
||
insn_t last_insn = PREV_INSN (insn);
|
||
|
||
/* We have found the original operation. */
|
||
if (sched_verbose >= 6)
|
||
sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
|
||
|
||
code_motion_path_driver_info->orig_expr_found
|
||
(insn, expr, local_params_in, static_params);
|
||
|
||
/* Step back, so on the way back we'll start traversing from the
|
||
previous insn (or we'll see that it's bb_note and skip that
|
||
loop). */
|
||
if (insn == first_insn)
|
||
{
|
||
first_insn = NEXT_INSN (last_insn);
|
||
removed_last_insn = sel_bb_end_p (last_insn);
|
||
}
|
||
insn = last_insn;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* We haven't found the original expr, continue descending the basic
|
||
block. */
|
||
if (code_motion_path_driver_info->orig_expr_not_found
|
||
(insn, orig_ops, static_params))
|
||
{
|
||
/* Av set ops could have been changed when moving through this
|
||
insn. To find them below it, we have to un-substitute them. */
|
||
undo_transformations (&orig_ops, insn);
|
||
}
|
||
else
|
||
{
|
||
/* Clean up and return, if the hook tells us to do so. It may
|
||
happen if we've encountered the previously created
|
||
bookkeeping. */
|
||
code_motion_path_driver_cleanup (&orig_ops, &path);
|
||
return -1;
|
||
}
|
||
|
||
gcc_assert (orig_ops);
|
||
}
|
||
|
||
/* Stop at insn if we got to the end of BB. */
|
||
if (insn == bb_tail)
|
||
break;
|
||
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
/* Here INSN either points to the insn before the original insn (may be
|
||
bb_note, if original insn was a bb_head) or to the bb_end. */
|
||
if (!expr)
|
||
{
|
||
int res;
|
||
rtx_insn *last_insn = PREV_INSN (insn);
|
||
bool added_to_path;
|
||
|
||
gcc_assert (insn == sel_bb_end (bb));
|
||
|
||
/* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
|
||
it's already in PATH then). */
|
||
if (insn != first_insn)
|
||
{
|
||
ilist_add (&path, insn);
|
||
added_to_path = true;
|
||
}
|
||
else
|
||
added_to_path = false;
|
||
|
||
/* Process_successors should be able to find at least one
|
||
successor for which code_motion_path_driver returns TRUE. */
|
||
res = code_motion_process_successors (insn, orig_ops,
|
||
path, static_params);
|
||
|
||
/* Jump in the end of basic block could have been removed or replaced
|
||
during code_motion_process_successors, so recompute insn as the
|
||
last insn in bb. */
|
||
if (NEXT_INSN (last_insn) != insn)
|
||
{
|
||
insn = sel_bb_end (bb);
|
||
first_insn = sel_bb_head (bb);
|
||
if (first_insn != original_insn)
|
||
first_insn = original_insn;
|
||
}
|
||
|
||
/* Remove bb tail from path. */
|
||
if (added_to_path)
|
||
ilist_remove (&path);
|
||
|
||
if (res != 1)
|
||
{
|
||
/* This is the case when one of the original expr is no longer available
|
||
due to bookkeeping created on this branch with the same register.
|
||
In the original algorithm, which doesn't have update_data_sets call
|
||
on a bookkeeping block, it would simply result in returning
|
||
FALSE when we've encountered a previously generated bookkeeping
|
||
insn in moveop_orig_expr_not_found. */
|
||
code_motion_path_driver_cleanup (&orig_ops, &path);
|
||
return res;
|
||
}
|
||
}
|
||
|
||
/* Don't need it any more. */
|
||
av_set_clear (&orig_ops);
|
||
|
||
/* Backward pass: now, when we have C_EXPR computed, we'll drag it to
|
||
the beginning of the basic block. */
|
||
before_first = PREV_INSN (first_insn);
|
||
while (insn != before_first)
|
||
{
|
||
if (code_motion_path_driver_info->ascend)
|
||
code_motion_path_driver_info->ascend (insn, static_params);
|
||
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
|
||
/* Now we're at the bb head. */
|
||
insn = first_insn;
|
||
ilist_remove (&path);
|
||
local_params_in->removed_last_insn = removed_last_insn;
|
||
code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
|
||
|
||
/* This should be the very last operation as at bb head we could change
|
||
the numbering by creating bookkeeping blocks. */
|
||
if (removed_last_insn)
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* If we have simplified the control flow and removed the first jump insn,
|
||
there's no point in marking this block in the visited blocks bitmap. */
|
||
if (BLOCK_FOR_INSN (insn))
|
||
bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
|
||
return true;
|
||
}
|
||
|
||
/* Move up the operations from ORIG_OPS set traversing the dag starting
|
||
from INSN. PATH represents the edges traversed so far.
|
||
DEST is the register chosen for scheduling the current expr. Insert
|
||
bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
|
||
C_EXPR is how it looks like at the given cfg point.
|
||
Set *SHOULD_MOVE to indicate whether we have only disconnected
|
||
one of the insns found.
|
||
|
||
Returns whether original instructions were found, which is asserted
|
||
to be true in the caller. */
|
||
static bool
|
||
move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
|
||
rtx dest, expr_t c_expr, bool *should_move)
|
||
{
|
||
struct moveop_static_params sparams;
|
||
struct cmpd_local_params lparams;
|
||
int res;
|
||
|
||
/* Init params for code_motion_path_driver. */
|
||
sparams.dest = dest;
|
||
sparams.c_expr = c_expr;
|
||
sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
|
||
sparams.failed_insn = NULL;
|
||
sparams.was_renamed = false;
|
||
lparams.e1 = NULL;
|
||
|
||
/* We haven't visited any blocks yet. */
|
||
bitmap_clear (code_motion_visited_blocks);
|
||
|
||
/* Set appropriate hooks and data. */
|
||
code_motion_path_driver_info = &move_op_hooks;
|
||
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
|
||
|
||
gcc_assert (res != -1);
|
||
|
||
if (sparams.was_renamed)
|
||
EXPR_WAS_RENAMED (expr_vliw) = true;
|
||
|
||
*should_move = (sparams.uid == -1);
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
/* Functions that work with regions. */
|
||
|
||
/* Current number of seqno used in init_seqno and init_seqno_1. */
|
||
static int cur_seqno;
|
||
|
||
/* A helper for init_seqno. Traverse the region starting from BB and
|
||
compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
|
||
Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
|
||
static void
|
||
init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
|
||
{
|
||
int bbi = BLOCK_TO_BB (bb->index);
|
||
insn_t insn;
|
||
insn_t succ_insn;
|
||
succ_iterator si;
|
||
|
||
rtx_note *note = bb_note (bb);
|
||
bitmap_set_bit (visited_bbs, bbi);
|
||
if (blocks_to_reschedule)
|
||
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
||
|
||
FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
basic_block succ = BLOCK_FOR_INSN (succ_insn);
|
||
int succ_bbi = BLOCK_TO_BB (succ->index);
|
||
|
||
gcc_assert (in_current_region_p (succ));
|
||
|
||
if (!bitmap_bit_p (visited_bbs, succ_bbi))
|
||
{
|
||
gcc_assert (succ_bbi > bbi);
|
||
|
||
init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
|
||
}
|
||
else if (blocks_to_reschedule)
|
||
bitmap_set_bit (forced_ebb_heads, succ->index);
|
||
}
|
||
|
||
for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
|
||
INSN_SEQNO (insn) = cur_seqno--;
|
||
}
|
||
|
||
/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
|
||
blocks on which we're rescheduling when pipelining, FROM is the block where
|
||
traversing region begins (it may not be the head of the region when
|
||
pipelining, but the head of the loop instead).
|
||
|
||
Returns the maximal seqno found. */
|
||
static int
|
||
init_seqno (bitmap blocks_to_reschedule, basic_block from)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned bbi;
|
||
|
||
auto_sbitmap visited_bbs (current_nr_blocks);
|
||
|
||
if (blocks_to_reschedule)
|
||
{
|
||
bitmap_ones (visited_bbs);
|
||
EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
|
||
{
|
||
gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
|
||
bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
bitmap_clear (visited_bbs);
|
||
from = EBB_FIRST_BB (0);
|
||
}
|
||
|
||
cur_seqno = sched_max_luid - 1;
|
||
init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
|
||
|
||
/* cur_seqno may be positive if the number of instructions is less than
|
||
sched_max_luid - 1 (when rescheduling or if some instructions have been
|
||
removed by the call to purge_empty_blocks in sel_sched_region_1). */
|
||
gcc_assert (cur_seqno >= 0);
|
||
|
||
return sched_max_luid - 1;
|
||
}
|
||
|
||
/* Initialize scheduling parameters for current region. */
|
||
static void
|
||
sel_setup_region_sched_flags (void)
|
||
{
|
||
enable_schedule_as_rhs_p = 1;
|
||
bookkeeping_p = 1;
|
||
pipelining_p = (bookkeeping_p
|
||
&& (flag_sel_sched_pipelining != 0)
|
||
&& current_loop_nest != NULL
|
||
&& loop_has_exit_edges (current_loop_nest));
|
||
max_insns_to_rename = param_selsched_insns_to_rename;
|
||
max_ws = MAX_WS;
|
||
}
|
||
|
||
/* Return true if all basic blocks of current region are empty. */
|
||
static bool
|
||
current_region_empty_p (void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Prepare and verify loop nest for pipelining. */
|
||
static void
|
||
setup_current_loop_nest (int rgn, bb_vec_t *bbs)
|
||
{
|
||
current_loop_nest = get_loop_nest_for_rgn (rgn);
|
||
|
||
if (!current_loop_nest)
|
||
return;
|
||
|
||
/* If this loop has any saved loop preheaders from nested loops,
|
||
add these basic blocks to the current region. */
|
||
sel_add_loop_preheaders (bbs);
|
||
|
||
/* Check that we're starting with a valid information. */
|
||
gcc_assert (loop_latch_edge (current_loop_nest));
|
||
gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
|
||
}
|
||
|
||
/* Compute instruction priorities for current region. */
|
||
static void
|
||
sel_compute_priorities (int rgn)
|
||
{
|
||
sched_rgn_compute_dependencies (rgn);
|
||
|
||
/* Compute insn priorities in haifa style. Then free haifa style
|
||
dependencies that we've calculated for this. */
|
||
compute_priorities ();
|
||
|
||
if (sched_verbose >= 5)
|
||
debug_rgn_dependencies (0);
|
||
|
||
free_rgn_deps ();
|
||
}
|
||
|
||
/* Init scheduling data for RGN. Returns true when this region should not
|
||
be scheduled. */
|
||
static bool
|
||
sel_region_init (int rgn)
|
||
{
|
||
int i;
|
||
bb_vec_t bbs;
|
||
|
||
rgn_setup_region (rgn);
|
||
|
||
/* Even if sched_is_disabled_for_current_region_p() is true, we still
|
||
do region initialization here so the region can be bundled correctly,
|
||
but we'll skip the scheduling in sel_sched_region (). */
|
||
if (current_region_empty_p ())
|
||
return true;
|
||
|
||
bbs.create (current_nr_blocks);
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
|
||
|
||
sel_init_bbs (bbs);
|
||
|
||
if (flag_sel_sched_pipelining)
|
||
setup_current_loop_nest (rgn, &bbs);
|
||
|
||
sel_setup_region_sched_flags ();
|
||
|
||
/* Initialize luids and dependence analysis which both sel-sched and haifa
|
||
need. */
|
||
sched_init_luids (bbs);
|
||
sched_deps_init (false);
|
||
|
||
/* Initialize haifa data. */
|
||
rgn_setup_sched_infos ();
|
||
sel_set_sched_flags ();
|
||
haifa_init_h_i_d (bbs);
|
||
|
||
sel_compute_priorities (rgn);
|
||
init_deps_global ();
|
||
|
||
/* Main initialization. */
|
||
sel_setup_sched_infos ();
|
||
sel_init_global_and_expr (bbs);
|
||
|
||
bbs.release ();
|
||
|
||
blocks_to_reschedule = BITMAP_ALLOC (NULL);
|
||
|
||
/* Init correct liveness sets on each instruction of a single-block loop.
|
||
This is the only situation when we can't update liveness when calling
|
||
compute_live for the first insn of the loop. */
|
||
if (current_loop_nest)
|
||
{
|
||
int header =
|
||
(sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
|
||
? 1
|
||
: 0);
|
||
|
||
if (current_nr_blocks == header + 1)
|
||
update_liveness_on_insn
|
||
(sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
|
||
}
|
||
|
||
/* Set hooks so that no newly generated insn will go out unnoticed. */
|
||
sel_register_cfg_hooks ();
|
||
|
||
/* !!! We call target.sched.init () for the whole region, but we invoke
|
||
targetm.sched.finish () for every ebb. */
|
||
if (targetm.sched.init)
|
||
/* None of the arguments are actually used in any target. */
|
||
targetm.sched.init (sched_dump, sched_verbose, -1);
|
||
|
||
first_emitted_uid = get_max_uid () + 1;
|
||
preheader_removed = false;
|
||
|
||
/* Reset register allocation ticks array. */
|
||
memset (reg_rename_tick, 0, sizeof reg_rename_tick);
|
||
reg_rename_this_tick = 0;
|
||
|
||
forced_ebb_heads = BITMAP_ALLOC (NULL);
|
||
|
||
setup_nop_vinsn ();
|
||
current_copies = BITMAP_ALLOC (NULL);
|
||
current_originators = BITMAP_ALLOC (NULL);
|
||
code_motion_visited_blocks = BITMAP_ALLOC (NULL);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Simplify insns after the scheduling. */
|
||
static void
|
||
simplify_changed_insns (void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (INSN_P (insn))
|
||
{
|
||
expr_t expr = INSN_EXPR (insn);
|
||
|
||
if (EXPR_WAS_SUBSTITUTED (expr))
|
||
validate_simplify_insn (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Find boundaries of the EBB starting from basic block BB, marking blocks of
|
||
this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
|
||
PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
|
||
static void
|
||
find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
|
||
{
|
||
rtx_insn *head, *tail;
|
||
basic_block bb1 = bb;
|
||
if (sched_verbose >= 2)
|
||
sel_print ("Finishing schedule in bbs: ");
|
||
|
||
do
|
||
{
|
||
bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("%d; ", bb1->index);
|
||
}
|
||
while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("\n");
|
||
|
||
get_ebb_head_tail (bb, bb1, &head, &tail);
|
||
|
||
current_sched_info->head = head;
|
||
current_sched_info->tail = tail;
|
||
current_sched_info->prev_head = PREV_INSN (head);
|
||
current_sched_info->next_tail = NEXT_INSN (tail);
|
||
}
|
||
|
||
/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
|
||
static void
|
||
reset_sched_cycles_in_current_ebb (void)
|
||
{
|
||
int last_clock = 0;
|
||
int haifa_last_clock = -1;
|
||
int haifa_clock = 0;
|
||
int issued_insns = 0;
|
||
insn_t insn;
|
||
|
||
if (targetm.sched.init)
|
||
{
|
||
/* None of the arguments are actually used in any target.
|
||
NB: We should have md_reset () hook for cases like this. */
|
||
targetm.sched.init (sched_dump, sched_verbose, -1);
|
||
}
|
||
|
||
state_reset (curr_state);
|
||
advance_state (curr_state);
|
||
|
||
for (insn = current_sched_info->head;
|
||
insn != current_sched_info->next_tail;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
int cost, haifa_cost;
|
||
int sort_p;
|
||
bool asm_p, real_insn, after_stall, all_issued;
|
||
int clock;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
asm_p = false;
|
||
real_insn = recog_memoized (insn) >= 0;
|
||
clock = INSN_SCHED_CYCLE (insn);
|
||
|
||
cost = clock - last_clock;
|
||
|
||
/* Initialize HAIFA_COST. */
|
||
if (! real_insn)
|
||
{
|
||
asm_p = INSN_ASM_P (insn);
|
||
|
||
if (asm_p)
|
||
/* This is asm insn which *had* to be scheduled first
|
||
on the cycle. */
|
||
haifa_cost = 1;
|
||
else
|
||
/* This is a use/clobber insn. It should not change
|
||
cost. */
|
||
haifa_cost = 0;
|
||
}
|
||
else
|
||
haifa_cost = estimate_insn_cost (insn, curr_state);
|
||
|
||
/* Stall for whatever cycles we've stalled before. */
|
||
after_stall = 0;
|
||
if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
|
||
{
|
||
haifa_cost = cost;
|
||
after_stall = 1;
|
||
}
|
||
all_issued = issued_insns == issue_rate;
|
||
if (haifa_cost == 0 && all_issued)
|
||
haifa_cost = 1;
|
||
if (haifa_cost > 0)
|
||
{
|
||
int i = 0;
|
||
|
||
while (haifa_cost--)
|
||
{
|
||
advance_state (curr_state);
|
||
issued_insns = 0;
|
||
i++;
|
||
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("advance_state (state_transition)\n");
|
||
debug_state (curr_state);
|
||
}
|
||
|
||
/* The DFA may report that e.g. insn requires 2 cycles to be
|
||
issued, but on the next cycle it says that insn is ready
|
||
to go. Check this here. */
|
||
if (!after_stall
|
||
&& real_insn
|
||
&& haifa_cost > 0
|
||
&& estimate_insn_cost (insn, curr_state) == 0)
|
||
break;
|
||
|
||
/* When the data dependency stall is longer than the DFA stall,
|
||
and when we have issued exactly issue_rate insns and stalled,
|
||
it could be that after this longer stall the insn will again
|
||
become unavailable to the DFA restrictions. Looks strange
|
||
but happens e.g. on x86-64. So recheck DFA on the last
|
||
iteration. */
|
||
if ((after_stall || all_issued)
|
||
&& real_insn
|
||
&& haifa_cost == 0)
|
||
haifa_cost = estimate_insn_cost (insn, curr_state);
|
||
}
|
||
|
||
haifa_clock += i;
|
||
if (sched_verbose >= 2)
|
||
sel_print ("haifa clock: %d\n", haifa_clock);
|
||
}
|
||
else
|
||
gcc_assert (haifa_cost == 0);
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
|
||
|
||
if (targetm.sched.dfa_new_cycle)
|
||
while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
|
||
haifa_last_clock, haifa_clock,
|
||
&sort_p))
|
||
{
|
||
advance_state (curr_state);
|
||
issued_insns = 0;
|
||
haifa_clock++;
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("advance_state (dfa_new_cycle)\n");
|
||
debug_state (curr_state);
|
||
sel_print ("haifa clock: %d\n", haifa_clock + 1);
|
||
}
|
||
}
|
||
|
||
if (real_insn)
|
||
{
|
||
static state_t temp = NULL;
|
||
|
||
if (!temp)
|
||
temp = xmalloc (dfa_state_size);
|
||
memcpy (temp, curr_state, dfa_state_size);
|
||
|
||
cost = state_transition (curr_state, insn);
|
||
if (memcmp (temp, curr_state, dfa_state_size))
|
||
issued_insns++;
|
||
|
||
if (sched_verbose >= 2)
|
||
{
|
||
sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
|
||
haifa_clock + 1);
|
||
debug_state (curr_state);
|
||
}
|
||
gcc_assert (cost < 0);
|
||
}
|
||
|
||
if (targetm.sched.variable_issue)
|
||
targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
|
||
|
||
INSN_SCHED_CYCLE (insn) = haifa_clock;
|
||
|
||
last_clock = clock;
|
||
haifa_last_clock = haifa_clock;
|
||
}
|
||
}
|
||
|
||
/* Put TImode markers on insns starting a new issue group. */
|
||
static void
|
||
put_TImodes (void)
|
||
{
|
||
int last_clock = -1;
|
||
insn_t insn;
|
||
|
||
for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
int cost, clock;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
clock = INSN_SCHED_CYCLE (insn);
|
||
cost = (last_clock == -1) ? 1 : clock - last_clock;
|
||
|
||
gcc_assert (cost >= 0);
|
||
|
||
if (issue_rate > 1
|
||
&& GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
||
{
|
||
if (reload_completed && cost > 0)
|
||
PUT_MODE (insn, TImode);
|
||
|
||
last_clock = clock;
|
||
}
|
||
|
||
if (sched_verbose >= 2)
|
||
sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
|
||
}
|
||
}
|
||
|
||
/* Perform MD_FINISH on EBBs comprising current region. When
|
||
RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
|
||
to produce correct sched cycles on insns. */
|
||
static void
|
||
sel_region_target_finish (bool reset_sched_cycles_p)
|
||
{
|
||
int i;
|
||
bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
{
|
||
if (bitmap_bit_p (scheduled_blocks, i))
|
||
continue;
|
||
|
||
/* While pipelining outer loops, skip bundling for loop
|
||
preheaders. Those will be rescheduled in the outer loop. */
|
||
if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
|
||
continue;
|
||
|
||
find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
|
||
|
||
if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
|
||
continue;
|
||
|
||
if (reset_sched_cycles_p)
|
||
reset_sched_cycles_in_current_ebb ();
|
||
|
||
if (targetm.sched.init)
|
||
targetm.sched.init (sched_dump, sched_verbose, -1);
|
||
|
||
put_TImodes ();
|
||
|
||
if (targetm.sched.finish)
|
||
{
|
||
targetm.sched.finish (sched_dump, sched_verbose);
|
||
|
||
/* Extend luids so that insns generated by the target will
|
||
get zero luid. */
|
||
sched_extend_luids ();
|
||
}
|
||
}
|
||
|
||
BITMAP_FREE (scheduled_blocks);
|
||
}
|
||
|
||
/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
|
||
is true, make an additional pass emulating scheduler to get correct insn
|
||
cycles for md_finish calls. */
|
||
static void
|
||
sel_region_finish (bool reset_sched_cycles_p)
|
||
{
|
||
simplify_changed_insns ();
|
||
sched_finish_ready_list ();
|
||
free_nop_pool ();
|
||
|
||
/* Free the vectors. */
|
||
vec_av_set.release ();
|
||
BITMAP_FREE (current_copies);
|
||
BITMAP_FREE (current_originators);
|
||
BITMAP_FREE (code_motion_visited_blocks);
|
||
vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
|
||
vinsn_vec_free (vec_target_unavailable_vinsns);
|
||
|
||
/* If LV_SET of the region head should be updated, do it now because
|
||
there will be no other chance. */
|
||
{
|
||
succ_iterator si;
|
||
insn_t insn;
|
||
|
||
FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
if (!BB_LV_SET_VALID_P (bb))
|
||
compute_live (insn);
|
||
}
|
||
}
|
||
|
||
/* Emulate the Haifa scheduler for bundling. */
|
||
if (reload_completed)
|
||
sel_region_target_finish (reset_sched_cycles_p);
|
||
|
||
sel_finish_global_and_expr ();
|
||
|
||
BITMAP_FREE (forced_ebb_heads);
|
||
|
||
free_nop_vinsn ();
|
||
|
||
finish_deps_global ();
|
||
sched_finish_luids ();
|
||
h_d_i_d.release ();
|
||
|
||
sel_finish_bbs ();
|
||
BITMAP_FREE (blocks_to_reschedule);
|
||
|
||
sel_unregister_cfg_hooks ();
|
||
|
||
max_issue_size = 0;
|
||
}
|
||
|
||
|
||
/* Functions that implement the scheduler driver. */
|
||
|
||
/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
|
||
is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
|
||
of insns scheduled -- these would be postprocessed later. */
|
||
static void
|
||
schedule_on_fences (flist_t fences, int max_seqno,
|
||
ilist_t **scheduled_insns_tailpp)
|
||
{
|
||
flist_t old_fences = fences;
|
||
|
||
if (sched_verbose >= 1)
|
||
{
|
||
sel_print ("\nScheduling on fences: ");
|
||
dump_flist (fences);
|
||
sel_print ("\n");
|
||
}
|
||
|
||
scheduled_something_on_previous_fence = false;
|
||
for (; fences; fences = FLIST_NEXT (fences))
|
||
{
|
||
fence_t fence = NULL;
|
||
int seqno = 0;
|
||
flist_t fences2;
|
||
bool first_p = true;
|
||
|
||
/* Choose the next fence group to schedule.
|
||
The fact that insn can be scheduled only once
|
||
on the cycle is guaranteed by two properties:
|
||
1. seqnos of parallel groups decrease with each iteration.
|
||
2. If is_ineligible_successor () sees the larger seqno, it
|
||
checks if candidate insn is_in_current_fence_p (). */
|
||
for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
|
||
{
|
||
fence_t f = FLIST_FENCE (fences2);
|
||
|
||
if (!FENCE_PROCESSED_P (f))
|
||
{
|
||
int i = INSN_SEQNO (FENCE_INSN (f));
|
||
|
||
if (first_p || i > seqno)
|
||
{
|
||
seqno = i;
|
||
fence = f;
|
||
first_p = false;
|
||
}
|
||
else
|
||
/* ??? Seqnos of different groups should be different. */
|
||
gcc_assert (1 || i != seqno);
|
||
}
|
||
}
|
||
|
||
gcc_assert (fence);
|
||
|
||
/* As FENCE is nonnull, SEQNO is initialized. */
|
||
seqno -= max_seqno + 1;
|
||
fill_insns (fence, seqno, scheduled_insns_tailpp);
|
||
FENCE_PROCESSED_P (fence) = true;
|
||
}
|
||
|
||
/* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
|
||
don't need to keep bookkeeping-invalidated and target-unavailable
|
||
vinsns any more. */
|
||
vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
|
||
vinsn_vec_clear (&vec_target_unavailable_vinsns);
|
||
}
|
||
|
||
/* Calculate MIN_SEQNO and MAX_SEQNO. */
|
||
static void
|
||
find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
|
||
{
|
||
*min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
|
||
|
||
/* The first element is already processed. */
|
||
while ((fences = FLIST_NEXT (fences)))
|
||
{
|
||
int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
|
||
|
||
if (*min_seqno > seqno)
|
||
*min_seqno = seqno;
|
||
else if (*max_seqno < seqno)
|
||
*max_seqno = seqno;
|
||
}
|
||
}
|
||
|
||
/* Calculate new fences from FENCES. Write the current time to PTIME. */
|
||
static flist_t
|
||
calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
|
||
{
|
||
flist_t old_fences = fences;
|
||
struct flist_tail_def _new_fences, *new_fences = &_new_fences;
|
||
int max_time = 0;
|
||
|
||
flist_tail_init (new_fences);
|
||
for (; fences; fences = FLIST_NEXT (fences))
|
||
{
|
||
fence_t fence = FLIST_FENCE (fences);
|
||
insn_t insn;
|
||
|
||
if (!FENCE_BNDS (fence))
|
||
{
|
||
/* This fence doesn't have any successors. */
|
||
if (!FENCE_SCHEDULED_P (fence))
|
||
{
|
||
/* Nothing was scheduled on this fence. */
|
||
int seqno;
|
||
|
||
insn = FENCE_INSN (fence);
|
||
seqno = INSN_SEQNO (insn);
|
||
gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
|
||
|
||
if (sched_verbose >= 1)
|
||
sel_print ("Fence %d[%d] has not changed\n",
|
||
INSN_UID (insn),
|
||
BLOCK_NUM (insn));
|
||
move_fence_to_fences (fences, new_fences);
|
||
}
|
||
}
|
||
else
|
||
extract_new_fences_from (fences, new_fences, orig_max_seqno);
|
||
max_time = MAX (max_time, FENCE_CYCLE (fence));
|
||
}
|
||
|
||
flist_clear (&old_fences);
|
||
*ptime = max_time;
|
||
return FLIST_TAIL_HEAD (new_fences);
|
||
}
|
||
|
||
/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
|
||
are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
|
||
the highest seqno used in a region. Return the updated highest seqno. */
|
||
static int
|
||
update_seqnos_and_stage (int min_seqno, int max_seqno,
|
||
int highest_seqno_in_use,
|
||
ilist_t *pscheduled_insns)
|
||
{
|
||
int new_hs;
|
||
ilist_iterator ii;
|
||
insn_t insn;
|
||
|
||
/* Actually, new_hs is the seqno of the instruction, that was
|
||
scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
|
||
if (*pscheduled_insns)
|
||
{
|
||
new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
|
||
+ highest_seqno_in_use + max_seqno - min_seqno + 2);
|
||
gcc_assert (new_hs > highest_seqno_in_use);
|
||
}
|
||
else
|
||
new_hs = highest_seqno_in_use;
|
||
|
||
FOR_EACH_INSN (insn, ii, *pscheduled_insns)
|
||
{
|
||
gcc_assert (INSN_SEQNO (insn) < 0);
|
||
INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
|
||
gcc_assert (INSN_SEQNO (insn) <= new_hs);
|
||
|
||
/* When not pipelining, purge unneeded insn info on the scheduled insns.
|
||
For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
|
||
require > 1GB of memory e.g. on limit-fnargs.c. */
|
||
if (! pipelining_p)
|
||
free_data_for_scheduled_insn (insn);
|
||
}
|
||
|
||
ilist_clear (pscheduled_insns);
|
||
global_level++;
|
||
|
||
return new_hs;
|
||
}
|
||
|
||
/* The main driver for scheduling a region. This function is responsible
|
||
for correct propagation of fences (i.e. scheduling points) and creating
|
||
a group of parallel insns at each of them. It also supports
|
||
pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
|
||
of scheduling. */
|
||
static void
|
||
sel_sched_region_2 (int orig_max_seqno)
|
||
{
|
||
int highest_seqno_in_use = orig_max_seqno;
|
||
int max_time = 0;
|
||
|
||
stat_bookkeeping_copies = 0;
|
||
stat_insns_needed_bookkeeping = 0;
|
||
stat_renamed_scheduled = 0;
|
||
stat_substitutions_total = 0;
|
||
num_insns_scheduled = 0;
|
||
|
||
while (fences)
|
||
{
|
||
int min_seqno, max_seqno;
|
||
ilist_t scheduled_insns = NULL;
|
||
ilist_t *scheduled_insns_tailp = &scheduled_insns;
|
||
|
||
find_min_max_seqno (fences, &min_seqno, &max_seqno);
|
||
schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
|
||
fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
|
||
highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
|
||
highest_seqno_in_use,
|
||
&scheduled_insns);
|
||
}
|
||
|
||
if (sched_verbose >= 1)
|
||
{
|
||
sel_print ("Total scheduling time: %d cycles\n", max_time);
|
||
sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
|
||
"bookkeeping, %d insns renamed, %d insns substituted\n",
|
||
stat_bookkeeping_copies,
|
||
stat_insns_needed_bookkeeping,
|
||
stat_renamed_scheduled,
|
||
stat_substitutions_total);
|
||
}
|
||
}
|
||
|
||
/* Schedule a region. When pipelining, search for possibly never scheduled
|
||
bookkeeping code and schedule it. Reschedule pipelined code without
|
||
pipelining after. */
|
||
static void
|
||
sel_sched_region_1 (void)
|
||
{
|
||
int orig_max_seqno;
|
||
|
||
/* Remove empty blocks that might be in the region from the beginning. */
|
||
purge_empty_blocks ();
|
||
|
||
orig_max_seqno = init_seqno (NULL, NULL);
|
||
gcc_assert (orig_max_seqno >= 1);
|
||
|
||
/* When pipelining outer loops, create fences on the loop header,
|
||
not preheader. */
|
||
fences = NULL;
|
||
if (current_loop_nest)
|
||
init_fences (BB_END (EBB_FIRST_BB (0)));
|
||
else
|
||
init_fences (bb_note (EBB_FIRST_BB (0)));
|
||
global_level = 1;
|
||
|
||
sel_sched_region_2 (orig_max_seqno);
|
||
|
||
gcc_assert (fences == NULL);
|
||
|
||
if (pipelining_p)
|
||
{
|
||
int i;
|
||
basic_block bb;
|
||
struct flist_tail_def _new_fences;
|
||
flist_tail_t new_fences = &_new_fences;
|
||
bool do_p = true;
|
||
|
||
pipelining_p = false;
|
||
max_ws = MIN (max_ws, issue_rate * 3 / 2);
|
||
bookkeeping_p = false;
|
||
enable_schedule_as_rhs_p = false;
|
||
|
||
/* Schedule newly created code, that has not been scheduled yet. */
|
||
do_p = true;
|
||
|
||
while (do_p)
|
||
{
|
||
do_p = false;
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
{
|
||
basic_block bb = EBB_FIRST_BB (i);
|
||
|
||
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
|
||
{
|
||
if (! bb_ends_ebb_p (bb))
|
||
bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
|
||
if (sel_bb_empty_p (bb))
|
||
{
|
||
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
||
continue;
|
||
}
|
||
clear_outdated_rtx_info (bb);
|
||
if (sel_insn_is_speculation_check (BB_END (bb))
|
||
&& JUMP_P (BB_END (bb)))
|
||
bitmap_set_bit (blocks_to_reschedule,
|
||
BRANCH_EDGE (bb)->dest->index);
|
||
}
|
||
else if (! sel_bb_empty_p (bb)
|
||
&& INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
|
||
bitmap_set_bit (blocks_to_reschedule, bb->index);
|
||
}
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
{
|
||
bb = EBB_FIRST_BB (i);
|
||
|
||
/* While pipelining outer loops, skip bundling for loop
|
||
preheaders. Those will be rescheduled in the outer
|
||
loop. */
|
||
if (sel_is_loop_preheader_p (bb))
|
||
{
|
||
clear_outdated_rtx_info (bb);
|
||
continue;
|
||
}
|
||
|
||
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
|
||
{
|
||
flist_tail_init (new_fences);
|
||
|
||
orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
|
||
|
||
/* Mark BB as head of the new ebb. */
|
||
bitmap_set_bit (forced_ebb_heads, bb->index);
|
||
|
||
gcc_assert (fences == NULL);
|
||
|
||
init_fences (bb_note (bb));
|
||
|
||
sel_sched_region_2 (orig_max_seqno);
|
||
|
||
do_p = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Schedule the RGN region. */
|
||
void
|
||
sel_sched_region (int rgn)
|
||
{
|
||
bool schedule_p;
|
||
bool reset_sched_cycles_p;
|
||
|
||
if (sel_region_init (rgn))
|
||
return;
|
||
|
||
if (sched_verbose >= 1)
|
||
sel_print ("Scheduling region %d\n", rgn);
|
||
|
||
schedule_p = (!sched_is_disabled_for_current_region_p ()
|
||
&& dbg_cnt (sel_sched_region_cnt));
|
||
reset_sched_cycles_p = pipelining_p;
|
||
if (schedule_p)
|
||
sel_sched_region_1 ();
|
||
else
|
||
{
|
||
/* Schedule always selecting the next insn to make the correct data
|
||
for bundling or other later passes. */
|
||
pipelining_p = false;
|
||
reset_sched_cycles_p = false;
|
||
force_next_insn = 1;
|
||
sel_sched_region_1 ();
|
||
force_next_insn = 0;
|
||
}
|
||
sel_region_finish (reset_sched_cycles_p);
|
||
}
|
||
|
||
/* Perform global init for the scheduler. */
|
||
static void
|
||
sel_global_init (void)
|
||
{
|
||
/* Remove empty blocks: their presence can break assumptions elsewhere,
|
||
e.g. the logic to invoke update_liveness_on_insn in sel_region_init. */
|
||
cleanup_cfg (0);
|
||
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
alloc_sched_pools ();
|
||
|
||
/* Setup the infos for sched_init. */
|
||
sel_setup_sched_infos ();
|
||
setup_sched_dump ();
|
||
|
||
sched_rgn_init (false);
|
||
sched_init ();
|
||
|
||
sched_init_bbs ();
|
||
/* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
|
||
after_recovery = 0;
|
||
can_issue_more = issue_rate;
|
||
|
||
sched_extend_target ();
|
||
sched_deps_init (true);
|
||
setup_nop_and_exit_insns ();
|
||
sel_extend_global_bb_info ();
|
||
init_lv_sets ();
|
||
init_hard_regs_data ();
|
||
}
|
||
|
||
/* Free the global data of the scheduler. */
|
||
static void
|
||
sel_global_finish (void)
|
||
{
|
||
free_bb_note_pool ();
|
||
free_lv_sets ();
|
||
sel_finish_global_bb_info ();
|
||
|
||
free_regset_pool ();
|
||
free_nop_and_exit_insns ();
|
||
|
||
sched_rgn_finish ();
|
||
sched_deps_finish ();
|
||
sched_finish ();
|
||
|
||
if (current_loops)
|
||
sel_finish_pipelining ();
|
||
|
||
free_sched_pools ();
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
}
|
||
|
||
/* Return true when we need to skip selective scheduling. Used for debugging. */
|
||
bool
|
||
maybe_skip_selective_scheduling (void)
|
||
{
|
||
return ! dbg_cnt (sel_sched_cnt);
|
||
}
|
||
|
||
/* The entry point. */
|
||
void
|
||
run_selective_scheduling (void)
|
||
{
|
||
int rgn;
|
||
|
||
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
|
||
return;
|
||
|
||
sel_global_init ();
|
||
|
||
for (rgn = 0; rgn < nr_regions; rgn++)
|
||
sel_sched_region (rgn);
|
||
|
||
sel_global_finish ();
|
||
}
|
||
|
||
#endif
|