4e71066d7e
2011-08-31 Richard Guenther <rguenther@suse.de> * expr.c (expand_expr_real_2): Move COND_EXPR and VEC_COND_EXPR handling here, from ... (expand_expr_real_1): ... here. * gimple-pretty-print.c (dump_ternary_rhs): Handle COND_EXPR and VEC_COND_EXPR. * gimple.c (gimple_rhs_class_table): Make COND_EXPR and VEC_COND_EXPR a GIMPLE_TERNARY_RHS. * tree-cfg.c (verify_gimple_assign_ternary): Handle COND_EXPR and VEC_COND_EXPR here ... (verify_gimple_assign_single): ... not here. * gimple-fold.c (fold_gimple_assign): Move COND_EXPR folding. * tree-object-size.c (cond_expr_object_size): Adjust. (collect_object_sizes_for): Likewise. * tree-scalar-evolution.c (interpret_expr): Don't handle ternary RHSs. * tree-ssa-forwprop.c (forward_propagate_into_cond): Fix and simplify. (ssa_forward_propagate_and_combine): Adjust. * tree-ssa-loop-im.c (move_computations_stmt): Build the COND_EXPR as ternary. * tree-ssa-threadedge.c (fold_assignment_stmt): Adjust. * tree-vect-loop.c (vect_is_simple_reduction_1): Likewise. * tree-vect-stmt.c (vectorizable_condition): Likewise. * tree-vrp.c (extract_range_from_cond_expr): Likewise. (extract_range_from_assignment): Likewise. From-SVN: r178408
7526 lines
197 KiB
C
7526 lines
197 KiB
C
/* Control flow functions for trees.
|
||
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
||
2010, 2011 Free Software Foundation, Inc.
|
||
Contributed by Diego Novillo <dnovillo@redhat.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "ggc.h"
|
||
#include "langhooks.h"
|
||
#include "tree-pretty-print.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "tree-flow.h"
|
||
#include "timevar.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
#include "diagnostic-core.h"
|
||
#include "except.h"
|
||
#include "cfgloop.h"
|
||
#include "cfglayout.h"
|
||
#include "tree-ssa-propagate.h"
|
||
#include "value-prof.h"
|
||
#include "pointer-set.h"
|
||
#include "tree-inline.h"
|
||
|
||
/* This file contains functions for building the Control Flow Graph (CFG)
|
||
for a function tree. */
|
||
|
||
/* Local declarations. */
|
||
|
||
/* Initial capacity for the basic block array. */
|
||
static const int initial_cfg_capacity = 20;
|
||
|
||
/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
|
||
which use a particular edge. The CASE_LABEL_EXPRs are chained together
|
||
via their TREE_CHAIN field, which we clear after we're done with the
|
||
hash table to prevent problems with duplication of GIMPLE_SWITCHes.
|
||
|
||
Access to this list of CASE_LABEL_EXPRs allows us to efficiently
|
||
update the case vector in response to edge redirections.
|
||
|
||
Right now this table is set up and torn down at key points in the
|
||
compilation process. It would be nice if we could make the table
|
||
more persistent. The key is getting notification of changes to
|
||
the CFG (particularly edge removal, creation and redirection). */
|
||
|
||
static struct pointer_map_t *edge_to_cases;
|
||
|
||
/* If we record edge_to_cases, this bitmap will hold indexes
|
||
of basic blocks that end in a GIMPLE_SWITCH which we touched
|
||
due to edge manipulations. */
|
||
|
||
static bitmap touched_switch_bbs;
|
||
|
||
/* CFG statistics. */
|
||
struct cfg_stats_d
|
||
{
|
||
long num_merged_labels;
|
||
};
|
||
|
||
static struct cfg_stats_d cfg_stats;
|
||
|
||
/* Nonzero if we found a computed goto while building basic blocks. */
|
||
static bool found_computed_goto;
|
||
|
||
/* Hash table to store last discriminator assigned for each locus. */
|
||
struct locus_discrim_map
|
||
{
|
||
location_t locus;
|
||
int discriminator;
|
||
};
|
||
static htab_t discriminator_per_locus;
|
||
|
||
/* Basic blocks and flowgraphs. */
|
||
static void make_blocks (gimple_seq);
|
||
static void factor_computed_gotos (void);
|
||
|
||
/* Edges. */
|
||
static void make_edges (void);
|
||
static void make_cond_expr_edges (basic_block);
|
||
static void make_gimple_switch_edges (basic_block);
|
||
static void make_goto_expr_edges (basic_block);
|
||
static void make_gimple_asm_edges (basic_block);
|
||
static unsigned int locus_map_hash (const void *);
|
||
static int locus_map_eq (const void *, const void *);
|
||
static void assign_discriminator (location_t, basic_block);
|
||
static edge gimple_redirect_edge_and_branch (edge, basic_block);
|
||
static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
|
||
static unsigned int split_critical_edges (void);
|
||
|
||
/* Various helpers. */
|
||
static inline bool stmt_starts_bb_p (gimple, gimple);
|
||
static int gimple_verify_flow_info (void);
|
||
static void gimple_make_forwarder_block (edge);
|
||
static void gimple_cfg2vcg (FILE *);
|
||
static gimple first_non_label_stmt (basic_block);
|
||
|
||
/* Flowgraph optimization and cleanup. */
|
||
static void gimple_merge_blocks (basic_block, basic_block);
|
||
static bool gimple_can_merge_blocks_p (basic_block, basic_block);
|
||
static void remove_bb (basic_block);
|
||
static edge find_taken_edge_computed_goto (basic_block, tree);
|
||
static edge find_taken_edge_cond_expr (basic_block, tree);
|
||
static edge find_taken_edge_switch_expr (basic_block, tree);
|
||
static tree find_case_label_for_value (gimple, tree);
|
||
static void group_case_labels_stmt (gimple);
|
||
|
||
void
|
||
init_empty_tree_cfg_for_function (struct function *fn)
|
||
{
|
||
/* Initialize the basic block array. */
|
||
init_flow (fn);
|
||
profile_status_for_function (fn) = PROFILE_ABSENT;
|
||
n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
|
||
last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
|
||
basic_block_info_for_function (fn)
|
||
= VEC_alloc (basic_block, gc, initial_cfg_capacity);
|
||
VEC_safe_grow_cleared (basic_block, gc,
|
||
basic_block_info_for_function (fn),
|
||
initial_cfg_capacity);
|
||
|
||
/* Build a mapping of labels to their associated blocks. */
|
||
label_to_block_map_for_function (fn)
|
||
= VEC_alloc (basic_block, gc, initial_cfg_capacity);
|
||
VEC_safe_grow_cleared (basic_block, gc,
|
||
label_to_block_map_for_function (fn),
|
||
initial_cfg_capacity);
|
||
|
||
SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
|
||
ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
|
||
SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
|
||
EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
|
||
|
||
ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
|
||
= EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
|
||
EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
|
||
= ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
|
||
}
|
||
|
||
void
|
||
init_empty_tree_cfg (void)
|
||
{
|
||
init_empty_tree_cfg_for_function (cfun);
|
||
}
|
||
|
||
/*---------------------------------------------------------------------------
|
||
Create basic blocks
|
||
---------------------------------------------------------------------------*/
|
||
|
||
/* Entry point to the CFG builder for trees. SEQ is the sequence of
|
||
statements to be added to the flowgraph. */
|
||
|
||
static void
|
||
build_gimple_cfg (gimple_seq seq)
|
||
{
|
||
/* Register specific gimple functions. */
|
||
gimple_register_cfg_hooks ();
|
||
|
||
memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
|
||
|
||
init_empty_tree_cfg ();
|
||
|
||
found_computed_goto = 0;
|
||
make_blocks (seq);
|
||
|
||
/* Computed gotos are hell to deal with, especially if there are
|
||
lots of them with a large number of destinations. So we factor
|
||
them to a common computed goto location before we build the
|
||
edge list. After we convert back to normal form, we will un-factor
|
||
the computed gotos since factoring introduces an unwanted jump. */
|
||
if (found_computed_goto)
|
||
factor_computed_gotos ();
|
||
|
||
/* Make sure there is always at least one block, even if it's empty. */
|
||
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
||
create_empty_bb (ENTRY_BLOCK_PTR);
|
||
|
||
/* Adjust the size of the array. */
|
||
if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
|
||
VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
|
||
|
||
/* To speed up statement iterator walks, we first purge dead labels. */
|
||
cleanup_dead_labels ();
|
||
|
||
/* Group case nodes to reduce the number of edges.
|
||
We do this after cleaning up dead labels because otherwise we miss
|
||
a lot of obvious case merging opportunities. */
|
||
group_case_labels ();
|
||
|
||
/* Create the edges of the flowgraph. */
|
||
discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
|
||
free);
|
||
make_edges ();
|
||
cleanup_dead_labels ();
|
||
htab_delete (discriminator_per_locus);
|
||
|
||
/* Debugging dumps. */
|
||
|
||
/* Write the flowgraph to a VCG file. */
|
||
{
|
||
int local_dump_flags;
|
||
FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
|
||
if (vcg_file)
|
||
{
|
||
gimple_cfg2vcg (vcg_file);
|
||
dump_end (TDI_vcg, vcg_file);
|
||
}
|
||
}
|
||
}
|
||
|
||
static unsigned int
|
||
execute_build_cfg (void)
|
||
{
|
||
gimple_seq body = gimple_body (current_function_decl);
|
||
|
||
build_gimple_cfg (body);
|
||
gimple_set_body (current_function_decl, NULL);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Scope blocks:\n");
|
||
dump_scope_blocks (dump_file, dump_flags);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_build_cfg =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"cfg", /* name */
|
||
NULL, /* gate */
|
||
execute_build_cfg, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_CFG, /* tv_id */
|
||
PROP_gimple_leh, /* properties_required */
|
||
PROP_cfg, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
|
||
/* Return true if T is a computed goto. */
|
||
|
||
static bool
|
||
computed_goto_p (gimple t)
|
||
{
|
||
return (gimple_code (t) == GIMPLE_GOTO
|
||
&& TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
|
||
}
|
||
|
||
|
||
/* Search the CFG for any computed gotos. If found, factor them to a
|
||
common computed goto site. Also record the location of that site so
|
||
that we can un-factor the gotos after we have converted back to
|
||
normal form. */
|
||
|
||
static void
|
||
factor_computed_gotos (void)
|
||
{
|
||
basic_block bb;
|
||
tree factored_label_decl = NULL;
|
||
tree var = NULL;
|
||
gimple factored_computed_goto_label = NULL;
|
||
gimple factored_computed_goto = NULL;
|
||
|
||
/* We know there are one or more computed gotos in this function.
|
||
Examine the last statement in each basic block to see if the block
|
||
ends with a computed goto. */
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
||
gimple last;
|
||
|
||
if (gsi_end_p (gsi))
|
||
continue;
|
||
|
||
last = gsi_stmt (gsi);
|
||
|
||
/* Ignore the computed goto we create when we factor the original
|
||
computed gotos. */
|
||
if (last == factored_computed_goto)
|
||
continue;
|
||
|
||
/* If the last statement is a computed goto, factor it. */
|
||
if (computed_goto_p (last))
|
||
{
|
||
gimple assignment;
|
||
|
||
/* The first time we find a computed goto we need to create
|
||
the factored goto block and the variable each original
|
||
computed goto will use for their goto destination. */
|
||
if (!factored_computed_goto)
|
||
{
|
||
basic_block new_bb = create_empty_bb (bb);
|
||
gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
|
||
|
||
/* Create the destination of the factored goto. Each original
|
||
computed goto will put its desired destination into this
|
||
variable and jump to the label we create immediately
|
||
below. */
|
||
var = create_tmp_var (ptr_type_node, "gotovar");
|
||
|
||
/* Build a label for the new block which will contain the
|
||
factored computed goto. */
|
||
factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
|
||
factored_computed_goto_label
|
||
= gimple_build_label (factored_label_decl);
|
||
gsi_insert_after (&new_gsi, factored_computed_goto_label,
|
||
GSI_NEW_STMT);
|
||
|
||
/* Build our new computed goto. */
|
||
factored_computed_goto = gimple_build_goto (var);
|
||
gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
|
||
}
|
||
|
||
/* Copy the original computed goto's destination into VAR. */
|
||
assignment = gimple_build_assign (var, gimple_goto_dest (last));
|
||
gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
|
||
|
||
/* And re-vector the computed goto to the new destination. */
|
||
gimple_goto_set_dest (last, factored_label_decl);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Build a flowgraph for the sequence of stmts SEQ. */
|
||
|
||
static void
|
||
make_blocks (gimple_seq seq)
|
||
{
|
||
gimple_stmt_iterator i = gsi_start (seq);
|
||
gimple stmt = NULL;
|
||
bool start_new_block = true;
|
||
bool first_stmt_of_seq = true;
|
||
basic_block bb = ENTRY_BLOCK_PTR;
|
||
|
||
while (!gsi_end_p (i))
|
||
{
|
||
gimple prev_stmt;
|
||
|
||
prev_stmt = stmt;
|
||
stmt = gsi_stmt (i);
|
||
|
||
/* If the statement starts a new basic block or if we have determined
|
||
in a previous pass that we need to create a new block for STMT, do
|
||
so now. */
|
||
if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
|
||
{
|
||
if (!first_stmt_of_seq)
|
||
seq = gsi_split_seq_before (&i);
|
||
bb = create_basic_block (seq, NULL, bb);
|
||
start_new_block = false;
|
||
}
|
||
|
||
/* Now add STMT to BB and create the subgraphs for special statement
|
||
codes. */
|
||
gimple_set_bb (stmt, bb);
|
||
|
||
if (computed_goto_p (stmt))
|
||
found_computed_goto = true;
|
||
|
||
/* If STMT is a basic block terminator, set START_NEW_BLOCK for the
|
||
next iteration. */
|
||
if (stmt_ends_bb_p (stmt))
|
||
{
|
||
/* If the stmt can make abnormal goto use a new temporary
|
||
for the assignment to the LHS. This makes sure the old value
|
||
of the LHS is available on the abnormal edge. Otherwise
|
||
we will end up with overlapping life-ranges for abnormal
|
||
SSA names. */
|
||
if (gimple_has_lhs (stmt)
|
||
&& stmt_can_make_abnormal_goto (stmt)
|
||
&& is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
|
||
{
|
||
tree lhs = gimple_get_lhs (stmt);
|
||
tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
|
||
gimple s = gimple_build_assign (lhs, tmp);
|
||
gimple_set_location (s, gimple_location (stmt));
|
||
gimple_set_block (s, gimple_block (stmt));
|
||
gimple_set_lhs (stmt, tmp);
|
||
if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
|
||
|| TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
|
||
DECL_GIMPLE_REG_P (tmp) = 1;
|
||
gsi_insert_after (&i, s, GSI_SAME_STMT);
|
||
}
|
||
start_new_block = true;
|
||
}
|
||
|
||
gsi_next (&i);
|
||
first_stmt_of_seq = false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Create and return a new empty basic block after bb AFTER. */
|
||
|
||
static basic_block
|
||
create_bb (void *h, void *e, basic_block after)
|
||
{
|
||
basic_block bb;
|
||
|
||
gcc_assert (!e);
|
||
|
||
/* Create and initialize a new basic block. Since alloc_block uses
|
||
GC allocation that clears memory to allocate a basic block, we do
|
||
not have to clear the newly allocated basic block here. */
|
||
bb = alloc_block ();
|
||
|
||
bb->index = last_basic_block;
|
||
bb->flags = BB_NEW;
|
||
bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
|
||
set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
|
||
|
||
/* Add the new block to the linked list of blocks. */
|
||
link_block (bb, after);
|
||
|
||
/* Grow the basic block array if needed. */
|
||
if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
|
||
{
|
||
size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
|
||
VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
|
||
}
|
||
|
||
/* Add the newly created block to the array. */
|
||
SET_BASIC_BLOCK (last_basic_block, bb);
|
||
|
||
n_basic_blocks++;
|
||
last_basic_block++;
|
||
|
||
return bb;
|
||
}
|
||
|
||
|
||
/*---------------------------------------------------------------------------
|
||
Edge creation
|
||
---------------------------------------------------------------------------*/
|
||
|
||
/* Fold COND_EXPR_COND of each COND_EXPR. */
|
||
|
||
void
|
||
fold_cond_expr_cond (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple stmt = last_stmt (bb);
|
||
|
||
if (stmt && gimple_code (stmt) == GIMPLE_COND)
|
||
{
|
||
location_t loc = gimple_location (stmt);
|
||
tree cond;
|
||
bool zerop, onep;
|
||
|
||
fold_defer_overflow_warnings ();
|
||
cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
|
||
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
||
if (cond)
|
||
{
|
||
zerop = integer_zerop (cond);
|
||
onep = integer_onep (cond);
|
||
}
|
||
else
|
||
zerop = onep = false;
|
||
|
||
fold_undefer_overflow_warnings (zerop || onep,
|
||
stmt,
|
||
WARN_STRICT_OVERFLOW_CONDITIONAL);
|
||
if (zerop)
|
||
gimple_cond_make_false (stmt);
|
||
else if (onep)
|
||
gimple_cond_make_true (stmt);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Join all the blocks in the flowgraph. */
|
||
|
||
static void
|
||
make_edges (void)
|
||
{
|
||
basic_block bb;
|
||
struct omp_region *cur_region = NULL;
|
||
|
||
/* Create an edge from entry to the first block with executable
|
||
statements in it. */
|
||
make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
|
||
|
||
/* Traverse the basic block array placing edges. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple last = last_stmt (bb);
|
||
bool fallthru;
|
||
|
||
if (last)
|
||
{
|
||
enum gimple_code code = gimple_code (last);
|
||
switch (code)
|
||
{
|
||
case GIMPLE_GOTO:
|
||
make_goto_expr_edges (bb);
|
||
fallthru = false;
|
||
break;
|
||
case GIMPLE_RETURN:
|
||
make_edge (bb, EXIT_BLOCK_PTR, 0);
|
||
fallthru = false;
|
||
break;
|
||
case GIMPLE_COND:
|
||
make_cond_expr_edges (bb);
|
||
fallthru = false;
|
||
break;
|
||
case GIMPLE_SWITCH:
|
||
make_gimple_switch_edges (bb);
|
||
fallthru = false;
|
||
break;
|
||
case GIMPLE_RESX:
|
||
make_eh_edges (last);
|
||
fallthru = false;
|
||
break;
|
||
case GIMPLE_EH_DISPATCH:
|
||
fallthru = make_eh_dispatch_edges (last);
|
||
break;
|
||
|
||
case GIMPLE_CALL:
|
||
/* If this function receives a nonlocal goto, then we need to
|
||
make edges from this call site to all the nonlocal goto
|
||
handlers. */
|
||
if (stmt_can_make_abnormal_goto (last))
|
||
make_abnormal_goto_edges (bb, true);
|
||
|
||
/* If this statement has reachable exception handlers, then
|
||
create abnormal edges to them. */
|
||
make_eh_edges (last);
|
||
|
||
/* BUILTIN_RETURN is really a return statement. */
|
||
if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
|
||
make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
|
||
/* Some calls are known not to return. */
|
||
else
|
||
fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
|
||
break;
|
||
|
||
case GIMPLE_ASSIGN:
|
||
/* A GIMPLE_ASSIGN may throw internally and thus be considered
|
||
control-altering. */
|
||
if (is_ctrl_altering_stmt (last))
|
||
make_eh_edges (last);
|
||
fallthru = true;
|
||
break;
|
||
|
||
case GIMPLE_ASM:
|
||
make_gimple_asm_edges (bb);
|
||
fallthru = true;
|
||
break;
|
||
|
||
case GIMPLE_OMP_PARALLEL:
|
||
case GIMPLE_OMP_TASK:
|
||
case GIMPLE_OMP_FOR:
|
||
case GIMPLE_OMP_SINGLE:
|
||
case GIMPLE_OMP_MASTER:
|
||
case GIMPLE_OMP_ORDERED:
|
||
case GIMPLE_OMP_CRITICAL:
|
||
case GIMPLE_OMP_SECTION:
|
||
cur_region = new_omp_region (bb, code, cur_region);
|
||
fallthru = true;
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTIONS:
|
||
cur_region = new_omp_region (bb, code, cur_region);
|
||
fallthru = true;
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTIONS_SWITCH:
|
||
fallthru = false;
|
||
break;
|
||
|
||
case GIMPLE_OMP_ATOMIC_LOAD:
|
||
case GIMPLE_OMP_ATOMIC_STORE:
|
||
fallthru = true;
|
||
break;
|
||
|
||
case GIMPLE_OMP_RETURN:
|
||
/* In the case of a GIMPLE_OMP_SECTION, the edge will go
|
||
somewhere other than the next block. This will be
|
||
created later. */
|
||
cur_region->exit = bb;
|
||
fallthru = cur_region->type != GIMPLE_OMP_SECTION;
|
||
cur_region = cur_region->outer;
|
||
break;
|
||
|
||
case GIMPLE_OMP_CONTINUE:
|
||
cur_region->cont = bb;
|
||
switch (cur_region->type)
|
||
{
|
||
case GIMPLE_OMP_FOR:
|
||
/* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
|
||
succs edges as abnormal to prevent splitting
|
||
them. */
|
||
single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
|
||
/* Make the loopback edge. */
|
||
make_edge (bb, single_succ (cur_region->entry),
|
||
EDGE_ABNORMAL);
|
||
|
||
/* Create an edge from GIMPLE_OMP_FOR to exit, which
|
||
corresponds to the case that the body of the loop
|
||
is not executed at all. */
|
||
make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
|
||
make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
|
||
fallthru = false;
|
||
break;
|
||
|
||
case GIMPLE_OMP_SECTIONS:
|
||
/* Wire up the edges into and out of the nested sections. */
|
||
{
|
||
basic_block switch_bb = single_succ (cur_region->entry);
|
||
|
||
struct omp_region *i;
|
||
for (i = cur_region->inner; i ; i = i->next)
|
||
{
|
||
gcc_assert (i->type == GIMPLE_OMP_SECTION);
|
||
make_edge (switch_bb, i->entry, 0);
|
||
make_edge (i->exit, bb, EDGE_FALLTHRU);
|
||
}
|
||
|
||
/* Make the loopback edge to the block with
|
||
GIMPLE_OMP_SECTIONS_SWITCH. */
|
||
make_edge (bb, switch_bb, 0);
|
||
|
||
/* Make the edge from the switch to exit. */
|
||
make_edge (switch_bb, bb->next_bb, 0);
|
||
fallthru = false;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_assert (!stmt_ends_bb_p (last));
|
||
fallthru = true;
|
||
}
|
||
}
|
||
else
|
||
fallthru = true;
|
||
|
||
if (fallthru)
|
||
{
|
||
make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
|
||
if (last)
|
||
assign_discriminator (gimple_location (last), bb->next_bb);
|
||
}
|
||
}
|
||
|
||
if (root_omp_region)
|
||
free_omp_regions ();
|
||
|
||
/* Fold COND_EXPR_COND of each COND_EXPR. */
|
||
fold_cond_expr_cond ();
|
||
}
|
||
|
||
/* Trivial hash function for a location_t. ITEM is a pointer to
|
||
a hash table entry that maps a location_t to a discriminator. */
|
||
|
||
static unsigned int
|
||
locus_map_hash (const void *item)
|
||
{
|
||
return ((const struct locus_discrim_map *) item)->locus;
|
||
}
|
||
|
||
/* Equality function for the locus-to-discriminator map. VA and VB
|
||
point to the two hash table entries to compare. */
|
||
|
||
static int
|
||
locus_map_eq (const void *va, const void *vb)
|
||
{
|
||
const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
|
||
const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
|
||
return a->locus == b->locus;
|
||
}
|
||
|
||
/* Find the next available discriminator value for LOCUS. The
|
||
discriminator distinguishes among several basic blocks that
|
||
share a common locus, allowing for more accurate sample-based
|
||
profiling. */
|
||
|
||
static int
|
||
next_discriminator_for_locus (location_t locus)
|
||
{
|
||
struct locus_discrim_map item;
|
||
struct locus_discrim_map **slot;
|
||
|
||
item.locus = locus;
|
||
item.discriminator = 0;
|
||
slot = (struct locus_discrim_map **)
|
||
htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
|
||
(hashval_t) locus, INSERT);
|
||
gcc_assert (slot);
|
||
if (*slot == HTAB_EMPTY_ENTRY)
|
||
{
|
||
*slot = XNEW (struct locus_discrim_map);
|
||
gcc_assert (*slot);
|
||
(*slot)->locus = locus;
|
||
(*slot)->discriminator = 0;
|
||
}
|
||
(*slot)->discriminator++;
|
||
return (*slot)->discriminator;
|
||
}
|
||
|
||
/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
|
||
|
||
static bool
|
||
same_line_p (location_t locus1, location_t locus2)
|
||
{
|
||
expanded_location from, to;
|
||
|
||
if (locus1 == locus2)
|
||
return true;
|
||
|
||
from = expand_location (locus1);
|
||
to = expand_location (locus2);
|
||
|
||
if (from.line != to.line)
|
||
return false;
|
||
if (from.file == to.file)
|
||
return true;
|
||
return (from.file != NULL
|
||
&& to.file != NULL
|
||
&& filename_cmp (from.file, to.file) == 0);
|
||
}
|
||
|
||
/* Assign a unique discriminator value to block BB if it begins at the same
|
||
LOCUS as its predecessor block. */
|
||
|
||
static void
|
||
assign_discriminator (location_t locus, basic_block bb)
|
||
{
|
||
gimple first_in_to_bb, last_in_to_bb;
|
||
|
||
if (locus == 0 || bb->discriminator != 0)
|
||
return;
|
||
|
||
first_in_to_bb = first_non_label_stmt (bb);
|
||
last_in_to_bb = last_stmt (bb);
|
||
if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
|
||
|| (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
|
||
bb->discriminator = next_discriminator_for_locus (locus);
|
||
}
|
||
|
||
/* Create the edges for a GIMPLE_COND starting at block BB. */
|
||
|
||
static void
|
||
make_cond_expr_edges (basic_block bb)
|
||
{
|
||
gimple entry = last_stmt (bb);
|
||
gimple then_stmt, else_stmt;
|
||
basic_block then_bb, else_bb;
|
||
tree then_label, else_label;
|
||
edge e;
|
||
location_t entry_locus;
|
||
|
||
gcc_assert (entry);
|
||
gcc_assert (gimple_code (entry) == GIMPLE_COND);
|
||
|
||
entry_locus = gimple_location (entry);
|
||
|
||
/* Entry basic blocks for each component. */
|
||
then_label = gimple_cond_true_label (entry);
|
||
else_label = gimple_cond_false_label (entry);
|
||
then_bb = label_to_block (then_label);
|
||
else_bb = label_to_block (else_label);
|
||
then_stmt = first_stmt (then_bb);
|
||
else_stmt = first_stmt (else_bb);
|
||
|
||
e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
|
||
assign_discriminator (entry_locus, then_bb);
|
||
e->goto_locus = gimple_location (then_stmt);
|
||
if (e->goto_locus)
|
||
e->goto_block = gimple_block (then_stmt);
|
||
e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
|
||
if (e)
|
||
{
|
||
assign_discriminator (entry_locus, else_bb);
|
||
e->goto_locus = gimple_location (else_stmt);
|
||
if (e->goto_locus)
|
||
e->goto_block = gimple_block (else_stmt);
|
||
}
|
||
|
||
/* We do not need the labels anymore. */
|
||
gimple_cond_set_true_label (entry, NULL_TREE);
|
||
gimple_cond_set_false_label (entry, NULL_TREE);
|
||
}
|
||
|
||
|
||
/* Called for each element in the hash table (P) as we delete the
|
||
edge to cases hash table.
|
||
|
||
Clear all the TREE_CHAINs to prevent problems with copying of
|
||
SWITCH_EXPRs and structure sharing rules, then free the hash table
|
||
element. */
|
||
|
||
static bool
|
||
edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
tree t, next;
|
||
|
||
for (t = (tree) *value; t; t = next)
|
||
{
|
||
next = CASE_CHAIN (t);
|
||
CASE_CHAIN (t) = NULL;
|
||
}
|
||
|
||
*value = NULL;
|
||
return true;
|
||
}
|
||
|
||
/* Start recording information mapping edges to case labels. */
|
||
|
||
void
|
||
start_recording_case_labels (void)
|
||
{
|
||
gcc_assert (edge_to_cases == NULL);
|
||
edge_to_cases = pointer_map_create ();
|
||
touched_switch_bbs = BITMAP_ALLOC (NULL);
|
||
}
|
||
|
||
/* Return nonzero if we are recording information for case labels. */
|
||
|
||
static bool
|
||
recording_case_labels_p (void)
|
||
{
|
||
return (edge_to_cases != NULL);
|
||
}
|
||
|
||
/* Stop recording information mapping edges to case labels and
|
||
remove any information we have recorded. */
|
||
void
|
||
end_recording_case_labels (void)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned i;
|
||
pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
|
||
pointer_map_destroy (edge_to_cases);
|
||
edge_to_cases = NULL;
|
||
EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
if (bb)
|
||
{
|
||
gimple stmt = last_stmt (bb);
|
||
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
|
||
group_case_labels_stmt (stmt);
|
||
}
|
||
}
|
||
BITMAP_FREE (touched_switch_bbs);
|
||
}
|
||
|
||
/* If we are inside a {start,end}_recording_cases block, then return
|
||
a chain of CASE_LABEL_EXPRs from T which reference E.
|
||
|
||
Otherwise return NULL. */
|
||
|
||
static tree
|
||
get_cases_for_edge (edge e, gimple t)
|
||
{
|
||
void **slot;
|
||
size_t i, n;
|
||
|
||
/* If we are not recording cases, then we do not have CASE_LABEL_EXPR
|
||
chains available. Return NULL so the caller can detect this case. */
|
||
if (!recording_case_labels_p ())
|
||
return NULL;
|
||
|
||
slot = pointer_map_contains (edge_to_cases, e);
|
||
if (slot)
|
||
return (tree) *slot;
|
||
|
||
/* If we did not find E in the hash table, then this must be the first
|
||
time we have been queried for information about E & T. Add all the
|
||
elements from T to the hash table then perform the query again. */
|
||
|
||
n = gimple_switch_num_labels (t);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
tree elt = gimple_switch_label (t, i);
|
||
tree lab = CASE_LABEL (elt);
|
||
basic_block label_bb = label_to_block (lab);
|
||
edge this_edge = find_edge (e->src, label_bb);
|
||
|
||
/* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
|
||
a new chain. */
|
||
slot = pointer_map_insert (edge_to_cases, this_edge);
|
||
CASE_CHAIN (elt) = (tree) *slot;
|
||
*slot = elt;
|
||
}
|
||
|
||
return (tree) *pointer_map_contains (edge_to_cases, e);
|
||
}
|
||
|
||
/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
|
||
|
||
static void
|
||
make_gimple_switch_edges (basic_block bb)
|
||
{
|
||
gimple entry = last_stmt (bb);
|
||
location_t entry_locus;
|
||
size_t i, n;
|
||
|
||
entry_locus = gimple_location (entry);
|
||
|
||
n = gimple_switch_num_labels (entry);
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree lab = CASE_LABEL (gimple_switch_label (entry, i));
|
||
basic_block label_bb = label_to_block (lab);
|
||
make_edge (bb, label_bb, 0);
|
||
assign_discriminator (entry_locus, label_bb);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return the basic block holding label DEST. */
|
||
|
||
basic_block
|
||
label_to_block_fn (struct function *ifun, tree dest)
|
||
{
|
||
int uid = LABEL_DECL_UID (dest);
|
||
|
||
/* We would die hard when faced by an undefined label. Emit a label to
|
||
the very first basic block. This will hopefully make even the dataflow
|
||
and undefined variable warnings quite right. */
|
||
if (seen_error () && uid < 0)
|
||
{
|
||
gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
|
||
gimple stmt;
|
||
|
||
stmt = gimple_build_label (dest);
|
||
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
||
uid = LABEL_DECL_UID (dest);
|
||
}
|
||
if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
|
||
<= (unsigned int) uid)
|
||
return NULL;
|
||
return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
|
||
}
|
||
|
||
/* Create edges for an abnormal goto statement at block BB. If FOR_CALL
|
||
is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
|
||
|
||
void
|
||
make_abnormal_goto_edges (basic_block bb, bool for_call)
|
||
{
|
||
basic_block target_bb;
|
||
gimple_stmt_iterator gsi;
|
||
|
||
FOR_EACH_BB (target_bb)
|
||
for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple label_stmt = gsi_stmt (gsi);
|
||
tree target;
|
||
|
||
if (gimple_code (label_stmt) != GIMPLE_LABEL)
|
||
break;
|
||
|
||
target = gimple_label_label (label_stmt);
|
||
|
||
/* Make an edge to every label block that has been marked as a
|
||
potential target for a computed goto or a non-local goto. */
|
||
if ((FORCED_LABEL (target) && !for_call)
|
||
|| (DECL_NONLOCAL (target) && for_call))
|
||
{
|
||
make_edge (bb, target_bb, EDGE_ABNORMAL);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create edges for a goto statement at block BB. */
|
||
|
||
static void
|
||
make_goto_expr_edges (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator last = gsi_last_bb (bb);
|
||
gimple goto_t = gsi_stmt (last);
|
||
|
||
/* A simple GOTO creates normal edges. */
|
||
if (simple_goto_p (goto_t))
|
||
{
|
||
tree dest = gimple_goto_dest (goto_t);
|
||
basic_block label_bb = label_to_block (dest);
|
||
edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
|
||
e->goto_locus = gimple_location (goto_t);
|
||
assign_discriminator (e->goto_locus, label_bb);
|
||
if (e->goto_locus)
|
||
e->goto_block = gimple_block (goto_t);
|
||
gsi_remove (&last, true);
|
||
return;
|
||
}
|
||
|
||
/* A computed GOTO creates abnormal edges. */
|
||
make_abnormal_goto_edges (bb, false);
|
||
}
|
||
|
||
/* Create edges for an asm statement with labels at block BB. */
|
||
|
||
static void
|
||
make_gimple_asm_edges (basic_block bb)
|
||
{
|
||
gimple stmt = last_stmt (bb);
|
||
location_t stmt_loc = gimple_location (stmt);
|
||
int i, n = gimple_asm_nlabels (stmt);
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
|
||
basic_block label_bb = label_to_block (label);
|
||
make_edge (bb, label_bb, 0);
|
||
assign_discriminator (stmt_loc, label_bb);
|
||
}
|
||
}
|
||
|
||
/*---------------------------------------------------------------------------
|
||
Flowgraph analysis
|
||
---------------------------------------------------------------------------*/
|
||
|
||
/* Cleanup useless labels in basic blocks. This is something we wish
|
||
to do early because it allows us to group case labels before creating
|
||
the edges for the CFG, and it speeds up block statement iterators in
|
||
all passes later on.
|
||
We rerun this pass after CFG is created, to get rid of the labels that
|
||
are no longer referenced. After then we do not run it any more, since
|
||
(almost) no new labels should be created. */
|
||
|
||
/* A map from basic block index to the leading label of that block. */
|
||
static struct label_record
|
||
{
|
||
/* The label. */
|
||
tree label;
|
||
|
||
/* True if the label is referenced from somewhere. */
|
||
bool used;
|
||
} *label_for_bb;
|
||
|
||
/* Given LABEL return the first label in the same basic block. */
|
||
|
||
static tree
|
||
main_block_label (tree label)
|
||
{
|
||
basic_block bb = label_to_block (label);
|
||
tree main_label = label_for_bb[bb->index].label;
|
||
|
||
/* label_to_block possibly inserted undefined label into the chain. */
|
||
if (!main_label)
|
||
{
|
||
label_for_bb[bb->index].label = label;
|
||
main_label = label;
|
||
}
|
||
|
||
label_for_bb[bb->index].used = true;
|
||
return main_label;
|
||
}
|
||
|
||
/* Clean up redundant labels within the exception tree. */
|
||
|
||
static void
|
||
cleanup_dead_labels_eh (void)
|
||
{
|
||
eh_landing_pad lp;
|
||
eh_region r;
|
||
tree lab;
|
||
int i;
|
||
|
||
if (cfun->eh == NULL)
|
||
return;
|
||
|
||
for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
|
||
if (lp && lp->post_landing_pad)
|
||
{
|
||
lab = main_block_label (lp->post_landing_pad);
|
||
if (lab != lp->post_landing_pad)
|
||
{
|
||
EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
|
||
EH_LANDING_PAD_NR (lab) = lp->index;
|
||
}
|
||
}
|
||
|
||
FOR_ALL_EH_REGION (r)
|
||
switch (r->type)
|
||
{
|
||
case ERT_CLEANUP:
|
||
case ERT_MUST_NOT_THROW:
|
||
break;
|
||
|
||
case ERT_TRY:
|
||
{
|
||
eh_catch c;
|
||
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
||
{
|
||
lab = c->label;
|
||
if (lab)
|
||
c->label = main_block_label (lab);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ERT_ALLOWED_EXCEPTIONS:
|
||
lab = r->u.allowed.label;
|
||
if (lab)
|
||
r->u.allowed.label = main_block_label (lab);
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Cleanup redundant labels. This is a three-step process:
|
||
1) Find the leading label for each block.
|
||
2) Redirect all references to labels to the leading labels.
|
||
3) Cleanup all useless labels. */
|
||
|
||
void
|
||
cleanup_dead_labels (void)
|
||
{
|
||
basic_block bb;
|
||
label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
|
||
|
||
/* Find a suitable label for each block. We use the first user-defined
|
||
label if there is one, or otherwise just the first label we see. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple_stmt_iterator i;
|
||
|
||
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
|
||
{
|
||
tree label;
|
||
gimple stmt = gsi_stmt (i);
|
||
|
||
if (gimple_code (stmt) != GIMPLE_LABEL)
|
||
break;
|
||
|
||
label = gimple_label_label (stmt);
|
||
|
||
/* If we have not yet seen a label for the current block,
|
||
remember this one and see if there are more labels. */
|
||
if (!label_for_bb[bb->index].label)
|
||
{
|
||
label_for_bb[bb->index].label = label;
|
||
continue;
|
||
}
|
||
|
||
/* If we did see a label for the current block already, but it
|
||
is an artificially created label, replace it if the current
|
||
label is a user defined label. */
|
||
if (!DECL_ARTIFICIAL (label)
|
||
&& DECL_ARTIFICIAL (label_for_bb[bb->index].label))
|
||
{
|
||
label_for_bb[bb->index].label = label;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now redirect all jumps/branches to the selected label.
|
||
First do so for each block ending in a control statement. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple stmt = last_stmt (bb);
|
||
if (!stmt)
|
||
continue;
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_COND:
|
||
{
|
||
tree true_label = gimple_cond_true_label (stmt);
|
||
tree false_label = gimple_cond_false_label (stmt);
|
||
|
||
if (true_label)
|
||
gimple_cond_set_true_label (stmt, main_block_label (true_label));
|
||
if (false_label)
|
||
gimple_cond_set_false_label (stmt, main_block_label (false_label));
|
||
break;
|
||
}
|
||
|
||
case GIMPLE_SWITCH:
|
||
{
|
||
size_t i, n = gimple_switch_num_labels (stmt);
|
||
|
||
/* Replace all destination labels. */
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree case_label = gimple_switch_label (stmt, i);
|
||
tree label = main_block_label (CASE_LABEL (case_label));
|
||
CASE_LABEL (case_label) = label;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case GIMPLE_ASM:
|
||
{
|
||
int i, n = gimple_asm_nlabels (stmt);
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree cons = gimple_asm_label_op (stmt, i);
|
||
tree label = main_block_label (TREE_VALUE (cons));
|
||
TREE_VALUE (cons) = label;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* We have to handle gotos until they're removed, and we don't
|
||
remove them until after we've created the CFG edges. */
|
||
case GIMPLE_GOTO:
|
||
if (!computed_goto_p (stmt))
|
||
{
|
||
tree new_dest = main_block_label (gimple_goto_dest (stmt));
|
||
gimple_goto_set_dest (stmt, new_dest);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Do the same for the exception region tree labels. */
|
||
cleanup_dead_labels_eh ();
|
||
|
||
/* Finally, purge dead labels. All user-defined labels and labels that
|
||
can be the target of non-local gotos and labels which have their
|
||
address taken are preserved. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple_stmt_iterator i;
|
||
tree label_for_this_bb = label_for_bb[bb->index].label;
|
||
|
||
if (!label_for_this_bb)
|
||
continue;
|
||
|
||
/* If the main label of the block is unused, we may still remove it. */
|
||
if (!label_for_bb[bb->index].used)
|
||
label_for_this_bb = NULL;
|
||
|
||
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
|
||
{
|
||
tree label;
|
||
gimple stmt = gsi_stmt (i);
|
||
|
||
if (gimple_code (stmt) != GIMPLE_LABEL)
|
||
break;
|
||
|
||
label = gimple_label_label (stmt);
|
||
|
||
if (label == label_for_this_bb
|
||
|| !DECL_ARTIFICIAL (label)
|
||
|| DECL_NONLOCAL (label)
|
||
|| FORCED_LABEL (label))
|
||
gsi_next (&i);
|
||
else
|
||
gsi_remove (&i, true);
|
||
}
|
||
}
|
||
|
||
free (label_for_bb);
|
||
}
|
||
|
||
/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
|
||
the ones jumping to the same label.
|
||
Eg. three separate entries 1: 2: 3: become one entry 1..3: */
|
||
|
||
static void
|
||
group_case_labels_stmt (gimple stmt)
|
||
{
|
||
int old_size = gimple_switch_num_labels (stmt);
|
||
int i, j, new_size = old_size;
|
||
tree default_case = NULL_TREE;
|
||
tree default_label = NULL_TREE;
|
||
bool has_default;
|
||
|
||
/* The default label is always the first case in a switch
|
||
statement after gimplification if it was not optimized
|
||
away */
|
||
if (!CASE_LOW (gimple_switch_default_label (stmt))
|
||
&& !CASE_HIGH (gimple_switch_default_label (stmt)))
|
||
{
|
||
default_case = gimple_switch_default_label (stmt);
|
||
default_label = CASE_LABEL (default_case);
|
||
has_default = true;
|
||
}
|
||
else
|
||
has_default = false;
|
||
|
||
/* Look for possible opportunities to merge cases. */
|
||
if (has_default)
|
||
i = 1;
|
||
else
|
||
i = 0;
|
||
while (i < old_size)
|
||
{
|
||
tree base_case, base_label, base_high;
|
||
base_case = gimple_switch_label (stmt, i);
|
||
|
||
gcc_assert (base_case);
|
||
base_label = CASE_LABEL (base_case);
|
||
|
||
/* Discard cases that have the same destination as the
|
||
default case. */
|
||
if (base_label == default_label)
|
||
{
|
||
gimple_switch_set_label (stmt, i, NULL_TREE);
|
||
i++;
|
||
new_size--;
|
||
continue;
|
||
}
|
||
|
||
base_high = CASE_HIGH (base_case)
|
||
? CASE_HIGH (base_case)
|
||
: CASE_LOW (base_case);
|
||
i++;
|
||
|
||
/* Try to merge case labels. Break out when we reach the end
|
||
of the label vector or when we cannot merge the next case
|
||
label with the current one. */
|
||
while (i < old_size)
|
||
{
|
||
tree merge_case = gimple_switch_label (stmt, i);
|
||
tree merge_label = CASE_LABEL (merge_case);
|
||
double_int bhp1 = double_int_add (tree_to_double_int (base_high),
|
||
double_int_one);
|
||
|
||
/* Merge the cases if they jump to the same place,
|
||
and their ranges are consecutive. */
|
||
if (merge_label == base_label
|
||
&& double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
|
||
bhp1))
|
||
{
|
||
base_high = CASE_HIGH (merge_case) ?
|
||
CASE_HIGH (merge_case) : CASE_LOW (merge_case);
|
||
CASE_HIGH (base_case) = base_high;
|
||
gimple_switch_set_label (stmt, i, NULL_TREE);
|
||
new_size--;
|
||
i++;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Compress the case labels in the label vector, and adjust the
|
||
length of the vector. */
|
||
for (i = 0, j = 0; i < new_size; i++)
|
||
{
|
||
while (! gimple_switch_label (stmt, j))
|
||
j++;
|
||
gimple_switch_set_label (stmt, i,
|
||
gimple_switch_label (stmt, j++));
|
||
}
|
||
|
||
gcc_assert (new_size <= old_size);
|
||
gimple_switch_set_num_labels (stmt, new_size);
|
||
}
|
||
|
||
/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
|
||
and scan the sorted vector of cases. Combine the ones jumping to the
|
||
same label. */
|
||
|
||
void
|
||
group_case_labels (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple stmt = last_stmt (bb);
|
||
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
|
||
group_case_labels_stmt (stmt);
|
||
}
|
||
}
|
||
|
||
/* Checks whether we can merge block B into block A. */
|
||
|
||
static bool
|
||
gimple_can_merge_blocks_p (basic_block a, basic_block b)
|
||
{
|
||
gimple stmt;
|
||
gimple_stmt_iterator gsi;
|
||
gimple_seq phis;
|
||
|
||
if (!single_succ_p (a))
|
||
return false;
|
||
|
||
if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
|
||
return false;
|
||
|
||
if (single_succ (a) != b)
|
||
return false;
|
||
|
||
if (!single_pred_p (b))
|
||
return false;
|
||
|
||
if (b == EXIT_BLOCK_PTR)
|
||
return false;
|
||
|
||
/* If A ends by a statement causing exceptions or something similar, we
|
||
cannot merge the blocks. */
|
||
stmt = last_stmt (a);
|
||
if (stmt && stmt_ends_bb_p (stmt))
|
||
return false;
|
||
|
||
/* Do not allow a block with only a non-local label to be merged. */
|
||
if (stmt
|
||
&& gimple_code (stmt) == GIMPLE_LABEL
|
||
&& DECL_NONLOCAL (gimple_label_label (stmt)))
|
||
return false;
|
||
|
||
/* Examine the labels at the beginning of B. */
|
||
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
tree lab;
|
||
stmt = gsi_stmt (gsi);
|
||
if (gimple_code (stmt) != GIMPLE_LABEL)
|
||
break;
|
||
lab = gimple_label_label (stmt);
|
||
|
||
/* Do not remove user labels. */
|
||
if (!DECL_ARTIFICIAL (lab))
|
||
return false;
|
||
}
|
||
|
||
/* Protect the loop latches. */
|
||
if (current_loops && b->loop_father->latch == b)
|
||
return false;
|
||
|
||
/* It must be possible to eliminate all phi nodes in B. If ssa form
|
||
is not up-to-date and a name-mapping is registered, we cannot eliminate
|
||
any phis. Symbols marked for renaming are never a problem though. */
|
||
phis = phi_nodes (b);
|
||
if (!gimple_seq_empty_p (phis)
|
||
&& name_mappings_registered_p ())
|
||
return false;
|
||
|
||
/* When not optimizing, don't merge if we'd lose goto_locus. */
|
||
if (!optimize
|
||
&& single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
|
||
{
|
||
location_t goto_locus = single_succ_edge (a)->goto_locus;
|
||
gimple_stmt_iterator prev, next;
|
||
prev = gsi_last_nondebug_bb (a);
|
||
next = gsi_after_labels (b);
|
||
if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
|
||
gsi_next_nondebug (&next);
|
||
if ((gsi_end_p (prev)
|
||
|| gimple_location (gsi_stmt (prev)) != goto_locus)
|
||
&& (gsi_end_p (next)
|
||
|| gimple_location (gsi_stmt (next)) != goto_locus))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if the var whose chain of uses starts at PTR has no
|
||
nondebug uses. */
|
||
bool
|
||
has_zero_uses_1 (const ssa_use_operand_t *head)
|
||
{
|
||
const ssa_use_operand_t *ptr;
|
||
|
||
for (ptr = head->next; ptr != head; ptr = ptr->next)
|
||
if (!is_gimple_debug (USE_STMT (ptr)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if the var whose chain of uses starts at PTR has a
|
||
single nondebug use. Set USE_P and STMT to that single nondebug
|
||
use, if so, or to NULL otherwise. */
|
||
bool
|
||
single_imm_use_1 (const ssa_use_operand_t *head,
|
||
use_operand_p *use_p, gimple *stmt)
|
||
{
|
||
ssa_use_operand_t *ptr, *single_use = 0;
|
||
|
||
for (ptr = head->next; ptr != head; ptr = ptr->next)
|
||
if (!is_gimple_debug (USE_STMT (ptr)))
|
||
{
|
||
if (single_use)
|
||
{
|
||
single_use = NULL;
|
||
break;
|
||
}
|
||
single_use = ptr;
|
||
}
|
||
|
||
if (use_p)
|
||
*use_p = single_use;
|
||
|
||
if (stmt)
|
||
*stmt = single_use ? single_use->loc.stmt : NULL;
|
||
|
||
return !!single_use;
|
||
}
|
||
|
||
/* Replaces all uses of NAME by VAL. */
|
||
|
||
void
|
||
replace_uses_by (tree name, tree val)
|
||
{
|
||
imm_use_iterator imm_iter;
|
||
use_operand_p use;
|
||
gimple stmt;
|
||
edge e;
|
||
|
||
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
|
||
{
|
||
FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
|
||
{
|
||
replace_exp (use, val);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_PHI)
|
||
{
|
||
e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
{
|
||
/* This can only occur for virtual operands, since
|
||
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
|
||
would prevent replacement. */
|
||
gcc_assert (!is_gimple_reg (name));
|
||
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (gimple_code (stmt) != GIMPLE_PHI)
|
||
{
|
||
size_t i;
|
||
|
||
fold_stmt_inplace (stmt);
|
||
if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
|
||
bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
|
||
|
||
/* FIXME. This should go in update_stmt. */
|
||
for (i = 0; i < gimple_num_ops (stmt); i++)
|
||
{
|
||
tree op = gimple_op (stmt, i);
|
||
/* Operands may be empty here. For example, the labels
|
||
of a GIMPLE_COND are nulled out following the creation
|
||
of the corresponding CFG edges. */
|
||
if (op && TREE_CODE (op) == ADDR_EXPR)
|
||
recompute_tree_invariant_for_addr_expr (op);
|
||
}
|
||
|
||
maybe_clean_or_replace_eh_stmt (stmt, stmt);
|
||
update_stmt (stmt);
|
||
}
|
||
}
|
||
|
||
gcc_assert (has_zero_uses (name));
|
||
|
||
/* Also update the trees stored in loop structures. */
|
||
if (current_loops)
|
||
{
|
||
struct loop *loop;
|
||
loop_iterator li;
|
||
|
||
FOR_EACH_LOOP (li, loop, 0)
|
||
{
|
||
substitute_in_loop_info (loop, name, val);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Merge block B into block A. */
|
||
|
||
static void
|
||
gimple_merge_blocks (basic_block a, basic_block b)
|
||
{
|
||
gimple_stmt_iterator last, gsi, psi;
|
||
gimple_seq phis = phi_nodes (b);
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
|
||
|
||
/* Remove all single-valued PHI nodes from block B of the form
|
||
V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
|
||
gsi = gsi_last_bb (a);
|
||
for (psi = gsi_start (phis); !gsi_end_p (psi); )
|
||
{
|
||
gimple phi = gsi_stmt (psi);
|
||
tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
|
||
gimple copy;
|
||
bool may_replace_uses = !is_gimple_reg (def)
|
||
|| may_propagate_copy (def, use);
|
||
|
||
/* In case we maintain loop closed ssa form, do not propagate arguments
|
||
of loop exit phi nodes. */
|
||
if (current_loops
|
||
&& loops_state_satisfies_p (LOOP_CLOSED_SSA)
|
||
&& is_gimple_reg (def)
|
||
&& TREE_CODE (use) == SSA_NAME
|
||
&& a->loop_father != b->loop_father)
|
||
may_replace_uses = false;
|
||
|
||
if (!may_replace_uses)
|
||
{
|
||
gcc_assert (is_gimple_reg (def));
|
||
|
||
/* Note that just emitting the copies is fine -- there is no problem
|
||
with ordering of phi nodes. This is because A is the single
|
||
predecessor of B, therefore results of the phi nodes cannot
|
||
appear as arguments of the phi nodes. */
|
||
copy = gimple_build_assign (def, use);
|
||
gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
|
||
remove_phi_node (&psi, false);
|
||
}
|
||
else
|
||
{
|
||
/* If we deal with a PHI for virtual operands, we can simply
|
||
propagate these without fussing with folding or updating
|
||
the stmt. */
|
||
if (!is_gimple_reg (def))
|
||
{
|
||
imm_use_iterator iter;
|
||
use_operand_p use_p;
|
||
gimple stmt;
|
||
|
||
FOR_EACH_IMM_USE_STMT (stmt, iter, def)
|
||
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
||
SET_USE (use_p, use);
|
||
|
||
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
|
||
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
|
||
}
|
||
else
|
||
replace_uses_by (def, use);
|
||
|
||
remove_phi_node (&psi, true);
|
||
}
|
||
}
|
||
|
||
/* Ensure that B follows A. */
|
||
move_block_after (b, a);
|
||
|
||
gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
|
||
gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
|
||
|
||
/* Remove labels from B and set gimple_bb to A for other statements. */
|
||
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
if (gimple_code (stmt) == GIMPLE_LABEL)
|
||
{
|
||
tree label = gimple_label_label (stmt);
|
||
int lp_nr;
|
||
|
||
gsi_remove (&gsi, false);
|
||
|
||
/* Now that we can thread computed gotos, we might have
|
||
a situation where we have a forced label in block B
|
||
However, the label at the start of block B might still be
|
||
used in other ways (think about the runtime checking for
|
||
Fortran assigned gotos). So we can not just delete the
|
||
label. Instead we move the label to the start of block A. */
|
||
if (FORCED_LABEL (label))
|
||
{
|
||
gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
|
||
gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
|
||
}
|
||
|
||
lp_nr = EH_LANDING_PAD_NR (label);
|
||
if (lp_nr)
|
||
{
|
||
eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
|
||
lp->post_landing_pad = NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
gimple_set_bb (stmt, a);
|
||
gsi_next (&gsi);
|
||
}
|
||
}
|
||
|
||
/* Merge the sequences. */
|
||
last = gsi_last_bb (a);
|
||
gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
|
||
set_bb_seq (b, NULL);
|
||
|
||
if (cfgcleanup_altered_bbs)
|
||
bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
|
||
}
|
||
|
||
|
||
/* Return the one of two successors of BB that is not reachable by a
|
||
complex edge, if there is one. Else, return BB. We use
|
||
this in optimizations that use post-dominators for their heuristics,
|
||
to catch the cases in C++ where function calls are involved. */
|
||
|
||
basic_block
|
||
single_noncomplex_succ (basic_block bb)
|
||
{
|
||
edge e0, e1;
|
||
if (EDGE_COUNT (bb->succs) != 2)
|
||
return bb;
|
||
|
||
e0 = EDGE_SUCC (bb, 0);
|
||
e1 = EDGE_SUCC (bb, 1);
|
||
if (e0->flags & EDGE_COMPLEX)
|
||
return e1->dest;
|
||
if (e1->flags & EDGE_COMPLEX)
|
||
return e0->dest;
|
||
|
||
return bb;
|
||
}
|
||
|
||
/* T is CALL_EXPR. Set current_function_calls_* flags. */
|
||
|
||
void
|
||
notice_special_calls (gimple call)
|
||
{
|
||
int flags = gimple_call_flags (call);
|
||
|
||
if (flags & ECF_MAY_BE_ALLOCA)
|
||
cfun->calls_alloca = true;
|
||
if (flags & ECF_RETURNS_TWICE)
|
||
cfun->calls_setjmp = true;
|
||
}
|
||
|
||
|
||
/* Clear flags set by notice_special_calls. Used by dead code removal
|
||
to update the flags. */
|
||
|
||
void
|
||
clear_special_calls (void)
|
||
{
|
||
cfun->calls_alloca = false;
|
||
cfun->calls_setjmp = false;
|
||
}
|
||
|
||
/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
|
||
|
||
static void
|
||
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
|
||
{
|
||
/* Since this block is no longer reachable, we can just delete all
|
||
of its PHI nodes. */
|
||
remove_phi_nodes (bb);
|
||
|
||
/* Remove edges to BB's successors. */
|
||
while (EDGE_COUNT (bb->succs) > 0)
|
||
remove_edge (EDGE_SUCC (bb, 0));
|
||
}
|
||
|
||
|
||
/* Remove statements of basic block BB. */
|
||
|
||
static void
|
||
remove_bb (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator i;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Removing basic block %d\n", bb->index);
|
||
if (dump_flags & TDF_DETAILS)
|
||
{
|
||
dump_bb (bb, dump_file, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
|
||
if (current_loops)
|
||
{
|
||
struct loop *loop = bb->loop_father;
|
||
|
||
/* If a loop gets removed, clean up the information associated
|
||
with it. */
|
||
if (loop->latch == bb
|
||
|| loop->header == bb)
|
||
free_numbers_of_iterations_estimates_loop (loop);
|
||
}
|
||
|
||
/* Remove all the instructions in the block. */
|
||
if (bb_seq (bb) != NULL)
|
||
{
|
||
/* Walk backwards so as to get a chance to substitute all
|
||
released DEFs into debug stmts. See
|
||
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
|
||
details. */
|
||
for (i = gsi_last_bb (bb); !gsi_end_p (i);)
|
||
{
|
||
gimple stmt = gsi_stmt (i);
|
||
if (gimple_code (stmt) == GIMPLE_LABEL
|
||
&& (FORCED_LABEL (gimple_label_label (stmt))
|
||
|| DECL_NONLOCAL (gimple_label_label (stmt))))
|
||
{
|
||
basic_block new_bb;
|
||
gimple_stmt_iterator new_gsi;
|
||
|
||
/* A non-reachable non-local label may still be referenced.
|
||
But it no longer needs to carry the extra semantics of
|
||
non-locality. */
|
||
if (DECL_NONLOCAL (gimple_label_label (stmt)))
|
||
{
|
||
DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
|
||
FORCED_LABEL (gimple_label_label (stmt)) = 1;
|
||
}
|
||
|
||
new_bb = bb->prev_bb;
|
||
new_gsi = gsi_start_bb (new_bb);
|
||
gsi_remove (&i, false);
|
||
gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
|
||
}
|
||
else
|
||
{
|
||
/* Release SSA definitions if we are in SSA. Note that we
|
||
may be called when not in SSA. For example,
|
||
final_cleanup calls this function via
|
||
cleanup_tree_cfg. */
|
||
if (gimple_in_ssa_p (cfun))
|
||
release_defs (stmt);
|
||
|
||
gsi_remove (&i, true);
|
||
}
|
||
|
||
if (gsi_end_p (i))
|
||
i = gsi_last_bb (bb);
|
||
else
|
||
gsi_prev (&i);
|
||
}
|
||
}
|
||
|
||
remove_phi_nodes_and_edges_for_unreachable_block (bb);
|
||
bb->il.gimple = NULL;
|
||
}
|
||
|
||
|
||
/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
|
||
predicate VAL, return the edge that will be taken out of the block.
|
||
If VAL does not match a unique edge, NULL is returned. */
|
||
|
||
edge
|
||
find_taken_edge (basic_block bb, tree val)
|
||
{
|
||
gimple stmt;
|
||
|
||
stmt = last_stmt (bb);
|
||
|
||
gcc_assert (stmt);
|
||
gcc_assert (is_ctrl_stmt (stmt));
|
||
|
||
if (val == NULL)
|
||
return NULL;
|
||
|
||
if (!is_gimple_min_invariant (val))
|
||
return NULL;
|
||
|
||
if (gimple_code (stmt) == GIMPLE_COND)
|
||
return find_taken_edge_cond_expr (bb, val);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_SWITCH)
|
||
return find_taken_edge_switch_expr (bb, val);
|
||
|
||
if (computed_goto_p (stmt))
|
||
{
|
||
/* Only optimize if the argument is a label, if the argument is
|
||
not a label then we can not construct a proper CFG.
|
||
|
||
It may be the case that we only need to allow the LABEL_REF to
|
||
appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
|
||
appear inside a LABEL_EXPR just to be safe. */
|
||
if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
|
||
&& TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
|
||
return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
|
||
return NULL;
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
|
||
statement, determine which of the outgoing edges will be taken out of the
|
||
block. Return NULL if either edge may be taken. */
|
||
|
||
static edge
|
||
find_taken_edge_computed_goto (basic_block bb, tree val)
|
||
{
|
||
basic_block dest;
|
||
edge e = NULL;
|
||
|
||
dest = label_to_block (val);
|
||
if (dest)
|
||
{
|
||
e = find_edge (bb, dest);
|
||
gcc_assert (e != NULL);
|
||
}
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Given a constant value VAL and the entry block BB to a COND_EXPR
|
||
statement, determine which of the two edges will be taken out of the
|
||
block. Return NULL if either edge may be taken. */
|
||
|
||
static edge
|
||
find_taken_edge_cond_expr (basic_block bb, tree val)
|
||
{
|
||
edge true_edge, false_edge;
|
||
|
||
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
||
|
||
gcc_assert (TREE_CODE (val) == INTEGER_CST);
|
||
return (integer_zerop (val) ? false_edge : true_edge);
|
||
}
|
||
|
||
/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
|
||
statement, determine which edge will be taken out of the block. Return
|
||
NULL if any edge may be taken. */
|
||
|
||
static edge
|
||
find_taken_edge_switch_expr (basic_block bb, tree val)
|
||
{
|
||
basic_block dest_bb;
|
||
edge e;
|
||
gimple switch_stmt;
|
||
tree taken_case;
|
||
|
||
switch_stmt = last_stmt (bb);
|
||
taken_case = find_case_label_for_value (switch_stmt, val);
|
||
dest_bb = label_to_block (CASE_LABEL (taken_case));
|
||
|
||
e = find_edge (bb, dest_bb);
|
||
gcc_assert (e);
|
||
return e;
|
||
}
|
||
|
||
|
||
/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
|
||
We can make optimal use here of the fact that the case labels are
|
||
sorted: We can do a binary search for a case matching VAL. */
|
||
|
||
static tree
|
||
find_case_label_for_value (gimple switch_stmt, tree val)
|
||
{
|
||
size_t low, high, n = gimple_switch_num_labels (switch_stmt);
|
||
tree default_case = gimple_switch_default_label (switch_stmt);
|
||
|
||
for (low = 0, high = n; high - low > 1; )
|
||
{
|
||
size_t i = (high + low) / 2;
|
||
tree t = gimple_switch_label (switch_stmt, i);
|
||
int cmp;
|
||
|
||
/* Cache the result of comparing CASE_LOW and val. */
|
||
cmp = tree_int_cst_compare (CASE_LOW (t), val);
|
||
|
||
if (cmp > 0)
|
||
high = i;
|
||
else
|
||
low = i;
|
||
|
||
if (CASE_HIGH (t) == NULL)
|
||
{
|
||
/* A singe-valued case label. */
|
||
if (cmp == 0)
|
||
return t;
|
||
}
|
||
else
|
||
{
|
||
/* A case range. We can only handle integer ranges. */
|
||
if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
|
||
return t;
|
||
}
|
||
}
|
||
|
||
return default_case;
|
||
}
|
||
|
||
|
||
/* Dump a basic block on stderr. */
|
||
|
||
void
|
||
gimple_debug_bb (basic_block bb)
|
||
{
|
||
gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
|
||
}
|
||
|
||
|
||
/* Dump basic block with index N on stderr. */
|
||
|
||
basic_block
|
||
gimple_debug_bb_n (int n)
|
||
{
|
||
gimple_debug_bb (BASIC_BLOCK (n));
|
||
return BASIC_BLOCK (n);
|
||
}
|
||
|
||
|
||
/* Dump the CFG on stderr.
|
||
|
||
FLAGS are the same used by the tree dumping functions
|
||
(see TDF_* in tree-pass.h). */
|
||
|
||
void
|
||
gimple_debug_cfg (int flags)
|
||
{
|
||
gimple_dump_cfg (stderr, flags);
|
||
}
|
||
|
||
|
||
/* Dump the program showing basic block boundaries on the given FILE.
|
||
|
||
FLAGS are the same used by the tree dumping functions (see TDF_* in
|
||
tree.h). */
|
||
|
||
void
|
||
gimple_dump_cfg (FILE *file, int flags)
|
||
{
|
||
if (flags & TDF_DETAILS)
|
||
{
|
||
dump_function_header (file, current_function_decl, flags);
|
||
fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
|
||
n_basic_blocks, n_edges, last_basic_block);
|
||
|
||
brief_dump_cfg (file);
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
if (flags & TDF_STATS)
|
||
dump_cfg_stats (file);
|
||
|
||
dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
|
||
}
|
||
|
||
|
||
/* Dump CFG statistics on FILE. */
|
||
|
||
void
|
||
dump_cfg_stats (FILE *file)
|
||
{
|
||
static long max_num_merged_labels = 0;
|
||
unsigned long size, total = 0;
|
||
long num_edges;
|
||
basic_block bb;
|
||
const char * const fmt_str = "%-30s%-13s%12s\n";
|
||
const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
|
||
const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
|
||
const char * const fmt_str_3 = "%-43s%11lu%c\n";
|
||
const char *funcname
|
||
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
||
|
||
|
||
fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
|
||
|
||
fprintf (file, "---------------------------------------------------------\n");
|
||
fprintf (file, fmt_str, "", " Number of ", "Memory");
|
||
fprintf (file, fmt_str, "", " instances ", "used ");
|
||
fprintf (file, "---------------------------------------------------------\n");
|
||
|
||
size = n_basic_blocks * sizeof (struct basic_block_def);
|
||
total += size;
|
||
fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
|
||
SCALE (size), LABEL (size));
|
||
|
||
num_edges = 0;
|
||
FOR_EACH_BB (bb)
|
||
num_edges += EDGE_COUNT (bb->succs);
|
||
size = num_edges * sizeof (struct edge_def);
|
||
total += size;
|
||
fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
|
||
|
||
fprintf (file, "---------------------------------------------------------\n");
|
||
fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
|
||
LABEL (total));
|
||
fprintf (file, "---------------------------------------------------------\n");
|
||
fprintf (file, "\n");
|
||
|
||
if (cfg_stats.num_merged_labels > max_num_merged_labels)
|
||
max_num_merged_labels = cfg_stats.num_merged_labels;
|
||
|
||
fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
|
||
cfg_stats.num_merged_labels, max_num_merged_labels);
|
||
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
|
||
/* Dump CFG statistics on stderr. Keep extern so that it's always
|
||
linked in the final executable. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_cfg_stats (void)
|
||
{
|
||
dump_cfg_stats (stderr);
|
||
}
|
||
|
||
|
||
/* Dump the flowgraph to a .vcg FILE. */
|
||
|
||
static void
|
||
gimple_cfg2vcg (FILE *file)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
basic_block bb;
|
||
const char *funcname
|
||
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
||
|
||
/* Write the file header. */
|
||
fprintf (file, "graph: { title: \"%s\"\n", funcname);
|
||
fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
|
||
fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
|
||
|
||
/* Write blocks and edges. */
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
||
{
|
||
fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
|
||
e->dest->index);
|
||
|
||
if (e->flags & EDGE_FAKE)
|
||
fprintf (file, " linestyle: dotted priority: 10");
|
||
else
|
||
fprintf (file, " linestyle: solid priority: 100");
|
||
|
||
fprintf (file, " }\n");
|
||
}
|
||
fputc ('\n', file);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
enum gimple_code head_code, end_code;
|
||
const char *head_name, *end_name;
|
||
int head_line = 0;
|
||
int end_line = 0;
|
||
gimple first = first_stmt (bb);
|
||
gimple last = last_stmt (bb);
|
||
|
||
if (first)
|
||
{
|
||
head_code = gimple_code (first);
|
||
head_name = gimple_code_name[head_code];
|
||
head_line = get_lineno (first);
|
||
}
|
||
else
|
||
head_name = "no-statement";
|
||
|
||
if (last)
|
||
{
|
||
end_code = gimple_code (last);
|
||
end_name = gimple_code_name[end_code];
|
||
end_line = get_lineno (last);
|
||
}
|
||
else
|
||
end_name = "no-statement";
|
||
|
||
fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
|
||
bb->index, bb->index, head_name, head_line, end_name,
|
||
end_line);
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (e->dest == EXIT_BLOCK_PTR)
|
||
fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
|
||
else
|
||
fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
|
||
|
||
if (e->flags & EDGE_FAKE)
|
||
fprintf (file, " priority: 10 linestyle: dotted");
|
||
else
|
||
fprintf (file, " priority: 100 linestyle: solid");
|
||
|
||
fprintf (file, " }\n");
|
||
}
|
||
|
||
if (bb->next_bb != EXIT_BLOCK_PTR)
|
||
fputc ('\n', file);
|
||
}
|
||
|
||
fputs ("}\n\n", file);
|
||
}
|
||
|
||
|
||
|
||
/*---------------------------------------------------------------------------
|
||
Miscellaneous helpers
|
||
---------------------------------------------------------------------------*/
|
||
|
||
/* Return true if T represents a stmt that always transfers control. */
|
||
|
||
bool
|
||
is_ctrl_stmt (gimple t)
|
||
{
|
||
switch (gimple_code (t))
|
||
{
|
||
case GIMPLE_COND:
|
||
case GIMPLE_SWITCH:
|
||
case GIMPLE_GOTO:
|
||
case GIMPLE_RETURN:
|
||
case GIMPLE_RESX:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if T is a statement that may alter the flow of control
|
||
(e.g., a call to a non-returning function). */
|
||
|
||
bool
|
||
is_ctrl_altering_stmt (gimple t)
|
||
{
|
||
gcc_assert (t);
|
||
|
||
switch (gimple_code (t))
|
||
{
|
||
case GIMPLE_CALL:
|
||
{
|
||
int flags = gimple_call_flags (t);
|
||
|
||
/* A non-pure/const call alters flow control if the current
|
||
function has nonlocal labels. */
|
||
if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
|
||
&& cfun->has_nonlocal_label)
|
||
return true;
|
||
|
||
/* A call also alters control flow if it does not return. */
|
||
if (flags & ECF_NORETURN)
|
||
return true;
|
||
|
||
/* BUILT_IN_RETURN call is same as return statement. */
|
||
if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_EH_DISPATCH:
|
||
/* EH_DISPATCH branches to the individual catch handlers at
|
||
this level of a try or allowed-exceptions region. It can
|
||
fallthru to the next statement as well. */
|
||
return true;
|
||
|
||
case GIMPLE_ASM:
|
||
if (gimple_asm_nlabels (t) > 0)
|
||
return true;
|
||
break;
|
||
|
||
CASE_GIMPLE_OMP:
|
||
/* OpenMP directives alter control flow. */
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If a statement can throw, it alters control flow. */
|
||
return stmt_can_throw_internal (t);
|
||
}
|
||
|
||
|
||
/* Return true if T is a simple local goto. */
|
||
|
||
bool
|
||
simple_goto_p (gimple t)
|
||
{
|
||
return (gimple_code (t) == GIMPLE_GOTO
|
||
&& TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
|
||
}
|
||
|
||
|
||
/* Return true if T can make an abnormal transfer of control flow.
|
||
Transfers of control flow associated with EH are excluded. */
|
||
|
||
bool
|
||
stmt_can_make_abnormal_goto (gimple t)
|
||
{
|
||
if (computed_goto_p (t))
|
||
return true;
|
||
if (is_gimple_call (t))
|
||
return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
|
||
&& !(gimple_call_flags (t) & ECF_LEAF));
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if STMT should start a new basic block. PREV_STMT is
|
||
the statement preceding STMT. It is used when STMT is a label or a
|
||
case label. Labels should only start a new basic block if their
|
||
previous statement wasn't a label. Otherwise, sequence of labels
|
||
would generate unnecessary basic blocks that only contain a single
|
||
label. */
|
||
|
||
static inline bool
|
||
stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
|
||
{
|
||
if (stmt == NULL)
|
||
return false;
|
||
|
||
/* Labels start a new basic block only if the preceding statement
|
||
wasn't a label of the same type. This prevents the creation of
|
||
consecutive blocks that have nothing but a single label. */
|
||
if (gimple_code (stmt) == GIMPLE_LABEL)
|
||
{
|
||
/* Nonlocal and computed GOTO targets always start a new block. */
|
||
if (DECL_NONLOCAL (gimple_label_label (stmt))
|
||
|| FORCED_LABEL (gimple_label_label (stmt)))
|
||
return true;
|
||
|
||
if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
|
||
{
|
||
if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
|
||
return true;
|
||
|
||
cfg_stats.num_merged_labels++;
|
||
return false;
|
||
}
|
||
else
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if T should end a basic block. */
|
||
|
||
bool
|
||
stmt_ends_bb_p (gimple t)
|
||
{
|
||
return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
|
||
}
|
||
|
||
/* Remove block annotations and other data structures. */
|
||
|
||
void
|
||
delete_tree_cfg_annotations (void)
|
||
{
|
||
label_to_block_map = NULL;
|
||
}
|
||
|
||
|
||
/* Return the first statement in basic block BB. */
|
||
|
||
gimple
|
||
first_stmt (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator i = gsi_start_bb (bb);
|
||
gimple stmt = NULL;
|
||
|
||
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
|
||
{
|
||
gsi_next (&i);
|
||
stmt = NULL;
|
||
}
|
||
return stmt;
|
||
}
|
||
|
||
/* Return the first non-label statement in basic block BB. */
|
||
|
||
static gimple
|
||
first_non_label_stmt (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator i = gsi_start_bb (bb);
|
||
while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
|
||
gsi_next (&i);
|
||
return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
|
||
}
|
||
|
||
/* Return the last statement in basic block BB. */
|
||
|
||
gimple
|
||
last_stmt (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator i = gsi_last_bb (bb);
|
||
gimple stmt = NULL;
|
||
|
||
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
|
||
{
|
||
gsi_prev (&i);
|
||
stmt = NULL;
|
||
}
|
||
return stmt;
|
||
}
|
||
|
||
/* Return the last statement of an otherwise empty block. Return NULL
|
||
if the block is totally empty, or if it contains more than one
|
||
statement. */
|
||
|
||
gimple
|
||
last_and_only_stmt (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
|
||
gimple last, prev;
|
||
|
||
if (gsi_end_p (i))
|
||
return NULL;
|
||
|
||
last = gsi_stmt (i);
|
||
gsi_prev_nondebug (&i);
|
||
if (gsi_end_p (i))
|
||
return last;
|
||
|
||
/* Empty statements should no longer appear in the instruction stream.
|
||
Everything that might have appeared before should be deleted by
|
||
remove_useless_stmts, and the optimizers should just gsi_remove
|
||
instead of smashing with build_empty_stmt.
|
||
|
||
Thus the only thing that should appear here in a block containing
|
||
one executable statement is a label. */
|
||
prev = gsi_stmt (i);
|
||
if (gimple_code (prev) == GIMPLE_LABEL)
|
||
return last;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
|
||
|
||
static void
|
||
reinstall_phi_args (edge new_edge, edge old_edge)
|
||
{
|
||
edge_var_map_vector v;
|
||
edge_var_map *vm;
|
||
int i;
|
||
gimple_stmt_iterator phis;
|
||
|
||
v = redirect_edge_var_map_vector (old_edge);
|
||
if (!v)
|
||
return;
|
||
|
||
for (i = 0, phis = gsi_start_phis (new_edge->dest);
|
||
VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
|
||
i++, gsi_next (&phis))
|
||
{
|
||
gimple phi = gsi_stmt (phis);
|
||
tree result = redirect_edge_var_map_result (vm);
|
||
tree arg = redirect_edge_var_map_def (vm);
|
||
|
||
gcc_assert (result == gimple_phi_result (phi));
|
||
|
||
add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
|
||
}
|
||
|
||
redirect_edge_var_map_clear (old_edge);
|
||
}
|
||
|
||
/* Returns the basic block after which the new basic block created
|
||
by splitting edge EDGE_IN should be placed. Tries to keep the new block
|
||
near its "logical" location. This is of most help to humans looking
|
||
at debugging dumps. */
|
||
|
||
static basic_block
|
||
split_edge_bb_loc (edge edge_in)
|
||
{
|
||
basic_block dest = edge_in->dest;
|
||
basic_block dest_prev = dest->prev_bb;
|
||
|
||
if (dest_prev)
|
||
{
|
||
edge e = find_edge (dest_prev, dest);
|
||
if (e && !(e->flags & EDGE_COMPLEX))
|
||
return edge_in->src;
|
||
}
|
||
return dest_prev;
|
||
}
|
||
|
||
/* Split a (typically critical) edge EDGE_IN. Return the new block.
|
||
Abort on abnormal edges. */
|
||
|
||
static basic_block
|
||
gimple_split_edge (edge edge_in)
|
||
{
|
||
basic_block new_bb, after_bb, dest;
|
||
edge new_edge, e;
|
||
|
||
/* Abnormal edges cannot be split. */
|
||
gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
|
||
|
||
dest = edge_in->dest;
|
||
|
||
after_bb = split_edge_bb_loc (edge_in);
|
||
|
||
new_bb = create_empty_bb (after_bb);
|
||
new_bb->frequency = EDGE_FREQUENCY (edge_in);
|
||
new_bb->count = edge_in->count;
|
||
new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
|
||
new_edge->probability = REG_BR_PROB_BASE;
|
||
new_edge->count = edge_in->count;
|
||
|
||
e = redirect_edge_and_branch (edge_in, new_bb);
|
||
gcc_assert (e == edge_in);
|
||
reinstall_phi_args (new_edge, e);
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
|
||
/* Verify properties of the address expression T with base object BASE. */
|
||
|
||
static tree
|
||
verify_address (tree t, tree base)
|
||
{
|
||
bool old_constant;
|
||
bool old_side_effects;
|
||
bool new_constant;
|
||
bool new_side_effects;
|
||
|
||
old_constant = TREE_CONSTANT (t);
|
||
old_side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
recompute_tree_invariant_for_addr_expr (t);
|
||
new_side_effects = TREE_SIDE_EFFECTS (t);
|
||
new_constant = TREE_CONSTANT (t);
|
||
|
||
if (old_constant != new_constant)
|
||
{
|
||
error ("constant not recomputed when ADDR_EXPR changed");
|
||
return t;
|
||
}
|
||
if (old_side_effects != new_side_effects)
|
||
{
|
||
error ("side effects not recomputed when ADDR_EXPR changed");
|
||
return t;
|
||
}
|
||
|
||
if (!(TREE_CODE (base) == VAR_DECL
|
||
|| TREE_CODE (base) == PARM_DECL
|
||
|| TREE_CODE (base) == RESULT_DECL))
|
||
return NULL_TREE;
|
||
|
||
if (DECL_GIMPLE_REG_P (base))
|
||
{
|
||
error ("DECL_GIMPLE_REG_P set on a variable with address taken");
|
||
return base;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Callback for walk_tree, check that all elements with address taken are
|
||
properly noticed as such. The DATA is an int* that is 1 if TP was seen
|
||
inside a PHI node. */
|
||
|
||
static tree
|
||
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
tree t = *tp, x;
|
||
|
||
if (TYPE_P (t))
|
||
*walk_subtrees = 0;
|
||
|
||
/* Check operand N for being valid GIMPLE and give error MSG if not. */
|
||
#define CHECK_OP(N, MSG) \
|
||
do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
|
||
{ error (MSG); return TREE_OPERAND (t, N); }} while (0)
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case SSA_NAME:
|
||
if (SSA_NAME_IN_FREE_LIST (t))
|
||
{
|
||
error ("SSA name in freelist but still referenced");
|
||
return *tp;
|
||
}
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
error ("INDIRECT_REF in gimple IL");
|
||
return t;
|
||
|
||
case MEM_REF:
|
||
x = TREE_OPERAND (t, 0);
|
||
if (!POINTER_TYPE_P (TREE_TYPE (x))
|
||
|| !is_gimple_mem_ref_addr (x))
|
||
{
|
||
error ("invalid first operand of MEM_REF");
|
||
return x;
|
||
}
|
||
if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
|
||
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
|
||
{
|
||
error ("invalid offset operand of MEM_REF");
|
||
return TREE_OPERAND (t, 1);
|
||
}
|
||
if (TREE_CODE (x) == ADDR_EXPR
|
||
&& (x = verify_address (x, TREE_OPERAND (x, 0))))
|
||
return x;
|
||
*walk_subtrees = 0;
|
||
break;
|
||
|
||
case ASSERT_EXPR:
|
||
x = fold (ASSERT_EXPR_COND (t));
|
||
if (x == boolean_false_node)
|
||
{
|
||
error ("ASSERT_EXPR with an always-false condition");
|
||
return *tp;
|
||
}
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
error ("MODIFY_EXPR not expected while having tuples");
|
||
return *tp;
|
||
|
||
case ADDR_EXPR:
|
||
{
|
||
tree tem;
|
||
|
||
gcc_assert (is_gimple_address (t));
|
||
|
||
/* Skip any references (they will be checked when we recurse down the
|
||
tree) and ensure that any variable used as a prefix is marked
|
||
addressable. */
|
||
for (x = TREE_OPERAND (t, 0);
|
||
handled_component_p (x);
|
||
x = TREE_OPERAND (x, 0))
|
||
;
|
||
|
||
if ((tem = verify_address (t, x)))
|
||
return tem;
|
||
|
||
if (!(TREE_CODE (x) == VAR_DECL
|
||
|| TREE_CODE (x) == PARM_DECL
|
||
|| TREE_CODE (x) == RESULT_DECL))
|
||
return NULL;
|
||
|
||
if (!TREE_ADDRESSABLE (x))
|
||
{
|
||
error ("address taken, but ADDRESSABLE bit not set");
|
||
return x;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case COND_EXPR:
|
||
x = COND_EXPR_COND (t);
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
|
||
{
|
||
error ("non-integral used in condition");
|
||
return x;
|
||
}
|
||
if (!is_gimple_condexpr (x))
|
||
{
|
||
error ("invalid conditional operand");
|
||
return x;
|
||
}
|
||
break;
|
||
|
||
case NON_LVALUE_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
gcc_unreachable ();
|
||
|
||
CASE_CONVERT:
|
||
case FIX_TRUNC_EXPR:
|
||
case FLOAT_EXPR:
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
CHECK_OP (0, "invalid operand to unary operator");
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case COMPONENT_REF:
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case BIT_FIELD_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
/* We have a nest of references. Verify that each of the operands
|
||
that determine where to reference is either a constant or a variable,
|
||
verify that the base is valid, and then show we've already checked
|
||
the subtrees. */
|
||
while (handled_component_p (t))
|
||
{
|
||
if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
|
||
CHECK_OP (2, "invalid COMPONENT_REF offset operator");
|
||
else if (TREE_CODE (t) == ARRAY_REF
|
||
|| TREE_CODE (t) == ARRAY_RANGE_REF)
|
||
{
|
||
CHECK_OP (1, "invalid array index");
|
||
if (TREE_OPERAND (t, 2))
|
||
CHECK_OP (2, "invalid array lower bound");
|
||
if (TREE_OPERAND (t, 3))
|
||
CHECK_OP (3, "invalid array stride");
|
||
}
|
||
else if (TREE_CODE (t) == BIT_FIELD_REF)
|
||
{
|
||
if (!host_integerp (TREE_OPERAND (t, 1), 1)
|
||
|| !host_integerp (TREE_OPERAND (t, 2), 1))
|
||
{
|
||
error ("invalid position or size operand to BIT_FIELD_REF");
|
||
return t;
|
||
}
|
||
else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& (TYPE_PRECISION (TREE_TYPE (t))
|
||
!= TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
|
||
{
|
||
error ("integral result type precision does not match "
|
||
"field size of BIT_FIELD_REF");
|
||
return t;
|
||
}
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
|
||
!= TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
|
||
{
|
||
error ("mode precision of non-integral result does not "
|
||
"match field size of BIT_FIELD_REF");
|
||
return t;
|
||
}
|
||
}
|
||
|
||
t = TREE_OPERAND (t, 0);
|
||
}
|
||
|
||
if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
|
||
{
|
||
error ("invalid reference prefix");
|
||
return t;
|
||
}
|
||
*walk_subtrees = 0;
|
||
break;
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
/* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
|
||
POINTER_PLUS_EXPR. */
|
||
if (POINTER_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
error ("invalid operand to plus/minus, type is a pointer");
|
||
return t;
|
||
}
|
||
CHECK_OP (0, "invalid operand to binary operator");
|
||
CHECK_OP (1, "invalid operand to binary operator");
|
||
break;
|
||
|
||
case POINTER_PLUS_EXPR:
|
||
/* Check to make sure the first operand is a pointer or reference type. */
|
||
if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
|
||
{
|
||
error ("invalid operand to pointer plus, first operand is not a pointer");
|
||
return t;
|
||
}
|
||
/* Check to make sure the second operand is a ptrofftype. */
|
||
if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
|
||
{
|
||
error ("invalid operand to pointer plus, second operand is not an "
|
||
"integer type of appropriate width");
|
||
return t;
|
||
}
|
||
/* FALLTHROUGH */
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case UNORDERED_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNLT_EXPR:
|
||
case UNLE_EXPR:
|
||
case UNGT_EXPR:
|
||
case UNGE_EXPR:
|
||
case UNEQ_EXPR:
|
||
case LTGT_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
case RDIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
CHECK_OP (0, "invalid operand to binary operator");
|
||
CHECK_OP (1, "invalid operand to binary operator");
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
|
||
*walk_subtrees = 0;
|
||
break;
|
||
|
||
case CASE_LABEL_EXPR:
|
||
if (CASE_CHAIN (t))
|
||
{
|
||
error ("invalid CASE_CHAIN");
|
||
return t;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return NULL;
|
||
|
||
#undef CHECK_OP
|
||
}
|
||
|
||
|
||
/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
|
||
Returns true if there is an error, otherwise false. */
|
||
|
||
static bool
|
||
verify_types_in_gimple_min_lval (tree expr)
|
||
{
|
||
tree op;
|
||
|
||
if (is_gimple_id (expr))
|
||
return false;
|
||
|
||
if (TREE_CODE (expr) != TARGET_MEM_REF
|
||
&& TREE_CODE (expr) != MEM_REF)
|
||
{
|
||
error ("invalid expression for min lvalue");
|
||
return true;
|
||
}
|
||
|
||
/* TARGET_MEM_REFs are strange beasts. */
|
||
if (TREE_CODE (expr) == TARGET_MEM_REF)
|
||
return false;
|
||
|
||
op = TREE_OPERAND (expr, 0);
|
||
if (!is_gimple_val (op))
|
||
{
|
||
error ("invalid operand in indirect reference");
|
||
debug_generic_stmt (op);
|
||
return true;
|
||
}
|
||
/* Memory references now generally can involve a value conversion. */
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Verify if EXPR is a valid GIMPLE reference expression. If
|
||
REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
|
||
if there is an error, otherwise false. */
|
||
|
||
static bool
|
||
verify_types_in_gimple_reference (tree expr, bool require_lvalue)
|
||
{
|
||
while (handled_component_p (expr))
|
||
{
|
||
tree op = TREE_OPERAND (expr, 0);
|
||
|
||
if (TREE_CODE (expr) == ARRAY_REF
|
||
|| TREE_CODE (expr) == ARRAY_RANGE_REF)
|
||
{
|
||
if (!is_gimple_val (TREE_OPERAND (expr, 1))
|
||
|| (TREE_OPERAND (expr, 2)
|
||
&& !is_gimple_val (TREE_OPERAND (expr, 2)))
|
||
|| (TREE_OPERAND (expr, 3)
|
||
&& !is_gimple_val (TREE_OPERAND (expr, 3))))
|
||
{
|
||
error ("invalid operands to array reference");
|
||
debug_generic_stmt (expr);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Verify if the reference array element types are compatible. */
|
||
if (TREE_CODE (expr) == ARRAY_REF
|
||
&& !useless_type_conversion_p (TREE_TYPE (expr),
|
||
TREE_TYPE (TREE_TYPE (op))))
|
||
{
|
||
error ("type mismatch in array reference");
|
||
debug_generic_stmt (TREE_TYPE (expr));
|
||
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
|
||
return true;
|
||
}
|
||
if (TREE_CODE (expr) == ARRAY_RANGE_REF
|
||
&& !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
|
||
TREE_TYPE (TREE_TYPE (op))))
|
||
{
|
||
error ("type mismatch in array range reference");
|
||
debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
|
||
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
|
||
return true;
|
||
}
|
||
|
||
if ((TREE_CODE (expr) == REALPART_EXPR
|
||
|| TREE_CODE (expr) == IMAGPART_EXPR)
|
||
&& !useless_type_conversion_p (TREE_TYPE (expr),
|
||
TREE_TYPE (TREE_TYPE (op))))
|
||
{
|
||
error ("type mismatch in real/imagpart reference");
|
||
debug_generic_stmt (TREE_TYPE (expr));
|
||
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
|
||
return true;
|
||
}
|
||
|
||
if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& !useless_type_conversion_p (TREE_TYPE (expr),
|
||
TREE_TYPE (TREE_OPERAND (expr, 1))))
|
||
{
|
||
error ("type mismatch in component reference");
|
||
debug_generic_stmt (TREE_TYPE (expr));
|
||
debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
|
||
return true;
|
||
}
|
||
|
||
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
|
||
{
|
||
/* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
|
||
that their operand is not an SSA name or an invariant when
|
||
requiring an lvalue (this usually means there is a SRA or IPA-SRA
|
||
bug). Otherwise there is nothing to verify, gross mismatches at
|
||
most invoke undefined behavior. */
|
||
if (require_lvalue
|
||
&& (TREE_CODE (op) == SSA_NAME
|
||
|| is_gimple_min_invariant (op)))
|
||
{
|
||
error ("conversion of an SSA_NAME on the left hand side");
|
||
debug_generic_stmt (expr);
|
||
return true;
|
||
}
|
||
else if (TREE_CODE (op) == SSA_NAME
|
||
&& TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
|
||
{
|
||
error ("conversion of register to a different size");
|
||
debug_generic_stmt (expr);
|
||
return true;
|
||
}
|
||
else if (!handled_component_p (op))
|
||
return false;
|
||
}
|
||
|
||
expr = op;
|
||
}
|
||
|
||
if (TREE_CODE (expr) == MEM_REF)
|
||
{
|
||
if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
|
||
{
|
||
error ("invalid address operand in MEM_REF");
|
||
debug_generic_stmt (expr);
|
||
return true;
|
||
}
|
||
if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
|
||
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
|
||
{
|
||
error ("invalid offset operand in MEM_REF");
|
||
debug_generic_stmt (expr);
|
||
return true;
|
||
}
|
||
}
|
||
else if (TREE_CODE (expr) == TARGET_MEM_REF)
|
||
{
|
||
if (!TMR_BASE (expr)
|
||
|| !is_gimple_mem_ref_addr (TMR_BASE (expr)))
|
||
{
|
||
error ("invalid address operand in TARGET_MEM_REF");
|
||
return true;
|
||
}
|
||
if (!TMR_OFFSET (expr)
|
||
|| TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
|
||
|| !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
|
||
{
|
||
error ("invalid offset operand in TARGET_MEM_REF");
|
||
debug_generic_stmt (expr);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return ((require_lvalue || !is_gimple_min_invariant (expr))
|
||
&& verify_types_in_gimple_min_lval (expr));
|
||
}
|
||
|
||
/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
|
||
list of pointer-to types that is trivially convertible to DEST. */
|
||
|
||
static bool
|
||
one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
|
||
{
|
||
tree src;
|
||
|
||
if (!TYPE_POINTER_TO (src_obj))
|
||
return true;
|
||
|
||
for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
|
||
if (useless_type_conversion_p (dest, src))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if TYPE1 is a fixed-point type and if conversions to and
|
||
from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
|
||
|
||
static bool
|
||
valid_fixed_convert_types_p (tree type1, tree type2)
|
||
{
|
||
return (FIXED_POINT_TYPE_P (type1)
|
||
&& (INTEGRAL_TYPE_P (type2)
|
||
|| SCALAR_FLOAT_TYPE_P (type2)
|
||
|| FIXED_POINT_TYPE_P (type2)));
|
||
}
|
||
|
||
/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
|
||
is a problem, otherwise false. */
|
||
|
||
static bool
|
||
verify_gimple_call (gimple stmt)
|
||
{
|
||
tree fn = gimple_call_fn (stmt);
|
||
tree fntype, fndecl;
|
||
unsigned i;
|
||
|
||
if (gimple_call_internal_p (stmt))
|
||
{
|
||
if (fn)
|
||
{
|
||
error ("gimple call has two targets");
|
||
debug_generic_stmt (fn);
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!fn)
|
||
{
|
||
error ("gimple call has no target");
|
||
return true;
|
||
}
|
||
}
|
||
|
||
if (fn && !is_gimple_call_addr (fn))
|
||
{
|
||
error ("invalid function in gimple call");
|
||
debug_generic_stmt (fn);
|
||
return true;
|
||
}
|
||
|
||
if (fn
|
||
&& (!POINTER_TYPE_P (TREE_TYPE (fn))
|
||
|| (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
|
||
{
|
||
error ("non-function in gimple call");
|
||
return true;
|
||
}
|
||
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl
|
||
&& TREE_CODE (fndecl) == FUNCTION_DECL
|
||
&& DECL_LOOPING_CONST_OR_PURE_P (fndecl)
|
||
&& !DECL_PURE_P (fndecl)
|
||
&& !TREE_READONLY (fndecl))
|
||
{
|
||
error ("invalid pure const state for function");
|
||
return true;
|
||
}
|
||
|
||
if (gimple_call_lhs (stmt)
|
||
&& (!is_gimple_lvalue (gimple_call_lhs (stmt))
|
||
|| verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
|
||
{
|
||
error ("invalid LHS in gimple call");
|
||
return true;
|
||
}
|
||
|
||
if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
|
||
{
|
||
error ("LHS in noreturn call");
|
||
return true;
|
||
}
|
||
|
||
fntype = gimple_call_fntype (stmt);
|
||
if (fntype
|
||
&& gimple_call_lhs (stmt)
|
||
&& !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
|
||
TREE_TYPE (fntype))
|
||
/* ??? At least C++ misses conversions at assignments from
|
||
void * call results.
|
||
??? Java is completely off. Especially with functions
|
||
returning java.lang.Object.
|
||
For now simply allow arbitrary pointer type conversions. */
|
||
&& !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
|
||
&& POINTER_TYPE_P (TREE_TYPE (fntype))))
|
||
{
|
||
error ("invalid conversion in gimple call");
|
||
debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
|
||
debug_generic_stmt (TREE_TYPE (fntype));
|
||
return true;
|
||
}
|
||
|
||
if (gimple_call_chain (stmt)
|
||
&& !is_gimple_val (gimple_call_chain (stmt)))
|
||
{
|
||
error ("invalid static chain in gimple call");
|
||
debug_generic_stmt (gimple_call_chain (stmt));
|
||
return true;
|
||
}
|
||
|
||
/* If there is a static chain argument, this should not be an indirect
|
||
call, and the decl should have DECL_STATIC_CHAIN set. */
|
||
if (gimple_call_chain (stmt))
|
||
{
|
||
if (!gimple_call_fndecl (stmt))
|
||
{
|
||
error ("static chain in indirect gimple call");
|
||
return true;
|
||
}
|
||
fn = TREE_OPERAND (fn, 0);
|
||
|
||
if (!DECL_STATIC_CHAIN (fn))
|
||
{
|
||
error ("static chain with function that doesn%'t use one");
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* ??? The C frontend passes unpromoted arguments in case it
|
||
didn't see a function declaration before the call. So for now
|
||
leave the call arguments mostly unverified. Once we gimplify
|
||
unit-at-a-time we have a chance to fix this. */
|
||
|
||
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
||
{
|
||
tree arg = gimple_call_arg (stmt, i);
|
||
if ((is_gimple_reg_type (TREE_TYPE (arg))
|
||
&& !is_gimple_val (arg))
|
||
|| (!is_gimple_reg_type (TREE_TYPE (arg))
|
||
&& !is_gimple_lvalue (arg)))
|
||
{
|
||
error ("invalid argument to gimple call");
|
||
debug_generic_expr (arg);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Verifies the gimple comparison with the result type TYPE and
|
||
the operands OP0 and OP1. */
|
||
|
||
static bool
|
||
verify_gimple_comparison (tree type, tree op0, tree op1)
|
||
{
|
||
tree op0_type = TREE_TYPE (op0);
|
||
tree op1_type = TREE_TYPE (op1);
|
||
|
||
if (!is_gimple_val (op0) || !is_gimple_val (op1))
|
||
{
|
||
error ("invalid operands in gimple comparison");
|
||
return true;
|
||
}
|
||
|
||
/* For comparisons we do not have the operations type as the
|
||
effective type the comparison is carried out in. Instead
|
||
we require that either the first operand is trivially
|
||
convertible into the second, or the other way around.
|
||
Because we special-case pointers to void we allow
|
||
comparisons of pointers with the same mode as well. */
|
||
if (!useless_type_conversion_p (op0_type, op1_type)
|
||
&& !useless_type_conversion_p (op1_type, op0_type)
|
||
&& (!POINTER_TYPE_P (op0_type)
|
||
|| !POINTER_TYPE_P (op1_type)
|
||
|| TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
|
||
{
|
||
error ("mismatching comparison operand types");
|
||
debug_generic_expr (op0_type);
|
||
debug_generic_expr (op1_type);
|
||
return true;
|
||
}
|
||
|
||
/* The resulting type of a comparison may be an effective boolean type. */
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& (TREE_CODE (type) == BOOLEAN_TYPE
|
||
|| TYPE_PRECISION (type) == 1))
|
||
;
|
||
/* Or an integer vector type with the same size and element count
|
||
as the comparison operand types. */
|
||
else if (TREE_CODE (type) == VECTOR_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
|
||
{
|
||
if (TREE_CODE (op0_type) != VECTOR_TYPE
|
||
|| TREE_CODE (op1_type) != VECTOR_TYPE)
|
||
{
|
||
error ("non-vector operands in vector comparison");
|
||
debug_generic_expr (op0_type);
|
||
debug_generic_expr (op1_type);
|
||
return true;
|
||
}
|
||
|
||
if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
|
||
|| (GET_MODE_SIZE (TYPE_MODE (type))
|
||
!= GET_MODE_SIZE (TYPE_MODE (op0_type))))
|
||
{
|
||
error ("invalid vector comparison resulting type");
|
||
debug_generic_expr (type);
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
error ("bogus comparison result type");
|
||
debug_generic_expr (type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Verify a gimple assignment statement STMT with an unary rhs.
|
||
Returns true if anything is wrong. */
|
||
|
||
static bool
|
||
verify_gimple_assign_unary (gimple stmt)
|
||
{
|
||
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree lhs_type = TREE_TYPE (lhs);
|
||
tree rhs1 = gimple_assign_rhs1 (stmt);
|
||
tree rhs1_type = TREE_TYPE (rhs1);
|
||
|
||
if (!is_gimple_reg (lhs))
|
||
{
|
||
error ("non-register as LHS of unary operation");
|
||
return true;
|
||
}
|
||
|
||
if (!is_gimple_val (rhs1))
|
||
{
|
||
error ("invalid operand in unary operation");
|
||
return true;
|
||
}
|
||
|
||
/* First handle conversions. */
|
||
switch (rhs_code)
|
||
{
|
||
CASE_CONVERT:
|
||
{
|
||
/* Allow conversions between integral types and pointers only if
|
||
there is no sign or zero extension involved.
|
||
For targets were the precision of ptrofftype doesn't match that
|
||
of pointers we need to allow arbitrary conversions from and
|
||
to ptrofftype. */
|
||
if ((POINTER_TYPE_P (lhs_type)
|
||
&& INTEGRAL_TYPE_P (rhs1_type)
|
||
&& (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
|
||
|| ptrofftype_p (rhs1_type)))
|
||
|| (POINTER_TYPE_P (rhs1_type)
|
||
&& INTEGRAL_TYPE_P (lhs_type)
|
||
&& (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
|
||
|| ptrofftype_p (sizetype))))
|
||
return false;
|
||
|
||
/* Allow conversion from integer to offset type and vice versa. */
|
||
if ((TREE_CODE (lhs_type) == OFFSET_TYPE
|
||
&& TREE_CODE (rhs1_type) == INTEGER_TYPE)
|
||
|| (TREE_CODE (lhs_type) == INTEGER_TYPE
|
||
&& TREE_CODE (rhs1_type) == OFFSET_TYPE))
|
||
return false;
|
||
|
||
/* Otherwise assert we are converting between types of the
|
||
same kind. */
|
||
if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
|
||
{
|
||
error ("invalid types in nop conversion");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case ADDR_SPACE_CONVERT_EXPR:
|
||
{
|
||
if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
|
||
|| (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
|
||
== TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
|
||
{
|
||
error ("invalid types in address space conversion");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case FIXED_CONVERT_EXPR:
|
||
{
|
||
if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
|
||
&& !valid_fixed_convert_types_p (rhs1_type, lhs_type))
|
||
{
|
||
error ("invalid types in fixed-point conversion");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case FLOAT_EXPR:
|
||
{
|
||
if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
|
||
{
|
||
error ("invalid types in conversion to floating point");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case FIX_TRUNC_EXPR:
|
||
{
|
||
if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
|
||
{
|
||
error ("invalid types in conversion to integer");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case VEC_UNPACK_HI_EXPR:
|
||
case VEC_UNPACK_LO_EXPR:
|
||
case REDUC_MAX_EXPR:
|
||
case REDUC_MIN_EXPR:
|
||
case REDUC_PLUS_EXPR:
|
||
case VEC_UNPACK_FLOAT_HI_EXPR:
|
||
case VEC_UNPACK_FLOAT_LO_EXPR:
|
||
/* FIXME. */
|
||
return false;
|
||
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
case PAREN_EXPR:
|
||
case NON_LVALUE_EXPR:
|
||
case CONJ_EXPR:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* For the remaining codes assert there is no conversion involved. */
|
||
if (!useless_type_conversion_p (lhs_type, rhs1_type))
|
||
{
|
||
error ("non-trivial conversion in unary operation");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Verify a gimple assignment statement STMT with a binary rhs.
|
||
Returns true if anything is wrong. */
|
||
|
||
static bool
|
||
verify_gimple_assign_binary (gimple stmt)
|
||
{
|
||
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree lhs_type = TREE_TYPE (lhs);
|
||
tree rhs1 = gimple_assign_rhs1 (stmt);
|
||
tree rhs1_type = TREE_TYPE (rhs1);
|
||
tree rhs2 = gimple_assign_rhs2 (stmt);
|
||
tree rhs2_type = TREE_TYPE (rhs2);
|
||
|
||
if (!is_gimple_reg (lhs))
|
||
{
|
||
error ("non-register as LHS of binary operation");
|
||
return true;
|
||
}
|
||
|
||
if (!is_gimple_val (rhs1)
|
||
|| !is_gimple_val (rhs2))
|
||
{
|
||
error ("invalid operands in binary operation");
|
||
return true;
|
||
}
|
||
|
||
/* First handle operations that involve different types. */
|
||
switch (rhs_code)
|
||
{
|
||
case COMPLEX_EXPR:
|
||
{
|
||
if (TREE_CODE (lhs_type) != COMPLEX_TYPE
|
||
|| !(INTEGRAL_TYPE_P (rhs1_type)
|
||
|| SCALAR_FLOAT_TYPE_P (rhs1_type))
|
||
|| !(INTEGRAL_TYPE_P (rhs2_type)
|
||
|| SCALAR_FLOAT_TYPE_P (rhs2_type)))
|
||
{
|
||
error ("type mismatch in complex expression");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
debug_generic_expr (rhs2_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
{
|
||
/* Shifts and rotates are ok on integral types, fixed point
|
||
types and integer vector types. */
|
||
if ((!INTEGRAL_TYPE_P (rhs1_type)
|
||
&& !FIXED_POINT_TYPE_P (rhs1_type)
|
||
&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
|
||
|| (!INTEGRAL_TYPE_P (rhs2_type)
|
||
/* Vector shifts of vectors are also ok. */
|
||
&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
||
&& TREE_CODE (rhs2_type) == VECTOR_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
|
||
|| !useless_type_conversion_p (lhs_type, rhs1_type))
|
||
{
|
||
error ("type mismatch in shift expression");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
debug_generic_expr (rhs2_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case VEC_LSHIFT_EXPR:
|
||
case VEC_RSHIFT_EXPR:
|
||
{
|
||
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|
||
|| !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
||
|| POINTER_TYPE_P (TREE_TYPE (rhs1_type))
|
||
|| FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
|
||
|| SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
|
||
|| (!INTEGRAL_TYPE_P (rhs2_type)
|
||
&& (TREE_CODE (rhs2_type) != VECTOR_TYPE
|
||
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
|
||
|| !useless_type_conversion_p (lhs_type, rhs1_type))
|
||
{
|
||
error ("type mismatch in vector shift expression");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
debug_generic_expr (rhs2_type);
|
||
return true;
|
||
}
|
||
/* For shifting a vector of non-integral components we
|
||
only allow shifting by a constant multiple of the element size. */
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
||
&& (TREE_CODE (rhs2) != INTEGER_CST
|
||
|| !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
|
||
TYPE_SIZE (TREE_TYPE (rhs1_type)))))
|
||
{
|
||
error ("non-element sized vector shift of floating point vector");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
{
|
||
/* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
|
||
??? This just makes the checker happy and may not be what is
|
||
intended. */
|
||
if (TREE_CODE (lhs_type) == VECTOR_TYPE
|
||
&& POINTER_TYPE_P (TREE_TYPE (lhs_type)))
|
||
{
|
||
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|
||
|| TREE_CODE (rhs2_type) != VECTOR_TYPE)
|
||
{
|
||
error ("invalid non-vector operands to vector valued plus");
|
||
return true;
|
||
}
|
||
lhs_type = TREE_TYPE (lhs_type);
|
||
rhs1_type = TREE_TYPE (rhs1_type);
|
||
rhs2_type = TREE_TYPE (rhs2_type);
|
||
/* PLUS_EXPR is commutative, so we might end up canonicalizing
|
||
the pointer to 2nd place. */
|
||
if (POINTER_TYPE_P (rhs2_type))
|
||
{
|
||
tree tem = rhs1_type;
|
||
rhs1_type = rhs2_type;
|
||
rhs2_type = tem;
|
||
}
|
||
goto do_pointer_plus_expr_check;
|
||
}
|
||
if (POINTER_TYPE_P (lhs_type)
|
||
|| POINTER_TYPE_P (rhs1_type)
|
||
|| POINTER_TYPE_P (rhs2_type))
|
||
{
|
||
error ("invalid (pointer) operands to plus/minus");
|
||
return true;
|
||
}
|
||
|
||
/* Continue with generic binary expression handling. */
|
||
break;
|
||
}
|
||
|
||
case POINTER_PLUS_EXPR:
|
||
{
|
||
do_pointer_plus_expr_check:
|
||
if (!POINTER_TYPE_P (rhs1_type)
|
||
|| !useless_type_conversion_p (lhs_type, rhs1_type)
|
||
|| !ptrofftype_p (rhs2_type))
|
||
{
|
||
error ("type mismatch in pointer plus expression");
|
||
debug_generic_stmt (lhs_type);
|
||
debug_generic_stmt (rhs1_type);
|
||
debug_generic_stmt (rhs2_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
|
||
gcc_unreachable ();
|
||
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case UNORDERED_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNLT_EXPR:
|
||
case UNLE_EXPR:
|
||
case UNGT_EXPR:
|
||
case UNGE_EXPR:
|
||
case UNEQ_EXPR:
|
||
case LTGT_EXPR:
|
||
/* Comparisons are also binary, but the result type is not
|
||
connected to the operand types. */
|
||
return verify_gimple_comparison (lhs_type, rhs1, rhs2);
|
||
|
||
case WIDEN_MULT_EXPR:
|
||
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
|
||
return true;
|
||
return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
|
||
|| (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
|
||
|
||
case WIDEN_SUM_EXPR:
|
||
case VEC_WIDEN_MULT_HI_EXPR:
|
||
case VEC_WIDEN_MULT_LO_EXPR:
|
||
case VEC_PACK_TRUNC_EXPR:
|
||
case VEC_PACK_SAT_EXPR:
|
||
case VEC_PACK_FIX_TRUNC_EXPR:
|
||
case VEC_EXTRACT_EVEN_EXPR:
|
||
case VEC_EXTRACT_ODD_EXPR:
|
||
case VEC_INTERLEAVE_HIGH_EXPR:
|
||
case VEC_INTERLEAVE_LOW_EXPR:
|
||
/* FIXME. */
|
||
return false;
|
||
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
case RDIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
/* Continue with generic binary expression handling. */
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|
||
|| !useless_type_conversion_p (lhs_type, rhs2_type))
|
||
{
|
||
error ("type mismatch in binary expression");
|
||
debug_generic_stmt (lhs_type);
|
||
debug_generic_stmt (rhs1_type);
|
||
debug_generic_stmt (rhs2_type);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Verify a gimple assignment statement STMT with a ternary rhs.
|
||
Returns true if anything is wrong. */
|
||
|
||
static bool
|
||
verify_gimple_assign_ternary (gimple stmt)
|
||
{
|
||
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree lhs_type = TREE_TYPE (lhs);
|
||
tree rhs1 = gimple_assign_rhs1 (stmt);
|
||
tree rhs1_type = TREE_TYPE (rhs1);
|
||
tree rhs2 = gimple_assign_rhs2 (stmt);
|
||
tree rhs2_type = TREE_TYPE (rhs2);
|
||
tree rhs3 = gimple_assign_rhs3 (stmt);
|
||
tree rhs3_type = TREE_TYPE (rhs3);
|
||
|
||
if (!is_gimple_reg (lhs))
|
||
{
|
||
error ("non-register as LHS of ternary operation");
|
||
return true;
|
||
}
|
||
|
||
if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
|
||
? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
|
||
|| !is_gimple_val (rhs2)
|
||
|| !is_gimple_val (rhs3))
|
||
{
|
||
error ("invalid operands in ternary operation");
|
||
return true;
|
||
}
|
||
|
||
/* First handle operations that involve different types. */
|
||
switch (rhs_code)
|
||
{
|
||
case WIDEN_MULT_PLUS_EXPR:
|
||
case WIDEN_MULT_MINUS_EXPR:
|
||
if ((!INTEGRAL_TYPE_P (rhs1_type)
|
||
&& !FIXED_POINT_TYPE_P (rhs1_type))
|
||
|| !useless_type_conversion_p (rhs1_type, rhs2_type)
|
||
|| !useless_type_conversion_p (lhs_type, rhs3_type)
|
||
|| 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
|
||
|| TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
|
||
{
|
||
error ("type mismatch in widening multiply-accumulate expression");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
debug_generic_expr (rhs2_type);
|
||
debug_generic_expr (rhs3_type);
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case FMA_EXPR:
|
||
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|
||
|| !useless_type_conversion_p (lhs_type, rhs2_type)
|
||
|| !useless_type_conversion_p (lhs_type, rhs3_type))
|
||
{
|
||
error ("type mismatch in fused multiply-add expression");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
debug_generic_expr (rhs2_type);
|
||
debug_generic_expr (rhs3_type);
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
case VEC_COND_EXPR:
|
||
if (!useless_type_conversion_p (lhs_type, rhs2_type)
|
||
|| !useless_type_conversion_p (lhs_type, rhs3_type))
|
||
{
|
||
error ("type mismatch in conditional expression");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs2_type);
|
||
debug_generic_expr (rhs3_type);
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case DOT_PROD_EXPR:
|
||
case REALIGN_LOAD_EXPR:
|
||
/* FIXME. */
|
||
return false;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Verify a gimple assignment statement STMT with a single rhs.
|
||
Returns true if anything is wrong. */
|
||
|
||
static bool
|
||
verify_gimple_assign_single (gimple stmt)
|
||
{
|
||
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree lhs_type = TREE_TYPE (lhs);
|
||
tree rhs1 = gimple_assign_rhs1 (stmt);
|
||
tree rhs1_type = TREE_TYPE (rhs1);
|
||
bool res = false;
|
||
|
||
if (!useless_type_conversion_p (lhs_type, rhs1_type))
|
||
{
|
||
error ("non-trivial conversion at assignment");
|
||
debug_generic_expr (lhs_type);
|
||
debug_generic_expr (rhs1_type);
|
||
return true;
|
||
}
|
||
|
||
if (handled_component_p (lhs))
|
||
res |= verify_types_in_gimple_reference (lhs, true);
|
||
|
||
/* Special codes we cannot handle via their class. */
|
||
switch (rhs_code)
|
||
{
|
||
case ADDR_EXPR:
|
||
{
|
||
tree op = TREE_OPERAND (rhs1, 0);
|
||
if (!is_gimple_addressable (op))
|
||
{
|
||
error ("invalid operand in unary expression");
|
||
return true;
|
||
}
|
||
|
||
/* Technically there is no longer a need for matching types, but
|
||
gimple hygiene asks for this check. In LTO we can end up
|
||
combining incompatible units and thus end up with addresses
|
||
of globals that change their type to a common one. */
|
||
if (!in_lto_p
|
||
&& !types_compatible_p (TREE_TYPE (op),
|
||
TREE_TYPE (TREE_TYPE (rhs1)))
|
||
&& !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
|
||
TREE_TYPE (op)))
|
||
{
|
||
error ("type mismatch in address expression");
|
||
debug_generic_stmt (TREE_TYPE (rhs1));
|
||
debug_generic_stmt (TREE_TYPE (op));
|
||
return true;
|
||
}
|
||
|
||
return verify_types_in_gimple_reference (op, true);
|
||
}
|
||
|
||
/* tcc_reference */
|
||
case INDIRECT_REF:
|
||
error ("INDIRECT_REF in gimple IL");
|
||
return true;
|
||
|
||
case COMPONENT_REF:
|
||
case BIT_FIELD_REF:
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case TARGET_MEM_REF:
|
||
case MEM_REF:
|
||
if (!is_gimple_reg (lhs)
|
||
&& is_gimple_reg_type (TREE_TYPE (lhs)))
|
||
{
|
||
error ("invalid rhs for gimple memory store");
|
||
debug_generic_stmt (lhs);
|
||
debug_generic_stmt (rhs1);
|
||
return true;
|
||
}
|
||
return res || verify_types_in_gimple_reference (rhs1, false);
|
||
|
||
/* tcc_constant */
|
||
case SSA_NAME:
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case FIXED_CST:
|
||
case COMPLEX_CST:
|
||
case VECTOR_CST:
|
||
case STRING_CST:
|
||
return res;
|
||
|
||
/* tcc_declaration */
|
||
case CONST_DECL:
|
||
return res;
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
if (!is_gimple_reg (lhs)
|
||
&& !is_gimple_reg (rhs1)
|
||
&& is_gimple_reg_type (TREE_TYPE (lhs)))
|
||
{
|
||
error ("invalid rhs for gimple memory store");
|
||
debug_generic_stmt (lhs);
|
||
debug_generic_stmt (rhs1);
|
||
return true;
|
||
}
|
||
return res;
|
||
|
||
case CONSTRUCTOR:
|
||
case OBJ_TYPE_REF:
|
||
case ASSERT_EXPR:
|
||
case WITH_SIZE_EXPR:
|
||
/* FIXME. */
|
||
return res;
|
||
|
||
default:;
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
|
||
is a problem, otherwise false. */
|
||
|
||
static bool
|
||
verify_gimple_assign (gimple stmt)
|
||
{
|
||
switch (gimple_assign_rhs_class (stmt))
|
||
{
|
||
case GIMPLE_SINGLE_RHS:
|
||
return verify_gimple_assign_single (stmt);
|
||
|
||
case GIMPLE_UNARY_RHS:
|
||
return verify_gimple_assign_unary (stmt);
|
||
|
||
case GIMPLE_BINARY_RHS:
|
||
return verify_gimple_assign_binary (stmt);
|
||
|
||
case GIMPLE_TERNARY_RHS:
|
||
return verify_gimple_assign_ternary (stmt);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
|
||
is a problem, otherwise false. */
|
||
|
||
static bool
|
||
verify_gimple_return (gimple stmt)
|
||
{
|
||
tree op = gimple_return_retval (stmt);
|
||
tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
|
||
|
||
/* We cannot test for present return values as we do not fix up missing
|
||
return values from the original source. */
|
||
if (op == NULL)
|
||
return false;
|
||
|
||
if (!is_gimple_val (op)
|
||
&& TREE_CODE (op) != RESULT_DECL)
|
||
{
|
||
error ("invalid operand in return statement");
|
||
debug_generic_stmt (op);
|
||
return true;
|
||
}
|
||
|
||
if ((TREE_CODE (op) == RESULT_DECL
|
||
&& DECL_BY_REFERENCE (op))
|
||
|| (TREE_CODE (op) == SSA_NAME
|
||
&& TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
|
||
&& DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
|
||
op = TREE_TYPE (op);
|
||
|
||
if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
|
||
{
|
||
error ("invalid conversion in return statement");
|
||
debug_generic_stmt (restype);
|
||
debug_generic_stmt (TREE_TYPE (op));
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
|
||
is a problem, otherwise false. */
|
||
|
||
static bool
|
||
verify_gimple_goto (gimple stmt)
|
||
{
|
||
tree dest = gimple_goto_dest (stmt);
|
||
|
||
/* ??? We have two canonical forms of direct goto destinations, a
|
||
bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
|
||
if (TREE_CODE (dest) != LABEL_DECL
|
||
&& (!is_gimple_val (dest)
|
||
|| !POINTER_TYPE_P (TREE_TYPE (dest))))
|
||
{
|
||
error ("goto destination is neither a label nor a pointer");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
|
||
is a problem, otherwise false. */
|
||
|
||
static bool
|
||
verify_gimple_switch (gimple stmt)
|
||
{
|
||
if (!is_gimple_val (gimple_switch_index (stmt)))
|
||
{
|
||
error ("invalid operand to switch statement");
|
||
debug_generic_stmt (gimple_switch_index (stmt));
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Verify a gimple debug statement STMT.
|
||
Returns true if anything is wrong. */
|
||
|
||
static bool
|
||
verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
|
||
{
|
||
/* There isn't much that could be wrong in a gimple debug stmt. A
|
||
gimple debug bind stmt, for example, maps a tree, that's usually
|
||
a VAR_DECL or a PARM_DECL, but that could also be some scalarized
|
||
component or member of an aggregate type, to another tree, that
|
||
can be an arbitrary expression. These stmts expand into debug
|
||
insns, and are converted to debug notes by var-tracking.c. */
|
||
return false;
|
||
}
|
||
|
||
/* Verify a gimple label statement STMT.
|
||
Returns true if anything is wrong. */
|
||
|
||
static bool
|
||
verify_gimple_label (gimple stmt)
|
||
{
|
||
tree decl = gimple_label_label (stmt);
|
||
int uid;
|
||
bool err = false;
|
||
|
||
if (TREE_CODE (decl) != LABEL_DECL)
|
||
return true;
|
||
|
||
uid = LABEL_DECL_UID (decl);
|
||
if (cfun->cfg
|
||
&& (uid == -1
|
||
|| VEC_index (basic_block,
|
||
label_to_block_map, uid) != gimple_bb (stmt)))
|
||
{
|
||
error ("incorrect entry in label_to_block_map");
|
||
err |= true;
|
||
}
|
||
|
||
uid = EH_LANDING_PAD_NR (decl);
|
||
if (uid)
|
||
{
|
||
eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
|
||
if (decl != lp->post_landing_pad)
|
||
{
|
||
error ("incorrect setting of landing pad number");
|
||
err |= true;
|
||
}
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Verify the GIMPLE statement STMT. Returns true if there is an
|
||
error, otherwise false. */
|
||
|
||
static bool
|
||
verify_gimple_stmt (gimple stmt)
|
||
{
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_ASSIGN:
|
||
return verify_gimple_assign (stmt);
|
||
|
||
case GIMPLE_LABEL:
|
||
return verify_gimple_label (stmt);
|
||
|
||
case GIMPLE_CALL:
|
||
return verify_gimple_call (stmt);
|
||
|
||
case GIMPLE_COND:
|
||
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
|
||
{
|
||
error ("invalid comparison code in gimple cond");
|
||
return true;
|
||
}
|
||
if (!(!gimple_cond_true_label (stmt)
|
||
|| TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
|
||
|| !(!gimple_cond_false_label (stmt)
|
||
|| TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
|
||
{
|
||
error ("invalid labels in gimple cond");
|
||
return true;
|
||
}
|
||
|
||
return verify_gimple_comparison (boolean_type_node,
|
||
gimple_cond_lhs (stmt),
|
||
gimple_cond_rhs (stmt));
|
||
|
||
case GIMPLE_GOTO:
|
||
return verify_gimple_goto (stmt);
|
||
|
||
case GIMPLE_SWITCH:
|
||
return verify_gimple_switch (stmt);
|
||
|
||
case GIMPLE_RETURN:
|
||
return verify_gimple_return (stmt);
|
||
|
||
case GIMPLE_ASM:
|
||
return false;
|
||
|
||
/* Tuples that do not have tree operands. */
|
||
case GIMPLE_NOP:
|
||
case GIMPLE_PREDICT:
|
||
case GIMPLE_RESX:
|
||
case GIMPLE_EH_DISPATCH:
|
||
case GIMPLE_EH_MUST_NOT_THROW:
|
||
return false;
|
||
|
||
CASE_GIMPLE_OMP:
|
||
/* OpenMP directives are validated by the FE and never operated
|
||
on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
|
||
non-gimple expressions when the main index variable has had
|
||
its address taken. This does not affect the loop itself
|
||
because the header of an GIMPLE_OMP_FOR is merely used to determine
|
||
how to setup the parallel iteration. */
|
||
return false;
|
||
|
||
case GIMPLE_DEBUG:
|
||
return verify_gimple_debug (stmt);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
|
||
and false otherwise. */
|
||
|
||
static bool
|
||
verify_gimple_phi (gimple phi)
|
||
{
|
||
bool err = false;
|
||
unsigned i;
|
||
tree phi_result = gimple_phi_result (phi);
|
||
bool virtual_p;
|
||
|
||
if (!phi_result)
|
||
{
|
||
error ("invalid PHI result");
|
||
return true;
|
||
}
|
||
|
||
virtual_p = !is_gimple_reg (phi_result);
|
||
if (TREE_CODE (phi_result) != SSA_NAME
|
||
|| (virtual_p
|
||
&& SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
|
||
{
|
||
error ("invalid PHI result");
|
||
err = true;
|
||
}
|
||
|
||
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
||
{
|
||
tree t = gimple_phi_arg_def (phi, i);
|
||
|
||
if (!t)
|
||
{
|
||
error ("missing PHI def");
|
||
err |= true;
|
||
continue;
|
||
}
|
||
/* Addressable variables do have SSA_NAMEs but they
|
||
are not considered gimple values. */
|
||
else if ((TREE_CODE (t) == SSA_NAME
|
||
&& virtual_p != !is_gimple_reg (t))
|
||
|| (virtual_p
|
||
&& (TREE_CODE (t) != SSA_NAME
|
||
|| SSA_NAME_VAR (t) != gimple_vop (cfun)))
|
||
|| (!virtual_p
|
||
&& !is_gimple_val (t)))
|
||
{
|
||
error ("invalid PHI argument");
|
||
debug_generic_expr (t);
|
||
err |= true;
|
||
}
|
||
#ifdef ENABLE_TYPES_CHECKING
|
||
if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
|
||
{
|
||
error ("incompatible types in PHI argument %u", i);
|
||
debug_generic_stmt (TREE_TYPE (phi_result));
|
||
debug_generic_stmt (TREE_TYPE (t));
|
||
err |= true;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Verify the GIMPLE statements inside the sequence STMTS. */
|
||
|
||
static bool
|
||
verify_gimple_in_seq_2 (gimple_seq stmts)
|
||
{
|
||
gimple_stmt_iterator ittr;
|
||
bool err = false;
|
||
|
||
for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
|
||
{
|
||
gimple stmt = gsi_stmt (ittr);
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_BIND:
|
||
err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
|
||
break;
|
||
|
||
case GIMPLE_TRY:
|
||
err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
|
||
err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
|
||
break;
|
||
|
||
case GIMPLE_EH_FILTER:
|
||
err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
|
||
break;
|
||
|
||
case GIMPLE_CATCH:
|
||
err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
|
||
break;
|
||
|
||
default:
|
||
{
|
||
bool err2 = verify_gimple_stmt (stmt);
|
||
if (err2)
|
||
debug_gimple_stmt (stmt);
|
||
err |= err2;
|
||
}
|
||
}
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Verify the GIMPLE statements inside the statement list STMTS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
verify_gimple_in_seq (gimple_seq stmts)
|
||
{
|
||
timevar_push (TV_TREE_STMT_VERIFY);
|
||
if (verify_gimple_in_seq_2 (stmts))
|
||
internal_error ("verify_gimple failed");
|
||
timevar_pop (TV_TREE_STMT_VERIFY);
|
||
}
|
||
|
||
/* Return true when the T can be shared. */
|
||
|
||
bool
|
||
tree_node_can_be_shared (tree t)
|
||
{
|
||
if (IS_TYPE_OR_DECL_P (t)
|
||
|| is_gimple_min_invariant (t)
|
||
|| TREE_CODE (t) == SSA_NAME
|
||
|| t == error_mark_node
|
||
|| TREE_CODE (t) == IDENTIFIER_NODE)
|
||
return true;
|
||
|
||
if (TREE_CODE (t) == CASE_LABEL_EXPR)
|
||
return true;
|
||
|
||
while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
||
&& is_gimple_min_invariant (TREE_OPERAND (t, 1)))
|
||
|| TREE_CODE (t) == COMPONENT_REF
|
||
|| TREE_CODE (t) == REALPART_EXPR
|
||
|| TREE_CODE (t) == IMAGPART_EXPR)
|
||
t = TREE_OPERAND (t, 0);
|
||
|
||
if (DECL_P (t))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Called via walk_gimple_stmt. Verify tree sharing. */
|
||
|
||
static tree
|
||
verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
||
struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
|
||
|
||
if (tree_node_can_be_shared (*tp))
|
||
{
|
||
*walk_subtrees = false;
|
||
return NULL;
|
||
}
|
||
|
||
if (pointer_set_insert (visited, *tp))
|
||
return *tp;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static bool eh_error_found;
|
||
static int
|
||
verify_eh_throw_stmt_node (void **slot, void *data)
|
||
{
|
||
struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
|
||
struct pointer_set_t *visited = (struct pointer_set_t *) data;
|
||
|
||
if (!pointer_set_contains (visited, node->stmt))
|
||
{
|
||
error ("dead STMT in EH table");
|
||
debug_gimple_stmt (node->stmt);
|
||
eh_error_found = true;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Verify the GIMPLE statements in the CFG of FN. */
|
||
|
||
DEBUG_FUNCTION void
|
||
verify_gimple_in_cfg (struct function *fn)
|
||
{
|
||
basic_block bb;
|
||
bool err = false;
|
||
struct pointer_set_t *visited, *visited_stmts;
|
||
|
||
timevar_push (TV_TREE_STMT_VERIFY);
|
||
visited = pointer_set_create ();
|
||
visited_stmts = pointer_set_create ();
|
||
|
||
FOR_EACH_BB_FN (bb, fn)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple phi = gsi_stmt (gsi);
|
||
bool err2 = false;
|
||
unsigned i;
|
||
|
||
pointer_set_insert (visited_stmts, phi);
|
||
|
||
if (gimple_bb (phi) != bb)
|
||
{
|
||
error ("gimple_bb (phi) is set to a wrong basic block");
|
||
err2 = true;
|
||
}
|
||
|
||
err2 |= verify_gimple_phi (phi);
|
||
|
||
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
||
{
|
||
tree arg = gimple_phi_arg_def (phi, i);
|
||
tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
|
||
if (addr)
|
||
{
|
||
error ("incorrect sharing of tree nodes");
|
||
debug_generic_expr (addr);
|
||
err2 |= true;
|
||
}
|
||
}
|
||
|
||
if (err2)
|
||
debug_gimple_stmt (phi);
|
||
err |= err2;
|
||
}
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
bool err2 = false;
|
||
struct walk_stmt_info wi;
|
||
tree addr;
|
||
int lp_nr;
|
||
|
||
pointer_set_insert (visited_stmts, stmt);
|
||
|
||
if (gimple_bb (stmt) != bb)
|
||
{
|
||
error ("gimple_bb (stmt) is set to a wrong basic block");
|
||
err2 = true;
|
||
}
|
||
|
||
err2 |= verify_gimple_stmt (stmt);
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.info = (void *) visited;
|
||
addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
|
||
if (addr)
|
||
{
|
||
error ("incorrect sharing of tree nodes");
|
||
debug_generic_expr (addr);
|
||
err2 |= true;
|
||
}
|
||
|
||
/* ??? Instead of not checking these stmts at all the walker
|
||
should know its context via wi. */
|
||
if (!is_gimple_debug (stmt)
|
||
&& !is_gimple_omp (stmt))
|
||
{
|
||
memset (&wi, 0, sizeof (wi));
|
||
addr = walk_gimple_op (stmt, verify_expr, &wi);
|
||
if (addr)
|
||
{
|
||
debug_generic_expr (addr);
|
||
inform (gimple_location (stmt), "in statement");
|
||
err2 |= true;
|
||
}
|
||
}
|
||
|
||
/* If the statement is marked as part of an EH region, then it is
|
||
expected that the statement could throw. Verify that when we
|
||
have optimizations that simplify statements such that we prove
|
||
that they cannot throw, that we update other data structures
|
||
to match. */
|
||
lp_nr = lookup_stmt_eh_lp (stmt);
|
||
if (lp_nr != 0)
|
||
{
|
||
if (!stmt_could_throw_p (stmt))
|
||
{
|
||
error ("statement marked for throw, but doesn%'t");
|
||
err2 |= true;
|
||
}
|
||
else if (lp_nr > 0
|
||
&& !gsi_one_before_end_p (gsi)
|
||
&& stmt_can_throw_internal (stmt))
|
||
{
|
||
error ("statement marked for throw in middle of block");
|
||
err2 |= true;
|
||
}
|
||
}
|
||
|
||
if (err2)
|
||
debug_gimple_stmt (stmt);
|
||
err |= err2;
|
||
}
|
||
}
|
||
|
||
eh_error_found = false;
|
||
if (get_eh_throw_stmt_table (cfun))
|
||
htab_traverse (get_eh_throw_stmt_table (cfun),
|
||
verify_eh_throw_stmt_node,
|
||
visited_stmts);
|
||
|
||
if (err || eh_error_found)
|
||
internal_error ("verify_gimple failed");
|
||
|
||
pointer_set_destroy (visited);
|
||
pointer_set_destroy (visited_stmts);
|
||
verify_histograms ();
|
||
timevar_pop (TV_TREE_STMT_VERIFY);
|
||
}
|
||
|
||
|
||
/* Verifies that the flow information is OK. */
|
||
|
||
static int
|
||
gimple_verify_flow_info (void)
|
||
{
|
||
int err = 0;
|
||
basic_block bb;
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (ENTRY_BLOCK_PTR->il.gimple)
|
||
{
|
||
error ("ENTRY_BLOCK has IL associated with it");
|
||
err = 1;
|
||
}
|
||
|
||
if (EXIT_BLOCK_PTR->il.gimple)
|
||
{
|
||
error ("EXIT_BLOCK has IL associated with it");
|
||
err = 1;
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
error ("fallthru to exit from bb %d", e->src->index);
|
||
err = 1;
|
||
}
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bool found_ctrl_stmt = false;
|
||
|
||
stmt = NULL;
|
||
|
||
/* Skip labels on the start of basic block. */
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
tree label;
|
||
gimple prev_stmt = stmt;
|
||
|
||
stmt = gsi_stmt (gsi);
|
||
|
||
if (gimple_code (stmt) != GIMPLE_LABEL)
|
||
break;
|
||
|
||
label = gimple_label_label (stmt);
|
||
if (prev_stmt && DECL_NONLOCAL (label))
|
||
{
|
||
error ("nonlocal label ");
|
||
print_generic_expr (stderr, label, 0);
|
||
fprintf (stderr, " is not first in a sequence of labels in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
|
||
{
|
||
error ("EH landing pad label ");
|
||
print_generic_expr (stderr, label, 0);
|
||
fprintf (stderr, " is not first in a sequence of labels in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (label_to_block (label) != bb)
|
||
{
|
||
error ("label ");
|
||
print_generic_expr (stderr, label, 0);
|
||
fprintf (stderr, " to block does not match in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (decl_function_context (label) != current_function_decl)
|
||
{
|
||
error ("label ");
|
||
print_generic_expr (stderr, label, 0);
|
||
fprintf (stderr, " has incorrect context in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
/* Verify that body of basic block BB is free of control flow. */
|
||
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
|
||
if (found_ctrl_stmt)
|
||
{
|
||
error ("control flow in the middle of basic block %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (stmt_ends_bb_p (stmt))
|
||
found_ctrl_stmt = true;
|
||
|
||
if (gimple_code (stmt) == GIMPLE_LABEL)
|
||
{
|
||
error ("label ");
|
||
print_generic_expr (stderr, gimple_label_label (stmt), 0);
|
||
fprintf (stderr, " in the middle of basic block %d", bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
gsi = gsi_last_bb (bb);
|
||
if (gsi_end_p (gsi))
|
||
continue;
|
||
|
||
stmt = gsi_stmt (gsi);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_LABEL)
|
||
continue;
|
||
|
||
err |= verify_eh_edges (stmt);
|
||
|
||
if (is_ctrl_stmt (stmt))
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
error ("fallthru edge after a control statement in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
if (gimple_code (stmt) != GIMPLE_COND)
|
||
{
|
||
/* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
|
||
after anything else but if statement. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
|
||
{
|
||
error ("true/false edge after a non-GIMPLE_COND in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_COND:
|
||
{
|
||
edge true_edge;
|
||
edge false_edge;
|
||
|
||
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
||
|
||
if (!true_edge
|
||
|| !false_edge
|
||
|| !(true_edge->flags & EDGE_TRUE_VALUE)
|
||
|| !(false_edge->flags & EDGE_FALSE_VALUE)
|
||
|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|
||
|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|
||
|| EDGE_COUNT (bb->succs) >= 3)
|
||
{
|
||
error ("wrong outgoing edge flags at end of bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_GOTO:
|
||
if (simple_goto_p (stmt))
|
||
{
|
||
error ("explicit goto at end of bb %d", bb->index);
|
||
err = 1;
|
||
}
|
||
else
|
||
{
|
||
/* FIXME. We should double check that the labels in the
|
||
destination blocks have their address taken. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
|
||
| EDGE_FALSE_VALUE))
|
||
|| !(e->flags & EDGE_ABNORMAL))
|
||
{
|
||
error ("wrong outgoing edge flags at end of bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_CALL:
|
||
if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
|
||
break;
|
||
/* ... fallthru ... */
|
||
case GIMPLE_RETURN:
|
||
if (!single_succ_p (bb)
|
||
|| (single_succ_edge (bb)->flags
|
||
& (EDGE_FALLTHRU | EDGE_ABNORMAL
|
||
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
||
{
|
||
error ("wrong outgoing edge flags at end of bb %d", bb->index);
|
||
err = 1;
|
||
}
|
||
if (single_succ (bb) != EXIT_BLOCK_PTR)
|
||
{
|
||
error ("return edge does not point to exit in bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_SWITCH:
|
||
{
|
||
tree prev;
|
||
edge e;
|
||
size_t i, n;
|
||
|
||
n = gimple_switch_num_labels (stmt);
|
||
|
||
/* Mark all the destination basic blocks. */
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
|
||
basic_block label_bb = label_to_block (lab);
|
||
gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
|
||
label_bb->aux = (void *)1;
|
||
}
|
||
|
||
/* Verify that the case labels are sorted. */
|
||
prev = gimple_switch_label (stmt, 0);
|
||
for (i = 1; i < n; ++i)
|
||
{
|
||
tree c = gimple_switch_label (stmt, i);
|
||
if (!CASE_LOW (c))
|
||
{
|
||
error ("found default case not at the start of "
|
||
"case vector");
|
||
err = 1;
|
||
continue;
|
||
}
|
||
if (CASE_LOW (prev)
|
||
&& !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
|
||
{
|
||
error ("case labels not sorted: ");
|
||
print_generic_expr (stderr, prev, 0);
|
||
fprintf (stderr," is greater than ");
|
||
print_generic_expr (stderr, c, 0);
|
||
fprintf (stderr," but comes before it.\n");
|
||
err = 1;
|
||
}
|
||
prev = c;
|
||
}
|
||
/* VRP will remove the default case if it can prove it will
|
||
never be executed. So do not verify there always exists
|
||
a default case here. */
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (!e->dest->aux)
|
||
{
|
||
error ("extra outgoing edge %d->%d",
|
||
bb->index, e->dest->index);
|
||
err = 1;
|
||
}
|
||
|
||
e->dest->aux = (void *)2;
|
||
if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
|
||
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
||
{
|
||
error ("wrong outgoing edge flags at end of bb %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
/* Check that we have all of them. */
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
|
||
basic_block label_bb = label_to_block (lab);
|
||
|
||
if (label_bb->aux != (void *)2)
|
||
{
|
||
error ("missing edge %i->%i", bb->index, label_bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
e->dest->aux = (void *)0;
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_EH_DISPATCH:
|
||
err |= verify_eh_dispatch_edge (stmt);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
|
||
verify_dominators (CDI_DOMINATORS);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Updates phi nodes after creating a forwarder block joined
|
||
by edge FALLTHRU. */
|
||
|
||
static void
|
||
gimple_make_forwarder_block (edge fallthru)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
basic_block dummy, bb;
|
||
tree var;
|
||
gimple_stmt_iterator gsi;
|
||
|
||
dummy = fallthru->src;
|
||
bb = fallthru->dest;
|
||
|
||
if (single_pred_p (bb))
|
||
return;
|
||
|
||
/* If we redirected a branch we must create new PHI nodes at the
|
||
start of BB. */
|
||
for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple phi, new_phi;
|
||
|
||
phi = gsi_stmt (gsi);
|
||
var = gimple_phi_result (phi);
|
||
new_phi = create_phi_node (var, bb);
|
||
SSA_NAME_DEF_STMT (var) = new_phi;
|
||
gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
|
||
add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
|
||
UNKNOWN_LOCATION);
|
||
}
|
||
|
||
/* Add the arguments we have stored on edges. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (e == fallthru)
|
||
continue;
|
||
|
||
flush_pending_stmts (e);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return a non-special label in the head of basic block BLOCK.
|
||
Create one if it doesn't exist. */
|
||
|
||
tree
|
||
gimple_block_label (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator i, s = gsi_start_bb (bb);
|
||
bool first = true;
|
||
tree label;
|
||
gimple stmt;
|
||
|
||
for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
|
||
{
|
||
stmt = gsi_stmt (i);
|
||
if (gimple_code (stmt) != GIMPLE_LABEL)
|
||
break;
|
||
label = gimple_label_label (stmt);
|
||
if (!DECL_NONLOCAL (label))
|
||
{
|
||
if (!first)
|
||
gsi_move_before (&i, &s);
|
||
return label;
|
||
}
|
||
}
|
||
|
||
label = create_artificial_label (UNKNOWN_LOCATION);
|
||
stmt = gimple_build_label (label);
|
||
gsi_insert_before (&s, stmt, GSI_NEW_STMT);
|
||
return label;
|
||
}
|
||
|
||
|
||
/* Attempt to perform edge redirection by replacing a possibly complex
|
||
jump instruction by a goto or by removing the jump completely.
|
||
This can apply only if all edges now point to the same block. The
|
||
parameters and return values are equivalent to
|
||
redirect_edge_and_branch. */
|
||
|
||
static edge
|
||
gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
|
||
{
|
||
basic_block src = e->src;
|
||
gimple_stmt_iterator i;
|
||
gimple stmt;
|
||
|
||
/* We can replace or remove a complex jump only when we have exactly
|
||
two edges. */
|
||
if (EDGE_COUNT (src->succs) != 2
|
||
/* Verify that all targets will be TARGET. Specifically, the
|
||
edge that is not E must also go to TARGET. */
|
||
|| EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
|
||
return NULL;
|
||
|
||
i = gsi_last_bb (src);
|
||
if (gsi_end_p (i))
|
||
return NULL;
|
||
|
||
stmt = gsi_stmt (i);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
|
||
{
|
||
gsi_remove (&i, true);
|
||
e = ssa_redirect_edge (e, target);
|
||
e->flags = EDGE_FALLTHRU;
|
||
return e;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
|
||
edge representing the redirected branch. */
|
||
|
||
static edge
|
||
gimple_redirect_edge_and_branch (edge e, basic_block dest)
|
||
{
|
||
basic_block bb = e->src;
|
||
gimple_stmt_iterator gsi;
|
||
edge ret;
|
||
gimple stmt;
|
||
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
return NULL;
|
||
|
||
if (e->dest == dest)
|
||
return NULL;
|
||
|
||
if (e->flags & EDGE_EH)
|
||
return redirect_eh_edge (e, dest);
|
||
|
||
if (e->src != ENTRY_BLOCK_PTR)
|
||
{
|
||
ret = gimple_try_redirect_by_replacing_jump (e, dest);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
gsi = gsi_last_bb (bb);
|
||
stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
|
||
|
||
switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
|
||
{
|
||
case GIMPLE_COND:
|
||
/* For COND_EXPR, we only need to redirect the edge. */
|
||
break;
|
||
|
||
case GIMPLE_GOTO:
|
||
/* No non-abnormal edges should lead from a non-simple goto, and
|
||
simple ones should be represented implicitly. */
|
||
gcc_unreachable ();
|
||
|
||
case GIMPLE_SWITCH:
|
||
{
|
||
tree label = gimple_block_label (dest);
|
||
tree cases = get_cases_for_edge (e, stmt);
|
||
|
||
/* If we have a list of cases associated with E, then use it
|
||
as it's a lot faster than walking the entire case vector. */
|
||
if (cases)
|
||
{
|
||
edge e2 = find_edge (e->src, dest);
|
||
tree last, first;
|
||
|
||
first = cases;
|
||
while (cases)
|
||
{
|
||
last = cases;
|
||
CASE_LABEL (cases) = label;
|
||
cases = CASE_CHAIN (cases);
|
||
}
|
||
|
||
/* If there was already an edge in the CFG, then we need
|
||
to move all the cases associated with E to E2. */
|
||
if (e2)
|
||
{
|
||
tree cases2 = get_cases_for_edge (e2, stmt);
|
||
|
||
CASE_CHAIN (last) = CASE_CHAIN (cases2);
|
||
CASE_CHAIN (cases2) = first;
|
||
}
|
||
bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
|
||
}
|
||
else
|
||
{
|
||
size_t i, n = gimple_switch_num_labels (stmt);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
tree elt = gimple_switch_label (stmt, i);
|
||
if (label_to_block (CASE_LABEL (elt)) == e->dest)
|
||
CASE_LABEL (elt) = label;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_ASM:
|
||
{
|
||
int i, n = gimple_asm_nlabels (stmt);
|
||
tree label = NULL;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree cons = gimple_asm_label_op (stmt, i);
|
||
if (label_to_block (TREE_VALUE (cons)) == e->dest)
|
||
{
|
||
if (!label)
|
||
label = gimple_block_label (dest);
|
||
TREE_VALUE (cons) = label;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find any label matching the former edge in the
|
||
asm labels, we must be redirecting the fallthrough
|
||
edge. */
|
||
gcc_assert (label || (e->flags & EDGE_FALLTHRU));
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_RETURN:
|
||
gsi_remove (&gsi, true);
|
||
e->flags |= EDGE_FALLTHRU;
|
||
break;
|
||
|
||
case GIMPLE_OMP_RETURN:
|
||
case GIMPLE_OMP_CONTINUE:
|
||
case GIMPLE_OMP_SECTIONS_SWITCH:
|
||
case GIMPLE_OMP_FOR:
|
||
/* The edges from OMP constructs can be simply redirected. */
|
||
break;
|
||
|
||
case GIMPLE_EH_DISPATCH:
|
||
if (!(e->flags & EDGE_FALLTHRU))
|
||
redirect_eh_dispatch_edge (stmt, e, dest);
|
||
break;
|
||
|
||
default:
|
||
/* Otherwise it must be a fallthru edge, and we don't need to
|
||
do anything besides redirecting it. */
|
||
gcc_assert (e->flags & EDGE_FALLTHRU);
|
||
break;
|
||
}
|
||
|
||
/* Update/insert PHI nodes as necessary. */
|
||
|
||
/* Now update the edges in the CFG. */
|
||
e = ssa_redirect_edge (e, dest);
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Returns true if it is possible to remove edge E by redirecting
|
||
it to the destination of the other edge from E->src. */
|
||
|
||
static bool
|
||
gimple_can_remove_branch_p (const_edge e)
|
||
{
|
||
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Simple wrapper, as we can always redirect fallthru edges. */
|
||
|
||
static basic_block
|
||
gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
|
||
{
|
||
e = gimple_redirect_edge_and_branch (e, dest);
|
||
gcc_assert (e);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Splits basic block BB after statement STMT (but at least after the
|
||
labels). If STMT is NULL, BB is split just after the labels. */
|
||
|
||
static basic_block
|
||
gimple_split_block (basic_block bb, void *stmt)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
gimple_stmt_iterator gsi_tgt;
|
||
gimple act;
|
||
gimple_seq list;
|
||
basic_block new_bb;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
new_bb = create_empty_bb (bb);
|
||
|
||
/* Redirect the outgoing edges. */
|
||
new_bb->succs = bb->succs;
|
||
bb->succs = NULL;
|
||
FOR_EACH_EDGE (e, ei, new_bb->succs)
|
||
e->src = new_bb;
|
||
|
||
if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
|
||
stmt = NULL;
|
||
|
||
/* Move everything from GSI to the new basic block. */
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
act = gsi_stmt (gsi);
|
||
if (gimple_code (act) == GIMPLE_LABEL)
|
||
continue;
|
||
|
||
if (!stmt)
|
||
break;
|
||
|
||
if (stmt == act)
|
||
{
|
||
gsi_next (&gsi);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (gsi_end_p (gsi))
|
||
return new_bb;
|
||
|
||
/* Split the statement list - avoid re-creating new containers as this
|
||
brings ugly quadratic memory consumption in the inliner.
|
||
(We are still quadratic since we need to update stmt BB pointers,
|
||
sadly.) */
|
||
list = gsi_split_seq_before (&gsi);
|
||
set_bb_seq (new_bb, list);
|
||
for (gsi_tgt = gsi_start (list);
|
||
!gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
|
||
gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
|
||
/* Moves basic block BB after block AFTER. */
|
||
|
||
static bool
|
||
gimple_move_block_after (basic_block bb, basic_block after)
|
||
{
|
||
if (bb->prev_bb == after)
|
||
return true;
|
||
|
||
unlink_block (bb);
|
||
link_block (bb, after);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Return true if basic_block can be duplicated. */
|
||
|
||
static bool
|
||
gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/* Create a duplicate of the basic block BB. NOTE: This does not
|
||
preserve SSA form. */
|
||
|
||
static basic_block
|
||
gimple_duplicate_bb (basic_block bb)
|
||
{
|
||
basic_block new_bb;
|
||
gimple_stmt_iterator gsi, gsi_tgt;
|
||
gimple_seq phis = phi_nodes (bb);
|
||
gimple phi, stmt, copy;
|
||
|
||
new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
|
||
|
||
/* Copy the PHI nodes. We ignore PHI node arguments here because
|
||
the incoming edges have not been setup yet. */
|
||
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
phi = gsi_stmt (gsi);
|
||
copy = create_phi_node (gimple_phi_result (phi), new_bb);
|
||
create_new_def_for (gimple_phi_result (copy), copy,
|
||
gimple_phi_result_ptr (copy));
|
||
}
|
||
|
||
gsi_tgt = gsi_start_bb (new_bb);
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
def_operand_p def_p;
|
||
ssa_op_iter op_iter;
|
||
tree lhs;
|
||
|
||
stmt = gsi_stmt (gsi);
|
||
if (gimple_code (stmt) == GIMPLE_LABEL)
|
||
continue;
|
||
|
||
/* Create a new copy of STMT and duplicate STMT's virtual
|
||
operands. */
|
||
copy = gimple_copy (stmt);
|
||
gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
|
||
|
||
maybe_duplicate_eh_stmt (copy, stmt);
|
||
gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
|
||
|
||
/* When copying around a stmt writing into a local non-user
|
||
aggregate, make sure it won't share stack slot with other
|
||
vars. */
|
||
lhs = gimple_get_lhs (stmt);
|
||
if (lhs && TREE_CODE (lhs) != SSA_NAME)
|
||
{
|
||
tree base = get_base_address (lhs);
|
||
if (base
|
||
&& (TREE_CODE (base) == VAR_DECL
|
||
|| TREE_CODE (base) == RESULT_DECL)
|
||
&& DECL_IGNORED_P (base)
|
||
&& !TREE_STATIC (base)
|
||
&& !DECL_EXTERNAL (base)
|
||
&& (TREE_CODE (base) != VAR_DECL
|
||
|| !DECL_HAS_VALUE_EXPR_P (base)))
|
||
DECL_NONSHAREABLE (base) = 1;
|
||
}
|
||
|
||
/* Create new names for all the definitions created by COPY and
|
||
add replacement mappings for each new name. */
|
||
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
|
||
create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
|
||
}
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
/* Adds phi node arguments for edge E_COPY after basic block duplication. */
|
||
|
||
static void
|
||
add_phi_args_after_copy_edge (edge e_copy)
|
||
{
|
||
basic_block bb, bb_copy = e_copy->src, dest;
|
||
edge e;
|
||
edge_iterator ei;
|
||
gimple phi, phi_copy;
|
||
tree def;
|
||
gimple_stmt_iterator psi, psi_copy;
|
||
|
||
if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
|
||
return;
|
||
|
||
bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
|
||
|
||
if (e_copy->dest->flags & BB_DUPLICATED)
|
||
dest = get_bb_original (e_copy->dest);
|
||
else
|
||
dest = e_copy->dest;
|
||
|
||
e = find_edge (bb, dest);
|
||
if (!e)
|
||
{
|
||
/* During loop unrolling the target of the latch edge is copied.
|
||
In this case we are not looking for edge to dest, but to
|
||
duplicated block whose original was dest. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if ((e->dest->flags & BB_DUPLICATED)
|
||
&& get_bb_original (e->dest) == dest)
|
||
break;
|
||
}
|
||
|
||
gcc_assert (e != NULL);
|
||
}
|
||
|
||
for (psi = gsi_start_phis (e->dest),
|
||
psi_copy = gsi_start_phis (e_copy->dest);
|
||
!gsi_end_p (psi);
|
||
gsi_next (&psi), gsi_next (&psi_copy))
|
||
{
|
||
phi = gsi_stmt (psi);
|
||
phi_copy = gsi_stmt (psi_copy);
|
||
def = PHI_ARG_DEF_FROM_EDGE (phi, e);
|
||
add_phi_arg (phi_copy, def, e_copy,
|
||
gimple_phi_arg_location_from_edge (phi, e));
|
||
}
|
||
}
|
||
|
||
|
||
/* Basic block BB_COPY was created by code duplication. Add phi node
|
||
arguments for edges going out of BB_COPY. The blocks that were
|
||
duplicated have BB_DUPLICATED set. */
|
||
|
||
void
|
||
add_phi_args_after_copy_bb (basic_block bb_copy)
|
||
{
|
||
edge e_copy;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
|
||
{
|
||
add_phi_args_after_copy_edge (e_copy);
|
||
}
|
||
}
|
||
|
||
/* Blocks in REGION_COPY array of length N_REGION were created by
|
||
duplication of basic blocks. Add phi node arguments for edges
|
||
going from these blocks. If E_COPY is not NULL, also add
|
||
phi node arguments for its destination.*/
|
||
|
||
void
|
||
add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
|
||
edge e_copy)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < n_region; i++)
|
||
region_copy[i]->flags |= BB_DUPLICATED;
|
||
|
||
for (i = 0; i < n_region; i++)
|
||
add_phi_args_after_copy_bb (region_copy[i]);
|
||
if (e_copy)
|
||
add_phi_args_after_copy_edge (e_copy);
|
||
|
||
for (i = 0; i < n_region; i++)
|
||
region_copy[i]->flags &= ~BB_DUPLICATED;
|
||
}
|
||
|
||
/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
|
||
important exit edge EXIT. By important we mean that no SSA name defined
|
||
inside region is live over the other exit edges of the region. All entry
|
||
edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
|
||
to the duplicate of the region. SSA form, dominance and loop information
|
||
is updated. The new basic blocks are stored to REGION_COPY in the same
|
||
order as they had in REGION, provided that REGION_COPY is not NULL.
|
||
The function returns false if it is unable to copy the region,
|
||
true otherwise. */
|
||
|
||
bool
|
||
gimple_duplicate_sese_region (edge entry, edge exit,
|
||
basic_block *region, unsigned n_region,
|
||
basic_block *region_copy)
|
||
{
|
||
unsigned i;
|
||
bool free_region_copy = false, copying_header = false;
|
||
struct loop *loop = entry->dest->loop_father;
|
||
edge exit_copy;
|
||
VEC (basic_block, heap) *doms;
|
||
edge redirected;
|
||
int total_freq = 0, entry_freq = 0;
|
||
gcov_type total_count = 0, entry_count = 0;
|
||
|
||
if (!can_copy_bbs_p (region, n_region))
|
||
return false;
|
||
|
||
/* Some sanity checking. Note that we do not check for all possible
|
||
missuses of the functions. I.e. if you ask to copy something weird,
|
||
it will work, but the state of structures probably will not be
|
||
correct. */
|
||
for (i = 0; i < n_region; i++)
|
||
{
|
||
/* We do not handle subloops, i.e. all the blocks must belong to the
|
||
same loop. */
|
||
if (region[i]->loop_father != loop)
|
||
return false;
|
||
|
||
if (region[i] != entry->dest
|
||
&& region[i] == loop->header)
|
||
return false;
|
||
}
|
||
|
||
set_loop_copy (loop, loop);
|
||
|
||
/* In case the function is used for loop header copying (which is the primary
|
||
use), ensure that EXIT and its copy will be new latch and entry edges. */
|
||
if (loop->header == entry->dest)
|
||
{
|
||
copying_header = true;
|
||
set_loop_copy (loop, loop_outer (loop));
|
||
|
||
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
|
||
return false;
|
||
|
||
for (i = 0; i < n_region; i++)
|
||
if (region[i] != exit->src
|
||
&& dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
|
||
return false;
|
||
}
|
||
|
||
if (!region_copy)
|
||
{
|
||
region_copy = XNEWVEC (basic_block, n_region);
|
||
free_region_copy = true;
|
||
}
|
||
|
||
gcc_assert (!need_ssa_update_p (cfun));
|
||
|
||
/* Record blocks outside the region that are dominated by something
|
||
inside. */
|
||
doms = NULL;
|
||
initialize_original_copy_tables ();
|
||
|
||
doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
|
||
|
||
if (entry->dest->count)
|
||
{
|
||
total_count = entry->dest->count;
|
||
entry_count = entry->count;
|
||
/* Fix up corner cases, to avoid division by zero or creation of negative
|
||
frequencies. */
|
||
if (entry_count > total_count)
|
||
entry_count = total_count;
|
||
}
|
||
else
|
||
{
|
||
total_freq = entry->dest->frequency;
|
||
entry_freq = EDGE_FREQUENCY (entry);
|
||
/* Fix up corner cases, to avoid division by zero or creation of negative
|
||
frequencies. */
|
||
if (total_freq == 0)
|
||
total_freq = 1;
|
||
else if (entry_freq > total_freq)
|
||
entry_freq = total_freq;
|
||
}
|
||
|
||
copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
|
||
split_edge_bb_loc (entry));
|
||
if (total_count)
|
||
{
|
||
scale_bbs_frequencies_gcov_type (region, n_region,
|
||
total_count - entry_count,
|
||
total_count);
|
||
scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
|
||
total_count);
|
||
}
|
||
else
|
||
{
|
||
scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
|
||
total_freq);
|
||
scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
|
||
}
|
||
|
||
if (copying_header)
|
||
{
|
||
loop->header = exit->dest;
|
||
loop->latch = exit->src;
|
||
}
|
||
|
||
/* Redirect the entry and add the phi node arguments. */
|
||
redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
|
||
gcc_assert (redirected != NULL);
|
||
flush_pending_stmts (entry);
|
||
|
||
/* Concerning updating of dominators: We must recount dominators
|
||
for entry block and its copy. Anything that is outside of the
|
||
region, but was dominated by something inside needs recounting as
|
||
well. */
|
||
set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
|
||
VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
|
||
iterate_fix_dominators (CDI_DOMINATORS, doms, false);
|
||
VEC_free (basic_block, heap, doms);
|
||
|
||
/* Add the other PHI node arguments. */
|
||
add_phi_args_after_copy (region_copy, n_region, NULL);
|
||
|
||
/* Update the SSA web. */
|
||
update_ssa (TODO_update_ssa);
|
||
|
||
if (free_region_copy)
|
||
free (region_copy);
|
||
|
||
free_original_copy_tables ();
|
||
return true;
|
||
}
|
||
|
||
/* Duplicates REGION consisting of N_REGION blocks. The new blocks
|
||
are stored to REGION_COPY in the same order in that they appear
|
||
in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
|
||
the region, EXIT an exit from it. The condition guarding EXIT
|
||
is moved to ENTRY. Returns true if duplication succeeds, false
|
||
otherwise.
|
||
|
||
For example,
|
||
|
||
some_code;
|
||
if (cond)
|
||
A;
|
||
else
|
||
B;
|
||
|
||
is transformed to
|
||
|
||
if (cond)
|
||
{
|
||
some_code;
|
||
A;
|
||
}
|
||
else
|
||
{
|
||
some_code;
|
||
B;
|
||
}
|
||
*/
|
||
|
||
bool
|
||
gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
|
||
basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
|
||
basic_block *region_copy ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned i;
|
||
bool free_region_copy = false;
|
||
struct loop *loop = exit->dest->loop_father;
|
||
struct loop *orig_loop = entry->dest->loop_father;
|
||
basic_block switch_bb, entry_bb, nentry_bb;
|
||
VEC (basic_block, heap) *doms;
|
||
int total_freq = 0, exit_freq = 0;
|
||
gcov_type total_count = 0, exit_count = 0;
|
||
edge exits[2], nexits[2], e;
|
||
gimple_stmt_iterator gsi;
|
||
gimple cond_stmt;
|
||
edge sorig, snew;
|
||
basic_block exit_bb;
|
||
gimple_stmt_iterator psi;
|
||
gimple phi;
|
||
tree def;
|
||
|
||
gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
|
||
exits[0] = exit;
|
||
exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
|
||
|
||
if (!can_copy_bbs_p (region, n_region))
|
||
return false;
|
||
|
||
initialize_original_copy_tables ();
|
||
set_loop_copy (orig_loop, loop);
|
||
duplicate_subloops (orig_loop, loop);
|
||
|
||
if (!region_copy)
|
||
{
|
||
region_copy = XNEWVEC (basic_block, n_region);
|
||
free_region_copy = true;
|
||
}
|
||
|
||
gcc_assert (!need_ssa_update_p (cfun));
|
||
|
||
/* Record blocks outside the region that are dominated by something
|
||
inside. */
|
||
doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
|
||
|
||
if (exit->src->count)
|
||
{
|
||
total_count = exit->src->count;
|
||
exit_count = exit->count;
|
||
/* Fix up corner cases, to avoid division by zero or creation of negative
|
||
frequencies. */
|
||
if (exit_count > total_count)
|
||
exit_count = total_count;
|
||
}
|
||
else
|
||
{
|
||
total_freq = exit->src->frequency;
|
||
exit_freq = EDGE_FREQUENCY (exit);
|
||
/* Fix up corner cases, to avoid division by zero or creation of negative
|
||
frequencies. */
|
||
if (total_freq == 0)
|
||
total_freq = 1;
|
||
if (exit_freq > total_freq)
|
||
exit_freq = total_freq;
|
||
}
|
||
|
||
copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
|
||
split_edge_bb_loc (exit));
|
||
if (total_count)
|
||
{
|
||
scale_bbs_frequencies_gcov_type (region, n_region,
|
||
total_count - exit_count,
|
||
total_count);
|
||
scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
|
||
total_count);
|
||
}
|
||
else
|
||
{
|
||
scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
|
||
total_freq);
|
||
scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
|
||
}
|
||
|
||
/* Create the switch block, and put the exit condition to it. */
|
||
entry_bb = entry->dest;
|
||
nentry_bb = get_bb_copy (entry_bb);
|
||
if (!last_stmt (entry->src)
|
||
|| !stmt_ends_bb_p (last_stmt (entry->src)))
|
||
switch_bb = entry->src;
|
||
else
|
||
switch_bb = split_edge (entry);
|
||
set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
|
||
|
||
gsi = gsi_last_bb (switch_bb);
|
||
cond_stmt = last_stmt (exit->src);
|
||
gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
|
||
cond_stmt = gimple_copy (cond_stmt);
|
||
|
||
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
||
|
||
sorig = single_succ_edge (switch_bb);
|
||
sorig->flags = exits[1]->flags;
|
||
snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
|
||
|
||
/* Register the new edge from SWITCH_BB in loop exit lists. */
|
||
rescan_loop_exit (snew, true, false);
|
||
|
||
/* Add the PHI node arguments. */
|
||
add_phi_args_after_copy (region_copy, n_region, snew);
|
||
|
||
/* Get rid of now superfluous conditions and associated edges (and phi node
|
||
arguments). */
|
||
exit_bb = exit->dest;
|
||
|
||
e = redirect_edge_and_branch (exits[0], exits[1]->dest);
|
||
PENDING_STMT (e) = NULL;
|
||
|
||
/* The latch of ORIG_LOOP was copied, and so was the backedge
|
||
to the original header. We redirect this backedge to EXIT_BB. */
|
||
for (i = 0; i < n_region; i++)
|
||
if (get_bb_original (region_copy[i]) == orig_loop->latch)
|
||
{
|
||
gcc_assert (single_succ_edge (region_copy[i]));
|
||
e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
|
||
PENDING_STMT (e) = NULL;
|
||
for (psi = gsi_start_phis (exit_bb);
|
||
!gsi_end_p (psi);
|
||
gsi_next (&psi))
|
||
{
|
||
phi = gsi_stmt (psi);
|
||
def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
|
||
add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
|
||
}
|
||
}
|
||
e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
|
||
PENDING_STMT (e) = NULL;
|
||
|
||
/* Anything that is outside of the region, but was dominated by something
|
||
inside needs to update dominance info. */
|
||
iterate_fix_dominators (CDI_DOMINATORS, doms, false);
|
||
VEC_free (basic_block, heap, doms);
|
||
/* Update the SSA web. */
|
||
update_ssa (TODO_update_ssa);
|
||
|
||
if (free_region_copy)
|
||
free (region_copy);
|
||
|
||
free_original_copy_tables ();
|
||
return true;
|
||
}
|
||
|
||
/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
|
||
adding blocks when the dominator traversal reaches EXIT. This
|
||
function silently assumes that ENTRY strictly dominates EXIT. */
|
||
|
||
void
|
||
gather_blocks_in_sese_region (basic_block entry, basic_block exit,
|
||
VEC(basic_block,heap) **bbs_p)
|
||
{
|
||
basic_block son;
|
||
|
||
for (son = first_dom_son (CDI_DOMINATORS, entry);
|
||
son;
|
||
son = next_dom_son (CDI_DOMINATORS, son))
|
||
{
|
||
VEC_safe_push (basic_block, heap, *bbs_p, son);
|
||
if (son != exit)
|
||
gather_blocks_in_sese_region (son, exit, bbs_p);
|
||
}
|
||
}
|
||
|
||
/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
|
||
The duplicates are recorded in VARS_MAP. */
|
||
|
||
static void
|
||
replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
|
||
tree to_context)
|
||
{
|
||
tree t = *tp, new_t;
|
||
struct function *f = DECL_STRUCT_FUNCTION (to_context);
|
||
void **loc;
|
||
|
||
if (DECL_CONTEXT (t) == to_context)
|
||
return;
|
||
|
||
loc = pointer_map_contains (vars_map, t);
|
||
|
||
if (!loc)
|
||
{
|
||
loc = pointer_map_insert (vars_map, t);
|
||
|
||
if (SSA_VAR_P (t))
|
||
{
|
||
new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
|
||
add_local_decl (f, new_t);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (TREE_CODE (t) == CONST_DECL);
|
||
new_t = copy_node (t);
|
||
}
|
||
DECL_CONTEXT (new_t) = to_context;
|
||
|
||
*loc = new_t;
|
||
}
|
||
else
|
||
new_t = (tree) *loc;
|
||
|
||
*tp = new_t;
|
||
}
|
||
|
||
|
||
/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
|
||
VARS_MAP maps old ssa names and var_decls to the new ones. */
|
||
|
||
static tree
|
||
replace_ssa_name (tree name, struct pointer_map_t *vars_map,
|
||
tree to_context)
|
||
{
|
||
void **loc;
|
||
tree new_name, decl = SSA_NAME_VAR (name);
|
||
|
||
gcc_assert (is_gimple_reg (name));
|
||
|
||
loc = pointer_map_contains (vars_map, name);
|
||
|
||
if (!loc)
|
||
{
|
||
replace_by_duplicate_decl (&decl, vars_map, to_context);
|
||
|
||
push_cfun (DECL_STRUCT_FUNCTION (to_context));
|
||
if (gimple_in_ssa_p (cfun))
|
||
add_referenced_var (decl);
|
||
|
||
new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
|
||
if (SSA_NAME_IS_DEFAULT_DEF (name))
|
||
set_default_def (decl, new_name);
|
||
pop_cfun ();
|
||
|
||
loc = pointer_map_insert (vars_map, name);
|
||
*loc = new_name;
|
||
}
|
||
else
|
||
new_name = (tree) *loc;
|
||
|
||
return new_name;
|
||
}
|
||
|
||
struct move_stmt_d
|
||
{
|
||
tree orig_block;
|
||
tree new_block;
|
||
tree from_context;
|
||
tree to_context;
|
||
struct pointer_map_t *vars_map;
|
||
htab_t new_label_map;
|
||
struct pointer_map_t *eh_map;
|
||
bool remap_decls_p;
|
||
};
|
||
|
||
/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
|
||
contained in *TP if it has been ORIG_BLOCK previously and change the
|
||
DECL_CONTEXT of every local variable referenced in *TP. */
|
||
|
||
static tree
|
||
move_stmt_op (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
||
struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
|
||
tree t = *tp;
|
||
|
||
if (EXPR_P (t))
|
||
/* We should never have TREE_BLOCK set on non-statements. */
|
||
gcc_assert (!TREE_BLOCK (t));
|
||
|
||
else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
|
||
{
|
||
if (TREE_CODE (t) == SSA_NAME)
|
||
*tp = replace_ssa_name (t, p->vars_map, p->to_context);
|
||
else if (TREE_CODE (t) == LABEL_DECL)
|
||
{
|
||
if (p->new_label_map)
|
||
{
|
||
struct tree_map in, *out;
|
||
in.base.from = t;
|
||
out = (struct tree_map *)
|
||
htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
|
||
if (out)
|
||
*tp = t = out->to;
|
||
}
|
||
|
||
DECL_CONTEXT (t) = p->to_context;
|
||
}
|
||
else if (p->remap_decls_p)
|
||
{
|
||
/* Replace T with its duplicate. T should no longer appear in the
|
||
parent function, so this looks wasteful; however, it may appear
|
||
in referenced_vars, and more importantly, as virtual operands of
|
||
statements, and in alias lists of other variables. It would be
|
||
quite difficult to expunge it from all those places. ??? It might
|
||
suffice to do this for addressable variables. */
|
||
if ((TREE_CODE (t) == VAR_DECL
|
||
&& !is_global_var (t))
|
||
|| TREE_CODE (t) == CONST_DECL)
|
||
replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
|
||
|
||
if (SSA_VAR_P (t)
|
||
&& gimple_in_ssa_p (cfun))
|
||
{
|
||
push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
|
||
add_referenced_var (*tp);
|
||
pop_cfun ();
|
||
}
|
||
}
|
||
*walk_subtrees = 0;
|
||
}
|
||
else if (TYPE_P (t))
|
||
*walk_subtrees = 0;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Helper for move_stmt_r. Given an EH region number for the source
|
||
function, map that to the duplicate EH regio number in the dest. */
|
||
|
||
static int
|
||
move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
|
||
{
|
||
eh_region old_r, new_r;
|
||
void **slot;
|
||
|
||
old_r = get_eh_region_from_number (old_nr);
|
||
slot = pointer_map_contains (p->eh_map, old_r);
|
||
new_r = (eh_region) *slot;
|
||
|
||
return new_r->index;
|
||
}
|
||
|
||
/* Similar, but operate on INTEGER_CSTs. */
|
||
|
||
static tree
|
||
move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
|
||
{
|
||
int old_nr, new_nr;
|
||
|
||
old_nr = tree_low_cst (old_t_nr, 0);
|
||
new_nr = move_stmt_eh_region_nr (old_nr, p);
|
||
|
||
return build_int_cst (integer_type_node, new_nr);
|
||
}
|
||
|
||
/* Like move_stmt_op, but for gimple statements.
|
||
|
||
Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
|
||
contained in the current statement in *GSI_P and change the
|
||
DECL_CONTEXT of every local variable referenced in the current
|
||
statement. */
|
||
|
||
static tree
|
||
move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
|
||
gimple stmt = gsi_stmt (*gsi_p);
|
||
tree block = gimple_block (stmt);
|
||
|
||
if (p->orig_block == NULL_TREE
|
||
|| block == p->orig_block
|
||
|| block == NULL_TREE)
|
||
gimple_set_block (stmt, p->new_block);
|
||
#ifdef ENABLE_CHECKING
|
||
else if (block != p->new_block)
|
||
{
|
||
while (block && block != p->orig_block)
|
||
block = BLOCK_SUPERCONTEXT (block);
|
||
gcc_assert (block);
|
||
}
|
||
#endif
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_CALL:
|
||
/* Remap the region numbers for __builtin_eh_{pointer,filter}. */
|
||
{
|
||
tree r, fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
case BUILT_IN_EH_COPY_VALUES:
|
||
r = gimple_call_arg (stmt, 1);
|
||
r = move_stmt_eh_region_tree_nr (r, p);
|
||
gimple_call_set_arg (stmt, 1, r);
|
||
/* FALLTHRU */
|
||
|
||
case BUILT_IN_EH_POINTER:
|
||
case BUILT_IN_EH_FILTER:
|
||
r = gimple_call_arg (stmt, 0);
|
||
r = move_stmt_eh_region_tree_nr (r, p);
|
||
gimple_call_set_arg (stmt, 0, r);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_RESX:
|
||
{
|
||
int r = gimple_resx_region (stmt);
|
||
r = move_stmt_eh_region_nr (r, p);
|
||
gimple_resx_set_region (stmt, r);
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_EH_DISPATCH:
|
||
{
|
||
int r = gimple_eh_dispatch_region (stmt);
|
||
r = move_stmt_eh_region_nr (r, p);
|
||
gimple_eh_dispatch_set_region (stmt, r);
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_OMP_RETURN:
|
||
case GIMPLE_OMP_CONTINUE:
|
||
break;
|
||
default:
|
||
if (is_gimple_omp (stmt))
|
||
{
|
||
/* Do not remap variables inside OMP directives. Variables
|
||
referenced in clauses and directive header belong to the
|
||
parent function and should not be moved into the child
|
||
function. */
|
||
bool save_remap_decls_p = p->remap_decls_p;
|
||
p->remap_decls_p = false;
|
||
*handled_ops_p = true;
|
||
|
||
walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
|
||
move_stmt_op, wi);
|
||
|
||
p->remap_decls_p = save_remap_decls_p;
|
||
}
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Move basic block BB from function CFUN to function DEST_FN. The
|
||
block is moved out of the original linked list and placed after
|
||
block AFTER in the new list. Also, the block is removed from the
|
||
original array of blocks and placed in DEST_FN's array of blocks.
|
||
If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
|
||
updated to reflect the moved edges.
|
||
|
||
The local variables are remapped to new instances, VARS_MAP is used
|
||
to record the mapping. */
|
||
|
||
static void
|
||
move_block_to_fn (struct function *dest_cfun, basic_block bb,
|
||
basic_block after, bool update_edge_count_p,
|
||
struct move_stmt_d *d)
|
||
{
|
||
struct control_flow_graph *cfg;
|
||
edge_iterator ei;
|
||
edge e;
|
||
gimple_stmt_iterator si;
|
||
unsigned old_len, new_len;
|
||
|
||
/* Remove BB from dominance structures. */
|
||
delete_from_dominance_info (CDI_DOMINATORS, bb);
|
||
if (current_loops)
|
||
remove_bb_from_loops (bb);
|
||
|
||
/* Link BB to the new linked list. */
|
||
move_block_after (bb, after);
|
||
|
||
/* Update the edge count in the corresponding flowgraphs. */
|
||
if (update_edge_count_p)
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
cfun->cfg->x_n_edges--;
|
||
dest_cfun->cfg->x_n_edges++;
|
||
}
|
||
|
||
/* Remove BB from the original basic block array. */
|
||
VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
|
||
cfun->cfg->x_n_basic_blocks--;
|
||
|
||
/* Grow DEST_CFUN's basic block array if needed. */
|
||
cfg = dest_cfun->cfg;
|
||
cfg->x_n_basic_blocks++;
|
||
if (bb->index >= cfg->x_last_basic_block)
|
||
cfg->x_last_basic_block = bb->index + 1;
|
||
|
||
old_len = VEC_length (basic_block, cfg->x_basic_block_info);
|
||
if ((unsigned) cfg->x_last_basic_block >= old_len)
|
||
{
|
||
new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
|
||
VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
|
||
new_len);
|
||
}
|
||
|
||
VEC_replace (basic_block, cfg->x_basic_block_info,
|
||
bb->index, bb);
|
||
|
||
/* Remap the variables in phi nodes. */
|
||
for (si = gsi_start_phis (bb); !gsi_end_p (si); )
|
||
{
|
||
gimple phi = gsi_stmt (si);
|
||
use_operand_p use;
|
||
tree op = PHI_RESULT (phi);
|
||
ssa_op_iter oi;
|
||
|
||
if (!is_gimple_reg (op))
|
||
{
|
||
/* Remove the phi nodes for virtual operands (alias analysis will be
|
||
run for the new function, anyway). */
|
||
remove_phi_node (&si, true);
|
||
continue;
|
||
}
|
||
|
||
SET_PHI_RESULT (phi,
|
||
replace_ssa_name (op, d->vars_map, dest_cfun->decl));
|
||
FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
|
||
{
|
||
op = USE_FROM_PTR (use);
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
|
||
}
|
||
|
||
gsi_next (&si);
|
||
}
|
||
|
||
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
||
{
|
||
gimple stmt = gsi_stmt (si);
|
||
struct walk_stmt_info wi;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.info = d;
|
||
walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_LABEL)
|
||
{
|
||
tree label = gimple_label_label (stmt);
|
||
int uid = LABEL_DECL_UID (label);
|
||
|
||
gcc_assert (uid > -1);
|
||
|
||
old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
|
||
if (old_len <= (unsigned) uid)
|
||
{
|
||
new_len = 3 * uid / 2 + 1;
|
||
VEC_safe_grow_cleared (basic_block, gc,
|
||
cfg->x_label_to_block_map, new_len);
|
||
}
|
||
|
||
VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
|
||
VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
|
||
|
||
gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
|
||
|
||
if (uid >= dest_cfun->cfg->last_label_uid)
|
||
dest_cfun->cfg->last_label_uid = uid + 1;
|
||
}
|
||
|
||
maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
|
||
remove_stmt_from_eh_lp_fn (cfun, stmt);
|
||
|
||
gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
|
||
gimple_remove_stmt_histograms (cfun, stmt);
|
||
|
||
/* We cannot leave any operands allocated from the operand caches of
|
||
the current function. */
|
||
free_stmt_operands (stmt);
|
||
push_cfun (dest_cfun);
|
||
update_stmt (stmt);
|
||
pop_cfun ();
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->goto_locus)
|
||
{
|
||
tree block = e->goto_block;
|
||
if (d->orig_block == NULL_TREE
|
||
|| block == d->orig_block)
|
||
e->goto_block = d->new_block;
|
||
#ifdef ENABLE_CHECKING
|
||
else if (block != d->new_block)
|
||
{
|
||
while (block && block != d->orig_block)
|
||
block = BLOCK_SUPERCONTEXT (block);
|
||
gcc_assert (block);
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Examine the statements in BB (which is in SRC_CFUN); find and return
|
||
the outermost EH region. Use REGION as the incoming base EH region. */
|
||
|
||
static eh_region
|
||
find_outermost_region_in_block (struct function *src_cfun,
|
||
basic_block bb, eh_region region)
|
||
{
|
||
gimple_stmt_iterator si;
|
||
|
||
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
||
{
|
||
gimple stmt = gsi_stmt (si);
|
||
eh_region stmt_region;
|
||
int lp_nr;
|
||
|
||
lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
|
||
stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
|
||
if (stmt_region)
|
||
{
|
||
if (region == NULL)
|
||
region = stmt_region;
|
||
else if (stmt_region != region)
|
||
{
|
||
region = eh_region_outermost (src_cfun, stmt_region, region);
|
||
gcc_assert (region != NULL);
|
||
}
|
||
}
|
||
}
|
||
|
||
return region;
|
||
}
|
||
|
||
static tree
|
||
new_label_mapper (tree decl, void *data)
|
||
{
|
||
htab_t hash = (htab_t) data;
|
||
struct tree_map *m;
|
||
void **slot;
|
||
|
||
gcc_assert (TREE_CODE (decl) == LABEL_DECL);
|
||
|
||
m = XNEW (struct tree_map);
|
||
m->hash = DECL_UID (decl);
|
||
m->base.from = decl;
|
||
m->to = create_artificial_label (UNKNOWN_LOCATION);
|
||
LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
|
||
if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
|
||
cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
|
||
|
||
slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
|
||
gcc_assert (*slot == NULL);
|
||
|
||
*slot = m;
|
||
|
||
return m->to;
|
||
}
|
||
|
||
/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
|
||
subblocks. */
|
||
|
||
static void
|
||
replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
|
||
tree to_context)
|
||
{
|
||
tree *tp, t;
|
||
|
||
for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
|
||
{
|
||
t = *tp;
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
|
||
continue;
|
||
replace_by_duplicate_decl (&t, vars_map, to_context);
|
||
if (t != *tp)
|
||
{
|
||
if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
|
||
{
|
||
SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
|
||
DECL_HAS_VALUE_EXPR_P (t) = 1;
|
||
}
|
||
DECL_CHAIN (t) = DECL_CHAIN (*tp);
|
||
*tp = t;
|
||
}
|
||
}
|
||
|
||
for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
|
||
replace_block_vars_by_duplicates (block, vars_map, to_context);
|
||
}
|
||
|
||
/* Move a single-entry, single-exit region delimited by ENTRY_BB and
|
||
EXIT_BB to function DEST_CFUN. The whole region is replaced by a
|
||
single basic block in the original CFG and the new basic block is
|
||
returned. DEST_CFUN must not have a CFG yet.
|
||
|
||
Note that the region need not be a pure SESE region. Blocks inside
|
||
the region may contain calls to abort/exit. The only restriction
|
||
is that ENTRY_BB should be the only entry point and it must
|
||
dominate EXIT_BB.
|
||
|
||
Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
|
||
functions outermost BLOCK, move all subblocks of ORIG_BLOCK
|
||
to the new function.
|
||
|
||
All local variables referenced in the region are assumed to be in
|
||
the corresponding BLOCK_VARS and unexpanded variable lists
|
||
associated with DEST_CFUN. */
|
||
|
||
basic_block
|
||
move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
|
||
basic_block exit_bb, tree orig_block)
|
||
{
|
||
VEC(basic_block,heap) *bbs, *dom_bbs;
|
||
basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
|
||
basic_block after, bb, *entry_pred, *exit_succ, abb;
|
||
struct function *saved_cfun = cfun;
|
||
int *entry_flag, *exit_flag;
|
||
unsigned *entry_prob, *exit_prob;
|
||
unsigned i, num_entry_edges, num_exit_edges;
|
||
edge e;
|
||
edge_iterator ei;
|
||
htab_t new_label_map;
|
||
struct pointer_map_t *vars_map, *eh_map;
|
||
struct loop *loop = entry_bb->loop_father;
|
||
struct move_stmt_d d;
|
||
|
||
/* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
|
||
region. */
|
||
gcc_assert (entry_bb != exit_bb
|
||
&& (!exit_bb
|
||
|| dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
|
||
|
||
/* Collect all the blocks in the region. Manually add ENTRY_BB
|
||
because it won't be added by dfs_enumerate_from. */
|
||
bbs = NULL;
|
||
VEC_safe_push (basic_block, heap, bbs, entry_bb);
|
||
gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
|
||
|
||
/* The blocks that used to be dominated by something in BBS will now be
|
||
dominated by the new block. */
|
||
dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
|
||
VEC_address (basic_block, bbs),
|
||
VEC_length (basic_block, bbs));
|
||
|
||
/* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
|
||
the predecessor edges to ENTRY_BB and the successor edges to
|
||
EXIT_BB so that we can re-attach them to the new basic block that
|
||
will replace the region. */
|
||
num_entry_edges = EDGE_COUNT (entry_bb->preds);
|
||
entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
|
||
entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
|
||
entry_prob = XNEWVEC (unsigned, num_entry_edges);
|
||
i = 0;
|
||
for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
|
||
{
|
||
entry_prob[i] = e->probability;
|
||
entry_flag[i] = e->flags;
|
||
entry_pred[i++] = e->src;
|
||
remove_edge (e);
|
||
}
|
||
|
||
if (exit_bb)
|
||
{
|
||
num_exit_edges = EDGE_COUNT (exit_bb->succs);
|
||
exit_succ = (basic_block *) xcalloc (num_exit_edges,
|
||
sizeof (basic_block));
|
||
exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
|
||
exit_prob = XNEWVEC (unsigned, num_exit_edges);
|
||
i = 0;
|
||
for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
|
||
{
|
||
exit_prob[i] = e->probability;
|
||
exit_flag[i] = e->flags;
|
||
exit_succ[i++] = e->dest;
|
||
remove_edge (e);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
num_exit_edges = 0;
|
||
exit_succ = NULL;
|
||
exit_flag = NULL;
|
||
exit_prob = NULL;
|
||
}
|
||
|
||
/* Switch context to the child function to initialize DEST_FN's CFG. */
|
||
gcc_assert (dest_cfun->cfg == NULL);
|
||
push_cfun (dest_cfun);
|
||
|
||
init_empty_tree_cfg ();
|
||
|
||
/* Initialize EH information for the new function. */
|
||
eh_map = NULL;
|
||
new_label_map = NULL;
|
||
if (saved_cfun->eh)
|
||
{
|
||
eh_region region = NULL;
|
||
|
||
FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
|
||
region = find_outermost_region_in_block (saved_cfun, bb, region);
|
||
|
||
init_eh_for_function ();
|
||
if (region != NULL)
|
||
{
|
||
new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
|
||
eh_map = duplicate_eh_regions (saved_cfun, region, 0,
|
||
new_label_mapper, new_label_map);
|
||
}
|
||
}
|
||
|
||
pop_cfun ();
|
||
|
||
/* Move blocks from BBS into DEST_CFUN. */
|
||
gcc_assert (VEC_length (basic_block, bbs) >= 2);
|
||
after = dest_cfun->cfg->x_entry_block_ptr;
|
||
vars_map = pointer_map_create ();
|
||
|
||
memset (&d, 0, sizeof (d));
|
||
d.orig_block = orig_block;
|
||
d.new_block = DECL_INITIAL (dest_cfun->decl);
|
||
d.from_context = cfun->decl;
|
||
d.to_context = dest_cfun->decl;
|
||
d.vars_map = vars_map;
|
||
d.new_label_map = new_label_map;
|
||
d.eh_map = eh_map;
|
||
d.remap_decls_p = true;
|
||
|
||
FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
|
||
{
|
||
/* No need to update edge counts on the last block. It has
|
||
already been updated earlier when we detached the region from
|
||
the original CFG. */
|
||
move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
|
||
after = bb;
|
||
}
|
||
|
||
/* Rewire BLOCK_SUBBLOCKS of orig_block. */
|
||
if (orig_block)
|
||
{
|
||
tree block;
|
||
gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
|
||
== NULL_TREE);
|
||
BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
|
||
= BLOCK_SUBBLOCKS (orig_block);
|
||
for (block = BLOCK_SUBBLOCKS (orig_block);
|
||
block; block = BLOCK_CHAIN (block))
|
||
BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
|
||
BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
|
||
}
|
||
|
||
replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
|
||
vars_map, dest_cfun->decl);
|
||
|
||
if (new_label_map)
|
||
htab_delete (new_label_map);
|
||
if (eh_map)
|
||
pointer_map_destroy (eh_map);
|
||
pointer_map_destroy (vars_map);
|
||
|
||
/* Rewire the entry and exit blocks. The successor to the entry
|
||
block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
|
||
the child function. Similarly, the predecessor of DEST_FN's
|
||
EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
|
||
need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
|
||
various CFG manipulation function get to the right CFG.
|
||
|
||
FIXME, this is silly. The CFG ought to become a parameter to
|
||
these helpers. */
|
||
push_cfun (dest_cfun);
|
||
make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
|
||
if (exit_bb)
|
||
make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
|
||
pop_cfun ();
|
||
|
||
/* Back in the original function, the SESE region has disappeared,
|
||
create a new basic block in its place. */
|
||
bb = create_empty_bb (entry_pred[0]);
|
||
if (current_loops)
|
||
add_bb_to_loop (bb, loop);
|
||
for (i = 0; i < num_entry_edges; i++)
|
||
{
|
||
e = make_edge (entry_pred[i], bb, entry_flag[i]);
|
||
e->probability = entry_prob[i];
|
||
}
|
||
|
||
for (i = 0; i < num_exit_edges; i++)
|
||
{
|
||
e = make_edge (bb, exit_succ[i], exit_flag[i]);
|
||
e->probability = exit_prob[i];
|
||
}
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
|
||
FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
|
||
set_immediate_dominator (CDI_DOMINATORS, abb, bb);
|
||
VEC_free (basic_block, heap, dom_bbs);
|
||
|
||
if (exit_bb)
|
||
{
|
||
free (exit_prob);
|
||
free (exit_flag);
|
||
free (exit_succ);
|
||
}
|
||
free (entry_prob);
|
||
free (entry_flag);
|
||
free (entry_pred);
|
||
VEC_free (basic_block, heap, bbs);
|
||
|
||
return bb;
|
||
}
|
||
|
||
|
||
/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
|
||
*/
|
||
|
||
void
|
||
dump_function_to_file (tree fn, FILE *file, int flags)
|
||
{
|
||
tree arg, var;
|
||
struct function *dsf;
|
||
bool ignore_topmost_bind = false, any_var = false;
|
||
basic_block bb;
|
||
tree chain;
|
||
|
||
fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
|
||
|
||
arg = DECL_ARGUMENTS (fn);
|
||
while (arg)
|
||
{
|
||
print_generic_expr (file, TREE_TYPE (arg), dump_flags);
|
||
fprintf (file, " ");
|
||
print_generic_expr (file, arg, dump_flags);
|
||
if (flags & TDF_VERBOSE)
|
||
print_node (file, "", arg, 4);
|
||
if (DECL_CHAIN (arg))
|
||
fprintf (file, ", ");
|
||
arg = DECL_CHAIN (arg);
|
||
}
|
||
fprintf (file, ")\n");
|
||
|
||
if (flags & TDF_VERBOSE)
|
||
print_node (file, "", fn, 2);
|
||
|
||
dsf = DECL_STRUCT_FUNCTION (fn);
|
||
if (dsf && (flags & TDF_EH))
|
||
dump_eh_tree (file, dsf);
|
||
|
||
if (flags & TDF_RAW && !gimple_has_body_p (fn))
|
||
{
|
||
dump_node (fn, TDF_SLIM | flags, file);
|
||
return;
|
||
}
|
||
|
||
/* Switch CFUN to point to FN. */
|
||
push_cfun (DECL_STRUCT_FUNCTION (fn));
|
||
|
||
/* When GIMPLE is lowered, the variables are no longer available in
|
||
BIND_EXPRs, so display them separately. */
|
||
if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
|
||
{
|
||
unsigned ix;
|
||
ignore_topmost_bind = true;
|
||
|
||
fprintf (file, "{\n");
|
||
FOR_EACH_LOCAL_DECL (cfun, ix, var)
|
||
{
|
||
print_generic_decl (file, var, flags);
|
||
if (flags & TDF_VERBOSE)
|
||
print_node (file, "", var, 4);
|
||
fprintf (file, "\n");
|
||
|
||
any_var = true;
|
||
}
|
||
}
|
||
|
||
if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
|
||
{
|
||
/* If the CFG has been built, emit a CFG-based dump. */
|
||
check_bb_profile (ENTRY_BLOCK_PTR, file);
|
||
if (!ignore_topmost_bind)
|
||
fprintf (file, "{\n");
|
||
|
||
if (any_var && n_basic_blocks)
|
||
fprintf (file, "\n");
|
||
|
||
FOR_EACH_BB (bb)
|
||
gimple_dump_bb (bb, file, 2, flags);
|
||
|
||
fprintf (file, "}\n");
|
||
check_bb_profile (EXIT_BLOCK_PTR, file);
|
||
}
|
||
else if (DECL_SAVED_TREE (fn) == NULL)
|
||
{
|
||
/* The function is now in GIMPLE form but the CFG has not been
|
||
built yet. Emit the single sequence of GIMPLE statements
|
||
that make up its body. */
|
||
gimple_seq body = gimple_body (fn);
|
||
|
||
if (gimple_seq_first_stmt (body)
|
||
&& gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
|
||
&& gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
|
||
print_gimple_seq (file, body, 0, flags);
|
||
else
|
||
{
|
||
if (!ignore_topmost_bind)
|
||
fprintf (file, "{\n");
|
||
|
||
if (any_var)
|
||
fprintf (file, "\n");
|
||
|
||
print_gimple_seq (file, body, 2, flags);
|
||
fprintf (file, "}\n");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int indent;
|
||
|
||
/* Make a tree based dump. */
|
||
chain = DECL_SAVED_TREE (fn);
|
||
|
||
if (chain && TREE_CODE (chain) == BIND_EXPR)
|
||
{
|
||
if (ignore_topmost_bind)
|
||
{
|
||
chain = BIND_EXPR_BODY (chain);
|
||
indent = 2;
|
||
}
|
||
else
|
||
indent = 0;
|
||
}
|
||
else
|
||
{
|
||
if (!ignore_topmost_bind)
|
||
fprintf (file, "{\n");
|
||
indent = 2;
|
||
}
|
||
|
||
if (any_var)
|
||
fprintf (file, "\n");
|
||
|
||
print_generic_stmt_indented (file, chain, flags, indent);
|
||
if (ignore_topmost_bind)
|
||
fprintf (file, "}\n");
|
||
}
|
||
|
||
if (flags & TDF_ENUMERATE_LOCALS)
|
||
dump_enumerated_decls (file, flags);
|
||
fprintf (file, "\n\n");
|
||
|
||
/* Restore CFUN. */
|
||
pop_cfun ();
|
||
}
|
||
|
||
|
||
/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_function (tree fn, int flags)
|
||
{
|
||
dump_function_to_file (fn, stderr, flags);
|
||
}
|
||
|
||
|
||
/* Print on FILE the indexes for the predecessors of basic_block BB. */
|
||
|
||
static void
|
||
print_pred_bbs (FILE *file, basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
fprintf (file, "bb_%d ", e->src->index);
|
||
}
|
||
|
||
|
||
/* Print on FILE the indexes for the successors of basic_block BB. */
|
||
|
||
static void
|
||
print_succ_bbs (FILE *file, basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
fprintf (file, "bb_%d ", e->dest->index);
|
||
}
|
||
|
||
/* Print to FILE the basic block BB following the VERBOSITY level. */
|
||
|
||
void
|
||
print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
|
||
{
|
||
char *s_indent = (char *) alloca ((size_t) indent + 1);
|
||
memset ((void *) s_indent, ' ', (size_t) indent);
|
||
s_indent[indent] = '\0';
|
||
|
||
/* Print basic_block's header. */
|
||
if (verbosity >= 2)
|
||
{
|
||
fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
|
||
print_pred_bbs (file, bb);
|
||
fprintf (file, "}, succs = {");
|
||
print_succ_bbs (file, bb);
|
||
fprintf (file, "})\n");
|
||
}
|
||
|
||
/* Print basic_block's body. */
|
||
if (verbosity >= 3)
|
||
{
|
||
fprintf (file, "%s {\n", s_indent);
|
||
gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
|
||
fprintf (file, "%s }\n", s_indent);
|
||
}
|
||
}
|
||
|
||
static void print_loop_and_siblings (FILE *, struct loop *, int, int);
|
||
|
||
/* Pretty print LOOP on FILE, indented INDENT spaces. Following
|
||
VERBOSITY level this outputs the contents of the loop, or just its
|
||
structure. */
|
||
|
||
static void
|
||
print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
|
||
{
|
||
char *s_indent;
|
||
basic_block bb;
|
||
|
||
if (loop == NULL)
|
||
return;
|
||
|
||
s_indent = (char *) alloca ((size_t) indent + 1);
|
||
memset ((void *) s_indent, ' ', (size_t) indent);
|
||
s_indent[indent] = '\0';
|
||
|
||
/* Print loop's header. */
|
||
fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
|
||
loop->num, loop->header->index, loop->latch->index);
|
||
fprintf (file, ", niter = ");
|
||
print_generic_expr (file, loop->nb_iterations, 0);
|
||
|
||
if (loop->any_upper_bound)
|
||
{
|
||
fprintf (file, ", upper_bound = ");
|
||
dump_double_int (file, loop->nb_iterations_upper_bound, true);
|
||
}
|
||
|
||
if (loop->any_estimate)
|
||
{
|
||
fprintf (file, ", estimate = ");
|
||
dump_double_int (file, loop->nb_iterations_estimate, true);
|
||
}
|
||
fprintf (file, ")\n");
|
||
|
||
/* Print loop's body. */
|
||
if (verbosity >= 1)
|
||
{
|
||
fprintf (file, "%s{\n", s_indent);
|
||
FOR_EACH_BB (bb)
|
||
if (bb->loop_father == loop)
|
||
print_loops_bb (file, bb, indent, verbosity);
|
||
|
||
print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
|
||
fprintf (file, "%s}\n", s_indent);
|
||
}
|
||
}
|
||
|
||
/* Print the LOOP and its sibling loops on FILE, indented INDENT
|
||
spaces. Following VERBOSITY level this outputs the contents of the
|
||
loop, or just its structure. */
|
||
|
||
static void
|
||
print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
|
||
{
|
||
if (loop == NULL)
|
||
return;
|
||
|
||
print_loop (file, loop, indent, verbosity);
|
||
print_loop_and_siblings (file, loop->next, indent, verbosity);
|
||
}
|
||
|
||
/* Follow a CFG edge from the entry point of the program, and on entry
|
||
of a loop, pretty print the loop structure on FILE. */
|
||
|
||
void
|
||
print_loops (FILE *file, int verbosity)
|
||
{
|
||
basic_block bb;
|
||
|
||
bb = ENTRY_BLOCK_PTR;
|
||
if (bb && bb->loop_father)
|
||
print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
|
||
}
|
||
|
||
|
||
/* Debugging loops structure at tree level, at some VERBOSITY level. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_loops (int verbosity)
|
||
{
|
||
print_loops (stderr, verbosity);
|
||
}
|
||
|
||
/* Print on stderr the code of LOOP, at some VERBOSITY level. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_loop (struct loop *loop, int verbosity)
|
||
{
|
||
print_loop (stderr, loop, 0, verbosity);
|
||
}
|
||
|
||
/* Print on stderr the code of loop number NUM, at some VERBOSITY
|
||
level. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_loop_num (unsigned num, int verbosity)
|
||
{
|
||
debug_loop (get_loop (num), verbosity);
|
||
}
|
||
|
||
/* Return true if BB ends with a call, possibly followed by some
|
||
instructions that must stay with the call. Return false,
|
||
otherwise. */
|
||
|
||
static bool
|
||
gimple_block_ends_with_call_p (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
|
||
return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
|
||
}
|
||
|
||
|
||
/* Return true if BB ends with a conditional branch. Return false,
|
||
otherwise. */
|
||
|
||
static bool
|
||
gimple_block_ends_with_condjump_p (const_basic_block bb)
|
||
{
|
||
gimple stmt = last_stmt (CONST_CAST_BB (bb));
|
||
return (stmt && gimple_code (stmt) == GIMPLE_COND);
|
||
}
|
||
|
||
|
||
/* Return true if we need to add fake edge to exit at statement T.
|
||
Helper function for gimple_flow_call_edges_add. */
|
||
|
||
static bool
|
||
need_fake_edge_p (gimple t)
|
||
{
|
||
tree fndecl = NULL_TREE;
|
||
int call_flags = 0;
|
||
|
||
/* NORETURN and LONGJMP calls already have an edge to exit.
|
||
CONST and PURE calls do not need one.
|
||
We don't currently check for CONST and PURE here, although
|
||
it would be a good idea, because those attributes are
|
||
figured out from the RTL in mark_constant_function, and
|
||
the counter incrementation code from -fprofile-arcs
|
||
leads to different results from -fbranch-probabilities. */
|
||
if (is_gimple_call (t))
|
||
{
|
||
fndecl = gimple_call_fndecl (t);
|
||
call_flags = gimple_call_flags (t);
|
||
}
|
||
|
||
if (is_gimple_call (t)
|
||
&& fndecl
|
||
&& DECL_BUILT_IN (fndecl)
|
||
&& (call_flags & ECF_NOTHROW)
|
||
&& !(call_flags & ECF_RETURNS_TWICE)
|
||
/* fork() doesn't really return twice, but the effect of
|
||
wrapping it in __gcov_fork() which calls __gcov_flush()
|
||
and clears the counters before forking has the same
|
||
effect as returning twice. Force a fake edge. */
|
||
&& !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
|
||
return false;
|
||
|
||
if (is_gimple_call (t)
|
||
&& !(call_flags & ECF_NORETURN))
|
||
return true;
|
||
|
||
if (gimple_code (t) == GIMPLE_ASM
|
||
&& (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Add fake edges to the function exit for any non constant and non
|
||
noreturn calls, volatile inline assembly in the bitmap of blocks
|
||
specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
|
||
the number of blocks that were split.
|
||
|
||
The goal is to expose cases in which entering a basic block does
|
||
not imply that all subsequent instructions must be executed. */
|
||
|
||
static int
|
||
gimple_flow_call_edges_add (sbitmap blocks)
|
||
{
|
||
int i;
|
||
int blocks_split = 0;
|
||
int last_bb = last_basic_block;
|
||
bool check_last_block = false;
|
||
|
||
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
||
return 0;
|
||
|
||
if (! blocks)
|
||
check_last_block = true;
|
||
else
|
||
check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
|
||
|
||
/* In the last basic block, before epilogue generation, there will be
|
||
a fallthru edge to EXIT. Special care is required if the last insn
|
||
of the last basic block is a call because make_edge folds duplicate
|
||
edges, which would result in the fallthru edge also being marked
|
||
fake, which would result in the fallthru edge being removed by
|
||
remove_fake_edges, which would result in an invalid CFG.
|
||
|
||
Moreover, we can't elide the outgoing fake edge, since the block
|
||
profiler needs to take this into account in order to solve the minimal
|
||
spanning tree in the case that the call doesn't return.
|
||
|
||
Handle this by adding a dummy instruction in a new last basic block. */
|
||
if (check_last_block)
|
||
{
|
||
basic_block bb = EXIT_BLOCK_PTR->prev_bb;
|
||
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
|
||
gimple t = NULL;
|
||
|
||
if (!gsi_end_p (gsi))
|
||
t = gsi_stmt (gsi);
|
||
|
||
if (t && need_fake_edge_p (t))
|
||
{
|
||
edge e;
|
||
|
||
e = find_edge (bb, EXIT_BLOCK_PTR);
|
||
if (e)
|
||
{
|
||
gsi_insert_on_edge (e, gimple_build_nop ());
|
||
gsi_commit_edge_inserts ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now add fake edges to the function exit for any non constant
|
||
calls since there is no way that we can determine if they will
|
||
return or not... */
|
||
for (i = 0; i < last_bb; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt, last_stmt;
|
||
|
||
if (!bb)
|
||
continue;
|
||
|
||
if (blocks && !TEST_BIT (blocks, i))
|
||
continue;
|
||
|
||
gsi = gsi_last_nondebug_bb (bb);
|
||
if (!gsi_end_p (gsi))
|
||
{
|
||
last_stmt = gsi_stmt (gsi);
|
||
do
|
||
{
|
||
stmt = gsi_stmt (gsi);
|
||
if (need_fake_edge_p (stmt))
|
||
{
|
||
edge e;
|
||
|
||
/* The handling above of the final block before the
|
||
epilogue should be enough to verify that there is
|
||
no edge to the exit block in CFG already.
|
||
Calling make_edge in such case would cause us to
|
||
mark that edge as fake and remove it later. */
|
||
#ifdef ENABLE_CHECKING
|
||
if (stmt == last_stmt)
|
||
{
|
||
e = find_edge (bb, EXIT_BLOCK_PTR);
|
||
gcc_assert (e == NULL);
|
||
}
|
||
#endif
|
||
|
||
/* Note that the following may create a new basic block
|
||
and renumber the existing basic blocks. */
|
||
if (stmt != last_stmt)
|
||
{
|
||
e = split_block (bb, stmt);
|
||
if (e)
|
||
blocks_split++;
|
||
}
|
||
make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
|
||
}
|
||
gsi_prev (&gsi);
|
||
}
|
||
while (!gsi_end_p (gsi));
|
||
}
|
||
}
|
||
|
||
if (blocks_split)
|
||
verify_flow_info ();
|
||
|
||
return blocks_split;
|
||
}
|
||
|
||
/* Removes edge E and all the blocks dominated by it, and updates dominance
|
||
information. The IL in E->src needs to be updated separately.
|
||
If dominance info is not available, only the edge E is removed.*/
|
||
|
||
void
|
||
remove_edge_and_dominated_blocks (edge e)
|
||
{
|
||
VEC (basic_block, heap) *bbs_to_remove = NULL;
|
||
VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
|
||
bitmap df, df_idom;
|
||
edge f;
|
||
edge_iterator ei;
|
||
bool none_removed = false;
|
||
unsigned i;
|
||
basic_block bb, dbb;
|
||
bitmap_iterator bi;
|
||
|
||
if (!dom_info_available_p (CDI_DOMINATORS))
|
||
{
|
||
remove_edge (e);
|
||
return;
|
||
}
|
||
|
||
/* No updating is needed for edges to exit. */
|
||
if (e->dest == EXIT_BLOCK_PTR)
|
||
{
|
||
if (cfgcleanup_altered_bbs)
|
||
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
|
||
remove_edge (e);
|
||
return;
|
||
}
|
||
|
||
/* First, we find the basic blocks to remove. If E->dest has a predecessor
|
||
that is not dominated by E->dest, then this set is empty. Otherwise,
|
||
all the basic blocks dominated by E->dest are removed.
|
||
|
||
Also, to DF_IDOM we store the immediate dominators of the blocks in
|
||
the dominance frontier of E (i.e., of the successors of the
|
||
removed blocks, if there are any, and of E->dest otherwise). */
|
||
FOR_EACH_EDGE (f, ei, e->dest->preds)
|
||
{
|
||
if (f == e)
|
||
continue;
|
||
|
||
if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
|
||
{
|
||
none_removed = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
df = BITMAP_ALLOC (NULL);
|
||
df_idom = BITMAP_ALLOC (NULL);
|
||
|
||
if (none_removed)
|
||
bitmap_set_bit (df_idom,
|
||
get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
|
||
else
|
||
{
|
||
bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
|
||
FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
|
||
{
|
||
FOR_EACH_EDGE (f, ei, bb->succs)
|
||
{
|
||
if (f->dest != EXIT_BLOCK_PTR)
|
||
bitmap_set_bit (df, f->dest->index);
|
||
}
|
||
}
|
||
FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
|
||
bitmap_clear_bit (df, bb->index);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
|
||
{
|
||
bb = BASIC_BLOCK (i);
|
||
bitmap_set_bit (df_idom,
|
||
get_immediate_dominator (CDI_DOMINATORS, bb)->index);
|
||
}
|
||
}
|
||
|
||
if (cfgcleanup_altered_bbs)
|
||
{
|
||
/* Record the set of the altered basic blocks. */
|
||
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
|
||
bitmap_ior_into (cfgcleanup_altered_bbs, df);
|
||
}
|
||
|
||
/* Remove E and the cancelled blocks. */
|
||
if (none_removed)
|
||
remove_edge (e);
|
||
else
|
||
{
|
||
/* Walk backwards so as to get a chance to substitute all
|
||
released DEFs into debug stmts. See
|
||
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
|
||
details. */
|
||
for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
|
||
delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
|
||
}
|
||
|
||
/* Update the dominance information. The immediate dominator may change only
|
||
for blocks whose immediate dominator belongs to DF_IDOM:
|
||
|
||
Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
|
||
removal. Let Z the arbitrary block such that idom(Z) = Y and
|
||
Z dominates X after the removal. Before removal, there exists a path P
|
||
from Y to X that avoids Z. Let F be the last edge on P that is
|
||
removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
|
||
dominates W, and because of P, Z does not dominate W), and W belongs to
|
||
the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
|
||
EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
|
||
{
|
||
bb = BASIC_BLOCK (i);
|
||
for (dbb = first_dom_son (CDI_DOMINATORS, bb);
|
||
dbb;
|
||
dbb = next_dom_son (CDI_DOMINATORS, dbb))
|
||
VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
|
||
}
|
||
|
||
iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
|
||
|
||
BITMAP_FREE (df);
|
||
BITMAP_FREE (df_idom);
|
||
VEC_free (basic_block, heap, bbs_to_remove);
|
||
VEC_free (basic_block, heap, bbs_to_fix_dom);
|
||
}
|
||
|
||
/* Purge dead EH edges from basic block BB. */
|
||
|
||
bool
|
||
gimple_purge_dead_eh_edges (basic_block bb)
|
||
{
|
||
bool changed = false;
|
||
edge e;
|
||
edge_iterator ei;
|
||
gimple stmt = last_stmt (bb);
|
||
|
||
if (stmt && stmt_can_throw_internal (stmt))
|
||
return false;
|
||
|
||
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
||
{
|
||
if (e->flags & EDGE_EH)
|
||
{
|
||
remove_edge_and_dominated_blocks (e);
|
||
changed = true;
|
||
}
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Purge dead EH edges from basic block listed in BLOCKS. */
|
||
|
||
bool
|
||
gimple_purge_all_dead_eh_edges (const_bitmap blocks)
|
||
{
|
||
bool changed = false;
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
|
||
/* Earlier gimple_purge_dead_eh_edges could have removed
|
||
this basic block already. */
|
||
gcc_assert (bb || changed);
|
||
if (bb != NULL)
|
||
changed |= gimple_purge_dead_eh_edges (bb);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Purge dead abnormal call edges from basic block BB. */
|
||
|
||
bool
|
||
gimple_purge_dead_abnormal_call_edges (basic_block bb)
|
||
{
|
||
bool changed = false;
|
||
edge e;
|
||
edge_iterator ei;
|
||
gimple stmt = last_stmt (bb);
|
||
|
||
if (!cfun->has_nonlocal_label)
|
||
return false;
|
||
|
||
if (stmt && stmt_can_make_abnormal_goto (stmt))
|
||
return false;
|
||
|
||
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
||
{
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
{
|
||
remove_edge_and_dominated_blocks (e);
|
||
changed = true;
|
||
}
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Purge dead abnormal call edges from basic block listed in BLOCKS. */
|
||
|
||
bool
|
||
gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
|
||
{
|
||
bool changed = false;
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
|
||
/* Earlier gimple_purge_dead_abnormal_call_edges could have removed
|
||
this basic block already. */
|
||
gcc_assert (bb || changed);
|
||
if (bb != NULL)
|
||
changed |= gimple_purge_dead_abnormal_call_edges (bb);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* This function is called whenever a new edge is created or
|
||
redirected. */
|
||
|
||
static void
|
||
gimple_execute_on_growing_pred (edge e)
|
||
{
|
||
basic_block bb = e->dest;
|
||
|
||
if (!gimple_seq_empty_p (phi_nodes (bb)))
|
||
reserve_phi_args_for_new_edge (bb);
|
||
}
|
||
|
||
/* This function is called immediately before edge E is removed from
|
||
the edge vector E->dest->preds. */
|
||
|
||
static void
|
||
gimple_execute_on_shrinking_pred (edge e)
|
||
{
|
||
if (!gimple_seq_empty_p (phi_nodes (e->dest)))
|
||
remove_phi_args (e);
|
||
}
|
||
|
||
/*---------------------------------------------------------------------------
|
||
Helper functions for Loop versioning
|
||
---------------------------------------------------------------------------*/
|
||
|
||
/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
|
||
of 'first'. Both of them are dominated by 'new_head' basic block. When
|
||
'new_head' was created by 'second's incoming edge it received phi arguments
|
||
on the edge by split_edge(). Later, additional edge 'e' was created to
|
||
connect 'new_head' and 'first'. Now this routine adds phi args on this
|
||
additional edge 'e' that new_head to second edge received as part of edge
|
||
splitting. */
|
||
|
||
static void
|
||
gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
|
||
basic_block new_head, edge e)
|
||
{
|
||
gimple phi1, phi2;
|
||
gimple_stmt_iterator psi1, psi2;
|
||
tree def;
|
||
edge e2 = find_edge (new_head, second);
|
||
|
||
/* Because NEW_HEAD has been created by splitting SECOND's incoming
|
||
edge, we should always have an edge from NEW_HEAD to SECOND. */
|
||
gcc_assert (e2 != NULL);
|
||
|
||
/* Browse all 'second' basic block phi nodes and add phi args to
|
||
edge 'e' for 'first' head. PHI args are always in correct order. */
|
||
|
||
for (psi2 = gsi_start_phis (second),
|
||
psi1 = gsi_start_phis (first);
|
||
!gsi_end_p (psi2) && !gsi_end_p (psi1);
|
||
gsi_next (&psi2), gsi_next (&psi1))
|
||
{
|
||
phi1 = gsi_stmt (psi1);
|
||
phi2 = gsi_stmt (psi2);
|
||
def = PHI_ARG_DEF (phi2, e2->dest_idx);
|
||
add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
|
||
}
|
||
}
|
||
|
||
|
||
/* Adds a if else statement to COND_BB with condition COND_EXPR.
|
||
SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
|
||
the destination of the ELSE part. */
|
||
|
||
static void
|
||
gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
|
||
basic_block second_head ATTRIBUTE_UNUSED,
|
||
basic_block cond_bb, void *cond_e)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
gimple new_cond_expr;
|
||
tree cond_expr = (tree) cond_e;
|
||
edge e0;
|
||
|
||
/* Build new conditional expr */
|
||
new_cond_expr = gimple_build_cond_from_tree (cond_expr,
|
||
NULL_TREE, NULL_TREE);
|
||
|
||
/* Add new cond in cond_bb. */
|
||
gsi = gsi_last_bb (cond_bb);
|
||
gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
|
||
|
||
/* Adjust edges appropriately to connect new head with first head
|
||
as well as second head. */
|
||
e0 = single_succ_edge (cond_bb);
|
||
e0->flags &= ~EDGE_FALLTHRU;
|
||
e0->flags |= EDGE_FALSE_VALUE;
|
||
}
|
||
|
||
struct cfg_hooks gimple_cfg_hooks = {
|
||
"gimple",
|
||
gimple_verify_flow_info,
|
||
gimple_dump_bb, /* dump_bb */
|
||
create_bb, /* create_basic_block */
|
||
gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
|
||
gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
|
||
gimple_can_remove_branch_p, /* can_remove_branch_p */
|
||
remove_bb, /* delete_basic_block */
|
||
gimple_split_block, /* split_block */
|
||
gimple_move_block_after, /* move_block_after */
|
||
gimple_can_merge_blocks_p, /* can_merge_blocks_p */
|
||
gimple_merge_blocks, /* merge_blocks */
|
||
gimple_predict_edge, /* predict_edge */
|
||
gimple_predicted_by_p, /* predicted_by_p */
|
||
gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
|
||
gimple_duplicate_bb, /* duplicate_block */
|
||
gimple_split_edge, /* split_edge */
|
||
gimple_make_forwarder_block, /* make_forward_block */
|
||
NULL, /* tidy_fallthru_edge */
|
||
NULL, /* force_nonfallthru */
|
||
gimple_block_ends_with_call_p,/* block_ends_with_call_p */
|
||
gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
|
||
gimple_flow_call_edges_add, /* flow_call_edges_add */
|
||
gimple_execute_on_growing_pred, /* execute_on_growing_pred */
|
||
gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
|
||
gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
|
||
gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
|
||
gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
|
||
extract_true_false_edges_from_block, /* extract_cond_bb_edges */
|
||
flush_pending_stmts /* flush_pending_stmts */
|
||
};
|
||
|
||
|
||
/* Split all critical edges. */
|
||
|
||
static unsigned int
|
||
split_critical_edges (void)
|
||
{
|
||
basic_block bb;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* split_edge can redirect edges out of SWITCH_EXPRs, which can get
|
||
expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
|
||
mappings around the calls to split_edge. */
|
||
start_recording_case_labels ();
|
||
FOR_ALL_BB (bb)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
|
||
split_edge (e);
|
||
/* PRE inserts statements to edges and expects that
|
||
since split_critical_edges was done beforehand, committing edge
|
||
insertions will not split more edges. In addition to critical
|
||
edges we must split edges that have multiple successors and
|
||
end by control flow statements, such as RESX.
|
||
Go ahead and split them too. This matches the logic in
|
||
gimple_find_edge_insert_loc. */
|
||
else if ((!single_pred_p (e->dest)
|
||
|| !gimple_seq_empty_p (phi_nodes (e->dest))
|
||
|| e->dest == EXIT_BLOCK_PTR)
|
||
&& e->src != ENTRY_BLOCK_PTR
|
||
&& !(e->flags & EDGE_ABNORMAL))
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
gsi = gsi_last_bb (e->src);
|
||
if (!gsi_end_p (gsi)
|
||
&& stmt_ends_bb_p (gsi_stmt (gsi))
|
||
&& (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
|
||
&& !gimple_call_builtin_p (gsi_stmt (gsi),
|
||
BUILT_IN_RETURN)))
|
||
split_edge (e);
|
||
}
|
||
}
|
||
}
|
||
end_recording_case_labels ();
|
||
return 0;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_split_crit_edges =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"crited", /* name */
|
||
NULL, /* gate */
|
||
split_critical_edges, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_SPLIT_EDGES, /* tv_id */
|
||
PROP_cfg, /* properties required */
|
||
PROP_no_crit_edges, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_verify_flow /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
|
||
/* Build a ternary operation and gimplify it. Emit code before GSI.
|
||
Return the gimple_val holding the result. */
|
||
|
||
tree
|
||
gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
|
||
tree type, tree a, tree b, tree c)
|
||
{
|
||
tree ret;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
ret = fold_build3_loc (loc, code, type, a, b, c);
|
||
STRIP_NOPS (ret);
|
||
|
||
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
|
||
GSI_SAME_STMT);
|
||
}
|
||
|
||
/* Build a binary operation and gimplify it. Emit code before GSI.
|
||
Return the gimple_val holding the result. */
|
||
|
||
tree
|
||
gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
|
||
tree type, tree a, tree b)
|
||
{
|
||
tree ret;
|
||
|
||
ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
|
||
STRIP_NOPS (ret);
|
||
|
||
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
|
||
GSI_SAME_STMT);
|
||
}
|
||
|
||
/* Build a unary operation and gimplify it. Emit code before GSI.
|
||
Return the gimple_val holding the result. */
|
||
|
||
tree
|
||
gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
|
||
tree a)
|
||
{
|
||
tree ret;
|
||
|
||
ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
|
||
STRIP_NOPS (ret);
|
||
|
||
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
|
||
GSI_SAME_STMT);
|
||
}
|
||
|
||
|
||
|
||
/* Emit return warnings. */
|
||
|
||
static unsigned int
|
||
execute_warn_function_return (void)
|
||
{
|
||
source_location location;
|
||
gimple last;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* If we have a path to EXIT, then we do return. */
|
||
if (TREE_THIS_VOLATILE (cfun->decl)
|
||
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
|
||
{
|
||
location = UNKNOWN_LOCATION;
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
||
{
|
||
last = last_stmt (e->src);
|
||
if ((gimple_code (last) == GIMPLE_RETURN
|
||
|| gimple_call_builtin_p (last, BUILT_IN_RETURN))
|
||
&& (location = gimple_location (last)) != UNKNOWN_LOCATION)
|
||
break;
|
||
}
|
||
if (location == UNKNOWN_LOCATION)
|
||
location = cfun->function_end_locus;
|
||
warning_at (location, 0, "%<noreturn%> function does return");
|
||
}
|
||
|
||
/* If we see "return;" in some basic block, then we do reach the end
|
||
without returning a value. */
|
||
else if (warn_return_type
|
||
&& !TREE_NO_WARNING (cfun->decl)
|
||
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
|
||
&& !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
|
||
{
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
||
{
|
||
gimple last = last_stmt (e->src);
|
||
if (gimple_code (last) == GIMPLE_RETURN
|
||
&& gimple_return_retval (last) == NULL
|
||
&& !gimple_no_warning_p (last))
|
||
{
|
||
location = gimple_location (last);
|
||
if (location == UNKNOWN_LOCATION)
|
||
location = cfun->function_end_locus;
|
||
warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
|
||
TREE_NO_WARNING (cfun->decl) = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Given a basic block B which ends with a conditional and has
|
||
precisely two successors, determine which of the edges is taken if
|
||
the conditional is true and which is taken if the conditional is
|
||
false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
|
||
|
||
void
|
||
extract_true_false_edges_from_block (basic_block b,
|
||
edge *true_edge,
|
||
edge *false_edge)
|
||
{
|
||
edge e = EDGE_SUCC (b, 0);
|
||
|
||
if (e->flags & EDGE_TRUE_VALUE)
|
||
{
|
||
*true_edge = e;
|
||
*false_edge = EDGE_SUCC (b, 1);
|
||
}
|
||
else
|
||
{
|
||
*false_edge = e;
|
||
*true_edge = EDGE_SUCC (b, 1);
|
||
}
|
||
}
|
||
|
||
struct gimple_opt_pass pass_warn_function_return =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"*warn_function_return", /* name */
|
||
NULL, /* gate */
|
||
execute_warn_function_return, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0 /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
/* Emit noreturn warnings. */
|
||
|
||
static unsigned int
|
||
execute_warn_function_noreturn (void)
|
||
{
|
||
if (!TREE_THIS_VOLATILE (current_function_decl)
|
||
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
|
||
warn_function_noreturn (current_function_decl);
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_warn_function_noreturn (void)
|
||
{
|
||
return warn_suggest_attribute_noreturn;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_warn_function_noreturn =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"*warn_function_noreturn", /* name */
|
||
gate_warn_function_noreturn, /* gate */
|
||
execute_warn_function_noreturn, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0 /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
|
||
/* Walk a gimplified function and warn for functions whose return value is
|
||
ignored and attribute((warn_unused_result)) is set. This is done before
|
||
inlining, so we don't have to worry about that. */
|
||
|
||
static void
|
||
do_warn_unused_result (gimple_seq seq)
|
||
{
|
||
tree fdecl, ftype;
|
||
gimple_stmt_iterator i;
|
||
|
||
for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
|
||
{
|
||
gimple g = gsi_stmt (i);
|
||
|
||
switch (gimple_code (g))
|
||
{
|
||
case GIMPLE_BIND:
|
||
do_warn_unused_result (gimple_bind_body (g));
|
||
break;
|
||
case GIMPLE_TRY:
|
||
do_warn_unused_result (gimple_try_eval (g));
|
||
do_warn_unused_result (gimple_try_cleanup (g));
|
||
break;
|
||
case GIMPLE_CATCH:
|
||
do_warn_unused_result (gimple_catch_handler (g));
|
||
break;
|
||
case GIMPLE_EH_FILTER:
|
||
do_warn_unused_result (gimple_eh_filter_failure (g));
|
||
break;
|
||
|
||
case GIMPLE_CALL:
|
||
if (gimple_call_lhs (g))
|
||
break;
|
||
if (gimple_call_internal_p (g))
|
||
break;
|
||
|
||
/* This is a naked call, as opposed to a GIMPLE_CALL with an
|
||
LHS. All calls whose value is ignored should be
|
||
represented like this. Look for the attribute. */
|
||
fdecl = gimple_call_fndecl (g);
|
||
ftype = gimple_call_fntype (g);
|
||
|
||
if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
|
||
{
|
||
location_t loc = gimple_location (g);
|
||
|
||
if (fdecl)
|
||
warning_at (loc, OPT_Wunused_result,
|
||
"ignoring return value of %qD, "
|
||
"declared with attribute warn_unused_result",
|
||
fdecl);
|
||
else
|
||
warning_at (loc, OPT_Wunused_result,
|
||
"ignoring return value of function "
|
||
"declared with attribute warn_unused_result");
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Not a container, not a call, or a call whose value is used. */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static unsigned int
|
||
run_warn_unused_result (void)
|
||
{
|
||
do_warn_unused_result (gimple_body (current_function_decl));
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_warn_unused_result (void)
|
||
{
|
||
return flag_warn_unused_result;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_warn_unused_result =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"*warn_unused_result", /* name */
|
||
gate_warn_unused_result, /* gate */
|
||
run_warn_unused_result, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
}
|
||
};
|