62e5bf5d42
* alias.c (init_alias_analysis): Correct whitespace. * bb-reorder.c (fix_edges_for_rarely_executed_code, partition_hot_cold_basic_blocks): Likewise. * builtins.c (expand_builtin_printf, expand_builtin_fprintf, expand_builtin_sprintf, fold_builtin_carg, fold_builtin_sprintf, maybe_emit_sprintf_chk_warning, fold_builtin_sprintf_chk, fold_builtin_snprintf_chk, fold_builtin_printf, fold_builtin_fprintf, do_mpfr_ckconv, do_mpfr_arg1, do_mpfr_arg2, do_mpfr_arg3, do_mpfr_sincos): Likewise. * cfgcleanup.c (cleanup_cfg): Likewise. * cfgexpand.c (tree_expand_cfg): Likewise. * fold-const.c (fold_binary) <RDIV_EXPR>: Likewise. * function.c (get_next_funcdef_no): Likewise. * gengtype.c (main): Likewise. * genmodes.c (main): Likewise. * gcse.c (bypass_conditional_jumps, print_ldst_list): Likewise. * haifa-sched.c (schedule_block, extend_h_i_d): Likewise. * ifcvt.c (noce_emit_move_insn): Likewise. * modulo-sched.c (generate_prolog_epilog, sms_schedule_by_order): Likewise. * stor-layout.c (get_best_mode): Likewise. * tree-ssa-loop-niter.c (get_val_for): Likewise. * tree-ssa-structalias.c (get_varinfo, get_varinfo_fc, scc_visit, do_ds_constraint, do_complex_constraint, label_visit, perform_var_substitution, solve_graph): Likewise. * tree-vrp.c (vrp_finalize): Likewise. From-SVN: r121470
4121 lines
112 KiB
C
4121 lines
112 KiB
C
/* If-conversion support.
|
||
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "function.h"
|
||
#include "flags.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "except.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "expr.h"
|
||
#include "real.h"
|
||
#include "output.h"
|
||
#include "optabs.h"
|
||
#include "toplev.h"
|
||
#include "tm_p.h"
|
||
#include "cfgloop.h"
|
||
#include "target.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
#include "vec.h"
|
||
#include "vecprim.h"
|
||
|
||
|
||
#ifndef HAVE_conditional_execution
|
||
#define HAVE_conditional_execution 0
|
||
#endif
|
||
#ifndef HAVE_conditional_move
|
||
#define HAVE_conditional_move 0
|
||
#endif
|
||
#ifndef HAVE_incscc
|
||
#define HAVE_incscc 0
|
||
#endif
|
||
#ifndef HAVE_decscc
|
||
#define HAVE_decscc 0
|
||
#endif
|
||
#ifndef HAVE_trap
|
||
#define HAVE_trap 0
|
||
#endif
|
||
#ifndef HAVE_conditional_trap
|
||
#define HAVE_conditional_trap 0
|
||
#endif
|
||
|
||
#ifndef MAX_CONDITIONAL_EXECUTE
|
||
#define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
|
||
#endif
|
||
|
||
#define NULL_BLOCK ((basic_block) NULL)
|
||
|
||
/* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
|
||
static int num_possible_if_blocks;
|
||
|
||
/* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
|
||
execution. */
|
||
static int num_updated_if_blocks;
|
||
|
||
/* # of changes made which require life information to be updated. */
|
||
static int num_true_changes;
|
||
|
||
/* Whether conditional execution changes were made. */
|
||
static int cond_exec_changed_p;
|
||
|
||
/* True if life data ok at present. */
|
||
static bool life_data_ok;
|
||
|
||
/* Forward references. */
|
||
static int count_bb_insns (basic_block);
|
||
static bool cheap_bb_rtx_cost_p (basic_block, int);
|
||
static rtx first_active_insn (basic_block);
|
||
static rtx last_active_insn (basic_block, int);
|
||
static basic_block block_fallthru (basic_block);
|
||
static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
|
||
static rtx cond_exec_get_condition (rtx);
|
||
static int cond_exec_process_if_block (ce_if_block_t *, int);
|
||
static rtx noce_get_condition (rtx, rtx *);
|
||
static int noce_operand_ok (rtx);
|
||
static int noce_process_if_block (ce_if_block_t *);
|
||
static int process_if_block (ce_if_block_t *);
|
||
static void merge_if_block (ce_if_block_t *);
|
||
static int find_cond_trap (basic_block, edge, edge);
|
||
static basic_block find_if_header (basic_block, int);
|
||
static int block_jumps_and_fallthru_p (basic_block, basic_block);
|
||
static int find_if_block (ce_if_block_t *);
|
||
static int find_if_case_1 (basic_block, edge, edge);
|
||
static int find_if_case_2 (basic_block, edge, edge);
|
||
static int find_memory (rtx *, void *);
|
||
static int dead_or_predicable (basic_block, basic_block, basic_block,
|
||
basic_block, int);
|
||
static void noce_emit_move_insn (rtx, rtx);
|
||
static rtx block_has_only_trap (basic_block);
|
||
|
||
/* Count the number of non-jump active insns in BB. */
|
||
|
||
static int
|
||
count_bb_insns (basic_block bb)
|
||
{
|
||
int count = 0;
|
||
rtx insn = BB_HEAD (bb);
|
||
|
||
while (1)
|
||
{
|
||
if (CALL_P (insn) || NONJUMP_INSN_P (insn))
|
||
count++;
|
||
|
||
if (insn == BB_END (bb))
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Determine whether the total insn_rtx_cost on non-jump insns in
|
||
basic block BB is less than MAX_COST. This function returns
|
||
false if the cost of any instruction could not be estimated. */
|
||
|
||
static bool
|
||
cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
|
||
{
|
||
int count = 0;
|
||
rtx insn = BB_HEAD (bb);
|
||
|
||
while (1)
|
||
{
|
||
if (NONJUMP_INSN_P (insn))
|
||
{
|
||
int cost = insn_rtx_cost (PATTERN (insn));
|
||
if (cost == 0)
|
||
return false;
|
||
|
||
/* If this instruction is the load or set of a "stack" register,
|
||
such as a floating point register on x87, then the cost of
|
||
speculatively executing this insn may need to include
|
||
the additional cost of popping its result off of the
|
||
register stack. Unfortunately, correctly recognizing and
|
||
accounting for this additional overhead is tricky, so for
|
||
now we simply prohibit such speculative execution. */
|
||
#ifdef STACK_REGS
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (set && STACK_REG_P (SET_DEST (set)))
|
||
return false;
|
||
}
|
||
#endif
|
||
|
||
count += cost;
|
||
if (count >= max_cost)
|
||
return false;
|
||
}
|
||
else if (CALL_P (insn))
|
||
return false;
|
||
|
||
if (insn == BB_END (bb))
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the first non-jump active insn in the basic block. */
|
||
|
||
static rtx
|
||
first_active_insn (basic_block bb)
|
||
{
|
||
rtx insn = BB_HEAD (bb);
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
if (insn == BB_END (bb))
|
||
return NULL_RTX;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
while (NOTE_P (insn))
|
||
{
|
||
if (insn == BB_END (bb))
|
||
return NULL_RTX;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
if (JUMP_P (insn))
|
||
return NULL_RTX;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the last non-jump active (non-jump) insn in the basic block. */
|
||
|
||
static rtx
|
||
last_active_insn (basic_block bb, int skip_use_p)
|
||
{
|
||
rtx insn = BB_END (bb);
|
||
rtx head = BB_HEAD (bb);
|
||
|
||
while (NOTE_P (insn)
|
||
|| JUMP_P (insn)
|
||
|| (skip_use_p
|
||
&& NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == USE))
|
||
{
|
||
if (insn == head)
|
||
return NULL_RTX;
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
|
||
if (LABEL_P (insn))
|
||
return NULL_RTX;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the basic block reached by falling though the basic block BB. */
|
||
|
||
static basic_block
|
||
block_fallthru (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
break;
|
||
|
||
return (e) ? e->dest : NULL_BLOCK;
|
||
}
|
||
|
||
/* Go through a bunch of insns, converting them to conditional
|
||
execution format if possible. Return TRUE if all of the non-note
|
||
insns were processed. */
|
||
|
||
static int
|
||
cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
|
||
/* if block information */rtx start,
|
||
/* first insn to look at */rtx end,
|
||
/* last insn to look at */rtx test,
|
||
/* conditional execution test */rtx prob_val,
|
||
/* probability of branch taken. */int mod_ok)
|
||
{
|
||
int must_be_last = FALSE;
|
||
rtx insn;
|
||
rtx xtest;
|
||
rtx pattern;
|
||
|
||
if (!start || !end)
|
||
return FALSE;
|
||
|
||
for (insn = start; ; insn = NEXT_INSN (insn))
|
||
{
|
||
if (NOTE_P (insn))
|
||
goto insn_done;
|
||
|
||
gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
|
||
|
||
/* Remove USE insns that get in the way. */
|
||
if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
|
||
{
|
||
/* ??? Ug. Actually unlinking the thing is problematic,
|
||
given what we'd have to coordinate with our callers. */
|
||
SET_INSN_DELETED (insn);
|
||
goto insn_done;
|
||
}
|
||
|
||
/* Last insn wasn't last? */
|
||
if (must_be_last)
|
||
return FALSE;
|
||
|
||
if (modified_in_p (test, insn))
|
||
{
|
||
if (!mod_ok)
|
||
return FALSE;
|
||
must_be_last = TRUE;
|
||
}
|
||
|
||
/* Now build the conditional form of the instruction. */
|
||
pattern = PATTERN (insn);
|
||
xtest = copy_rtx (test);
|
||
|
||
/* If this is already a COND_EXEC, rewrite the test to be an AND of the
|
||
two conditions. */
|
||
if (GET_CODE (pattern) == COND_EXEC)
|
||
{
|
||
if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
|
||
return FALSE;
|
||
|
||
xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
|
||
COND_EXEC_TEST (pattern));
|
||
pattern = COND_EXEC_CODE (pattern);
|
||
}
|
||
|
||
pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
|
||
|
||
/* If the machine needs to modify the insn being conditionally executed,
|
||
say for example to force a constant integer operand into a temp
|
||
register, do so here. */
|
||
#ifdef IFCVT_MODIFY_INSN
|
||
IFCVT_MODIFY_INSN (ce_info, pattern, insn);
|
||
if (! pattern)
|
||
return FALSE;
|
||
#endif
|
||
|
||
validate_change (insn, &PATTERN (insn), pattern, 1);
|
||
|
||
if (CALL_P (insn) && prob_val)
|
||
validate_change (insn, ®_NOTES (insn),
|
||
alloc_EXPR_LIST (REG_BR_PROB, prob_val,
|
||
REG_NOTES (insn)), 1);
|
||
|
||
insn_done:
|
||
if (insn == end)
|
||
break;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the condition for a jump. Do not do any special processing. */
|
||
|
||
static rtx
|
||
cond_exec_get_condition (rtx jump)
|
||
{
|
||
rtx test_if, cond;
|
||
|
||
if (any_condjump_p (jump))
|
||
test_if = SET_SRC (pc_set (jump));
|
||
else
|
||
return NULL_RTX;
|
||
cond = XEXP (test_if, 0);
|
||
|
||
/* If this branches to JUMP_LABEL when the condition is false,
|
||
reverse the condition. */
|
||
if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
|
||
&& XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
|
||
{
|
||
enum rtx_code rev = reversed_comparison_code (cond, jump);
|
||
if (rev == UNKNOWN)
|
||
return NULL_RTX;
|
||
|
||
cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
}
|
||
|
||
return cond;
|
||
}
|
||
|
||
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
|
||
to conditional execution. Return TRUE if we were successful at
|
||
converting the block. */
|
||
|
||
static int
|
||
cond_exec_process_if_block (ce_if_block_t * ce_info,
|
||
/* if block information */int do_multiple_p)
|
||
{
|
||
basic_block test_bb = ce_info->test_bb; /* last test block */
|
||
basic_block then_bb = ce_info->then_bb; /* THEN */
|
||
basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
|
||
rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
|
||
rtx then_start; /* first insn in THEN block */
|
||
rtx then_end; /* last insn + 1 in THEN block */
|
||
rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
|
||
rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
|
||
int max; /* max # of insns to convert. */
|
||
int then_mod_ok; /* whether conditional mods are ok in THEN */
|
||
rtx true_expr; /* test for else block insns */
|
||
rtx false_expr; /* test for then block insns */
|
||
rtx true_prob_val; /* probability of else block */
|
||
rtx false_prob_val; /* probability of then block */
|
||
int n_insns;
|
||
enum rtx_code false_code;
|
||
|
||
/* If test is comprised of && or || elements, and we've failed at handling
|
||
all of them together, just use the last test if it is the special case of
|
||
&& elements without an ELSE block. */
|
||
if (!do_multiple_p && ce_info->num_multiple_test_blocks)
|
||
{
|
||
if (else_bb || ! ce_info->and_and_p)
|
||
return FALSE;
|
||
|
||
ce_info->test_bb = test_bb = ce_info->last_test_bb;
|
||
ce_info->num_multiple_test_blocks = 0;
|
||
ce_info->num_and_and_blocks = 0;
|
||
ce_info->num_or_or_blocks = 0;
|
||
}
|
||
|
||
/* Find the conditional jump to the ELSE or JOIN part, and isolate
|
||
the test. */
|
||
test_expr = cond_exec_get_condition (BB_END (test_bb));
|
||
if (! test_expr)
|
||
return FALSE;
|
||
|
||
/* If the conditional jump is more than just a conditional jump,
|
||
then we can not do conditional execution conversion on this block. */
|
||
if (! onlyjump_p (BB_END (test_bb)))
|
||
return FALSE;
|
||
|
||
/* Collect the bounds of where we're to search, skipping any labels, jumps
|
||
and notes at the beginning and end of the block. Then count the total
|
||
number of insns and see if it is small enough to convert. */
|
||
then_start = first_active_insn (then_bb);
|
||
then_end = last_active_insn (then_bb, TRUE);
|
||
n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
|
||
max = MAX_CONDITIONAL_EXECUTE;
|
||
|
||
if (else_bb)
|
||
{
|
||
max *= 2;
|
||
else_start = first_active_insn (else_bb);
|
||
else_end = last_active_insn (else_bb, TRUE);
|
||
n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
|
||
}
|
||
|
||
if (n_insns > max)
|
||
return FALSE;
|
||
|
||
/* Map test_expr/test_jump into the appropriate MD tests to use on
|
||
the conditionally executed code. */
|
||
|
||
true_expr = test_expr;
|
||
|
||
false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
|
||
if (false_code != UNKNOWN)
|
||
false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
|
||
XEXP (true_expr, 0), XEXP (true_expr, 1));
|
||
else
|
||
false_expr = NULL_RTX;
|
||
|
||
#ifdef IFCVT_MODIFY_TESTS
|
||
/* If the machine description needs to modify the tests, such as setting a
|
||
conditional execution register from a comparison, it can do so here. */
|
||
IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
|
||
|
||
/* See if the conversion failed. */
|
||
if (!true_expr || !false_expr)
|
||
goto fail;
|
||
#endif
|
||
|
||
true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
|
||
if (true_prob_val)
|
||
{
|
||
true_prob_val = XEXP (true_prob_val, 0);
|
||
false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
|
||
}
|
||
else
|
||
false_prob_val = NULL_RTX;
|
||
|
||
/* If we have && or || tests, do them here. These tests are in the adjacent
|
||
blocks after the first block containing the test. */
|
||
if (ce_info->num_multiple_test_blocks > 0)
|
||
{
|
||
basic_block bb = test_bb;
|
||
basic_block last_test_bb = ce_info->last_test_bb;
|
||
|
||
if (! false_expr)
|
||
goto fail;
|
||
|
||
do
|
||
{
|
||
rtx start, end;
|
||
rtx t, f;
|
||
enum rtx_code f_code;
|
||
|
||
bb = block_fallthru (bb);
|
||
start = first_active_insn (bb);
|
||
end = last_active_insn (bb, TRUE);
|
||
if (start
|
||
&& ! cond_exec_process_insns (ce_info, start, end, false_expr,
|
||
false_prob_val, FALSE))
|
||
goto fail;
|
||
|
||
/* If the conditional jump is more than just a conditional jump, then
|
||
we can not do conditional execution conversion on this block. */
|
||
if (! onlyjump_p (BB_END (bb)))
|
||
goto fail;
|
||
|
||
/* Find the conditional jump and isolate the test. */
|
||
t = cond_exec_get_condition (BB_END (bb));
|
||
if (! t)
|
||
goto fail;
|
||
|
||
f_code = reversed_comparison_code (t, BB_END (bb));
|
||
if (f_code == UNKNOWN)
|
||
goto fail;
|
||
|
||
f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
|
||
if (ce_info->and_and_p)
|
||
{
|
||
t = gen_rtx_AND (GET_MODE (t), true_expr, t);
|
||
f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
|
||
}
|
||
else
|
||
{
|
||
t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
|
||
f = gen_rtx_AND (GET_MODE (t), false_expr, f);
|
||
}
|
||
|
||
/* If the machine description needs to modify the tests, such as
|
||
setting a conditional execution register from a comparison, it can
|
||
do so here. */
|
||
#ifdef IFCVT_MODIFY_MULTIPLE_TESTS
|
||
IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
|
||
|
||
/* See if the conversion failed. */
|
||
if (!t || !f)
|
||
goto fail;
|
||
#endif
|
||
|
||
true_expr = t;
|
||
false_expr = f;
|
||
}
|
||
while (bb != last_test_bb);
|
||
}
|
||
|
||
/* For IF-THEN-ELSE blocks, we don't allow modifications of the test
|
||
on then THEN block. */
|
||
then_mod_ok = (else_bb == NULL_BLOCK);
|
||
|
||
/* Go through the THEN and ELSE blocks converting the insns if possible
|
||
to conditional execution. */
|
||
|
||
if (then_end
|
||
&& (! false_expr
|
||
|| ! cond_exec_process_insns (ce_info, then_start, then_end,
|
||
false_expr, false_prob_val,
|
||
then_mod_ok)))
|
||
goto fail;
|
||
|
||
if (else_bb && else_end
|
||
&& ! cond_exec_process_insns (ce_info, else_start, else_end,
|
||
true_expr, true_prob_val, TRUE))
|
||
goto fail;
|
||
|
||
/* If we cannot apply the changes, fail. Do not go through the normal fail
|
||
processing, since apply_change_group will call cancel_changes. */
|
||
if (! apply_change_group ())
|
||
{
|
||
#ifdef IFCVT_MODIFY_CANCEL
|
||
/* Cancel any machine dependent changes. */
|
||
IFCVT_MODIFY_CANCEL (ce_info);
|
||
#endif
|
||
return FALSE;
|
||
}
|
||
|
||
#ifdef IFCVT_MODIFY_FINAL
|
||
/* Do any machine dependent final modifications. */
|
||
IFCVT_MODIFY_FINAL (ce_info);
|
||
#endif
|
||
|
||
/* Conversion succeeded. */
|
||
if (dump_file)
|
||
fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
|
||
n_insns, (n_insns == 1) ? " was" : "s were");
|
||
|
||
/* Merge the blocks! */
|
||
merge_if_block (ce_info);
|
||
cond_exec_changed_p = TRUE;
|
||
return TRUE;
|
||
|
||
fail:
|
||
#ifdef IFCVT_MODIFY_CANCEL
|
||
/* Cancel any machine dependent changes. */
|
||
IFCVT_MODIFY_CANCEL (ce_info);
|
||
#endif
|
||
|
||
cancel_changes (0);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Used by noce_process_if_block to communicate with its subroutines.
|
||
|
||
The subroutines know that A and B may be evaluated freely. They
|
||
know that X is a register. They should insert new instructions
|
||
before cond_earliest. */
|
||
|
||
struct noce_if_info
|
||
{
|
||
/* A basic block that ends in a simple conditional jump. */
|
||
basic_block test_bb;
|
||
|
||
/* The jump that ends TEST_BB. */
|
||
rtx jump;
|
||
|
||
/* The jump condition. */
|
||
rtx cond;
|
||
|
||
/* New insns should be inserted before this one. */
|
||
rtx cond_earliest;
|
||
|
||
/* Insns in the THEN and ELSE block. There is always just this
|
||
one insns in those blocks. The insns are single_set insns.
|
||
If there was no ELSE block, INSN_B is the last insn before
|
||
COND_EARLIEST, or NULL_RTX. In the former case, the insn
|
||
operands are still valid, as if INSN_B was moved down below
|
||
the jump. */
|
||
rtx insn_a, insn_b;
|
||
|
||
/* The SET_SRC of INSN_A and INSN_B. */
|
||
rtx a, b;
|
||
|
||
/* The SET_DEST of INSN_A. */
|
||
rtx x;
|
||
};
|
||
|
||
static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
|
||
static int noce_try_move (struct noce_if_info *);
|
||
static int noce_try_store_flag (struct noce_if_info *);
|
||
static int noce_try_addcc (struct noce_if_info *);
|
||
static int noce_try_store_flag_constants (struct noce_if_info *);
|
||
static int noce_try_store_flag_mask (struct noce_if_info *);
|
||
static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
|
||
rtx, rtx, rtx);
|
||
static int noce_try_cmove (struct noce_if_info *);
|
||
static int noce_try_cmove_arith (struct noce_if_info *);
|
||
static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
|
||
static int noce_try_minmax (struct noce_if_info *);
|
||
static int noce_try_abs (struct noce_if_info *);
|
||
static int noce_try_sign_mask (struct noce_if_info *);
|
||
|
||
/* Helper function for noce_try_store_flag*. */
|
||
|
||
static rtx
|
||
noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
|
||
int normalize)
|
||
{
|
||
rtx cond = if_info->cond;
|
||
int cond_complex;
|
||
enum rtx_code code;
|
||
|
||
cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
|
||
|| ! general_operand (XEXP (cond, 1), VOIDmode));
|
||
|
||
/* If earliest == jump, or when the condition is complex, try to
|
||
build the store_flag insn directly. */
|
||
|
||
if (cond_complex)
|
||
cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
|
||
|
||
if (reversep)
|
||
code = reversed_comparison_code (cond, if_info->jump);
|
||
else
|
||
code = GET_CODE (cond);
|
||
|
||
if ((if_info->cond_earliest == if_info->jump || cond_complex)
|
||
&& (normalize == 0 || STORE_FLAG_VALUE == normalize))
|
||
{
|
||
rtx tmp;
|
||
|
||
tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
tmp = gen_rtx_SET (VOIDmode, x, tmp);
|
||
|
||
start_sequence ();
|
||
tmp = emit_insn (tmp);
|
||
|
||
if (recog_memoized (tmp) >= 0)
|
||
{
|
||
tmp = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (tmp);
|
||
|
||
if_info->cond_earliest = if_info->jump;
|
||
|
||
return x;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Don't even try if the comparison operands or the mode of X are weird. */
|
||
if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
|
||
return NULL_RTX;
|
||
|
||
return emit_store_flag (x, code, XEXP (cond, 0),
|
||
XEXP (cond, 1), VOIDmode,
|
||
(code == LTU || code == LEU
|
||
|| code == GEU || code == GTU), normalize);
|
||
}
|
||
|
||
/* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
|
||
X is the destination/target and Y is the value to copy. */
|
||
|
||
static void
|
||
noce_emit_move_insn (rtx x, rtx y)
|
||
{
|
||
enum machine_mode outmode;
|
||
rtx outer, inner;
|
||
int bitpos;
|
||
|
||
if (GET_CODE (x) != STRICT_LOW_PART)
|
||
{
|
||
rtx seq, insn, target;
|
||
optab ot;
|
||
|
||
start_sequence ();
|
||
/* Check that the SET_SRC is reasonable before calling emit_move_insn,
|
||
otherwise construct a suitable SET pattern ourselves. */
|
||
insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
|
||
? emit_move_insn (x, y)
|
||
: emit_insn (gen_rtx_SET (VOIDmode, x, y));
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (recog_memoized (insn) <= 0)
|
||
{
|
||
if (GET_CODE (x) == ZERO_EXTRACT)
|
||
{
|
||
rtx op = XEXP (x, 0);
|
||
unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
|
||
unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
|
||
|
||
/* store_bit_field expects START to be relative to
|
||
BYTES_BIG_ENDIAN and adjusts this value for machines with
|
||
BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
|
||
invoke store_bit_field again it is necessary to have the START
|
||
value from the first call. */
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
{
|
||
if (MEM_P (op))
|
||
start = BITS_PER_UNIT - start - size;
|
||
else
|
||
{
|
||
gcc_assert (REG_P (op));
|
||
start = BITS_PER_WORD - start - size;
|
||
}
|
||
}
|
||
|
||
gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
|
||
store_bit_field (op, size, start, GET_MODE (x), y);
|
||
return;
|
||
}
|
||
|
||
switch (GET_RTX_CLASS (GET_CODE (y)))
|
||
{
|
||
case RTX_UNARY:
|
||
ot = code_to_optab[GET_CODE (y)];
|
||
if (ot)
|
||
{
|
||
start_sequence ();
|
||
target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
|
||
if (target != NULL_RTX)
|
||
{
|
||
if (target != x)
|
||
emit_move_insn (x, target);
|
||
seq = get_insns ();
|
||
}
|
||
end_sequence ();
|
||
}
|
||
break;
|
||
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
ot = code_to_optab[GET_CODE (y)];
|
||
if (ot)
|
||
{
|
||
start_sequence ();
|
||
target = expand_binop (GET_MODE (y), ot,
|
||
XEXP (y, 0), XEXP (y, 1),
|
||
x, 0, OPTAB_DIRECT);
|
||
if (target != NULL_RTX)
|
||
{
|
||
if (target != x)
|
||
emit_move_insn (x, target);
|
||
seq = get_insns ();
|
||
}
|
||
end_sequence ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
emit_insn (seq);
|
||
return;
|
||
}
|
||
|
||
outer = XEXP (x, 0);
|
||
inner = XEXP (outer, 0);
|
||
outmode = GET_MODE (outer);
|
||
bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
|
||
store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
|
||
}
|
||
|
||
/* Return sequence of instructions generated by if conversion. This
|
||
function calls end_sequence() to end the current stream, ensures
|
||
that are instructions are unshared, recognizable non-jump insns.
|
||
On failure, this function returns a NULL_RTX. */
|
||
|
||
static rtx
|
||
end_ifcvt_sequence (struct noce_if_info *if_info)
|
||
{
|
||
rtx insn;
|
||
rtx seq = get_insns ();
|
||
|
||
set_used_flags (if_info->x);
|
||
set_used_flags (if_info->cond);
|
||
unshare_all_rtl_in_chain (seq);
|
||
end_sequence ();
|
||
|
||
/* Make sure that all of the instructions emitted are recognizable,
|
||
and that we haven't introduced a new jump instruction.
|
||
As an exercise for the reader, build a general mechanism that
|
||
allows proper placement of required clobbers. */
|
||
for (insn = seq; insn; insn = NEXT_INSN (insn))
|
||
if (JUMP_P (insn)
|
||
|| recog_memoized (insn) == -1)
|
||
return NULL_RTX;
|
||
|
||
return seq;
|
||
}
|
||
|
||
/* Convert "if (a != b) x = a; else x = b" into "x = a" and
|
||
"if (a == b) x = a; else x = b" into "x = b". */
|
||
|
||
static int
|
||
noce_try_move (struct noce_if_info *if_info)
|
||
{
|
||
rtx cond = if_info->cond;
|
||
enum rtx_code code = GET_CODE (cond);
|
||
rtx y, seq;
|
||
|
||
if (code != NE && code != EQ)
|
||
return FALSE;
|
||
|
||
/* This optimization isn't valid if either A or B could be a NaN
|
||
or a signed zero. */
|
||
if (HONOR_NANS (GET_MODE (if_info->x))
|
||
|| HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
|
||
return FALSE;
|
||
|
||
/* Check whether the operands of the comparison are A and in
|
||
either order. */
|
||
if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
|
||
&& rtx_equal_p (if_info->b, XEXP (cond, 1)))
|
||
|| (rtx_equal_p (if_info->a, XEXP (cond, 1))
|
||
&& rtx_equal_p (if_info->b, XEXP (cond, 0))))
|
||
{
|
||
y = (code == EQ) ? if_info->a : if_info->b;
|
||
|
||
/* Avoid generating the move if the source is the destination. */
|
||
if (! rtx_equal_p (if_info->x, y))
|
||
{
|
||
start_sequence ();
|
||
noce_emit_move_insn (if_info->x, y);
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
}
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* Convert "if (test) x = 1; else x = 0".
|
||
|
||
Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
|
||
tried in noce_try_store_flag_constants after noce_try_cmove has had
|
||
a go at the conversion. */
|
||
|
||
static int
|
||
noce_try_store_flag (struct noce_if_info *if_info)
|
||
{
|
||
int reversep;
|
||
rtx target, seq;
|
||
|
||
if (GET_CODE (if_info->b) == CONST_INT
|
||
&& INTVAL (if_info->b) == STORE_FLAG_VALUE
|
||
&& if_info->a == const0_rtx)
|
||
reversep = 0;
|
||
else if (if_info->b == const0_rtx
|
||
&& GET_CODE (if_info->a) == CONST_INT
|
||
&& INTVAL (if_info->a) == STORE_FLAG_VALUE
|
||
&& (reversed_comparison_code (if_info->cond, if_info->jump)
|
||
!= UNKNOWN))
|
||
reversep = 1;
|
||
else
|
||
return FALSE;
|
||
|
||
start_sequence ();
|
||
|
||
target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (! seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
else
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Convert "if (test) x = a; else x = b", for A and B constant. */
|
||
|
||
static int
|
||
noce_try_store_flag_constants (struct noce_if_info *if_info)
|
||
{
|
||
rtx target, seq;
|
||
int reversep;
|
||
HOST_WIDE_INT itrue, ifalse, diff, tmp;
|
||
int normalize, can_reverse;
|
||
enum machine_mode mode;
|
||
|
||
if (! no_new_pseudos
|
||
&& GET_CODE (if_info->a) == CONST_INT
|
||
&& GET_CODE (if_info->b) == CONST_INT)
|
||
{
|
||
mode = GET_MODE (if_info->x);
|
||
ifalse = INTVAL (if_info->a);
|
||
itrue = INTVAL (if_info->b);
|
||
|
||
/* Make sure we can represent the difference between the two values. */
|
||
if ((itrue - ifalse > 0)
|
||
!= ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
|
||
return FALSE;
|
||
|
||
diff = trunc_int_for_mode (itrue - ifalse, mode);
|
||
|
||
can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
|
||
!= UNKNOWN);
|
||
|
||
reversep = 0;
|
||
if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
|
||
normalize = 0;
|
||
else if (ifalse == 0 && exact_log2 (itrue) >= 0
|
||
&& (STORE_FLAG_VALUE == 1
|
||
|| BRANCH_COST >= 2))
|
||
normalize = 1;
|
||
else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
|
||
&& (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
|
||
normalize = 1, reversep = 1;
|
||
else if (itrue == -1
|
||
&& (STORE_FLAG_VALUE == -1
|
||
|| BRANCH_COST >= 2))
|
||
normalize = -1;
|
||
else if (ifalse == -1 && can_reverse
|
||
&& (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
|
||
normalize = -1, reversep = 1;
|
||
else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
|
||
|| BRANCH_COST >= 3)
|
||
normalize = -1;
|
||
else
|
||
return FALSE;
|
||
|
||
if (reversep)
|
||
{
|
||
tmp = itrue; itrue = ifalse; ifalse = tmp;
|
||
diff = trunc_int_for_mode (-diff, mode);
|
||
}
|
||
|
||
start_sequence ();
|
||
target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
/* if (test) x = 3; else x = 4;
|
||
=> x = 3 + (test == 0); */
|
||
if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
|
||
{
|
||
target = expand_simple_binop (mode,
|
||
(diff == STORE_FLAG_VALUE
|
||
? PLUS : MINUS),
|
||
GEN_INT (ifalse), target, if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* if (test) x = 8; else x = 0;
|
||
=> x = (test != 0) << 3; */
|
||
else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
|
||
{
|
||
target = expand_simple_binop (mode, ASHIFT,
|
||
target, GEN_INT (tmp), if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* if (test) x = -1; else x = b;
|
||
=> x = -(test != 0) | b; */
|
||
else if (itrue == -1)
|
||
{
|
||
target = expand_simple_binop (mode, IOR,
|
||
target, GEN_INT (ifalse), if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* if (test) x = a; else x = b;
|
||
=> x = (-(test != 0) & (b - a)) + a; */
|
||
else
|
||
{
|
||
target = expand_simple_binop (mode, AND,
|
||
target, GEN_INT (diff), if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
if (target)
|
||
target = expand_simple_binop (mode, PLUS,
|
||
target, GEN_INT (ifalse),
|
||
if_info->x, 0, OPTAB_WIDEN);
|
||
}
|
||
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Convert "if (test) foo++" into "foo += (test != 0)", and
|
||
similarly for "foo--". */
|
||
|
||
static int
|
||
noce_try_addcc (struct noce_if_info *if_info)
|
||
{
|
||
rtx target, seq;
|
||
int subtract, normalize;
|
||
|
||
if (! no_new_pseudos
|
||
&& GET_CODE (if_info->a) == PLUS
|
||
&& rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
|
||
&& (reversed_comparison_code (if_info->cond, if_info->jump)
|
||
!= UNKNOWN))
|
||
{
|
||
rtx cond = if_info->cond;
|
||
enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
|
||
|
||
/* First try to use addcc pattern. */
|
||
if (general_operand (XEXP (cond, 0), VOIDmode)
|
||
&& general_operand (XEXP (cond, 1), VOIDmode))
|
||
{
|
||
start_sequence ();
|
||
target = emit_conditional_add (if_info->x, code,
|
||
XEXP (cond, 0),
|
||
XEXP (cond, 1),
|
||
VOIDmode,
|
||
if_info->b,
|
||
XEXP (if_info->a, 1),
|
||
GET_MODE (if_info->x),
|
||
(code == LTU || code == GEU
|
||
|| code == LEU || code == GTU));
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
end_sequence ();
|
||
}
|
||
|
||
/* If that fails, construct conditional increment or decrement using
|
||
setcc. */
|
||
if (BRANCH_COST >= 2
|
||
&& (XEXP (if_info->a, 1) == const1_rtx
|
||
|| XEXP (if_info->a, 1) == constm1_rtx))
|
||
{
|
||
start_sequence ();
|
||
if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
|
||
subtract = 0, normalize = 0;
|
||
else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
|
||
subtract = 1, normalize = 0;
|
||
else
|
||
subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
|
||
|
||
|
||
target = noce_emit_store_flag (if_info,
|
||
gen_reg_rtx (GET_MODE (if_info->x)),
|
||
1, normalize);
|
||
|
||
if (target)
|
||
target = expand_simple_binop (GET_MODE (if_info->x),
|
||
subtract ? MINUS : PLUS,
|
||
if_info->b, target, if_info->x,
|
||
0, OPTAB_WIDEN);
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
end_sequence ();
|
||
}
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
|
||
|
||
static int
|
||
noce_try_store_flag_mask (struct noce_if_info *if_info)
|
||
{
|
||
rtx target, seq;
|
||
int reversep;
|
||
|
||
reversep = 0;
|
||
if (! no_new_pseudos
|
||
&& (BRANCH_COST >= 2
|
||
|| STORE_FLAG_VALUE == -1)
|
||
&& ((if_info->a == const0_rtx
|
||
&& rtx_equal_p (if_info->b, if_info->x))
|
||
|| ((reversep = (reversed_comparison_code (if_info->cond,
|
||
if_info->jump)
|
||
!= UNKNOWN))
|
||
&& if_info->b == const0_rtx
|
||
&& rtx_equal_p (if_info->a, if_info->x))))
|
||
{
|
||
start_sequence ();
|
||
target = noce_emit_store_flag (if_info,
|
||
gen_reg_rtx (GET_MODE (if_info->x)),
|
||
reversep, -1);
|
||
if (target)
|
||
target = expand_simple_binop (GET_MODE (if_info->x), AND,
|
||
if_info->x,
|
||
target, if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Helper function for noce_try_cmove and noce_try_cmove_arith. */
|
||
|
||
static rtx
|
||
noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
|
||
rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
|
||
{
|
||
/* If earliest == jump, try to build the cmove insn directly.
|
||
This is helpful when combine has created some complex condition
|
||
(like for alpha's cmovlbs) that we can't hope to regenerate
|
||
through the normal interface. */
|
||
|
||
if (if_info->cond_earliest == if_info->jump)
|
||
{
|
||
rtx tmp;
|
||
|
||
tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
|
||
tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
|
||
tmp = gen_rtx_SET (VOIDmode, x, tmp);
|
||
|
||
start_sequence ();
|
||
tmp = emit_insn (tmp);
|
||
|
||
if (recog_memoized (tmp) >= 0)
|
||
{
|
||
tmp = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (tmp);
|
||
|
||
return x;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Don't even try if the comparison operands are weird. */
|
||
if (! general_operand (cmp_a, GET_MODE (cmp_a))
|
||
|| ! general_operand (cmp_b, GET_MODE (cmp_b)))
|
||
return NULL_RTX;
|
||
|
||
#if HAVE_conditional_move
|
||
return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
|
||
vtrue, vfalse, GET_MODE (x),
|
||
(code == LTU || code == GEU
|
||
|| code == LEU || code == GTU));
|
||
#else
|
||
/* We'll never get here, as noce_process_if_block doesn't call the
|
||
functions involved. Ifdef code, however, should be discouraged
|
||
because it leads to typos in the code not selected. However,
|
||
emit_conditional_move won't exist either. */
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
|
||
/* Try only simple constants and registers here. More complex cases
|
||
are handled in noce_try_cmove_arith after noce_try_store_flag_arith
|
||
has had a go at it. */
|
||
|
||
static int
|
||
noce_try_cmove (struct noce_if_info *if_info)
|
||
{
|
||
enum rtx_code code;
|
||
rtx target, seq;
|
||
|
||
if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
|
||
&& (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
|
||
{
|
||
start_sequence ();
|
||
|
||
code = GET_CODE (if_info->cond);
|
||
target = noce_emit_cmove (if_info, if_info->x, code,
|
||
XEXP (if_info->cond, 0),
|
||
XEXP (if_info->cond, 1),
|
||
if_info->a, if_info->b);
|
||
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
else
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Try more complex cases involving conditional_move. */
|
||
|
||
static int
|
||
noce_try_cmove_arith (struct noce_if_info *if_info)
|
||
{
|
||
rtx a = if_info->a;
|
||
rtx b = if_info->b;
|
||
rtx x = if_info->x;
|
||
rtx orig_a, orig_b;
|
||
rtx insn_a, insn_b;
|
||
rtx tmp, target;
|
||
int is_mem = 0;
|
||
int insn_cost;
|
||
enum rtx_code code;
|
||
|
||
/* A conditional move from two memory sources is equivalent to a
|
||
conditional on their addresses followed by a load. Don't do this
|
||
early because it'll screw alias analysis. Note that we've
|
||
already checked for no side effects. */
|
||
if (! no_new_pseudos && cse_not_expected
|
||
&& MEM_P (a) && MEM_P (b)
|
||
&& BRANCH_COST >= 5)
|
||
{
|
||
a = XEXP (a, 0);
|
||
b = XEXP (b, 0);
|
||
x = gen_reg_rtx (Pmode);
|
||
is_mem = 1;
|
||
}
|
||
|
||
/* ??? We could handle this if we knew that a load from A or B could
|
||
not fault. This is also true if we've already loaded
|
||
from the address along the path from ENTRY. */
|
||
else if (may_trap_p (a) || may_trap_p (b))
|
||
return FALSE;
|
||
|
||
/* if (test) x = a + b; else x = c - d;
|
||
=> y = a + b;
|
||
x = c - d;
|
||
if (test)
|
||
x = y;
|
||
*/
|
||
|
||
code = GET_CODE (if_info->cond);
|
||
insn_a = if_info->insn_a;
|
||
insn_b = if_info->insn_b;
|
||
|
||
/* Total insn_rtx_cost should be smaller than branch cost. Exit
|
||
if insn_rtx_cost can't be estimated. */
|
||
if (insn_a)
|
||
{
|
||
insn_cost = insn_rtx_cost (PATTERN (insn_a));
|
||
if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
|
||
return FALSE;
|
||
}
|
||
else
|
||
insn_cost = 0;
|
||
|
||
if (insn_b)
|
||
{
|
||
insn_cost += insn_rtx_cost (PATTERN (insn_b));
|
||
if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Possibly rearrange operands to make things come out more natural. */
|
||
if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
|
||
{
|
||
int reversep = 0;
|
||
if (rtx_equal_p (b, x))
|
||
reversep = 1;
|
||
else if (general_operand (b, GET_MODE (b)))
|
||
reversep = 1;
|
||
|
||
if (reversep)
|
||
{
|
||
code = reversed_comparison_code (if_info->cond, if_info->jump);
|
||
tmp = a, a = b, b = tmp;
|
||
tmp = insn_a, insn_a = insn_b, insn_b = tmp;
|
||
}
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
orig_a = a;
|
||
orig_b = b;
|
||
|
||
/* If either operand is complex, load it into a register first.
|
||
The best way to do this is to copy the original insn. In this
|
||
way we preserve any clobbers etc that the insn may have had.
|
||
This is of course not possible in the IS_MEM case. */
|
||
if (! general_operand (a, GET_MODE (a)))
|
||
{
|
||
rtx set;
|
||
|
||
if (no_new_pseudos)
|
||
goto end_seq_and_fail;
|
||
|
||
if (is_mem)
|
||
{
|
||
tmp = gen_reg_rtx (GET_MODE (a));
|
||
tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
|
||
}
|
||
else if (! insn_a)
|
||
goto end_seq_and_fail;
|
||
else
|
||
{
|
||
a = gen_reg_rtx (GET_MODE (a));
|
||
tmp = copy_rtx (insn_a);
|
||
set = single_set (tmp);
|
||
SET_DEST (set) = a;
|
||
tmp = emit_insn (PATTERN (tmp));
|
||
}
|
||
if (recog_memoized (tmp) < 0)
|
||
goto end_seq_and_fail;
|
||
}
|
||
if (! general_operand (b, GET_MODE (b)))
|
||
{
|
||
rtx set, last;
|
||
|
||
if (no_new_pseudos)
|
||
goto end_seq_and_fail;
|
||
|
||
if (is_mem)
|
||
{
|
||
tmp = gen_reg_rtx (GET_MODE (b));
|
||
tmp = gen_rtx_SET (VOIDmode, tmp, b);
|
||
}
|
||
else if (! insn_b)
|
||
goto end_seq_and_fail;
|
||
else
|
||
{
|
||
b = gen_reg_rtx (GET_MODE (b));
|
||
tmp = copy_rtx (insn_b);
|
||
set = single_set (tmp);
|
||
SET_DEST (set) = b;
|
||
tmp = PATTERN (tmp);
|
||
}
|
||
|
||
/* If insn to set up A clobbers any registers B depends on, try to
|
||
swap insn that sets up A with the one that sets up B. If even
|
||
that doesn't help, punt. */
|
||
last = get_last_insn ();
|
||
if (last && modified_in_p (orig_b, last))
|
||
{
|
||
tmp = emit_insn_before (tmp, get_insns ());
|
||
if (modified_in_p (orig_a, tmp))
|
||
goto end_seq_and_fail;
|
||
}
|
||
else
|
||
tmp = emit_insn (tmp);
|
||
|
||
if (recog_memoized (tmp) < 0)
|
||
goto end_seq_and_fail;
|
||
}
|
||
|
||
target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
|
||
XEXP (if_info->cond, 1), a, b);
|
||
|
||
if (! target)
|
||
goto end_seq_and_fail;
|
||
|
||
/* If we're handling a memory for above, emit the load now. */
|
||
if (is_mem)
|
||
{
|
||
tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
|
||
|
||
/* Copy over flags as appropriate. */
|
||
if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
|
||
MEM_VOLATILE_P (tmp) = 1;
|
||
if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
|
||
MEM_IN_STRUCT_P (tmp) = 1;
|
||
if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
|
||
MEM_SCALAR_P (tmp) = 1;
|
||
if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
|
||
set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
|
||
set_mem_align (tmp,
|
||
MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
|
||
|
||
noce_emit_move_insn (if_info->x, tmp);
|
||
}
|
||
else if (target != x)
|
||
noce_emit_move_insn (x, target);
|
||
|
||
tmp = end_ifcvt_sequence (if_info);
|
||
if (!tmp)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
|
||
end_seq_and_fail:
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
/* For most cases, the simplified condition we found is the best
|
||
choice, but this is not the case for the min/max/abs transforms.
|
||
For these we wish to know that it is A or B in the condition. */
|
||
|
||
static rtx
|
||
noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
|
||
rtx *earliest)
|
||
{
|
||
rtx cond, set, insn;
|
||
int reverse;
|
||
|
||
/* If target is already mentioned in the known condition, return it. */
|
||
if (reg_mentioned_p (target, if_info->cond))
|
||
{
|
||
*earliest = if_info->cond_earliest;
|
||
return if_info->cond;
|
||
}
|
||
|
||
set = pc_set (if_info->jump);
|
||
cond = XEXP (SET_SRC (set), 0);
|
||
reverse
|
||
= GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
|
||
&& XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
|
||
|
||
/* If we're looking for a constant, try to make the conditional
|
||
have that constant in it. There are two reasons why it may
|
||
not have the constant we want:
|
||
|
||
1. GCC may have needed to put the constant in a register, because
|
||
the target can't compare directly against that constant. For
|
||
this case, we look for a SET immediately before the comparison
|
||
that puts a constant in that register.
|
||
|
||
2. GCC may have canonicalized the conditional, for example
|
||
replacing "if x < 4" with "if x <= 3". We can undo that (or
|
||
make equivalent types of changes) to get the constants we need
|
||
if they're off by one in the right direction. */
|
||
|
||
if (GET_CODE (target) == CONST_INT)
|
||
{
|
||
enum rtx_code code = GET_CODE (if_info->cond);
|
||
rtx op_a = XEXP (if_info->cond, 0);
|
||
rtx op_b = XEXP (if_info->cond, 1);
|
||
rtx prev_insn;
|
||
|
||
/* First, look to see if we put a constant in a register. */
|
||
prev_insn = prev_nonnote_insn (if_info->cond_earliest);
|
||
if (prev_insn
|
||
&& INSN_P (prev_insn)
|
||
&& GET_CODE (PATTERN (prev_insn)) == SET)
|
||
{
|
||
rtx src = find_reg_equal_equiv_note (prev_insn);
|
||
if (!src)
|
||
src = SET_SRC (PATTERN (prev_insn));
|
||
if (GET_CODE (src) == CONST_INT)
|
||
{
|
||
if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
|
||
op_a = src;
|
||
else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
|
||
op_b = src;
|
||
|
||
if (GET_CODE (op_a) == CONST_INT)
|
||
{
|
||
rtx tmp = op_a;
|
||
op_a = op_b;
|
||
op_b = tmp;
|
||
code = swap_condition (code);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now, look to see if we can get the right constant by
|
||
adjusting the conditional. */
|
||
if (GET_CODE (op_b) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT desired_val = INTVAL (target);
|
||
HOST_WIDE_INT actual_val = INTVAL (op_b);
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
if (actual_val == desired_val + 1)
|
||
{
|
||
code = LE;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
case LE:
|
||
if (actual_val == desired_val - 1)
|
||
{
|
||
code = LT;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
case GT:
|
||
if (actual_val == desired_val - 1)
|
||
{
|
||
code = GE;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
case GE:
|
||
if (actual_val == desired_val + 1)
|
||
{
|
||
code = GT;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we made any changes, generate a new conditional that is
|
||
equivalent to what we started with, but has the right
|
||
constants in it. */
|
||
if (code != GET_CODE (if_info->cond)
|
||
|| op_a != XEXP (if_info->cond, 0)
|
||
|| op_b != XEXP (if_info->cond, 1))
|
||
{
|
||
cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
|
||
*earliest = if_info->cond_earliest;
|
||
return cond;
|
||
}
|
||
}
|
||
|
||
cond = canonicalize_condition (if_info->jump, cond, reverse,
|
||
earliest, target, false, true);
|
||
if (! cond || ! reg_mentioned_p (target, cond))
|
||
return NULL;
|
||
|
||
/* We almost certainly searched back to a different place.
|
||
Need to re-verify correct lifetimes. */
|
||
|
||
/* X may not be mentioned in the range (cond_earliest, jump]. */
|
||
for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
|
||
if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
|
||
return NULL;
|
||
|
||
/* A and B may not be modified in the range [cond_earliest, jump). */
|
||
for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& (modified_in_p (if_info->a, insn)
|
||
|| modified_in_p (if_info->b, insn)))
|
||
return NULL;
|
||
|
||
return cond;
|
||
}
|
||
|
||
/* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
|
||
|
||
static int
|
||
noce_try_minmax (struct noce_if_info *if_info)
|
||
{
|
||
rtx cond, earliest, target, seq;
|
||
enum rtx_code code, op;
|
||
int unsignedp;
|
||
|
||
/* ??? Can't guarantee that expand_binop won't create pseudos. */
|
||
if (no_new_pseudos)
|
||
return FALSE;
|
||
|
||
/* ??? Reject modes with NaNs or signed zeros since we don't know how
|
||
they will be resolved with an SMIN/SMAX. It wouldn't be too hard
|
||
to get the target to tell us... */
|
||
if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
|
||
|| HONOR_NANS (GET_MODE (if_info->x)))
|
||
return FALSE;
|
||
|
||
cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
|
||
if (!cond)
|
||
return FALSE;
|
||
|
||
/* Verify the condition is of the form we expect, and canonicalize
|
||
the comparison code. */
|
||
code = GET_CODE (cond);
|
||
if (rtx_equal_p (XEXP (cond, 0), if_info->a))
|
||
{
|
||
if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
|
||
return FALSE;
|
||
}
|
||
else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
|
||
{
|
||
if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
|
||
return FALSE;
|
||
code = swap_condition (code);
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
/* Determine what sort of operation this is. Note that the code is for
|
||
a taken branch, so the code->operation mapping appears backwards. */
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
case LE:
|
||
case UNLT:
|
||
case UNLE:
|
||
op = SMAX;
|
||
unsignedp = 0;
|
||
break;
|
||
case GT:
|
||
case GE:
|
||
case UNGT:
|
||
case UNGE:
|
||
op = SMIN;
|
||
unsignedp = 0;
|
||
break;
|
||
case LTU:
|
||
case LEU:
|
||
op = UMAX;
|
||
unsignedp = 1;
|
||
break;
|
||
case GTU:
|
||
case GEU:
|
||
op = UMIN;
|
||
unsignedp = 1;
|
||
break;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
target = expand_simple_binop (GET_MODE (if_info->x), op,
|
||
if_info->a, if_info->b,
|
||
if_info->x, unsignedp, OPTAB_WIDEN);
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
|
||
if_info->cond = cond;
|
||
if_info->cond_earliest = earliest;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
|
||
|
||
static int
|
||
noce_try_abs (struct noce_if_info *if_info)
|
||
{
|
||
rtx cond, earliest, target, seq, a, b, c;
|
||
int negate;
|
||
|
||
/* ??? Can't guarantee that expand_binop won't create pseudos. */
|
||
if (no_new_pseudos)
|
||
return FALSE;
|
||
|
||
/* Recognize A and B as constituting an ABS or NABS. The canonical
|
||
form is a branch around the negation, taken when the object is the
|
||
first operand of a comparison against 0 that evaluates to true. */
|
||
a = if_info->a;
|
||
b = if_info->b;
|
||
if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
|
||
negate = 0;
|
||
else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
|
||
{
|
||
c = a; a = b; b = c;
|
||
negate = 1;
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
cond = noce_get_alt_condition (if_info, b, &earliest);
|
||
if (!cond)
|
||
return FALSE;
|
||
|
||
/* Verify the condition is of the form we expect. */
|
||
if (rtx_equal_p (XEXP (cond, 0), b))
|
||
c = XEXP (cond, 1);
|
||
else if (rtx_equal_p (XEXP (cond, 1), b))
|
||
{
|
||
c = XEXP (cond, 0);
|
||
negate = !negate;
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
/* Verify that C is zero. Search one step backward for a
|
||
REG_EQUAL note or a simple source if necessary. */
|
||
if (REG_P (c))
|
||
{
|
||
rtx set, insn = prev_nonnote_insn (earliest);
|
||
if (insn
|
||
&& (set = single_set (insn))
|
||
&& rtx_equal_p (SET_DEST (set), c))
|
||
{
|
||
rtx note = find_reg_equal_equiv_note (insn);
|
||
if (note)
|
||
c = XEXP (note, 0);
|
||
else
|
||
c = SET_SRC (set);
|
||
}
|
||
else
|
||
return FALSE;
|
||
}
|
||
if (MEM_P (c)
|
||
&& GET_CODE (XEXP (c, 0)) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
|
||
c = get_pool_constant (XEXP (c, 0));
|
||
|
||
/* Work around funny ideas get_condition has wrt canonicalization.
|
||
Note that these rtx constants are known to be CONST_INT, and
|
||
therefore imply integer comparisons. */
|
||
if (c == constm1_rtx && GET_CODE (cond) == GT)
|
||
;
|
||
else if (c == const1_rtx && GET_CODE (cond) == LT)
|
||
;
|
||
else if (c != CONST0_RTX (GET_MODE (b)))
|
||
return FALSE;
|
||
|
||
/* Determine what sort of operation this is. */
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case LT:
|
||
case LE:
|
||
case UNLT:
|
||
case UNLE:
|
||
negate = !negate;
|
||
break;
|
||
case GT:
|
||
case GE:
|
||
case UNGT:
|
||
case UNGE:
|
||
break;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
|
||
|
||
/* ??? It's a quandary whether cmove would be better here, especially
|
||
for integers. Perhaps combine will clean things up. */
|
||
if (target && negate)
|
||
target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
|
||
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
|
||
if_info->cond = cond;
|
||
if_info->cond_earliest = earliest;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
|
||
|
||
static int
|
||
noce_try_sign_mask (struct noce_if_info *if_info)
|
||
{
|
||
rtx cond, t, m, c, seq;
|
||
enum machine_mode mode;
|
||
enum rtx_code code;
|
||
bool b_unconditional;
|
||
|
||
if (no_new_pseudos)
|
||
return FALSE;
|
||
|
||
cond = if_info->cond;
|
||
code = GET_CODE (cond);
|
||
m = XEXP (cond, 0);
|
||
c = XEXP (cond, 1);
|
||
|
||
t = NULL_RTX;
|
||
if (if_info->a == const0_rtx)
|
||
{
|
||
if ((code == LT && c == const0_rtx)
|
||
|| (code == LE && c == constm1_rtx))
|
||
t = if_info->b;
|
||
}
|
||
else if (if_info->b == const0_rtx)
|
||
{
|
||
if ((code == GE && c == const0_rtx)
|
||
|| (code == GT && c == constm1_rtx))
|
||
t = if_info->a;
|
||
}
|
||
|
||
if (! t || side_effects_p (t))
|
||
return FALSE;
|
||
|
||
/* We currently don't handle different modes. */
|
||
mode = GET_MODE (t);
|
||
if (GET_MODE (m) != mode)
|
||
return FALSE;
|
||
|
||
/* This is only profitable if T is cheap, or T is unconditionally
|
||
executed/evaluated in the original insn sequence. The latter
|
||
happens if INSN_B was taken from TEST_BB, or if there was no
|
||
INSN_B which can happen for e.g. conditional stores to memory. */
|
||
b_unconditional = (if_info->insn_b == NULL_RTX
|
||
|| BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb);
|
||
if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
|
||
&& (!b_unconditional
|
||
|| t != if_info->b))
|
||
return FALSE;
|
||
|
||
start_sequence ();
|
||
/* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
|
||
"(signed) m >> 31" directly. This benefits targets with specialized
|
||
insns to obtain the signmask, but still uses ashr_optab otherwise. */
|
||
m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
|
||
t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
|
||
: NULL_RTX;
|
||
|
||
if (!t)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
noce_emit_move_insn (if_info->x, t);
|
||
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Optimize away "if (x & C) x |= C" and similar bit manipulation
|
||
transformations. */
|
||
|
||
static int
|
||
noce_try_bitop (struct noce_if_info *if_info)
|
||
{
|
||
rtx cond, x, a, result, seq;
|
||
enum machine_mode mode;
|
||
enum rtx_code code;
|
||
int bitnum;
|
||
|
||
x = if_info->x;
|
||
cond = if_info->cond;
|
||
code = GET_CODE (cond);
|
||
|
||
/* Check for no else condition. */
|
||
if (! rtx_equal_p (x, if_info->b))
|
||
return FALSE;
|
||
|
||
/* Check for a suitable condition. */
|
||
if (code != NE && code != EQ)
|
||
return FALSE;
|
||
if (XEXP (cond, 1) != const0_rtx)
|
||
return FALSE;
|
||
cond = XEXP (cond, 0);
|
||
|
||
/* ??? We could also handle AND here. */
|
||
if (GET_CODE (cond) == ZERO_EXTRACT)
|
||
{
|
||
if (XEXP (cond, 1) != const1_rtx
|
||
|| GET_CODE (XEXP (cond, 2)) != CONST_INT
|
||
|| ! rtx_equal_p (x, XEXP (cond, 0)))
|
||
return FALSE;
|
||
bitnum = INTVAL (XEXP (cond, 2));
|
||
mode = GET_MODE (x);
|
||
if (BITS_BIG_ENDIAN)
|
||
bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
|
||
if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
|
||
return FALSE;
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
a = if_info->a;
|
||
if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
|
||
{
|
||
/* Check for "if (X & C) x = x op C". */
|
||
if (! rtx_equal_p (x, XEXP (a, 0))
|
||
|| GET_CODE (XEXP (a, 1)) != CONST_INT
|
||
|| (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
|
||
!= (unsigned HOST_WIDE_INT) 1 << bitnum)
|
||
return FALSE;
|
||
|
||
/* if ((x & C) == 0) x |= C; is transformed to x |= C. */
|
||
/* if ((x & C) != 0) x |= C; is transformed to nothing. */
|
||
if (GET_CODE (a) == IOR)
|
||
result = (code == NE) ? a : NULL_RTX;
|
||
else if (code == NE)
|
||
{
|
||
/* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
|
||
result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
|
||
result = simplify_gen_binary (IOR, mode, x, result);
|
||
}
|
||
else
|
||
{
|
||
/* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
|
||
result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
|
||
result = simplify_gen_binary (AND, mode, x, result);
|
||
}
|
||
}
|
||
else if (GET_CODE (a) == AND)
|
||
{
|
||
/* Check for "if (X & C) x &= ~C". */
|
||
if (! rtx_equal_p (x, XEXP (a, 0))
|
||
|| GET_CODE (XEXP (a, 1)) != CONST_INT
|
||
|| (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
|
||
!= (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
|
||
return FALSE;
|
||
|
||
/* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
|
||
/* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
|
||
result = (code == EQ) ? a : NULL_RTX;
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
if (result)
|
||
{
|
||
start_sequence ();
|
||
noce_emit_move_insn (x, result);
|
||
seq = end_ifcvt_sequence (if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
emit_insn_before_setloc (seq, if_info->jump,
|
||
INSN_LOCATOR (if_info->insn_a));
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Similar to get_condition, only the resulting condition must be
|
||
valid at JUMP, instead of at EARLIEST. */
|
||
|
||
static rtx
|
||
noce_get_condition (rtx jump, rtx *earliest)
|
||
{
|
||
rtx cond, set, tmp;
|
||
bool reverse;
|
||
|
||
if (! any_condjump_p (jump))
|
||
return NULL_RTX;
|
||
|
||
set = pc_set (jump);
|
||
|
||
/* If this branches to JUMP_LABEL when the condition is false,
|
||
reverse the condition. */
|
||
reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
|
||
&& XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
|
||
|
||
/* If the condition variable is a register and is MODE_INT, accept it. */
|
||
|
||
cond = XEXP (SET_SRC (set), 0);
|
||
tmp = XEXP (cond, 0);
|
||
if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
|
||
{
|
||
*earliest = jump;
|
||
|
||
if (reverse)
|
||
cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
|
||
GET_MODE (cond), tmp, XEXP (cond, 1));
|
||
return cond;
|
||
}
|
||
|
||
/* Otherwise, fall back on canonicalize_condition to do the dirty
|
||
work of manipulating MODE_CC values and COMPARE rtx codes. */
|
||
return canonicalize_condition (jump, cond, reverse, earliest,
|
||
NULL_RTX, false, true);
|
||
}
|
||
|
||
/* Initialize for a simple IF-THEN or IF-THEN-ELSE block. We will not
|
||
be using conditional execution. Set some fields of IF_INFO based
|
||
on CE_INFO: test_bb, cond, jump, cond_earliest. Return TRUE if
|
||
things look OK. */
|
||
|
||
static int
|
||
noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
|
||
{
|
||
basic_block test_bb = ce_info->test_bb;
|
||
rtx cond, jump;
|
||
|
||
/* If test is comprised of && or || elements, don't handle it unless
|
||
it is the special case of && elements without an ELSE block. */
|
||
if (ce_info->num_multiple_test_blocks)
|
||
{
|
||
if (ce_info->else_bb || !ce_info->and_and_p)
|
||
return FALSE;
|
||
|
||
ce_info->test_bb = test_bb = ce_info->last_test_bb;
|
||
ce_info->num_multiple_test_blocks = 0;
|
||
ce_info->num_and_and_blocks = 0;
|
||
ce_info->num_or_or_blocks = 0;
|
||
}
|
||
|
||
/* If this is not a standard conditional jump, we can't parse it. */
|
||
jump = BB_END (test_bb);
|
||
cond = noce_get_condition (jump, &if_info->cond_earliest);
|
||
if (!cond)
|
||
return FALSE;
|
||
|
||
/* If the conditional jump is more than just a conditional
|
||
jump, then we can not do if-conversion on this block. */
|
||
if (! onlyjump_p (jump))
|
||
return FALSE;
|
||
|
||
/* We must be comparing objects whose modes imply the size. */
|
||
if (GET_MODE (XEXP (cond, 0)) == BLKmode)
|
||
return FALSE;
|
||
|
||
if_info->test_bb = test_bb;
|
||
if_info->cond = cond;
|
||
if_info->jump = jump;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return true if OP is ok for if-then-else processing. */
|
||
|
||
static int
|
||
noce_operand_ok (rtx op)
|
||
{
|
||
/* We special-case memories, so handle any of them with
|
||
no address side effects. */
|
||
if (MEM_P (op))
|
||
return ! side_effects_p (XEXP (op, 0));
|
||
|
||
if (side_effects_p (op))
|
||
return FALSE;
|
||
|
||
return ! may_trap_p (op);
|
||
}
|
||
|
||
/* Return true if a write into MEM may trap or fault. */
|
||
|
||
static bool
|
||
noce_mem_write_may_trap_or_fault_p (rtx mem)
|
||
{
|
||
rtx addr;
|
||
|
||
if (MEM_READONLY_P (mem))
|
||
return true;
|
||
|
||
if (may_trap_or_fault_p (mem))
|
||
return true;
|
||
|
||
addr = XEXP (mem, 0);
|
||
|
||
/* Call target hook to avoid the effects of -fpic etc.... */
|
||
addr = targetm.delegitimize_address (addr);
|
||
|
||
while (addr)
|
||
switch (GET_CODE (addr))
|
||
{
|
||
case CONST:
|
||
case PRE_DEC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case POST_INC:
|
||
case POST_MODIFY:
|
||
addr = XEXP (addr, 0);
|
||
break;
|
||
case LO_SUM:
|
||
case PRE_MODIFY:
|
||
addr = XEXP (addr, 1);
|
||
break;
|
||
case PLUS:
|
||
if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
addr = XEXP (addr, 0);
|
||
else
|
||
return false;
|
||
break;
|
||
case LABEL_REF:
|
||
return true;
|
||
case SYMBOL_REF:
|
||
if (SYMBOL_REF_DECL (addr)
|
||
&& decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
|
||
return true;
|
||
return false;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
|
||
without using conditional execution. Return TRUE if we were
|
||
successful at converting the block. */
|
||
|
||
static int
|
||
noce_process_if_block (struct ce_if_block * ce_info)
|
||
{
|
||
basic_block test_bb = ce_info->test_bb; /* test block */
|
||
basic_block then_bb = ce_info->then_bb; /* THEN */
|
||
basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
|
||
basic_block join_bb;
|
||
struct noce_if_info if_info;
|
||
rtx insn_a, insn_b;
|
||
rtx set_a, set_b;
|
||
rtx orig_x, x, a, b;
|
||
rtx jump, cond;
|
||
|
||
/* We're looking for patterns of the form
|
||
|
||
(1) if (...) x = a; else x = b;
|
||
(2) x = b; if (...) x = a;
|
||
(3) if (...) x = a; // as if with an initial x = x.
|
||
|
||
The later patterns require jumps to be more expensive.
|
||
|
||
??? For future expansion, look for multiple X in such patterns. */
|
||
|
||
if (!noce_init_if_info (ce_info, &if_info))
|
||
return FALSE;
|
||
|
||
cond = if_info.cond;
|
||
jump = if_info.jump;
|
||
|
||
/* Look for one of the potential sets. */
|
||
insn_a = first_active_insn (then_bb);
|
||
if (! insn_a
|
||
|| insn_a != last_active_insn (then_bb, FALSE)
|
||
|| (set_a = single_set (insn_a)) == NULL_RTX)
|
||
return FALSE;
|
||
|
||
x = SET_DEST (set_a);
|
||
a = SET_SRC (set_a);
|
||
|
||
/* Look for the other potential set. Make sure we've got equivalent
|
||
destinations. */
|
||
/* ??? This is overconservative. Storing to two different mems is
|
||
as easy as conditionally computing the address. Storing to a
|
||
single mem merely requires a scratch memory to use as one of the
|
||
destination addresses; often the memory immediately below the
|
||
stack pointer is available for this. */
|
||
set_b = NULL_RTX;
|
||
if (else_bb)
|
||
{
|
||
insn_b = first_active_insn (else_bb);
|
||
if (! insn_b
|
||
|| insn_b != last_active_insn (else_bb, FALSE)
|
||
|| (set_b = single_set (insn_b)) == NULL_RTX
|
||
|| ! rtx_equal_p (x, SET_DEST (set_b)))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
insn_b = prev_nonnote_insn (if_info.cond_earliest);
|
||
/* We're going to be moving the evaluation of B down from above
|
||
COND_EARLIEST to JUMP. Make sure the relevant data is still
|
||
intact. */
|
||
if (! insn_b
|
||
|| !NONJUMP_INSN_P (insn_b)
|
||
|| (set_b = single_set (insn_b)) == NULL_RTX
|
||
|| ! rtx_equal_p (x, SET_DEST (set_b))
|
||
|| reg_overlap_mentioned_p (x, SET_SRC (set_b))
|
||
|| modified_between_p (SET_SRC (set_b),
|
||
PREV_INSN (if_info.cond_earliest), jump)
|
||
/* Likewise with X. In particular this can happen when
|
||
noce_get_condition looks farther back in the instruction
|
||
stream than one might expect. */
|
||
|| reg_overlap_mentioned_p (x, cond)
|
||
|| reg_overlap_mentioned_p (x, a)
|
||
|| modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
|
||
insn_b = set_b = NULL_RTX;
|
||
}
|
||
|
||
/* If x has side effects then only the if-then-else form is safe to
|
||
convert. But even in that case we would need to restore any notes
|
||
(such as REG_INC) at then end. That can be tricky if
|
||
noce_emit_move_insn expands to more than one insn, so disable the
|
||
optimization entirely for now if there are side effects. */
|
||
if (side_effects_p (x))
|
||
return FALSE;
|
||
|
||
b = (set_b ? SET_SRC (set_b) : x);
|
||
|
||
/* Only operate on register destinations, and even then avoid extending
|
||
the lifetime of hard registers on small register class machines. */
|
||
orig_x = x;
|
||
if (!REG_P (x)
|
||
|| (SMALL_REGISTER_CLASSES
|
||
&& REGNO (x) < FIRST_PSEUDO_REGISTER))
|
||
{
|
||
if (no_new_pseudos || GET_MODE (x) == BLKmode)
|
||
return FALSE;
|
||
|
||
if (GET_MODE (x) == ZERO_EXTRACT
|
||
&& (GET_CODE (XEXP (x, 1)) != CONST_INT
|
||
|| GET_CODE (XEXP (x, 2)) != CONST_INT))
|
||
return FALSE;
|
||
|
||
x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
|
||
? XEXP (x, 0) : x));
|
||
}
|
||
|
||
/* Don't operate on sources that may trap or are volatile. */
|
||
if (! noce_operand_ok (a) || ! noce_operand_ok (b))
|
||
return FALSE;
|
||
|
||
/* Set up the info block for our subroutines. */
|
||
if_info.insn_a = insn_a;
|
||
if_info.insn_b = insn_b;
|
||
if_info.x = x;
|
||
if_info.a = a;
|
||
if_info.b = b;
|
||
|
||
/* Try optimizations in some approximation of a useful order. */
|
||
/* ??? Should first look to see if X is live incoming at all. If it
|
||
isn't, we don't need anything but an unconditional set. */
|
||
|
||
/* Look and see if A and B are really the same. Avoid creating silly
|
||
cmove constructs that no one will fix up later. */
|
||
if (rtx_equal_p (a, b))
|
||
{
|
||
/* If we have an INSN_B, we don't have to create any new rtl. Just
|
||
move the instruction that we already have. If we don't have an
|
||
INSN_B, that means that A == X, and we've got a noop move. In
|
||
that case don't do anything and let the code below delete INSN_A. */
|
||
if (insn_b && else_bb)
|
||
{
|
||
rtx note;
|
||
|
||
if (else_bb && insn_b == BB_END (else_bb))
|
||
BB_END (else_bb) = PREV_INSN (insn_b);
|
||
reorder_insns (insn_b, insn_b, PREV_INSN (jump));
|
||
|
||
/* If there was a REG_EQUAL note, delete it since it may have been
|
||
true due to this insn being after a jump. */
|
||
if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
|
||
remove_note (insn_b, note);
|
||
|
||
insn_b = NULL_RTX;
|
||
}
|
||
/* If we have "x = b; if (...) x = a;", and x has side-effects, then
|
||
x must be executed twice. */
|
||
else if (insn_b && side_effects_p (orig_x))
|
||
return FALSE;
|
||
|
||
x = orig_x;
|
||
goto success;
|
||
}
|
||
|
||
/* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
|
||
for optimizations if writing to x may trap or fault, i.e. it's a memory
|
||
other than a static var or a stack slot, is misaligned on strict
|
||
aligned machines or is read-only.
|
||
If x is a read-only memory, then the program is valid only if we
|
||
avoid the store into it. If there are stores on both the THEN and
|
||
ELSE arms, then we can go ahead with the conversion; either the
|
||
program is broken, or the condition is always false such that the
|
||
other memory is selected. */
|
||
if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
|
||
return FALSE;
|
||
|
||
if (noce_try_move (&if_info))
|
||
goto success;
|
||
if (noce_try_store_flag (&if_info))
|
||
goto success;
|
||
if (noce_try_bitop (&if_info))
|
||
goto success;
|
||
if (noce_try_minmax (&if_info))
|
||
goto success;
|
||
if (noce_try_abs (&if_info))
|
||
goto success;
|
||
if (HAVE_conditional_move
|
||
&& noce_try_cmove (&if_info))
|
||
goto success;
|
||
if (! HAVE_conditional_execution)
|
||
{
|
||
if (noce_try_store_flag_constants (&if_info))
|
||
goto success;
|
||
if (noce_try_addcc (&if_info))
|
||
goto success;
|
||
if (noce_try_store_flag_mask (&if_info))
|
||
goto success;
|
||
if (HAVE_conditional_move
|
||
&& noce_try_cmove_arith (&if_info))
|
||
goto success;
|
||
if (noce_try_sign_mask (&if_info))
|
||
goto success;
|
||
}
|
||
|
||
return FALSE;
|
||
|
||
success:
|
||
|
||
/* If we used a temporary, fix it up now. */
|
||
if (orig_x != x)
|
||
{
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
noce_emit_move_insn (orig_x, x);
|
||
seq = get_insns ();
|
||
set_used_flags (orig_x);
|
||
unshare_all_rtl_in_chain (seq);
|
||
end_sequence ();
|
||
|
||
emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
|
||
}
|
||
|
||
/* The original THEN and ELSE blocks may now be removed. The test block
|
||
must now jump to the join block. If the test block and the join block
|
||
can be merged, do so. */
|
||
|
||
join_bb = single_succ (then_bb);
|
||
if (else_bb)
|
||
{
|
||
delete_basic_block (else_bb);
|
||
num_true_changes++;
|
||
}
|
||
else
|
||
remove_edge (find_edge (test_bb, join_bb));
|
||
|
||
remove_edge (find_edge (then_bb, join_bb));
|
||
redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
|
||
delete_basic_block (then_bb);
|
||
num_true_changes++;
|
||
|
||
if (can_merge_blocks_p (test_bb, join_bb))
|
||
{
|
||
merge_blocks (test_bb, join_bb);
|
||
num_true_changes++;
|
||
}
|
||
|
||
num_updated_if_blocks++;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Check whether a block is suitable for conditional move conversion.
|
||
Every insn must be a simple set of a register to a constant or a
|
||
register. For each assignment, store the value in the array VALS,
|
||
indexed by register number, then store the register number in
|
||
REGS. COND is the condition we will test. */
|
||
|
||
static int
|
||
check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) *regs, rtx cond)
|
||
{
|
||
rtx insn;
|
||
|
||
/* We can only handle simple jumps at the end of the basic block.
|
||
It is almost impossible to update the CFG otherwise. */
|
||
insn = BB_END (bb);
|
||
if (JUMP_P (insn) && !onlyjump_p (insn))
|
||
return FALSE;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
rtx set, dest, src;
|
||
|
||
if (!INSN_P (insn) || JUMP_P (insn))
|
||
continue;
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return FALSE;
|
||
|
||
dest = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
if (!REG_P (dest)
|
||
|| (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
|
||
return FALSE;
|
||
|
||
if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
|
||
return FALSE;
|
||
|
||
if (side_effects_p (src) || side_effects_p (dest))
|
||
return FALSE;
|
||
|
||
if (may_trap_p (src) || may_trap_p (dest))
|
||
return FALSE;
|
||
|
||
/* Don't try to handle this if the source register was
|
||
modified earlier in the block. */
|
||
if ((REG_P (src)
|
||
&& vals[REGNO (src)] != NULL)
|
||
|| (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
|
||
&& vals[REGNO (SUBREG_REG (src))] != NULL))
|
||
return FALSE;
|
||
|
||
/* Don't try to handle this if the destination register was
|
||
modified earlier in the block. */
|
||
if (vals[REGNO (dest)] != NULL)
|
||
return FALSE;
|
||
|
||
/* Don't try to handle this if the condition uses the
|
||
destination register. */
|
||
if (reg_overlap_mentioned_p (dest, cond))
|
||
return FALSE;
|
||
|
||
/* Don't try to handle this if the source register is modified
|
||
later in the block. */
|
||
if (!CONSTANT_P (src)
|
||
&& modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
|
||
return FALSE;
|
||
|
||
vals[REGNO (dest)] = src;
|
||
|
||
VEC_safe_push (int, heap, regs, REGNO (dest));
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Given a basic block BB suitable for conditional move conversion,
|
||
a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
|
||
register values depending on COND, emit the insns in the block as
|
||
conditional moves. If ELSE_BLOCK is true, THEN_BB was already
|
||
processed. The caller has started a sequence for the conversion.
|
||
Return true if successful, false if something goes wrong. */
|
||
|
||
static bool
|
||
cond_move_convert_if_block (struct noce_if_info *if_infop,
|
||
basic_block bb, rtx cond,
|
||
rtx *then_vals, rtx *else_vals,
|
||
bool else_block_p)
|
||
{
|
||
enum rtx_code code;
|
||
rtx insn, cond_arg0, cond_arg1;
|
||
|
||
code = GET_CODE (cond);
|
||
cond_arg0 = XEXP (cond, 0);
|
||
cond_arg1 = XEXP (cond, 1);
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
rtx set, target, dest, t, e;
|
||
unsigned int regno;
|
||
|
||
if (!INSN_P (insn) || JUMP_P (insn))
|
||
continue;
|
||
set = single_set (insn);
|
||
gcc_assert (set && REG_P (SET_DEST (set)));
|
||
|
||
dest = SET_DEST (set);
|
||
regno = REGNO (dest);
|
||
|
||
t = then_vals[regno];
|
||
e = else_vals[regno];
|
||
|
||
if (else_block_p)
|
||
{
|
||
/* If this register was set in the then block, we already
|
||
handled this case there. */
|
||
if (t)
|
||
continue;
|
||
t = dest;
|
||
gcc_assert (e);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (t);
|
||
if (!e)
|
||
e = dest;
|
||
}
|
||
|
||
target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
|
||
t, e);
|
||
if (!target)
|
||
return false;
|
||
|
||
if (target != dest)
|
||
noce_emit_move_insn (dest, target);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
|
||
using only conditional moves. Return TRUE if we were successful at
|
||
converting the block. */
|
||
|
||
static int
|
||
cond_move_process_if_block (struct ce_if_block *ce_info)
|
||
{
|
||
basic_block test_bb = ce_info->test_bb;
|
||
basic_block then_bb = ce_info->then_bb;
|
||
basic_block else_bb = ce_info->else_bb;
|
||
basic_block join_bb;
|
||
struct noce_if_info if_info;
|
||
rtx jump, cond, seq, loc_insn;
|
||
int max_reg, size, c, reg;
|
||
rtx *then_vals;
|
||
rtx *else_vals;
|
||
VEC (int, heap) *then_regs = NULL;
|
||
VEC (int, heap) *else_regs = NULL;
|
||
unsigned int i;
|
||
|
||
if (!HAVE_conditional_move || no_new_pseudos)
|
||
return FALSE;
|
||
|
||
memset (&if_info, 0, sizeof if_info);
|
||
|
||
if (!noce_init_if_info (ce_info, &if_info))
|
||
return FALSE;
|
||
|
||
cond = if_info.cond;
|
||
jump = if_info.jump;
|
||
|
||
/* Build a mapping for each block to the value used for each
|
||
register. */
|
||
max_reg = max_reg_num ();
|
||
size = (max_reg + 1) * sizeof (rtx);
|
||
then_vals = (rtx *) alloca (size);
|
||
else_vals = (rtx *) alloca (size);
|
||
memset (then_vals, 0, size);
|
||
memset (else_vals, 0, size);
|
||
|
||
/* Make sure the blocks are suitable. */
|
||
if (!check_cond_move_block (then_bb, then_vals, then_regs, cond)
|
||
|| (else_bb && !check_cond_move_block (else_bb, else_vals, else_regs, cond)))
|
||
return FALSE;
|
||
|
||
/* Make sure the blocks can be used together. If the same register
|
||
is set in both blocks, and is not set to a constant in both
|
||
cases, then both blocks must set it to the same register. We
|
||
have already verified that if it is set to a register, that the
|
||
source register does not change after the assignment. Also count
|
||
the number of registers set in only one of the blocks. */
|
||
c = 0;
|
||
for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
|
||
{
|
||
if (!then_vals[reg] && !else_vals[reg])
|
||
continue;
|
||
|
||
if (!else_vals[reg])
|
||
++c;
|
||
else
|
||
{
|
||
if (!CONSTANT_P (then_vals[reg])
|
||
&& !CONSTANT_P (else_vals[reg])
|
||
&& !rtx_equal_p (then_vals[reg], else_vals[reg]))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Finish off c for MAX_CONDITIONAL_EXECUTE. */
|
||
for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
|
||
if (!then_vals[reg])
|
||
++c;
|
||
|
||
/* Make sure it is reasonable to convert this block. What matters
|
||
is the number of assignments currently made in only one of the
|
||
branches, since if we convert we are going to always execute
|
||
them. */
|
||
if (c > MAX_CONDITIONAL_EXECUTE)
|
||
return FALSE;
|
||
|
||
/* Try to emit the conditional moves. First do the then block,
|
||
then do anything left in the else blocks. */
|
||
start_sequence ();
|
||
if (!cond_move_convert_if_block (&if_info, then_bb, cond,
|
||
then_vals, else_vals, false)
|
||
|| (else_bb
|
||
&& !cond_move_convert_if_block (&if_info, else_bb, cond,
|
||
then_vals, else_vals, true)))
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
seq = end_ifcvt_sequence (&if_info);
|
||
if (!seq)
|
||
return FALSE;
|
||
|
||
loc_insn = first_active_insn (then_bb);
|
||
if (!loc_insn)
|
||
{
|
||
loc_insn = first_active_insn (else_bb);
|
||
gcc_assert (loc_insn);
|
||
}
|
||
emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
|
||
|
||
join_bb = single_succ (then_bb);
|
||
if (else_bb)
|
||
{
|
||
delete_basic_block (else_bb);
|
||
num_true_changes++;
|
||
}
|
||
else
|
||
remove_edge (find_edge (test_bb, join_bb));
|
||
|
||
remove_edge (find_edge (then_bb, join_bb));
|
||
redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
|
||
delete_basic_block (then_bb);
|
||
num_true_changes++;
|
||
|
||
if (can_merge_blocks_p (test_bb, join_bb))
|
||
{
|
||
merge_blocks (test_bb, join_bb);
|
||
num_true_changes++;
|
||
}
|
||
|
||
num_updated_if_blocks++;
|
||
|
||
VEC_free (int, heap, then_regs);
|
||
VEC_free (int, heap, else_regs);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
|
||
straight line code. Return true if successful. */
|
||
|
||
static int
|
||
process_if_block (struct ce_if_block * ce_info)
|
||
{
|
||
if (! reload_completed
|
||
&& noce_process_if_block (ce_info))
|
||
return TRUE;
|
||
|
||
if (HAVE_conditional_move
|
||
&& cond_move_process_if_block (ce_info))
|
||
return TRUE;
|
||
|
||
if (HAVE_conditional_execution && reload_completed)
|
||
{
|
||
/* If we have && and || tests, try to first handle combining the && and
|
||
|| tests into the conditional code, and if that fails, go back and
|
||
handle it without the && and ||, which at present handles the && case
|
||
if there was no ELSE block. */
|
||
if (cond_exec_process_if_block (ce_info, TRUE))
|
||
return TRUE;
|
||
|
||
if (ce_info->num_multiple_test_blocks)
|
||
{
|
||
cancel_changes (0);
|
||
|
||
if (cond_exec_process_if_block (ce_info, FALSE))
|
||
return TRUE;
|
||
}
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Merge the blocks and mark for local life update. */
|
||
|
||
static void
|
||
merge_if_block (struct ce_if_block * ce_info)
|
||
{
|
||
basic_block test_bb = ce_info->test_bb; /* last test block */
|
||
basic_block then_bb = ce_info->then_bb; /* THEN */
|
||
basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
|
||
basic_block join_bb = ce_info->join_bb; /* join block */
|
||
basic_block combo_bb;
|
||
|
||
/* All block merging is done into the lower block numbers. */
|
||
|
||
combo_bb = test_bb;
|
||
|
||
/* Merge any basic blocks to handle && and || subtests. Each of
|
||
the blocks are on the fallthru path from the predecessor block. */
|
||
if (ce_info->num_multiple_test_blocks > 0)
|
||
{
|
||
basic_block bb = test_bb;
|
||
basic_block last_test_bb = ce_info->last_test_bb;
|
||
basic_block fallthru = block_fallthru (bb);
|
||
|
||
do
|
||
{
|
||
bb = fallthru;
|
||
fallthru = block_fallthru (bb);
|
||
merge_blocks (combo_bb, bb);
|
||
num_true_changes++;
|
||
}
|
||
while (bb != last_test_bb);
|
||
}
|
||
|
||
/* Merge TEST block into THEN block. Normally the THEN block won't have a
|
||
label, but it might if there were || tests. That label's count should be
|
||
zero, and it normally should be removed. */
|
||
|
||
if (then_bb)
|
||
{
|
||
merge_blocks (combo_bb, then_bb);
|
||
num_true_changes++;
|
||
}
|
||
|
||
/* The ELSE block, if it existed, had a label. That label count
|
||
will almost always be zero, but odd things can happen when labels
|
||
get their addresses taken. */
|
||
if (else_bb)
|
||
{
|
||
merge_blocks (combo_bb, else_bb);
|
||
num_true_changes++;
|
||
}
|
||
|
||
/* If there was no join block reported, that means it was not adjacent
|
||
to the others, and so we cannot merge them. */
|
||
|
||
if (! join_bb)
|
||
{
|
||
rtx last = BB_END (combo_bb);
|
||
|
||
/* The outgoing edge for the current COMBO block should already
|
||
be correct. Verify this. */
|
||
if (EDGE_COUNT (combo_bb->succs) == 0)
|
||
gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
|
||
|| (NONJUMP_INSN_P (last)
|
||
&& GET_CODE (PATTERN (last)) == TRAP_IF
|
||
&& (TRAP_CONDITION (PATTERN (last))
|
||
== const_true_rtx)));
|
||
|
||
else
|
||
/* There should still be something at the end of the THEN or ELSE
|
||
blocks taking us to our final destination. */
|
||
gcc_assert (JUMP_P (last)
|
||
|| (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
|
||
&& CALL_P (last)
|
||
&& SIBLING_CALL_P (last))
|
||
|| ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
|
||
&& can_throw_internal (last)));
|
||
}
|
||
|
||
/* The JOIN block may have had quite a number of other predecessors too.
|
||
Since we've already merged the TEST, THEN and ELSE blocks, we should
|
||
have only one remaining edge from our if-then-else diamond. If there
|
||
is more than one remaining edge, it must come from elsewhere. There
|
||
may be zero incoming edges if the THEN block didn't actually join
|
||
back up (as with a call to a non-return function). */
|
||
else if (EDGE_COUNT (join_bb->preds) < 2
|
||
&& join_bb != EXIT_BLOCK_PTR)
|
||
{
|
||
/* We can merge the JOIN. */
|
||
merge_blocks (combo_bb, join_bb);
|
||
num_true_changes++;
|
||
}
|
||
else
|
||
{
|
||
/* We cannot merge the JOIN. */
|
||
|
||
/* The outgoing edge for the current COMBO block should already
|
||
be correct. Verify this. */
|
||
gcc_assert (single_succ_p (combo_bb)
|
||
&& single_succ (combo_bb) == join_bb);
|
||
|
||
/* Remove the jump and cruft from the end of the COMBO block. */
|
||
if (join_bb != EXIT_BLOCK_PTR)
|
||
tidy_fallthru_edge (single_succ_edge (combo_bb));
|
||
}
|
||
|
||
num_updated_if_blocks++;
|
||
}
|
||
|
||
/* Find a block ending in a simple IF condition and try to transform it
|
||
in some way. When converting a multi-block condition, put the new code
|
||
in the first such block and delete the rest. Return a pointer to this
|
||
first block if some transformation was done. Return NULL otherwise. */
|
||
|
||
static basic_block
|
||
find_if_header (basic_block test_bb, int pass)
|
||
{
|
||
ce_if_block_t ce_info;
|
||
edge then_edge;
|
||
edge else_edge;
|
||
|
||
/* The kind of block we're looking for has exactly two successors. */
|
||
if (EDGE_COUNT (test_bb->succs) != 2)
|
||
return NULL;
|
||
|
||
then_edge = EDGE_SUCC (test_bb, 0);
|
||
else_edge = EDGE_SUCC (test_bb, 1);
|
||
|
||
/* Neither edge should be abnormal. */
|
||
if ((then_edge->flags & EDGE_COMPLEX)
|
||
|| (else_edge->flags & EDGE_COMPLEX))
|
||
return NULL;
|
||
|
||
/* Nor exit the loop. */
|
||
if ((then_edge->flags & EDGE_LOOP_EXIT)
|
||
|| (else_edge->flags & EDGE_LOOP_EXIT))
|
||
return NULL;
|
||
|
||
/* The THEN edge is canonically the one that falls through. */
|
||
if (then_edge->flags & EDGE_FALLTHRU)
|
||
;
|
||
else if (else_edge->flags & EDGE_FALLTHRU)
|
||
{
|
||
edge e = else_edge;
|
||
else_edge = then_edge;
|
||
then_edge = e;
|
||
}
|
||
else
|
||
/* Otherwise this must be a multiway branch of some sort. */
|
||
return NULL;
|
||
|
||
memset (&ce_info, '\0', sizeof (ce_info));
|
||
ce_info.test_bb = test_bb;
|
||
ce_info.then_bb = then_edge->dest;
|
||
ce_info.else_bb = else_edge->dest;
|
||
ce_info.pass = pass;
|
||
|
||
#ifdef IFCVT_INIT_EXTRA_FIELDS
|
||
IFCVT_INIT_EXTRA_FIELDS (&ce_info);
|
||
#endif
|
||
|
||
if (find_if_block (&ce_info))
|
||
goto success;
|
||
|
||
if (HAVE_trap && HAVE_conditional_trap
|
||
&& find_cond_trap (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
|
||
if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
|
||
&& (! HAVE_conditional_execution || reload_completed))
|
||
{
|
||
if (find_if_case_1 (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
if (find_if_case_2 (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
}
|
||
|
||
return NULL;
|
||
|
||
success:
|
||
if (dump_file)
|
||
fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
|
||
return ce_info.test_bb;
|
||
}
|
||
|
||
/* Return true if a block has two edges, one of which falls through to the next
|
||
block, and the other jumps to a specific block, so that we can tell if the
|
||
block is part of an && test or an || test. Returns either -1 or the number
|
||
of non-note, non-jump, non-USE/CLOBBER insns in the block. */
|
||
|
||
static int
|
||
block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
|
||
{
|
||
edge cur_edge;
|
||
int fallthru_p = FALSE;
|
||
int jump_p = FALSE;
|
||
rtx insn;
|
||
rtx end;
|
||
int n_insns = 0;
|
||
edge_iterator ei;
|
||
|
||
if (!cur_bb || !target_bb)
|
||
return -1;
|
||
|
||
/* If no edges, obviously it doesn't jump or fallthru. */
|
||
if (EDGE_COUNT (cur_bb->succs) == 0)
|
||
return FALSE;
|
||
|
||
FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
|
||
{
|
||
if (cur_edge->flags & EDGE_COMPLEX)
|
||
/* Anything complex isn't what we want. */
|
||
return -1;
|
||
|
||
else if (cur_edge->flags & EDGE_FALLTHRU)
|
||
fallthru_p = TRUE;
|
||
|
||
else if (cur_edge->dest == target_bb)
|
||
jump_p = TRUE;
|
||
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
if ((jump_p & fallthru_p) == 0)
|
||
return -1;
|
||
|
||
/* Don't allow calls in the block, since this is used to group && and ||
|
||
together for conditional execution support. ??? we should support
|
||
conditional execution support across calls for IA-64 some day, but
|
||
for now it makes the code simpler. */
|
||
end = BB_END (cur_bb);
|
||
insn = BB_HEAD (cur_bb);
|
||
|
||
while (insn != NULL_RTX)
|
||
{
|
||
if (CALL_P (insn))
|
||
return -1;
|
||
|
||
if (INSN_P (insn)
|
||
&& !JUMP_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
||
n_insns++;
|
||
|
||
if (insn == end)
|
||
break;
|
||
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
return n_insns;
|
||
}
|
||
|
||
/* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
|
||
block. If so, we'll try to convert the insns to not require the branch.
|
||
Return TRUE if we were successful at converting the block. */
|
||
|
||
static int
|
||
find_if_block (struct ce_if_block * ce_info)
|
||
{
|
||
basic_block test_bb = ce_info->test_bb;
|
||
basic_block then_bb = ce_info->then_bb;
|
||
basic_block else_bb = ce_info->else_bb;
|
||
basic_block join_bb = NULL_BLOCK;
|
||
edge cur_edge;
|
||
basic_block next;
|
||
edge_iterator ei;
|
||
|
||
ce_info->last_test_bb = test_bb;
|
||
|
||
/* Discover if any fall through predecessors of the current test basic block
|
||
were && tests (which jump to the else block) or || tests (which jump to
|
||
the then block). */
|
||
if (HAVE_conditional_execution && reload_completed
|
||
&& single_pred_p (test_bb)
|
||
&& single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
|
||
{
|
||
basic_block bb = single_pred (test_bb);
|
||
basic_block target_bb;
|
||
int max_insns = MAX_CONDITIONAL_EXECUTE;
|
||
int n_insns;
|
||
|
||
/* Determine if the preceding block is an && or || block. */
|
||
if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
|
||
{
|
||
ce_info->and_and_p = TRUE;
|
||
target_bb = else_bb;
|
||
}
|
||
else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
|
||
{
|
||
ce_info->and_and_p = FALSE;
|
||
target_bb = then_bb;
|
||
}
|
||
else
|
||
target_bb = NULL_BLOCK;
|
||
|
||
if (target_bb && n_insns <= max_insns)
|
||
{
|
||
int total_insns = 0;
|
||
int blocks = 0;
|
||
|
||
ce_info->last_test_bb = test_bb;
|
||
|
||
/* Found at least one && or || block, look for more. */
|
||
do
|
||
{
|
||
ce_info->test_bb = test_bb = bb;
|
||
total_insns += n_insns;
|
||
blocks++;
|
||
|
||
if (!single_pred_p (bb))
|
||
break;
|
||
|
||
bb = single_pred (bb);
|
||
n_insns = block_jumps_and_fallthru_p (bb, target_bb);
|
||
}
|
||
while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
|
||
|
||
ce_info->num_multiple_test_blocks = blocks;
|
||
ce_info->num_multiple_test_insns = total_insns;
|
||
|
||
if (ce_info->and_and_p)
|
||
ce_info->num_and_and_blocks = blocks;
|
||
else
|
||
ce_info->num_or_or_blocks = blocks;
|
||
}
|
||
}
|
||
|
||
/* The THEN block of an IF-THEN combo must have exactly one predecessor,
|
||
other than any || blocks which jump to the THEN block. */
|
||
if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
|
||
return FALSE;
|
||
|
||
/* The edges of the THEN and ELSE blocks cannot have complex edges. */
|
||
FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
|
||
{
|
||
if (cur_edge->flags & EDGE_COMPLEX)
|
||
return FALSE;
|
||
}
|
||
|
||
FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
|
||
{
|
||
if (cur_edge->flags & EDGE_COMPLEX)
|
||
return FALSE;
|
||
}
|
||
|
||
/* The THEN block of an IF-THEN combo must have zero or one successors. */
|
||
if (EDGE_COUNT (then_bb->succs) > 0
|
||
&& (!single_succ_p (then_bb)
|
||
|| (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
|
||
|| (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
|
||
return FALSE;
|
||
|
||
/* If the THEN block has no successors, conditional execution can still
|
||
make a conditional call. Don't do this unless the ELSE block has
|
||
only one incoming edge -- the CFG manipulation is too ugly otherwise.
|
||
Check for the last insn of the THEN block being an indirect jump, which
|
||
is listed as not having any successors, but confuses the rest of the CE
|
||
code processing. ??? we should fix this in the future. */
|
||
if (EDGE_COUNT (then_bb->succs) == 0)
|
||
{
|
||
if (single_pred_p (else_bb))
|
||
{
|
||
rtx last_insn = BB_END (then_bb);
|
||
|
||
while (last_insn
|
||
&& NOTE_P (last_insn)
|
||
&& last_insn != BB_HEAD (then_bb))
|
||
last_insn = PREV_INSN (last_insn);
|
||
|
||
if (last_insn
|
||
&& JUMP_P (last_insn)
|
||
&& ! simplejump_p (last_insn))
|
||
return FALSE;
|
||
|
||
join_bb = else_bb;
|
||
else_bb = NULL_BLOCK;
|
||
}
|
||
else
|
||
return FALSE;
|
||
}
|
||
|
||
/* If the THEN block's successor is the other edge out of the TEST block,
|
||
then we have an IF-THEN combo without an ELSE. */
|
||
else if (single_succ (then_bb) == else_bb)
|
||
{
|
||
join_bb = else_bb;
|
||
else_bb = NULL_BLOCK;
|
||
}
|
||
|
||
/* If the THEN and ELSE block meet in a subsequent block, and the ELSE
|
||
has exactly one predecessor and one successor, and the outgoing edge
|
||
is not complex, then we have an IF-THEN-ELSE combo. */
|
||
else if (single_succ_p (else_bb)
|
||
&& single_succ (then_bb) == single_succ (else_bb)
|
||
&& single_pred_p (else_bb)
|
||
&& ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
|
||
&& ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
|
||
join_bb = single_succ (else_bb);
|
||
|
||
/* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
|
||
else
|
||
return FALSE;
|
||
|
||
num_possible_if_blocks++;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"\nIF-THEN%s block found, pass %d, start block %d "
|
||
"[insn %d], then %d [%d]",
|
||
(else_bb) ? "-ELSE" : "",
|
||
ce_info->pass,
|
||
test_bb->index,
|
||
BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
|
||
then_bb->index,
|
||
BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
|
||
|
||
if (else_bb)
|
||
fprintf (dump_file, ", else %d [%d]",
|
||
else_bb->index,
|
||
BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
|
||
|
||
fprintf (dump_file, ", join %d [%d]",
|
||
join_bb->index,
|
||
BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
|
||
|
||
if (ce_info->num_multiple_test_blocks > 0)
|
||
fprintf (dump_file, ", %d %s block%s last test %d [%d]",
|
||
ce_info->num_multiple_test_blocks,
|
||
(ce_info->and_and_p) ? "&&" : "||",
|
||
(ce_info->num_multiple_test_blocks == 1) ? "" : "s",
|
||
ce_info->last_test_bb->index,
|
||
((BB_HEAD (ce_info->last_test_bb))
|
||
? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
|
||
: -1));
|
||
|
||
fputc ('\n', dump_file);
|
||
}
|
||
|
||
/* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
|
||
first condition for free, since we've already asserted that there's a
|
||
fallthru edge from IF to THEN. Likewise for the && and || blocks, since
|
||
we checked the FALLTHRU flag, those are already adjacent to the last IF
|
||
block. */
|
||
/* ??? As an enhancement, move the ELSE block. Have to deal with
|
||
BLOCK notes, if by no other means than backing out the merge if they
|
||
exist. Sticky enough I don't want to think about it now. */
|
||
next = then_bb;
|
||
if (else_bb && (next = next->next_bb) != else_bb)
|
||
return FALSE;
|
||
if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
|
||
{
|
||
if (else_bb)
|
||
join_bb = NULL;
|
||
else
|
||
return FALSE;
|
||
}
|
||
|
||
/* Do the real work. */
|
||
ce_info->else_bb = else_bb;
|
||
ce_info->join_bb = join_bb;
|
||
|
||
return process_if_block (ce_info);
|
||
}
|
||
|
||
/* Convert a branch over a trap, or a branch
|
||
to a trap, into a conditional trap. */
|
||
|
||
static int
|
||
find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
|
||
{
|
||
basic_block then_bb = then_edge->dest;
|
||
basic_block else_bb = else_edge->dest;
|
||
basic_block other_bb, trap_bb;
|
||
rtx trap, jump, cond, cond_earliest, seq;
|
||
enum rtx_code code;
|
||
|
||
/* Locate the block with the trap instruction. */
|
||
/* ??? While we look for no successors, we really ought to allow
|
||
EH successors. Need to fix merge_if_block for that to work. */
|
||
if ((trap = block_has_only_trap (then_bb)) != NULL)
|
||
trap_bb = then_bb, other_bb = else_bb;
|
||
else if ((trap = block_has_only_trap (else_bb)) != NULL)
|
||
trap_bb = else_bb, other_bb = then_bb;
|
||
else
|
||
return FALSE;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
|
||
test_bb->index, trap_bb->index);
|
||
}
|
||
|
||
/* If this is not a standard conditional jump, we can't parse it. */
|
||
jump = BB_END (test_bb);
|
||
cond = noce_get_condition (jump, &cond_earliest);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
/* If the conditional jump is more than just a conditional jump, then
|
||
we can not do if-conversion on this block. */
|
||
if (! onlyjump_p (jump))
|
||
return FALSE;
|
||
|
||
/* We must be comparing objects whose modes imply the size. */
|
||
if (GET_MODE (XEXP (cond, 0)) == BLKmode)
|
||
return FALSE;
|
||
|
||
/* Reverse the comparison code, if necessary. */
|
||
code = GET_CODE (cond);
|
||
if (then_bb == trap_bb)
|
||
{
|
||
code = reversed_comparison_code (cond, jump);
|
||
if (code == UNKNOWN)
|
||
return FALSE;
|
||
}
|
||
|
||
/* Attempt to generate the conditional trap. */
|
||
seq = gen_cond_trap (code, XEXP (cond, 0),
|
||
XEXP (cond, 1),
|
||
TRAP_CODE (PATTERN (trap)));
|
||
if (seq == NULL)
|
||
return FALSE;
|
||
|
||
/* Emit the new insns before cond_earliest. */
|
||
emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
|
||
|
||
/* Delete the trap block if possible. */
|
||
remove_edge (trap_bb == then_bb ? then_edge : else_edge);
|
||
if (EDGE_COUNT (trap_bb->preds) == 0)
|
||
{
|
||
delete_basic_block (trap_bb);
|
||
num_true_changes++;
|
||
}
|
||
|
||
/* Wire together the blocks again. */
|
||
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
||
single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
|
||
else
|
||
{
|
||
rtx lab, newjump;
|
||
|
||
lab = JUMP_LABEL (jump);
|
||
newjump = emit_jump_insn_after (gen_jump (lab), jump);
|
||
LABEL_NUSES (lab) += 1;
|
||
JUMP_LABEL (newjump) = lab;
|
||
emit_barrier_after (newjump);
|
||
}
|
||
delete_insn (jump);
|
||
|
||
if (can_merge_blocks_p (test_bb, other_bb))
|
||
{
|
||
merge_blocks (test_bb, other_bb);
|
||
num_true_changes++;
|
||
}
|
||
|
||
num_updated_if_blocks++;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Subroutine of find_cond_trap: if BB contains only a trap insn,
|
||
return it. */
|
||
|
||
static rtx
|
||
block_has_only_trap (basic_block bb)
|
||
{
|
||
rtx trap;
|
||
|
||
/* We're not the exit block. */
|
||
if (bb == EXIT_BLOCK_PTR)
|
||
return NULL_RTX;
|
||
|
||
/* The block must have no successors. */
|
||
if (EDGE_COUNT (bb->succs) > 0)
|
||
return NULL_RTX;
|
||
|
||
/* The only instruction in the THEN block must be the trap. */
|
||
trap = first_active_insn (bb);
|
||
if (! (trap == BB_END (bb)
|
||
&& GET_CODE (PATTERN (trap)) == TRAP_IF
|
||
&& TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
|
||
return NULL_RTX;
|
||
|
||
return trap;
|
||
}
|
||
|
||
/* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
|
||
transformable, but not necessarily the other. There need be no
|
||
JOIN block.
|
||
|
||
Return TRUE if we were successful at converting the block.
|
||
|
||
Cases we'd like to look at:
|
||
|
||
(1)
|
||
if (test) goto over; // x not live
|
||
x = a;
|
||
goto label;
|
||
over:
|
||
|
||
becomes
|
||
|
||
x = a;
|
||
if (! test) goto label;
|
||
|
||
(2)
|
||
if (test) goto E; // x not live
|
||
x = big();
|
||
goto L;
|
||
E:
|
||
x = b;
|
||
goto M;
|
||
|
||
becomes
|
||
|
||
x = b;
|
||
if (test) goto M;
|
||
x = big();
|
||
goto L;
|
||
|
||
(3) // This one's really only interesting for targets that can do
|
||
// multiway branching, e.g. IA-64 BBB bundles. For other targets
|
||
// it results in multiple branches on a cache line, which often
|
||
// does not sit well with predictors.
|
||
|
||
if (test1) goto E; // predicted not taken
|
||
x = a;
|
||
if (test2) goto F;
|
||
...
|
||
E:
|
||
x = b;
|
||
J:
|
||
|
||
becomes
|
||
|
||
x = a;
|
||
if (test1) goto E;
|
||
if (test2) goto F;
|
||
|
||
Notes:
|
||
|
||
(A) Don't do (2) if the branch is predicted against the block we're
|
||
eliminating. Do it anyway if we can eliminate a branch; this requires
|
||
that the sole successor of the eliminated block postdominate the other
|
||
side of the if.
|
||
|
||
(B) With CE, on (3) we can steal from both sides of the if, creating
|
||
|
||
if (test1) x = a;
|
||
if (!test1) x = b;
|
||
if (test1) goto J;
|
||
if (test2) goto F;
|
||
...
|
||
J:
|
||
|
||
Again, this is most useful if J postdominates.
|
||
|
||
(C) CE substitutes for helpful life information.
|
||
|
||
(D) These heuristics need a lot of work. */
|
||
|
||
/* Tests for case 1 above. */
|
||
|
||
static int
|
||
find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
|
||
{
|
||
basic_block then_bb = then_edge->dest;
|
||
basic_block else_bb = else_edge->dest, new_bb;
|
||
int then_bb_index;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if ((BB_END (then_bb)
|
||
&& find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
|
||
|| (BB_END (test_bb)
|
||
&& find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
|
||
|| (BB_END (else_bb)
|
||
&& find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
|
||
NULL_RTX)))
|
||
return FALSE;
|
||
|
||
/* THEN has one successor. */
|
||
if (!single_succ_p (then_bb))
|
||
return FALSE;
|
||
|
||
/* THEN does not fall through, but is not strange either. */
|
||
if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
|
||
return FALSE;
|
||
|
||
/* THEN has one predecessor. */
|
||
if (!single_pred_p (then_bb))
|
||
return FALSE;
|
||
|
||
/* THEN must do something. */
|
||
if (forwarder_block_p (then_bb))
|
||
return FALSE;
|
||
|
||
num_possible_if_blocks++;
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"\nIF-CASE-1 found, start %d, then %d\n",
|
||
test_bb->index, then_bb->index);
|
||
|
||
/* THEN is small. */
|
||
if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
|
||
return FALSE;
|
||
|
||
/* Registers set are dead, or are predicable. */
|
||
if (! dead_or_predicable (test_bb, then_bb, else_bb,
|
||
single_succ (then_bb), 1))
|
||
return FALSE;
|
||
|
||
/* Conversion went ok, including moving the insns and fixing up the
|
||
jump. Adjust the CFG to match. */
|
||
|
||
bitmap_ior (test_bb->il.rtl->global_live_at_end,
|
||
else_bb->il.rtl->global_live_at_start,
|
||
then_bb->il.rtl->global_live_at_end);
|
||
|
||
|
||
/* We can avoid creating a new basic block if then_bb is immediately
|
||
followed by else_bb, i.e. deleting then_bb allows test_bb to fall
|
||
thru to else_bb. */
|
||
|
||
if (then_bb->next_bb == else_bb
|
||
&& then_bb->prev_bb == test_bb
|
||
&& else_bb != EXIT_BLOCK_PTR)
|
||
{
|
||
redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
|
||
new_bb = 0;
|
||
}
|
||
else
|
||
new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
|
||
else_bb);
|
||
|
||
then_bb_index = then_bb->index;
|
||
delete_basic_block (then_bb);
|
||
|
||
/* Make rest of code believe that the newly created block is the THEN_BB
|
||
block we removed. */
|
||
if (new_bb)
|
||
{
|
||
new_bb->index = then_bb_index;
|
||
SET_BASIC_BLOCK (then_bb_index, new_bb);
|
||
/* Since the fallthru edge was redirected from test_bb to new_bb,
|
||
we need to ensure that new_bb is in the same partition as
|
||
test bb (you can not fall through across section boundaries). */
|
||
BB_COPY_PARTITION (new_bb, test_bb);
|
||
}
|
||
/* We've possibly created jump to next insn, cleanup_cfg will solve that
|
||
later. */
|
||
|
||
num_true_changes++;
|
||
num_updated_if_blocks++;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Test for case 2 above. */
|
||
|
||
static int
|
||
find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
|
||
{
|
||
basic_block then_bb = then_edge->dest;
|
||
basic_block else_bb = else_edge->dest;
|
||
edge else_succ;
|
||
rtx note;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if ((BB_END (then_bb)
|
||
&& find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
|
||
|| (BB_END (test_bb)
|
||
&& find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
|
||
|| (BB_END (else_bb)
|
||
&& find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
|
||
NULL_RTX)))
|
||
return FALSE;
|
||
|
||
/* ELSE has one successor. */
|
||
if (!single_succ_p (else_bb))
|
||
return FALSE;
|
||
else
|
||
else_succ = single_succ_edge (else_bb);
|
||
|
||
/* ELSE outgoing edge is not complex. */
|
||
if (else_succ->flags & EDGE_COMPLEX)
|
||
return FALSE;
|
||
|
||
/* ELSE has one predecessor. */
|
||
if (!single_pred_p (else_bb))
|
||
return FALSE;
|
||
|
||
/* THEN is not EXIT. */
|
||
if (then_bb->index < NUM_FIXED_BLOCKS)
|
||
return FALSE;
|
||
|
||
/* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
|
||
note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
|
||
if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
|
||
;
|
||
else if (else_succ->dest->index < NUM_FIXED_BLOCKS
|
||
|| dominated_by_p (CDI_POST_DOMINATORS, then_bb,
|
||
else_succ->dest))
|
||
;
|
||
else
|
||
return FALSE;
|
||
|
||
num_possible_if_blocks++;
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"\nIF-CASE-2 found, start %d, else %d\n",
|
||
test_bb->index, else_bb->index);
|
||
|
||
/* ELSE is small. */
|
||
if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
|
||
return FALSE;
|
||
|
||
/* Registers set are dead, or are predicable. */
|
||
if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
|
||
return FALSE;
|
||
|
||
/* Conversion went ok, including moving the insns and fixing up the
|
||
jump. Adjust the CFG to match. */
|
||
|
||
bitmap_ior (test_bb->il.rtl->global_live_at_end,
|
||
then_bb->il.rtl->global_live_at_start,
|
||
else_bb->il.rtl->global_live_at_end);
|
||
|
||
delete_basic_block (else_bb);
|
||
|
||
num_true_changes++;
|
||
num_updated_if_blocks++;
|
||
|
||
/* ??? We may now fallthru from one of THEN's successors into a join
|
||
block. Rerun cleanup_cfg? Examine things manually? Wait? */
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* A subroutine of dead_or_predicable called through for_each_rtx.
|
||
Return 1 if a memory is found. */
|
||
|
||
static int
|
||
find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
return MEM_P (*px);
|
||
}
|
||
|
||
/* Used by the code above to perform the actual rtl transformations.
|
||
Return TRUE if successful.
|
||
|
||
TEST_BB is the block containing the conditional branch. MERGE_BB
|
||
is the block containing the code to manipulate. NEW_DEST is the
|
||
label TEST_BB should be branching to after the conversion.
|
||
REVERSEP is true if the sense of the branch should be reversed. */
|
||
|
||
static int
|
||
dead_or_predicable (basic_block test_bb, basic_block merge_bb,
|
||
basic_block other_bb, basic_block new_dest, int reversep)
|
||
{
|
||
rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
|
||
|
||
jump = BB_END (test_bb);
|
||
|
||
/* Find the extent of the real code in the merge block. */
|
||
head = BB_HEAD (merge_bb);
|
||
end = BB_END (merge_bb);
|
||
|
||
/* If merge_bb ends with a tablejump, predicating/moving insn's
|
||
into test_bb and then deleting merge_bb will result in the jumptable
|
||
that follows merge_bb being removed along with merge_bb and then we
|
||
get an unresolved reference to the jumptable. */
|
||
if (tablejump_p (end, NULL, NULL))
|
||
return FALSE;
|
||
|
||
if (LABEL_P (head))
|
||
head = NEXT_INSN (head);
|
||
if (NOTE_P (head))
|
||
{
|
||
if (head == end)
|
||
{
|
||
head = end = NULL_RTX;
|
||
goto no_body;
|
||
}
|
||
head = NEXT_INSN (head);
|
||
}
|
||
|
||
if (JUMP_P (end))
|
||
{
|
||
if (head == end)
|
||
{
|
||
head = end = NULL_RTX;
|
||
goto no_body;
|
||
}
|
||
end = PREV_INSN (end);
|
||
}
|
||
|
||
/* Disable handling dead code by conditional execution if the machine needs
|
||
to do anything funny with the tests, etc. */
|
||
#ifndef IFCVT_MODIFY_TESTS
|
||
if (HAVE_conditional_execution)
|
||
{
|
||
/* In the conditional execution case, we have things easy. We know
|
||
the condition is reversible. We don't have to check life info
|
||
because we're going to conditionally execute the code anyway.
|
||
All that's left is making sure the insns involved can actually
|
||
be predicated. */
|
||
|
||
rtx cond, prob_val;
|
||
|
||
cond = cond_exec_get_condition (jump);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
|
||
if (prob_val)
|
||
prob_val = XEXP (prob_val, 0);
|
||
|
||
if (reversep)
|
||
{
|
||
enum rtx_code rev = reversed_comparison_code (cond, jump);
|
||
if (rev == UNKNOWN)
|
||
return FALSE;
|
||
cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
if (prob_val)
|
||
prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
|
||
}
|
||
|
||
if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
|
||
prob_val, 0))
|
||
goto cancel;
|
||
|
||
earliest = jump;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* In the non-conditional execution case, we have to verify that there
|
||
are no trapping operations, no calls, no references to memory, and
|
||
that any registers modified are dead at the branch site. */
|
||
|
||
rtx insn, cond, prev;
|
||
regset merge_set, tmp, test_live, test_set;
|
||
struct propagate_block_info *pbi;
|
||
unsigned i, fail = 0;
|
||
bitmap_iterator bi;
|
||
|
||
/* Check for no calls or trapping operations. */
|
||
for (insn = head; ; insn = NEXT_INSN (insn))
|
||
{
|
||
if (CALL_P (insn))
|
||
return FALSE;
|
||
if (INSN_P (insn))
|
||
{
|
||
if (may_trap_p (PATTERN (insn)))
|
||
return FALSE;
|
||
|
||
/* ??? Even non-trapping memories such as stack frame
|
||
references must be avoided. For stores, we collect
|
||
no lifetime info; for reads, we'd have to assert
|
||
true_dependence false against every store in the
|
||
TEST range. */
|
||
if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
|
||
return FALSE;
|
||
}
|
||
if (insn == end)
|
||
break;
|
||
}
|
||
|
||
if (! any_condjump_p (jump))
|
||
return FALSE;
|
||
|
||
/* Find the extent of the conditional. */
|
||
cond = noce_get_condition (jump, &earliest);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
/* Collect:
|
||
MERGE_SET = set of registers set in MERGE_BB
|
||
TEST_LIVE = set of registers live at EARLIEST
|
||
TEST_SET = set of registers set between EARLIEST and the
|
||
end of the block. */
|
||
|
||
tmp = ALLOC_REG_SET (®_obstack);
|
||
merge_set = ALLOC_REG_SET (®_obstack);
|
||
test_live = ALLOC_REG_SET (®_obstack);
|
||
test_set = ALLOC_REG_SET (®_obstack);
|
||
|
||
/* ??? bb->local_set is only valid during calculate_global_regs_live,
|
||
so we must recompute usage for MERGE_BB. Not so bad, I suppose,
|
||
since we've already asserted that MERGE_BB is small. */
|
||
/* If we allocated new pseudos (e.g. in the conditional move
|
||
expander called from noce_emit_cmove), we must resize the
|
||
array first. */
|
||
if (max_regno < max_reg_num ())
|
||
{
|
||
max_regno = max_reg_num ();
|
||
allocate_reg_info (max_regno, FALSE, FALSE);
|
||
}
|
||
propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
|
||
|
||
/* For small register class machines, don't lengthen lifetimes of
|
||
hard registers before reload. */
|
||
if (SMALL_REGISTER_CLASSES && ! reload_completed)
|
||
{
|
||
EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
|
||
{
|
||
if (i < FIRST_PSEUDO_REGISTER
|
||
&& ! fixed_regs[i]
|
||
&& ! global_regs[i])
|
||
fail = 1;
|
||
}
|
||
}
|
||
|
||
/* For TEST, we're interested in a range of insns, not a whole block.
|
||
Moreover, we're interested in the insns live from OTHER_BB. */
|
||
|
||
COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
|
||
pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
|
||
0);
|
||
|
||
for (insn = jump; ; insn = prev)
|
||
{
|
||
prev = propagate_one_insn (pbi, insn);
|
||
if (insn == earliest)
|
||
break;
|
||
}
|
||
|
||
free_propagate_block_info (pbi);
|
||
|
||
/* We can perform the transformation if
|
||
MERGE_SET & (TEST_SET | TEST_LIVE)
|
||
and
|
||
TEST_SET & merge_bb->il.rtl->global_live_at_start
|
||
are empty. */
|
||
|
||
if (bitmap_intersect_p (test_set, merge_set)
|
||
|| bitmap_intersect_p (test_live, merge_set)
|
||
|| bitmap_intersect_p (test_set,
|
||
merge_bb->il.rtl->global_live_at_start))
|
||
fail = 1;
|
||
|
||
FREE_REG_SET (tmp);
|
||
FREE_REG_SET (merge_set);
|
||
FREE_REG_SET (test_live);
|
||
FREE_REG_SET (test_set);
|
||
|
||
if (fail)
|
||
return FALSE;
|
||
}
|
||
|
||
no_body:
|
||
/* We don't want to use normal invert_jump or redirect_jump because
|
||
we don't want to delete_insn called. Also, we want to do our own
|
||
change group management. */
|
||
|
||
old_dest = JUMP_LABEL (jump);
|
||
if (other_bb != new_dest)
|
||
{
|
||
new_label = block_label (new_dest);
|
||
if (reversep
|
||
? ! invert_jump_1 (jump, new_label)
|
||
: ! redirect_jump_1 (jump, new_label))
|
||
goto cancel;
|
||
}
|
||
|
||
if (! apply_change_group ())
|
||
return FALSE;
|
||
|
||
if (other_bb != new_dest)
|
||
{
|
||
redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
|
||
|
||
redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
|
||
if (reversep)
|
||
{
|
||
gcov_type count, probability;
|
||
count = BRANCH_EDGE (test_bb)->count;
|
||
BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
|
||
FALLTHRU_EDGE (test_bb)->count = count;
|
||
probability = BRANCH_EDGE (test_bb)->probability;
|
||
BRANCH_EDGE (test_bb)->probability
|
||
= FALLTHRU_EDGE (test_bb)->probability;
|
||
FALLTHRU_EDGE (test_bb)->probability = probability;
|
||
update_br_prob_note (test_bb);
|
||
}
|
||
}
|
||
|
||
/* Move the insns out of MERGE_BB to before the branch. */
|
||
if (head != NULL)
|
||
{
|
||
rtx insn;
|
||
|
||
if (end == BB_END (merge_bb))
|
||
BB_END (merge_bb) = PREV_INSN (head);
|
||
|
||
if (squeeze_notes (&head, &end))
|
||
return TRUE;
|
||
|
||
/* PR 21767: When moving insns above a conditional branch, REG_EQUAL
|
||
notes might become invalid. */
|
||
insn = head;
|
||
do
|
||
{
|
||
rtx note, set;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
||
if (! note)
|
||
continue;
|
||
set = single_set (insn);
|
||
if (!set || !function_invariant_p (SET_SRC (set)))
|
||
remove_note (insn, note);
|
||
} while (insn != end && (insn = NEXT_INSN (insn)));
|
||
|
||
reorder_insns (head, end, PREV_INSN (earliest));
|
||
}
|
||
|
||
/* Remove the jump and edge if we can. */
|
||
if (other_bb == new_dest)
|
||
{
|
||
delete_insn (jump);
|
||
remove_edge (BRANCH_EDGE (test_bb));
|
||
/* ??? Can't merge blocks here, as then_bb is still in use.
|
||
At minimum, the merge will get done just before bb-reorder. */
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
cancel:
|
||
cancel_changes (0);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Main entry point for all if-conversion. */
|
||
|
||
static void
|
||
if_convert (int x_life_data_ok)
|
||
{
|
||
basic_block bb;
|
||
int pass;
|
||
|
||
num_possible_if_blocks = 0;
|
||
num_updated_if_blocks = 0;
|
||
num_true_changes = 0;
|
||
life_data_ok = (x_life_data_ok != 0);
|
||
|
||
if ((! targetm.cannot_modify_jumps_p ())
|
||
&& (!flag_reorder_blocks_and_partition || !no_new_pseudos
|
||
|| !targetm.have_named_sections))
|
||
{
|
||
loop_optimizer_init (0);
|
||
if (current_loops)
|
||
{
|
||
mark_loop_exit_edges ();
|
||
loop_optimizer_finalize ();
|
||
}
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
}
|
||
|
||
/* Compute postdominators if we think we'll use them. */
|
||
if (HAVE_conditional_execution || life_data_ok)
|
||
calculate_dominance_info (CDI_POST_DOMINATORS);
|
||
|
||
if (life_data_ok)
|
||
clear_bb_flags ();
|
||
|
||
/* Go through each of the basic blocks looking for things to convert. If we
|
||
have conditional execution, we make multiple passes to allow us to handle
|
||
IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
|
||
pass = 0;
|
||
do
|
||
{
|
||
cond_exec_changed_p = FALSE;
|
||
pass++;
|
||
|
||
#ifdef IFCVT_MULTIPLE_DUMPS
|
||
if (dump_file && pass > 1)
|
||
fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
|
||
#endif
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
basic_block new_bb;
|
||
while ((new_bb = find_if_header (bb, pass)))
|
||
bb = new_bb;
|
||
}
|
||
|
||
#ifdef IFCVT_MULTIPLE_DUMPS
|
||
if (dump_file && cond_exec_changed_p)
|
||
print_rtl_with_bb (dump_file, get_insns ());
|
||
#endif
|
||
}
|
||
while (cond_exec_changed_p);
|
||
|
||
#ifdef IFCVT_MULTIPLE_DUMPS
|
||
if (dump_file)
|
||
fprintf (dump_file, "\n\n========== no more changes\n");
|
||
#endif
|
||
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
|
||
if (dump_file)
|
||
fflush (dump_file);
|
||
|
||
clear_aux_for_blocks ();
|
||
|
||
/* Rebuild life info for basic blocks that require it. */
|
||
if (num_true_changes && life_data_ok)
|
||
{
|
||
/* If we allocated new pseudos, we must resize the array for sched1. */
|
||
if (max_regno < max_reg_num ())
|
||
{
|
||
max_regno = max_reg_num ();
|
||
allocate_reg_info (max_regno, FALSE, FALSE);
|
||
}
|
||
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
||
PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
|
||
| PROP_KILL_DEAD_CODE);
|
||
}
|
||
|
||
/* Write the final stats. */
|
||
if (dump_file && num_possible_if_blocks > 0)
|
||
{
|
||
fprintf (dump_file,
|
||
"\n%d possible IF blocks searched.\n",
|
||
num_possible_if_blocks);
|
||
fprintf (dump_file,
|
||
"%d IF blocks converted.\n",
|
||
num_updated_if_blocks);
|
||
fprintf (dump_file,
|
||
"%d true changes made.\n\n\n",
|
||
num_true_changes);
|
||
}
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_flow_info ();
|
||
#endif
|
||
}
|
||
|
||
static bool
|
||
gate_handle_if_conversion (void)
|
||
{
|
||
return (optimize > 0);
|
||
}
|
||
|
||
/* If-conversion and CFG cleanup. */
|
||
static unsigned int
|
||
rest_of_handle_if_conversion (void)
|
||
{
|
||
if (flag_if_conversion)
|
||
{
|
||
if (dump_file)
|
||
dump_flow_info (dump_file, dump_flags);
|
||
cleanup_cfg (CLEANUP_EXPENSIVE);
|
||
reg_scan (get_insns (), max_reg_num ());
|
||
if_convert (0);
|
||
}
|
||
|
||
timevar_push (TV_JUMP);
|
||
cleanup_cfg (CLEANUP_EXPENSIVE);
|
||
reg_scan (get_insns (), max_reg_num ());
|
||
timevar_pop (TV_JUMP);
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_rtl_ifcvt =
|
||
{
|
||
"ce1", /* name */
|
||
gate_handle_if_conversion, /* gate */
|
||
rest_of_handle_if_conversion, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_IFCVT, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
'C' /* letter */
|
||
};
|
||
|
||
static bool
|
||
gate_handle_if_after_combine (void)
|
||
{
|
||
return (optimize > 0 && flag_if_conversion);
|
||
}
|
||
|
||
|
||
/* Rerun if-conversion, as combine may have simplified things enough
|
||
to now meet sequence length restrictions. */
|
||
static unsigned int
|
||
rest_of_handle_if_after_combine (void)
|
||
{
|
||
no_new_pseudos = 0;
|
||
if_convert (1);
|
||
no_new_pseudos = 1;
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_if_after_combine =
|
||
{
|
||
"ce2", /* name */
|
||
gate_handle_if_after_combine, /* gate */
|
||
rest_of_handle_if_after_combine, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_IFCVT, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'C' /* letter */
|
||
};
|
||
|
||
|
||
static bool
|
||
gate_handle_if_after_reload (void)
|
||
{
|
||
return (optimize > 0);
|
||
}
|
||
|
||
static unsigned int
|
||
rest_of_handle_if_after_reload (void)
|
||
{
|
||
/* Last attempt to optimize CFG, as scheduling, peepholing and insn
|
||
splitting possibly introduced more crossjumping opportunities. */
|
||
cleanup_cfg (CLEANUP_EXPENSIVE
|
||
| CLEANUP_UPDATE_LIFE
|
||
| (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
|
||
if (flag_if_conversion2)
|
||
if_convert (1);
|
||
return 0;
|
||
}
|
||
|
||
|
||
struct tree_opt_pass pass_if_after_reload =
|
||
{
|
||
"ce3", /* name */
|
||
gate_handle_if_after_reload, /* gate */
|
||
rest_of_handle_if_after_reload, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_IFCVT2, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'E' /* letter */
|
||
};
|