gcc/libgo/go/runtime/os_linux.go
Ian Lance Taylor 58aeb75d40 runtime: call timer functions via syscall
It turns out to be painful to require linking against -lrt on
GNU/Linux, as that makes it harder to link Go code into C programs.
Instead just call the timer syscalls directly.  That is what the
upstream library does anyhow.

gcc/go/
	* gospec.cc: Revert 2022-02-09 change:
	(RTLIB, RT_LIBRARY): Don't define.
	(lang_specific_driver): Don't add -lrt if linking statically
	on GNU/Linux.

gotools/
	* configure.ac: Revert 2022-02-09 change:
	(RT_LIBS): Don't define.
	* Makefile.am (check-runtime): Don't set GOLIBS to $(RT_LIBS).
	* configure, Makefile.in: Regenerate.

Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/385475
2022-02-13 11:03:45 -08:00

388 lines
12 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/goarch"
"runtime/internal/atomic"
"unsafe"
)
type mOS struct {
// profileTimer holds the ID of the POSIX interval timer for profiling CPU
// usage on this thread.
//
// It is valid when the profileTimerValid field is non-zero. A thread
// creates and manages its own timer, and these fields are read and written
// only by this thread. But because some of the reads on profileTimerValid
// are in signal handling code, access to that field uses atomic operations.
profileTimer int32
profileTimerValid uint32
}
func getProcID() uint64 {
return uint64(gettid())
}
func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 {
return int32(syscall(_SYS_futex, uintptr(addr), uintptr(op), uintptr(val), uintptr(ts), uintptr(addr2), uintptr(val3)))
}
// For sched_getaffinity use the system call rather than the libc call,
// because the system call returns the number of entries set by the kernel.
func sched_getaffinity(pid _pid_t, cpusetsize uintptr, mask *byte) int32 {
return int32(syscall(_SYS_sched_getaffinity, uintptr(pid), cpusetsize, uintptr(unsafe.Pointer(mask)), 0, 0, 0))
}
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
const (
_FUTEX_PRIVATE_FLAG = 128
_FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG
_FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG
)
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
if ns < 0 {
futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0)
return
}
var ts timespec
ts.setNsec(ns)
futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0)
}
// If any procs are sleeping on addr, wake up at most cnt.
//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0)
if ret >= 0 {
return
}
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
systemstack(func() {
print("futexwakeup addr=", addr, " returned ", ret, "\n")
})
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
}
func getproccount() int32 {
// This buffer is huge (8 kB) but we are on the system stack
// and there should be plenty of space (64 kB).
// Also this is a leaf, so we're not holding up the memory for long.
// See golang.org/issue/11823.
// The suggested behavior here is to keep trying with ever-larger
// buffers, but we don't have a dynamic memory allocator at the
// moment, so that's a bit tricky and seems like overkill.
const maxCPUs = 64 * 1024
var buf [maxCPUs / 8]byte
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
if r < 0 {
return 1
}
n := int32(0)
for _, v := range buf[:r] {
for v != 0 {
n += int32(v & 1)
v >>= 1
}
}
if n == 0 {
n = 1
}
return n
}
const (
_AT_NULL = 0 // End of vector
_AT_PAGESZ = 6 // System physical page size
_AT_HWCAP = 16 // hardware capability bit vector
_AT_RANDOM = 25 // introduced in 2.6.29
_AT_HWCAP2 = 26 // hardware capability bit vector 2
)
var procAuxv = []byte("/proc/self/auxv\x00")
var addrspace_vec [1]byte
//extern-sysinfo mincore
func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
func sysargs(argc int32, argv **byte) {
n := argc + 1
// skip over argv, envp to get to auxv
for argv_index(argv, n) != nil {
n++
}
// skip NULL separator
n++
// now argv+n is auxv
auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize))
if sysauxv(auxv[:]) != 0 {
return
}
// In some situations we don't get a loader-provided
// auxv, such as when loaded as a library on Android.
// Fall back to /proc/self/auxv.
fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0)
if fd < 0 {
// On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to
// try using mincore to detect the physical page size.
// mincore should return EINVAL when address is not a multiple of system page size.
const size = 256 << 10 // size of memory region to allocate
p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
if err != 0 {
return
}
var n uintptr
for n = 4 << 10; n < size; n <<= 1 {
err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0])
if err == 0 {
physPageSize = n
break
}
}
if physPageSize == 0 {
physPageSize = size
}
munmap(p, size)
return
}
var buf [128]uintptr
n = read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf)))
closefd(fd)
if n < 0 {
return
}
// Make sure buf is terminated, even if we didn't read
// the whole file.
buf[len(buf)-2] = _AT_NULL
sysauxv(buf[:])
}
func sysauxv(auxv []uintptr) int {
var i int
for ; auxv[i] != _AT_NULL; i += 2 {
tag, val := auxv[i], auxv[i+1]
switch tag {
case _AT_RANDOM:
// The kernel provides a pointer to 16-bytes
// worth of random data.
startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
setRandomNumber(uint32(startupRandomData[4]) | uint32(startupRandomData[5])<<8 |
uint32(startupRandomData[6])<<16 | uint32(startupRandomData[7])<<24)
case _AT_PAGESZ:
physPageSize = val
}
archauxv(tag, val)
// Commented out for gccgo for now.
// vdsoauxv(tag, val)
}
return i / 2
}
var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00")
func getHugePageSize() uintptr {
var numbuf [20]byte
fd := open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0)
if fd < 0 {
return 0
}
ptr := noescape(unsafe.Pointer(&numbuf[0]))
n := read(fd, ptr, int32(len(numbuf)))
closefd(fd)
if n <= 0 {
return 0
}
n-- // remove trailing newline
v, ok := atoi(slicebytetostringtmp((*byte)(ptr), int(n)))
if !ok || v < 0 {
v = 0
}
if v&(v-1) != 0 {
// v is not a power of 2
return 0
}
return uintptr(v)
}
func osinit() {
ncpu = getproccount()
physHugePageSize = getHugePageSize()
}
func timer_create(clockid int32, sevp *_sigevent, timerid *int32) int32 {
return int32(syscall(_SYS_timer_create, uintptr(clockid), uintptr(unsafe.Pointer(sevp)), uintptr(unsafe.Pointer(timerid)), 0, 0, 0))
}
func timer_settime(timerid int32, flags int32, new, old *_itimerspec) int32 {
return int32(syscall(_SYS_timer_settime, uintptr(timerid), uintptr(flags), uintptr(unsafe.Pointer(new)), uintptr(unsafe.Pointer(old)), 0, 0))
}
func timer_delete(timerid int32) int32 {
return int32(syscall(_SYS_timer_delete, uintptr(timerid), 0, 0, 0, 0, 0))
}
// go118UseTimerCreateProfiler enables the per-thread CPU profiler.
const go118UseTimerCreateProfiler = true
// validSIGPROF compares this signal delivery's code against the signal sources
// that the profiler uses, returning whether the delivery should be processed.
// To be processed, a signal delivery from a known profiling mechanism should
// correspond to the best profiling mechanism available to this thread. Signals
// from other sources are always considered valid.
//
//go:nosplit
func validSIGPROF(mp *m, c *sigctxt) bool {
code := int32(c.sigcode())
setitimer := code == _SI_KERNEL
timer_create := code == _SI_TIMER
if !(setitimer || timer_create) {
// The signal doesn't correspond to a profiling mechanism that the
// runtime enables itself. There's no reason to process it, but there's
// no reason to ignore it either.
return true
}
if mp == nil {
// Since we don't have an M, we can't check if there's an active
// per-thread timer for this thread. We don't know how long this thread
// has been around, and if it happened to interact with the Go scheduler
// at a time when profiling was active (causing it to have a per-thread
// timer). But it may have never interacted with the Go scheduler, or
// never while profiling was active. To avoid double-counting, process
// only signals from setitimer.
//
// When a custom cgo traceback function has been registered (on
// platforms that support runtime.SetCgoTraceback), SIGPROF signals
// delivered to a thread that cannot find a matching M do this check in
// the assembly implementations of runtime.cgoSigtramp.
return setitimer
}
// Having an M means the thread interacts with the Go scheduler, and we can
// check whether there's an active per-thread timer for this thread.
if atomic.Load(&mp.profileTimerValid) != 0 {
// If this M has its own per-thread CPU profiling interval timer, we
// should track the SIGPROF signals that come from that timer (for
// accurate reporting of its CPU usage; see issue 35057) and ignore any
// that it gets from the process-wide setitimer (to not over-count its
// CPU consumption).
return timer_create
}
// No active per-thread timer means the only valid profiler is setitimer.
return setitimer
}
func setProcessCPUProfiler(hz int32) {
setProcessCPUProfilerTimer(hz)
}
func setThreadCPUProfiler(hz int32) {
mp := getg().m
mp.profilehz = hz
if !go118UseTimerCreateProfiler {
return
}
// destroy any active timer
if atomic.Load(&mp.profileTimerValid) != 0 {
timerid := mp.profileTimer
atomic.Store(&mp.profileTimerValid, 0)
mp.profileTimer = 0
ret := timer_delete(timerid)
if ret != 0 {
print("runtime: failed to disable profiling timer; timer_delete(", timerid, ") errno=", -ret, "\n")
throw("timer_delete")
}
}
if hz == 0 {
// If the goal was to disable profiling for this thread, then the job's done.
return
}
// The period of the timer should be 1/Hz. For every "1/Hz" of additional
// work, the user should expect one additional sample in the profile.
//
// But to scale down to very small amounts of application work, to observe
// even CPU usage of "one tenth" of the requested period, set the initial
// timing delay in a different way: So that "one tenth" of a period of CPU
// spend shows up as a 10% chance of one sample (for an expected value of
// 0.1 samples), and so that "two and six tenths" periods of CPU spend show
// up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an
// expected value of 2.6). Set the initial delay to a value in the unifom
// random distribution between 0 and the desired period. And because "0"
// means "disable timer", add 1 so the half-open interval [0,period) turns
// into (0,period].
//
// Otherwise, this would show up as a bias away from short-lived threads and
// from threads that are only occasionally active: for example, when the
// garbage collector runs on a mostly-idle system, the additional threads it
// activates may do a couple milliseconds of GC-related work and nothing
// else in the few seconds that the profiler observes.
spec := new(_itimerspec)
spec.it_value.setNsec(1 + int64(fastrandn(uint32(1e9/hz))))
spec.it_interval.setNsec(1e9 / int64(hz))
var timerid int32
var sevp _sigevent
sevp.sigev_notify = _SIGEV_THREAD_ID
sevp.sigev_signo = _SIGPROF
*((*int32)(unsafe.Pointer(&sevp._sigev_un))) = int32(mp.procid)
ret := timer_create(_CLOCK_THREAD_CPUTIME_ID, &sevp, &timerid)
if ret != 0 {
// If we cannot create a timer for this M, leave profileTimerValid false
// to fall back to the process-wide setitimer profiler.
return
}
ret = timer_settime(timerid, 0, spec, nil)
if ret != 0 {
print("runtime: failed to configure profiling timer; timer_settime(", timerid,
", 0, {interval: {",
spec.it_interval.tv_sec, "s + ", spec.it_interval.tv_nsec, "ns} value: {",
spec.it_value.tv_sec, "s + ", spec.it_value.tv_nsec, "ns}}, nil) errno=", -ret, "\n")
throw("timer_settime")
}
mp.profileTimer = timerid
atomic.Store(&mp.profileTimerValid, 1)
}