e79fa1eb9b
2010-07-14 Jonathan Wakely <jwakely.gcc@gmail.com> * doc/xml/manual/shared_ptr.xml: Update. * doc/html/*: Regenerate. From-SVN: r162193
341 lines
23 KiB
HTML
341 lines
23 KiB
HTML
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>bitmap_allocator</title><meta name="generator" content="DocBook XSL Stylesheets V1.75.2" /><meta name="keywords" content=" ISO C++ , allocator " /><meta name="keywords" content=" ISO C++ , library " /><link rel="home" href="../spine.html" title="The GNU C++ Library Documentation" /><link rel="up" href="ext_allocators.html" title="Chapter 20. Allocators" /><link rel="prev" href="ext_allocators.html" title="Chapter 20. Allocators" /><link rel="next" href="ext_containers.html" title="Chapter 21. Containers" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">bitmap_allocator</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ext_allocators.html">Prev</a> </td><th width="60%" align="center">Chapter 20. Allocators</th><td width="20%" align="right"> <a accesskey="n" href="ext_containers.html">Next</a></td></tr></table><hr /></div><div class="sect1" title="bitmap_allocator"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="manual.ext.allocator.bitmap"></a>bitmap_allocator</h2></div></div></div><p>
|
||
</p><div class="sect2" title="Design"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.bitmap.design"></a>Design</h3></div></div></div><p>
|
||
As this name suggests, this allocator uses a bit-map to keep track
|
||
of the used and unused memory locations for it's book-keeping
|
||
purposes.
|
||
</p><p>
|
||
This allocator will make use of 1 single bit to keep track of
|
||
whether it has been allocated or not. A bit 1 indicates free,
|
||
while 0 indicates allocated. This has been done so that you can
|
||
easily check a collection of bits for a free block. This kind of
|
||
Bitmapped strategy works best for single object allocations, and
|
||
with the STL type parameterized allocators, we do not need to
|
||
choose any size for the block which will be represented by a
|
||
single bit. This will be the size of the parameter around which
|
||
the allocator has been parameterized. Thus, close to optimal
|
||
performance will result. Hence, this should be used for node based
|
||
containers which call the allocate function with an argument of 1.
|
||
</p><p>
|
||
The bitmapped allocator's internal pool is exponentially growing.
|
||
Meaning that internally, the blocks acquired from the Free List
|
||
Store will double every time the bitmapped allocator runs out of
|
||
memory.
|
||
</p><p>
|
||
The macro <code class="literal">__GTHREADS</code> decides whether to use
|
||
Mutex Protection around every allocation/deallocation. The state
|
||
of the macro is picked up automatically from the gthr abstraction
|
||
layer.
|
||
</p></div><div class="sect2" title="Implementation"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.bitmap.impl"></a>Implementation</h3></div></div></div><div class="sect3" title="Free List Store"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.free_list_store"></a>Free List Store</h4></div></div></div><p>
|
||
The Free List Store (referred to as FLS for the remaining part of this
|
||
document) is the Global memory pool that is shared by all instances of
|
||
the bitmapped allocator instantiated for any type. This maintains a
|
||
sorted order of all free memory blocks given back to it by the
|
||
bitmapped allocator, and is also responsible for giving memory to the
|
||
bitmapped allocator when it asks for more.
|
||
</p><p>
|
||
Internally, there is a Free List threshold which indicates the
|
||
Maximum number of free lists that the FLS can hold internally
|
||
(cache). Currently, this value is set at 64. So, if there are
|
||
more than 64 free lists coming in, then some of them will be given
|
||
back to the OS using operator delete so that at any given time the
|
||
Free List's size does not exceed 64 entries. This is done because
|
||
a Binary Search is used to locate an entry in a free list when a
|
||
request for memory comes along. Thus, the run-time complexity of
|
||
the search would go up given an increasing size, for 64 entries
|
||
however, lg(64) == 6 comparisons are enough to locate the correct
|
||
free list if it exists.
|
||
</p><p>
|
||
Suppose the free list size has reached it's threshold, then the
|
||
largest block from among those in the list and the new block will
|
||
be selected and given back to the OS. This is done because it
|
||
reduces external fragmentation, and allows the OS to use the
|
||
larger blocks later in an orderly fashion, possibly merging them
|
||
later. Also, on some systems, large blocks are obtained via calls
|
||
to mmap, so giving them back to free system resources becomes most
|
||
important.
|
||
</p><p>
|
||
The function _S_should_i_give decides the policy that determines
|
||
whether the current block of memory should be given to the
|
||
allocator for the request that it has made. That's because we may
|
||
not always have exact fits for the memory size that the allocator
|
||
requests. We do this mainly to prevent external fragmentation at
|
||
the cost of a little internal fragmentation. Now, the value of
|
||
this internal fragmentation has to be decided by this function. I
|
||
can see 3 possibilities right now. Please add more as and when you
|
||
find better strategies.
|
||
</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Equal size check. Return true only when the 2 blocks are of equal
|
||
size.</p></li><li class="listitem"><p>Difference Threshold: Return true only when the _block_size is
|
||
greater than or equal to the _required_size, and if the _BS is > _RS
|
||
by a difference of less than some THRESHOLD value, then return true,
|
||
else return false. </p></li><li class="listitem"><p>Percentage Threshold. Return true only when the _block_size is
|
||
greater than or equal to the _required_size, and if the _BS is > _RS
|
||
by a percentage of less than some THRESHOLD value, then return true,
|
||
else return false.</p></li></ol></div><p>
|
||
Currently, (3) is being used with a value of 36% Maximum wastage per
|
||
Super Block.
|
||
</p></div><div class="sect3" title="Super Block"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.super_block"></a>Super Block</h4></div></div></div><p>
|
||
A super block is the block of memory acquired from the FLS from
|
||
which the bitmap allocator carves out memory for single objects
|
||
and satisfies the user's requests. These super blocks come in
|
||
sizes that are powers of 2 and multiples of 32
|
||
(_Bits_Per_Block). Yes both at the same time! That's because the
|
||
next super block acquired will be 2 times the previous one, and
|
||
also all super blocks have to be multiples of the _Bits_Per_Block
|
||
value.
|
||
</p><p>
|
||
How does it interact with the free list store?
|
||
</p><p>
|
||
The super block is contained in the FLS, and the FLS is responsible for
|
||
getting / returning Super Bocks to and from the OS using operator new
|
||
as defined by the C++ standard.
|
||
</p></div><div class="sect3" title="Super Block Data Layout"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.super_block_data"></a>Super Block Data Layout</h4></div></div></div><p>
|
||
Each Super Block will be of some size that is a multiple of the
|
||
number of Bits Per Block. Typically, this value is chosen as
|
||
Bits_Per_Byte x sizeof(size_t). On an x86 system, this gives the
|
||
figure 8 x 4 = 32. Thus, each Super Block will be of size 32
|
||
x Some_Value. This Some_Value is sizeof(value_type). For now, let
|
||
it be called 'K'. Thus, finally, Super Block size is 32 x K bytes.
|
||
</p><p>
|
||
This value of 32 has been chosen because each size_t has 32-bits
|
||
and Maximum use of these can be made with such a figure.
|
||
</p><p>
|
||
Consider a block of size 64 ints. In memory, it would look like this:
|
||
(assume a 32-bit system where, size_t is a 32-bit entity).
|
||
</p><div class="table"><a id="id376664"></a><p class="title"><b>Table 20.1. Bitmap Allocator Memory Map</b></p><div class="table-contents"><table summary="Bitmap Allocator Memory Map" border="1"><colgroup><col align="left" /><col align="left" /><col align="left" /><col align="left" /><col align="left" /></colgroup><tbody><tr><td align="left">268</td><td align="left">0</td><td align="left">4294967295</td><td align="left">4294967295</td><td align="left">Data -> Space for 64 ints</td></tr></tbody></table></div></div><br class="table-break" /><p>
|
||
The first Column(268) represents the size of the Block in bytes as
|
||
seen by the Bitmap Allocator. Internally, a global free list is
|
||
used to keep track of the free blocks used and given back by the
|
||
bitmap allocator. It is this Free List Store that is responsible
|
||
for writing and managing this information. Actually the number of
|
||
bytes allocated in this case would be: 4 + 4 + (4x2) + (64x4) =
|
||
272 bytes, but the first 4 bytes are an addition by the Free List
|
||
Store, so the Bitmap Allocator sees only 268 bytes. These first 4
|
||
bytes about which the bitmapped allocator is not aware hold the
|
||
value 268.
|
||
</p><p>
|
||
What do the remaining values represent?</p><p>
|
||
The 2nd 4 in the expression is the sizeof(size_t) because the
|
||
Bitmapped Allocator maintains a used count for each Super Block,
|
||
which is initially set to 0 (as indicated in the diagram). This is
|
||
incremented every time a block is removed from this super block
|
||
(allocated), and decremented whenever it is given back. So, when
|
||
the used count falls to 0, the whole super block will be given
|
||
back to the Free List Store.
|
||
</p><p>
|
||
The value 4294967295 represents the integer corresponding to the bit
|
||
representation of all bits set: 11111111111111111111111111111111.
|
||
</p><p>
|
||
The 3rd 4x2 is size of the bitmap itself, which is the size of 32-bits
|
||
x 2,
|
||
which is 8-bytes, or 2 x sizeof(size_t).
|
||
</p></div><div class="sect3" title="Maximum Wasted Percentage"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.max_wasted"></a>Maximum Wasted Percentage</h4></div></div></div><p>
|
||
This has nothing to do with the algorithm per-se,
|
||
only with some vales that must be chosen correctly to ensure that the
|
||
allocator performs well in a real word scenario, and maintains a good
|
||
balance between the memory consumption and the allocation/deallocation
|
||
speed.
|
||
</p><p>
|
||
The formula for calculating the maximum wastage as a percentage:
|
||
</p><p>
|
||
(32 x k + 1) / (2 x (32 x k + 1 + 32 x c)) x 100.
|
||
</p><p>
|
||
where k is the constant overhead per node (e.g., for list, it is
|
||
8 bytes, and for map it is 12 bytes) and c is the size of the
|
||
base type on which the map/list is instantiated. Thus, suppose the
|
||
type1 is int and type2 is double, they are related by the relation
|
||
sizeof(double) == 2*sizeof(int). Thus, all types must have this
|
||
double size relation for this formula to work properly.
|
||
</p><p>
|
||
Plugging-in: For List: k = 8 and c = 4 (int and double), we get:
|
||
33.376%
|
||
</p><p>
|
||
For map/multimap: k = 12, and c = 4 (int and double), we get: 37.524%
|
||
</p><p>
|
||
Thus, knowing these values, and based on the sizeof(value_type), we may
|
||
create a function that returns the Max_Wastage_Percentage for us to use.
|
||
</p></div><div class="sect3" title="allocate"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.allocate"></a><code class="function">allocate</code></h4></div></div></div><p>
|
||
The allocate function is specialized for single object allocation
|
||
ONLY. Thus, ONLY if n == 1, will the bitmap_allocator's
|
||
specialized algorithm be used. Otherwise, the request is satisfied
|
||
directly by calling operator new.
|
||
</p><p>
|
||
Suppose n == 1, then the allocator does the following:
|
||
</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
|
||
Checks to see whether a free block exists somewhere in a region
|
||
of memory close to the last satisfied request. If so, then that
|
||
block is marked as allocated in the bit map and given to the
|
||
user. If not, then (2) is executed.
|
||
</p></li><li class="listitem"><p>
|
||
Is there a free block anywhere after the current block right
|
||
up to the end of the memory that we have? If so, that block is
|
||
found, and the same procedure is applied as above, and
|
||
returned to the user. If not, then (3) is executed.
|
||
</p></li><li class="listitem"><p>
|
||
Is there any block in whatever region of memory that we own
|
||
free? This is done by checking
|
||
</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>
|
||
The use count for each super block, and if that fails then
|
||
</p></li><li class="listitem"><p>
|
||
The individual bit-maps for each super block.
|
||
</p></li></ul></div><p>
|
||
Note: Here we are never touching any of the memory that the
|
||
user will be given, and we are confining all memory accesses
|
||
to a small region of memory! This helps reduce cache
|
||
misses. If this succeeds then we apply the same procedure on
|
||
that bit-map as (1), and return that block of memory to the
|
||
user. However, if this process fails, then we resort to (4).
|
||
</p></li><li class="listitem"><p>
|
||
This process involves Refilling the internal exponentially
|
||
growing memory pool. The said effect is achieved by calling
|
||
_S_refill_pool which does the following:
|
||
</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>
|
||
Gets more memory from the Global Free List of the Required
|
||
size.
|
||
</p></li><li class="listitem"><p>
|
||
Adjusts the size for the next call to itself.
|
||
</p></li><li class="listitem"><p>
|
||
Writes the appropriate headers in the bit-maps.
|
||
</p></li><li class="listitem"><p>
|
||
Sets the use count for that super-block just allocated to 0
|
||
(zero).
|
||
</p></li><li class="listitem"><p>
|
||
All of the above accounts to maintaining the basic invariant
|
||
for the allocator. If the invariant is maintained, we are
|
||
sure that all is well. Now, the same process is applied on
|
||
the newly acquired free blocks, which are dispatched
|
||
accordingly.
|
||
</p></li></ul></div></li></ol></div><p>
|
||
Thus, you can clearly see that the allocate function is nothing but a
|
||
combination of the next-fit and first-fit algorithm optimized ONLY for
|
||
single object allocations.
|
||
</p></div><div class="sect3" title="deallocate"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.deallocate"></a><code class="function">deallocate</code></h4></div></div></div><p>
|
||
The deallocate function again is specialized for single objects ONLY.
|
||
For all n belonging to > 1, the operator delete is called without
|
||
further ado, and the deallocate function returns.
|
||
</p><p>
|
||
However for n == 1, a series of steps are performed:
|
||
</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
|
||
We first need to locate that super-block which holds the memory
|
||
location given to us by the user. For that purpose, we maintain
|
||
a static variable _S_last_dealloc_index, which holds the index
|
||
into the vector of block pairs which indicates the index of the
|
||
last super-block from which memory was freed. We use this
|
||
strategy in the hope that the user will deallocate memory in a
|
||
region close to what he/she deallocated the last time around. If
|
||
the check for belongs_to succeeds, then we determine the bit-map
|
||
for the given pointer, and locate the index into that bit-map,
|
||
and mark that bit as free by setting it.
|
||
</p></li><li class="listitem"><p>
|
||
If the _S_last_dealloc_index does not point to the memory block
|
||
that we're looking for, then we do a linear search on the block
|
||
stored in the vector of Block Pairs. This vector in code is
|
||
called _S_mem_blocks. When the corresponding super-block is
|
||
found, we apply the same procedure as we did for (1) to mark the
|
||
block as free in the bit-map.
|
||
</p></li></ol></div><p>
|
||
Now, whenever a block is freed, the use count of that particular
|
||
super block goes down by 1. When this use count hits 0, we remove
|
||
that super block from the list of all valid super blocks stored in
|
||
the vector. While doing this, we also make sure that the basic
|
||
invariant is maintained by making sure that _S_last_request and
|
||
_S_last_dealloc_index point to valid locations within the vector.
|
||
</p></div><div class="sect3" title="Questions"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.questions"></a>Questions</h4></div></div></div><div class="sect4" title="1"><div class="titlepage"><div><div><h5 class="title"><a id="bitmap.impl.question.1"></a>1</h5></div></div></div><p>
|
||
Q1) The "Data Layout" section is
|
||
cryptic. I have no idea of what you are trying to say. Layout of what?
|
||
The free-list? Each bitmap? The Super Block?
|
||
</p><p>
|
||
The layout of a Super Block of a given
|
||
size. In the example, a super block of size 32 x 1 is taken. The
|
||
general formula for calculating the size of a super block is
|
||
32 x sizeof(value_type) x 2^n, where n ranges from 0 to 32 for 32-bit
|
||
systems.
|
||
</p></div><div class="sect4" title="2"><div class="titlepage"><div><div><h5 class="title"><a id="bitmap.impl.question.2"></a>2</h5></div></div></div><p>
|
||
And since I just mentioned the
|
||
term `each bitmap', what in the world is meant by it? What does each
|
||
bitmap manage? How does it relate to the super block? Is the Super
|
||
Block a bitmap as well?
|
||
</p><p>
|
||
Each bitmap is part of a Super Block which is made up of 3 parts
|
||
as I have mentioned earlier. Re-iterating, 1. The use count,
|
||
2. The bit-map for that Super Block. 3. The actual memory that
|
||
will be eventually given to the user. Each bitmap is a multiple
|
||
of 32 in size. If there are 32 x (2^3) blocks of single objects
|
||
to be given, there will be '32 x (2^3)' bits present. Each 32
|
||
bits managing the allocated / free status for 32 blocks. Since
|
||
each size_t contains 32-bits, one size_t can manage up to 32
|
||
blocks' status. Each bit-map is made up of a number of size_t,
|
||
whose exact number for a super-block of a given size I have just
|
||
mentioned.
|
||
</p></div><div class="sect4" title="3"><div class="titlepage"><div><div><h5 class="title"><a id="bitmap.impl.question.3"></a>3</h5></div></div></div><p>
|
||
How do the allocate and deallocate functions work in regard to
|
||
bitmaps?
|
||
</p><p>
|
||
The allocate and deallocate functions manipulate the bitmaps and
|
||
have nothing to do with the memory that is given to the user. As
|
||
I have earlier mentioned, a 1 in the bitmap's bit field
|
||
indicates free, while a 0 indicates allocated. This lets us
|
||
check 32 bits at a time to check whether there is at lease one
|
||
free block in those 32 blocks by testing for equality with
|
||
(0). Now, the allocate function will given a memory block find
|
||
the corresponding bit in the bitmap, and will reset it (i.e.,
|
||
make it re-set (0)). And when the deallocate function is called,
|
||
it will again set that bit after locating it to indicate that
|
||
that particular block corresponding to this bit in the bit-map
|
||
is not being used by anyone, and may be used to satisfy future
|
||
requests.
|
||
</p><p>
|
||
e.g.: Consider a bit-map of 64-bits as represented below:
|
||
1111111111111111111111111111111111111111111111111111111111111111
|
||
</p><p>
|
||
Now, when the first request for allocation of a single object
|
||
comes along, the first block in address order is returned. And
|
||
since the bit-maps in the reverse order to that of the address
|
||
order, the last bit (LSB if the bit-map is considered as a
|
||
binary word of 64-bits) is re-set to 0.
|
||
</p><p>
|
||
The bit-map now looks like this:
|
||
1111111111111111111111111111111111111111111111111111111111111110
|
||
</p></div></div><div class="sect3" title="Locality"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.locality"></a>Locality</h4></div></div></div><p>
|
||
Another issue would be whether to keep the all bitmaps in a
|
||
separate area in memory, or to keep them near the actual blocks
|
||
that will be given out or allocated for the client. After some
|
||
testing, I've decided to keep these bitmaps close to the actual
|
||
blocks. This will help in 2 ways.
|
||
</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Constant time access for the bitmap themselves, since no kind of
|
||
look up will be needed to find the correct bitmap list or it's
|
||
equivalent.</p></li><li class="listitem"><p>And also this would preserve the cache as far as possible.</p></li></ol></div><p>
|
||
So in effect, this kind of an allocator might prove beneficial from a
|
||
purely cache point of view. But this allocator has been made to try and
|
||
roll out the defects of the node_allocator, wherein the nodes get
|
||
skewed about in memory, if they are not returned in the exact reverse
|
||
order or in the same order in which they were allocated. Also, the
|
||
new_allocator's book keeping overhead is too much for small objects and
|
||
single object allocations, though it preserves the locality of blocks
|
||
very well when they are returned back to the allocator.
|
||
</p></div><div class="sect3" title="Overhead and Grow Policy"><div class="titlepage"><div><div><h4 class="title"><a id="bitmap.impl.grow_policy"></a>Overhead and Grow Policy</h4></div></div></div><p>
|
||
Expected overhead per block would be 1 bit in memory. Also, once
|
||
the address of the free list has been found, the cost for
|
||
allocation/deallocation would be negligible, and is supposed to be
|
||
constant time. For these very reasons, it is very important to
|
||
minimize the linear time costs, which include finding a free list
|
||
with a free block while allocating, and finding the corresponding
|
||
free list for a block while deallocating. Therefore, I have
|
||
decided that the growth of the internal pool for this allocator
|
||
will be exponential as compared to linear for
|
||
node_allocator. There, linear time works well, because we are
|
||
mainly concerned with speed of allocation/deallocation and memory
|
||
consumption, whereas here, the allocation/deallocation part does
|
||
have some linear/logarithmic complexity components in it. Thus, to
|
||
try and minimize them would be a good thing to do at the cost of a
|
||
little bit of memory.
|
||
</p><p>
|
||
Another thing to be noted is the pool size will double every time
|
||
the internal pool gets exhausted, and all the free blocks have
|
||
been given away. The initial size of the pool would be
|
||
sizeof(size_t) x 8 which is the number of bits in an integer,
|
||
which can fit exactly in a CPU register. Hence, the term given is
|
||
exponential growth of the internal pool.
|
||
</p></div></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ext_allocators.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="ext_allocators.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ext_containers.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 20. Allocators </td><td width="20%" align="center"><a accesskey="h" href="../spine.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 21. Containers</td></tr></table></div></body></html>
|