43b9f49910
2016-04-04 Richard Biener <rguenther@suse.de> PR rtl-optimization/70484 * rtl.h (canon_output_dependence): Declare. * alias.c (canon_output_dependence): New function. * dse.c (record_store): Use canon_output_dependence rather than canon_true_dependence. * gcc.dg/torture/pr70484.c: New testcase. From-SVN: r234709
3435 lines
104 KiB
C
3435 lines
104 KiB
C
/* Alias analysis for GNU C
|
||
Copyright (C) 1997-2016 Free Software Foundation, Inc.
|
||
Contributed by John Carr (jfc@mit.edu).
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "df.h"
|
||
#include "tm_p.h"
|
||
#include "gimple-ssa.h"
|
||
#include "emit-rtl.h"
|
||
#include "alias.h"
|
||
#include "fold-const.h"
|
||
#include "varasm.h"
|
||
#include "cselib.h"
|
||
#include "langhooks.h"
|
||
#include "cfganal.h"
|
||
#include "rtl-iter.h"
|
||
#include "cgraph.h"
|
||
|
||
/* The aliasing API provided here solves related but different problems:
|
||
|
||
Say there exists (in c)
|
||
|
||
struct X {
|
||
struct Y y1;
|
||
struct Z z2;
|
||
} x1, *px1, *px2;
|
||
|
||
struct Y y2, *py;
|
||
struct Z z2, *pz;
|
||
|
||
|
||
py = &x1.y1;
|
||
px2 = &x1;
|
||
|
||
Consider the four questions:
|
||
|
||
Can a store to x1 interfere with px2->y1?
|
||
Can a store to x1 interfere with px2->z2?
|
||
Can a store to x1 change the value pointed to by with py?
|
||
Can a store to x1 change the value pointed to by with pz?
|
||
|
||
The answer to these questions can be yes, yes, yes, and maybe.
|
||
|
||
The first two questions can be answered with a simple examination
|
||
of the type system. If structure X contains a field of type Y then
|
||
a store through a pointer to an X can overwrite any field that is
|
||
contained (recursively) in an X (unless we know that px1 != px2).
|
||
|
||
The last two questions can be solved in the same way as the first
|
||
two questions but this is too conservative. The observation is
|
||
that in some cases we can know which (if any) fields are addressed
|
||
and if those addresses are used in bad ways. This analysis may be
|
||
language specific. In C, arbitrary operations may be applied to
|
||
pointers. However, there is some indication that this may be too
|
||
conservative for some C++ types.
|
||
|
||
The pass ipa-type-escape does this analysis for the types whose
|
||
instances do not escape across the compilation boundary.
|
||
|
||
Historically in GCC, these two problems were combined and a single
|
||
data structure that was used to represent the solution to these
|
||
problems. We now have two similar but different data structures,
|
||
The data structure to solve the last two questions is similar to
|
||
the first, but does not contain the fields whose address are never
|
||
taken. For types that do escape the compilation unit, the data
|
||
structures will have identical information.
|
||
*/
|
||
|
||
/* The alias sets assigned to MEMs assist the back-end in determining
|
||
which MEMs can alias which other MEMs. In general, two MEMs in
|
||
different alias sets cannot alias each other, with one important
|
||
exception. Consider something like:
|
||
|
||
struct S { int i; double d; };
|
||
|
||
a store to an `S' can alias something of either type `int' or type
|
||
`double'. (However, a store to an `int' cannot alias a `double'
|
||
and vice versa.) We indicate this via a tree structure that looks
|
||
like:
|
||
struct S
|
||
/ \
|
||
/ \
|
||
|/_ _\|
|
||
int double
|
||
|
||
(The arrows are directed and point downwards.)
|
||
In this situation we say the alias set for `struct S' is the
|
||
`superset' and that those for `int' and `double' are `subsets'.
|
||
|
||
To see whether two alias sets can point to the same memory, we must
|
||
see if either alias set is a subset of the other. We need not trace
|
||
past immediate descendants, however, since we propagate all
|
||
grandchildren up one level.
|
||
|
||
Alias set zero is implicitly a superset of all other alias sets.
|
||
However, this is no actual entry for alias set zero. It is an
|
||
error to attempt to explicitly construct a subset of zero. */
|
||
|
||
struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
|
||
|
||
struct GTY(()) alias_set_entry {
|
||
/* The alias set number, as stored in MEM_ALIAS_SET. */
|
||
alias_set_type alias_set;
|
||
|
||
/* The children of the alias set. These are not just the immediate
|
||
children, but, in fact, all descendants. So, if we have:
|
||
|
||
struct T { struct S s; float f; }
|
||
|
||
continuing our example above, the children here will be all of
|
||
`int', `double', `float', and `struct S'. */
|
||
hash_map<alias_set_hash, int> *children;
|
||
|
||
/* Nonzero if would have a child of zero: this effectively makes this
|
||
alias set the same as alias set zero. */
|
||
bool has_zero_child;
|
||
/* Nonzero if alias set corresponds to pointer type itself (i.e. not to
|
||
aggregate contaiing pointer.
|
||
This is used for a special case where we need an universal pointer type
|
||
compatible with all other pointer types. */
|
||
bool is_pointer;
|
||
/* Nonzero if is_pointer or if one of childs have has_pointer set. */
|
||
bool has_pointer;
|
||
};
|
||
|
||
static int rtx_equal_for_memref_p (const_rtx, const_rtx);
|
||
static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
|
||
static void record_set (rtx, const_rtx, void *);
|
||
static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
|
||
machine_mode);
|
||
static rtx find_base_value (rtx);
|
||
static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
|
||
static alias_set_entry *get_alias_set_entry (alias_set_type);
|
||
static tree decl_for_component_ref (tree);
|
||
static int write_dependence_p (const_rtx,
|
||
const_rtx, machine_mode, rtx,
|
||
bool, bool, bool);
|
||
static int compare_base_symbol_refs (const_rtx, const_rtx);
|
||
|
||
static void memory_modified_1 (rtx, const_rtx, void *);
|
||
|
||
/* Query statistics for the different low-level disambiguators.
|
||
A high-level query may trigger multiple of them. */
|
||
|
||
static struct {
|
||
unsigned long long num_alias_zero;
|
||
unsigned long long num_same_alias_set;
|
||
unsigned long long num_same_objects;
|
||
unsigned long long num_volatile;
|
||
unsigned long long num_dag;
|
||
unsigned long long num_universal;
|
||
unsigned long long num_disambiguated;
|
||
} alias_stats;
|
||
|
||
|
||
/* Set up all info needed to perform alias analysis on memory references. */
|
||
|
||
/* Returns the size in bytes of the mode of X. */
|
||
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
|
||
|
||
/* Cap the number of passes we make over the insns propagating alias
|
||
information through set chains.
|
||
??? 10 is a completely arbitrary choice. This should be based on the
|
||
maximum loop depth in the CFG, but we do not have this information
|
||
available (even if current_loops _is_ available). */
|
||
#define MAX_ALIAS_LOOP_PASSES 10
|
||
|
||
/* reg_base_value[N] gives an address to which register N is related.
|
||
If all sets after the first add or subtract to the current value
|
||
or otherwise modify it so it does not point to a different top level
|
||
object, reg_base_value[N] is equal to the address part of the source
|
||
of the first set.
|
||
|
||
A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
|
||
expressions represent three types of base:
|
||
|
||
1. incoming arguments. There is just one ADDRESS to represent all
|
||
arguments, since we do not know at this level whether accesses
|
||
based on different arguments can alias. The ADDRESS has id 0.
|
||
|
||
2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
|
||
(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
|
||
Each of these rtxes has a separate ADDRESS associated with it,
|
||
each with a negative id.
|
||
|
||
GCC is (and is required to be) precise in which register it
|
||
chooses to access a particular region of stack. We can therefore
|
||
assume that accesses based on one of these rtxes do not alias
|
||
accesses based on another of these rtxes.
|
||
|
||
3. bases that are derived from malloc()ed memory (REG_NOALIAS).
|
||
Each such piece of memory has a separate ADDRESS associated
|
||
with it, each with an id greater than 0.
|
||
|
||
Accesses based on one ADDRESS do not alias accesses based on other
|
||
ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
|
||
alias globals either; the ADDRESSes have Pmode to indicate this.
|
||
The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
|
||
indicate this. */
|
||
|
||
static GTY(()) vec<rtx, va_gc> *reg_base_value;
|
||
static rtx *new_reg_base_value;
|
||
|
||
/* The single VOIDmode ADDRESS that represents all argument bases.
|
||
It has id 0. */
|
||
static GTY(()) rtx arg_base_value;
|
||
|
||
/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
|
||
static int unique_id;
|
||
|
||
/* We preserve the copy of old array around to avoid amount of garbage
|
||
produced. About 8% of garbage produced were attributed to this
|
||
array. */
|
||
static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
|
||
|
||
/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
|
||
registers. */
|
||
#define UNIQUE_BASE_VALUE_SP -1
|
||
#define UNIQUE_BASE_VALUE_ARGP -2
|
||
#define UNIQUE_BASE_VALUE_FP -3
|
||
#define UNIQUE_BASE_VALUE_HFP -4
|
||
|
||
#define static_reg_base_value \
|
||
(this_target_rtl->x_static_reg_base_value)
|
||
|
||
#define REG_BASE_VALUE(X) \
|
||
(REGNO (X) < vec_safe_length (reg_base_value) \
|
||
? (*reg_base_value)[REGNO (X)] : 0)
|
||
|
||
/* Vector indexed by N giving the initial (unchanging) value known for
|
||
pseudo-register N. This vector is initialized in init_alias_analysis,
|
||
and does not change until end_alias_analysis is called. */
|
||
static GTY(()) vec<rtx, va_gc> *reg_known_value;
|
||
|
||
/* Vector recording for each reg_known_value whether it is due to a
|
||
REG_EQUIV note. Future passes (viz., reload) may replace the
|
||
pseudo with the equivalent expression and so we account for the
|
||
dependences that would be introduced if that happens.
|
||
|
||
The REG_EQUIV notes created in assign_parms may mention the arg
|
||
pointer, and there are explicit insns in the RTL that modify the
|
||
arg pointer. Thus we must ensure that such insns don't get
|
||
scheduled across each other because that would invalidate the
|
||
REG_EQUIV notes. One could argue that the REG_EQUIV notes are
|
||
wrong, but solving the problem in the scheduler will likely give
|
||
better code, so we do it here. */
|
||
static sbitmap reg_known_equiv_p;
|
||
|
||
/* True when scanning insns from the start of the rtl to the
|
||
NOTE_INSN_FUNCTION_BEG note. */
|
||
static bool copying_arguments;
|
||
|
||
|
||
/* The splay-tree used to store the various alias set entries. */
|
||
static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
|
||
|
||
/* Build a decomposed reference object for querying the alias-oracle
|
||
from the MEM rtx and store it in *REF.
|
||
Returns false if MEM is not suitable for the alias-oracle. */
|
||
|
||
static bool
|
||
ao_ref_from_mem (ao_ref *ref, const_rtx mem)
|
||
{
|
||
tree expr = MEM_EXPR (mem);
|
||
tree base;
|
||
|
||
if (!expr)
|
||
return false;
|
||
|
||
ao_ref_init (ref, expr);
|
||
|
||
/* Get the base of the reference and see if we have to reject or
|
||
adjust it. */
|
||
base = ao_ref_base (ref);
|
||
if (base == NULL_TREE)
|
||
return false;
|
||
|
||
/* The tree oracle doesn't like bases that are neither decls
|
||
nor indirect references of SSA names. */
|
||
if (!(DECL_P (base)
|
||
|| (TREE_CODE (base) == MEM_REF
|
||
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
||
|| (TREE_CODE (base) == TARGET_MEM_REF
|
||
&& TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
|
||
return false;
|
||
|
||
/* If this is a reference based on a partitioned decl replace the
|
||
base with a MEM_REF of the pointer representative we
|
||
created during stack slot partitioning. */
|
||
if (TREE_CODE (base) == VAR_DECL
|
||
&& ! is_global_var (base)
|
||
&& cfun->gimple_df->decls_to_pointers != NULL)
|
||
{
|
||
tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
|
||
if (namep)
|
||
ref->base = build_simple_mem_ref (*namep);
|
||
}
|
||
|
||
ref->ref_alias_set = MEM_ALIAS_SET (mem);
|
||
|
||
/* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
|
||
is conservative, so trust it. */
|
||
if (!MEM_OFFSET_KNOWN_P (mem)
|
||
|| !MEM_SIZE_KNOWN_P (mem))
|
||
return true;
|
||
|
||
/* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
|
||
drop ref->ref. */
|
||
if (MEM_OFFSET (mem) < 0
|
||
|| (ref->max_size != -1
|
||
&& ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
|
||
> ref->max_size)))
|
||
ref->ref = NULL_TREE;
|
||
|
||
/* Refine size and offset we got from analyzing MEM_EXPR by using
|
||
MEM_SIZE and MEM_OFFSET. */
|
||
|
||
ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
|
||
ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
|
||
|
||
/* The MEM may extend into adjacent fields, so adjust max_size if
|
||
necessary. */
|
||
if (ref->max_size != -1
|
||
&& ref->size > ref->max_size)
|
||
ref->max_size = ref->size;
|
||
|
||
/* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
|
||
the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
|
||
if (MEM_EXPR (mem) != get_spill_slot_decl (false)
|
||
&& (ref->offset < 0
|
||
|| (DECL_P (ref->base)
|
||
&& (DECL_SIZE (ref->base) == NULL_TREE
|
||
|| TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
|
||
|| wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
|
||
ref->offset + ref->size)))))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Query the alias-oracle on whether the two memory rtx X and MEM may
|
||
alias. If TBAA_P is set also apply TBAA. Returns true if the
|
||
two rtxen may alias, false otherwise. */
|
||
|
||
static bool
|
||
rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
|
||
{
|
||
ao_ref ref1, ref2;
|
||
|
||
if (!ao_ref_from_mem (&ref1, x)
|
||
|| !ao_ref_from_mem (&ref2, mem))
|
||
return true;
|
||
|
||
return refs_may_alias_p_1 (&ref1, &ref2,
|
||
tbaa_p
|
||
&& MEM_ALIAS_SET (x) != 0
|
||
&& MEM_ALIAS_SET (mem) != 0);
|
||
}
|
||
|
||
/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
|
||
such an entry, or NULL otherwise. */
|
||
|
||
static inline alias_set_entry *
|
||
get_alias_set_entry (alias_set_type alias_set)
|
||
{
|
||
return (*alias_sets)[alias_set];
|
||
}
|
||
|
||
/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
|
||
the two MEMs cannot alias each other. */
|
||
|
||
static inline int
|
||
mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
|
||
{
|
||
return (flag_strict_aliasing
|
||
&& ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
|
||
MEM_ALIAS_SET (mem2)));
|
||
}
|
||
|
||
/* Return true if the first alias set is a subset of the second. */
|
||
|
||
bool
|
||
alias_set_subset_of (alias_set_type set1, alias_set_type set2)
|
||
{
|
||
alias_set_entry *ase2;
|
||
|
||
/* Disable TBAA oracle with !flag_strict_aliasing. */
|
||
if (!flag_strict_aliasing)
|
||
return true;
|
||
|
||
/* Everything is a subset of the "aliases everything" set. */
|
||
if (set2 == 0)
|
||
return true;
|
||
|
||
/* Check if set1 is a subset of set2. */
|
||
ase2 = get_alias_set_entry (set2);
|
||
if (ase2 != 0
|
||
&& (ase2->has_zero_child
|
||
|| (ase2->children && ase2->children->get (set1))))
|
||
return true;
|
||
|
||
/* As a special case we consider alias set of "void *" to be both subset
|
||
and superset of every alias set of a pointer. This extra symmetry does
|
||
not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
|
||
to return true on the following testcase:
|
||
|
||
void *ptr;
|
||
char **ptr2=(char **)&ptr;
|
||
*ptr2 = ...
|
||
|
||
Additionally if a set contains universal pointer, we consider every pointer
|
||
to be a subset of it, but we do not represent this explicitely - doing so
|
||
would require us to update transitive closure each time we introduce new
|
||
pointer type. This makes aliasing_component_refs_p to return true
|
||
on the following testcase:
|
||
|
||
struct a {void *ptr;}
|
||
char **ptr = (char **)&a.ptr;
|
||
ptr = ...
|
||
|
||
This makes void * truly universal pointer type. See pointer handling in
|
||
get_alias_set for more details. */
|
||
if (ase2 && ase2->has_pointer)
|
||
{
|
||
alias_set_entry *ase1 = get_alias_set_entry (set1);
|
||
|
||
if (ase1 && ase1->is_pointer)
|
||
{
|
||
alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
|
||
/* If one is ptr_type_node and other is pointer, then we consider
|
||
them subset of each other. */
|
||
if (set1 == voidptr_set || set2 == voidptr_set)
|
||
return true;
|
||
/* If SET2 contains universal pointer's alias set, then we consdier
|
||
every (non-universal) pointer. */
|
||
if (ase2->children && set1 != voidptr_set
|
||
&& ase2->children->get (voidptr_set))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return 1 if the two specified alias sets may conflict. */
|
||
|
||
int
|
||
alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
|
||
{
|
||
alias_set_entry *ase1;
|
||
alias_set_entry *ase2;
|
||
|
||
/* The easy case. */
|
||
if (alias_sets_must_conflict_p (set1, set2))
|
||
return 1;
|
||
|
||
/* See if the first alias set is a subset of the second. */
|
||
ase1 = get_alias_set_entry (set1);
|
||
if (ase1 != 0
|
||
&& ase1->children && ase1->children->get (set2))
|
||
{
|
||
++alias_stats.num_dag;
|
||
return 1;
|
||
}
|
||
|
||
/* Now do the same, but with the alias sets reversed. */
|
||
ase2 = get_alias_set_entry (set2);
|
||
if (ase2 != 0
|
||
&& ase2->children && ase2->children->get (set1))
|
||
{
|
||
++alias_stats.num_dag;
|
||
return 1;
|
||
}
|
||
|
||
/* We want void * to be compatible with any other pointer without
|
||
really dropping it to alias set 0. Doing so would make it
|
||
compatible with all non-pointer types too.
|
||
|
||
This is not strictly necessary by the C/C++ language
|
||
standards, but avoids common type punning mistakes. In
|
||
addition to that, we need the existence of such universal
|
||
pointer to implement Fortran's C_PTR type (which is defined as
|
||
type compatible with all C pointers). */
|
||
if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
|
||
{
|
||
alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
|
||
|
||
/* If one of the sets corresponds to universal pointer,
|
||
we consider it to conflict with anything that is
|
||
or contains pointer. */
|
||
if (set1 == voidptr_set || set2 == voidptr_set)
|
||
{
|
||
++alias_stats.num_universal;
|
||
return true;
|
||
}
|
||
/* If one of sets is (non-universal) pointer and the other
|
||
contains universal pointer, we also get conflict. */
|
||
if (ase1->is_pointer && set2 != voidptr_set
|
||
&& ase2->children && ase2->children->get (voidptr_set))
|
||
{
|
||
++alias_stats.num_universal;
|
||
return true;
|
||
}
|
||
if (ase2->is_pointer && set1 != voidptr_set
|
||
&& ase1->children && ase1->children->get (voidptr_set))
|
||
{
|
||
++alias_stats.num_universal;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
++alias_stats.num_disambiguated;
|
||
|
||
/* The two alias sets are distinct and neither one is the
|
||
child of the other. Therefore, they cannot conflict. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if the two specified alias sets will always conflict. */
|
||
|
||
int
|
||
alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
|
||
{
|
||
/* Disable TBAA oracle with !flag_strict_aliasing. */
|
||
if (!flag_strict_aliasing)
|
||
return 1;
|
||
if (set1 == 0 || set2 == 0)
|
||
{
|
||
++alias_stats.num_alias_zero;
|
||
return 1;
|
||
}
|
||
if (set1 == set2)
|
||
{
|
||
++alias_stats.num_same_alias_set;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if any MEM object of type T1 will always conflict (using the
|
||
dependency routines in this file) with any MEM object of type T2.
|
||
This is used when allocating temporary storage. If T1 and/or T2 are
|
||
NULL_TREE, it means we know nothing about the storage. */
|
||
|
||
int
|
||
objects_must_conflict_p (tree t1, tree t2)
|
||
{
|
||
alias_set_type set1, set2;
|
||
|
||
/* If neither has a type specified, we don't know if they'll conflict
|
||
because we may be using them to store objects of various types, for
|
||
example the argument and local variables areas of inlined functions. */
|
||
if (t1 == 0 && t2 == 0)
|
||
return 0;
|
||
|
||
/* If they are the same type, they must conflict. */
|
||
if (t1 == t2)
|
||
{
|
||
++alias_stats.num_same_objects;
|
||
return 1;
|
||
}
|
||
/* Likewise if both are volatile. */
|
||
if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
|
||
{
|
||
++alias_stats.num_volatile;
|
||
return 1;
|
||
}
|
||
|
||
set1 = t1 ? get_alias_set (t1) : 0;
|
||
set2 = t2 ? get_alias_set (t2) : 0;
|
||
|
||
/* We can't use alias_sets_conflict_p because we must make sure
|
||
that every subtype of t1 will conflict with every subtype of
|
||
t2 for which a pair of subobjects of these respective subtypes
|
||
overlaps on the stack. */
|
||
return alias_sets_must_conflict_p (set1, set2);
|
||
}
|
||
|
||
/* Return the outermost parent of component present in the chain of
|
||
component references handled by get_inner_reference in T with the
|
||
following property:
|
||
- the component is non-addressable, or
|
||
- the parent has alias set zero,
|
||
or NULL_TREE if no such parent exists. In the former cases, the alias
|
||
set of this parent is the alias set that must be used for T itself. */
|
||
|
||
tree
|
||
component_uses_parent_alias_set_from (const_tree t)
|
||
{
|
||
const_tree found = NULL_TREE;
|
||
|
||
while (handled_component_p (t))
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case COMPONENT_REF:
|
||
if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
|
||
found = t;
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
|
||
found = t;
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
break;
|
||
|
||
case BIT_FIELD_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
/* Bitfields and casts are never addressable. */
|
||
found = t;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
|
||
found = t;
|
||
|
||
t = TREE_OPERAND (t, 0);
|
||
}
|
||
|
||
if (found)
|
||
return TREE_OPERAND (found, 0);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Return whether the pointer-type T effective for aliasing may
|
||
access everything and thus the reference has to be assigned
|
||
alias-set zero. */
|
||
|
||
static bool
|
||
ref_all_alias_ptr_type_p (const_tree t)
|
||
{
|
||
return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
|
||
|| TYPE_REF_CAN_ALIAS_ALL (t));
|
||
}
|
||
|
||
/* Return the alias set for the memory pointed to by T, which may be
|
||
either a type or an expression. Return -1 if there is nothing
|
||
special about dereferencing T. */
|
||
|
||
static alias_set_type
|
||
get_deref_alias_set_1 (tree t)
|
||
{
|
||
/* All we care about is the type. */
|
||
if (! TYPE_P (t))
|
||
t = TREE_TYPE (t);
|
||
|
||
/* If we have an INDIRECT_REF via a void pointer, we don't
|
||
know anything about what that might alias. Likewise if the
|
||
pointer is marked that way. */
|
||
if (ref_all_alias_ptr_type_p (t))
|
||
return 0;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Return the alias set for the memory pointed to by T, which may be
|
||
either a type or an expression. */
|
||
|
||
alias_set_type
|
||
get_deref_alias_set (tree t)
|
||
{
|
||
/* If we're not doing any alias analysis, just assume everything
|
||
aliases everything else. */
|
||
if (!flag_strict_aliasing)
|
||
return 0;
|
||
|
||
alias_set_type set = get_deref_alias_set_1 (t);
|
||
|
||
/* Fall back to the alias-set of the pointed-to type. */
|
||
if (set == -1)
|
||
{
|
||
if (! TYPE_P (t))
|
||
t = TREE_TYPE (t);
|
||
set = get_alias_set (TREE_TYPE (t));
|
||
}
|
||
|
||
return set;
|
||
}
|
||
|
||
/* Return the pointer-type relevant for TBAA purposes from the
|
||
memory reference tree *T or NULL_TREE in which case *T is
|
||
adjusted to point to the outermost component reference that
|
||
can be used for assigning an alias set. */
|
||
|
||
static tree
|
||
reference_alias_ptr_type_1 (tree *t)
|
||
{
|
||
tree inner;
|
||
|
||
/* Get the base object of the reference. */
|
||
inner = *t;
|
||
while (handled_component_p (inner))
|
||
{
|
||
/* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
|
||
the type of any component references that wrap it to
|
||
determine the alias-set. */
|
||
if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
|
||
*t = TREE_OPERAND (inner, 0);
|
||
inner = TREE_OPERAND (inner, 0);
|
||
}
|
||
|
||
/* Handle pointer dereferences here, they can override the
|
||
alias-set. */
|
||
if (INDIRECT_REF_P (inner)
|
||
&& ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
|
||
return TREE_TYPE (TREE_OPERAND (inner, 0));
|
||
else if (TREE_CODE (inner) == TARGET_MEM_REF)
|
||
return TREE_TYPE (TMR_OFFSET (inner));
|
||
else if (TREE_CODE (inner) == MEM_REF
|
||
&& ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
|
||
return TREE_TYPE (TREE_OPERAND (inner, 1));
|
||
|
||
/* If the innermost reference is a MEM_REF that has a
|
||
conversion embedded treat it like a VIEW_CONVERT_EXPR above,
|
||
using the memory access type for determining the alias-set. */
|
||
if (TREE_CODE (inner) == MEM_REF
|
||
&& (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
|
||
!= TYPE_MAIN_VARIANT
|
||
(TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
|
||
return TREE_TYPE (TREE_OPERAND (inner, 1));
|
||
|
||
/* Otherwise, pick up the outermost object that we could have
|
||
a pointer to. */
|
||
tree tem = component_uses_parent_alias_set_from (*t);
|
||
if (tem)
|
||
*t = tem;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return the pointer-type relevant for TBAA purposes from the
|
||
gimple memory reference tree T. This is the type to be used for
|
||
the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
|
||
and guarantees that get_alias_set will return the same alias
|
||
set for T and the replacement. */
|
||
|
||
tree
|
||
reference_alias_ptr_type (tree t)
|
||
{
|
||
tree ptype = reference_alias_ptr_type_1 (&t);
|
||
/* If there is a given pointer type for aliasing purposes, return it. */
|
||
if (ptype != NULL_TREE)
|
||
return ptype;
|
||
|
||
/* Otherwise build one from the outermost component reference we
|
||
may use. */
|
||
if (TREE_CODE (t) == MEM_REF
|
||
|| TREE_CODE (t) == TARGET_MEM_REF)
|
||
return TREE_TYPE (TREE_OPERAND (t, 1));
|
||
else
|
||
return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
|
||
}
|
||
|
||
/* Return whether the pointer-types T1 and T2 used to determine
|
||
two alias sets of two references will yield the same answer
|
||
from get_deref_alias_set. */
|
||
|
||
bool
|
||
alias_ptr_types_compatible_p (tree t1, tree t2)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
|
||
return true;
|
||
|
||
if (ref_all_alias_ptr_type_p (t1)
|
||
|| ref_all_alias_ptr_type_p (t2))
|
||
return false;
|
||
|
||
return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
|
||
== TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
|
||
}
|
||
|
||
/* Create emptry alias set entry. */
|
||
|
||
alias_set_entry *
|
||
init_alias_set_entry (alias_set_type set)
|
||
{
|
||
alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
|
||
ase->alias_set = set;
|
||
ase->children = NULL;
|
||
ase->has_zero_child = false;
|
||
ase->is_pointer = false;
|
||
ase->has_pointer = false;
|
||
gcc_checking_assert (!get_alias_set_entry (set));
|
||
(*alias_sets)[set] = ase;
|
||
return ase;
|
||
}
|
||
|
||
/* Return the alias set for T, which may be either a type or an
|
||
expression. Call language-specific routine for help, if needed. */
|
||
|
||
alias_set_type
|
||
get_alias_set (tree t)
|
||
{
|
||
alias_set_type set;
|
||
|
||
/* We can not give up with -fno-strict-aliasing because we need to build
|
||
proper type representation for possible functions which are build with
|
||
-fstrict-aliasing. */
|
||
|
||
/* return 0 if this or its type is an error. */
|
||
if (t == error_mark_node
|
||
|| (! TYPE_P (t)
|
||
&& (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
|
||
return 0;
|
||
|
||
/* We can be passed either an expression or a type. This and the
|
||
language-specific routine may make mutually-recursive calls to each other
|
||
to figure out what to do. At each juncture, we see if this is a tree
|
||
that the language may need to handle specially. First handle things that
|
||
aren't types. */
|
||
if (! TYPE_P (t))
|
||
{
|
||
/* Give the language a chance to do something with this tree
|
||
before we look at it. */
|
||
STRIP_NOPS (t);
|
||
set = lang_hooks.get_alias_set (t);
|
||
if (set != -1)
|
||
return set;
|
||
|
||
/* Get the alias pointer-type to use or the outermost object
|
||
that we could have a pointer to. */
|
||
tree ptype = reference_alias_ptr_type_1 (&t);
|
||
if (ptype != NULL)
|
||
return get_deref_alias_set (ptype);
|
||
|
||
/* If we've already determined the alias set for a decl, just return
|
||
it. This is necessary for C++ anonymous unions, whose component
|
||
variables don't look like union members (boo!). */
|
||
if (TREE_CODE (t) == VAR_DECL
|
||
&& DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
|
||
return MEM_ALIAS_SET (DECL_RTL (t));
|
||
|
||
/* Now all we care about is the type. */
|
||
t = TREE_TYPE (t);
|
||
}
|
||
|
||
/* Variant qualifiers don't affect the alias set, so get the main
|
||
variant. */
|
||
t = TYPE_MAIN_VARIANT (t);
|
||
|
||
/* Always use the canonical type as well. If this is a type that
|
||
requires structural comparisons to identify compatible types
|
||
use alias set zero. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (t))
|
||
{
|
||
/* Allow the language to specify another alias set for this
|
||
type. */
|
||
set = lang_hooks.get_alias_set (t);
|
||
if (set != -1)
|
||
return set;
|
||
/* Handle structure type equality for pointer types, arrays and vectors.
|
||
This is easy to do, because the code bellow ignore canonical types on
|
||
these anyway. This is important for LTO, where TYPE_CANONICAL for
|
||
pointers can not be meaningfuly computed by the frotnend. */
|
||
if (canonical_type_used_p (t))
|
||
{
|
||
/* In LTO we set canonical types for all types where it makes
|
||
sense to do so. Double check we did not miss some type. */
|
||
gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
t = TYPE_CANONICAL (t);
|
||
gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
|
||
}
|
||
|
||
/* If this is a type with a known alias set, return it. */
|
||
gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
|
||
if (TYPE_ALIAS_SET_KNOWN_P (t))
|
||
return TYPE_ALIAS_SET (t);
|
||
|
||
/* We don't want to set TYPE_ALIAS_SET for incomplete types. */
|
||
if (!COMPLETE_TYPE_P (t))
|
||
{
|
||
/* For arrays with unknown size the conservative answer is the
|
||
alias set of the element type. */
|
||
if (TREE_CODE (t) == ARRAY_TYPE)
|
||
return get_alias_set (TREE_TYPE (t));
|
||
|
||
/* But return zero as a conservative answer for incomplete types. */
|
||
return 0;
|
||
}
|
||
|
||
/* See if the language has special handling for this type. */
|
||
set = lang_hooks.get_alias_set (t);
|
||
if (set != -1)
|
||
return set;
|
||
|
||
/* There are no objects of FUNCTION_TYPE, so there's no point in
|
||
using up an alias set for them. (There are, of course, pointers
|
||
and references to functions, but that's different.) */
|
||
else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
|
||
set = 0;
|
||
|
||
/* Unless the language specifies otherwise, let vector types alias
|
||
their components. This avoids some nasty type punning issues in
|
||
normal usage. And indeed lets vectors be treated more like an
|
||
array slice. */
|
||
else if (TREE_CODE (t) == VECTOR_TYPE)
|
||
set = get_alias_set (TREE_TYPE (t));
|
||
|
||
/* Unless the language specifies otherwise, treat array types the
|
||
same as their components. This avoids the asymmetry we get
|
||
through recording the components. Consider accessing a
|
||
character(kind=1) through a reference to a character(kind=1)[1:1].
|
||
Or consider if we want to assign integer(kind=4)[0:D.1387] and
|
||
integer(kind=4)[4] the same alias set or not.
|
||
Just be pragmatic here and make sure the array and its element
|
||
type get the same alias set assigned. */
|
||
else if (TREE_CODE (t) == ARRAY_TYPE
|
||
&& (!TYPE_NONALIASED_COMPONENT (t)
|
||
|| TYPE_STRUCTURAL_EQUALITY_P (t)))
|
||
set = get_alias_set (TREE_TYPE (t));
|
||
|
||
/* From the former common C and C++ langhook implementation:
|
||
|
||
Unfortunately, there is no canonical form of a pointer type.
|
||
In particular, if we have `typedef int I', then `int *', and
|
||
`I *' are different types. So, we have to pick a canonical
|
||
representative. We do this below.
|
||
|
||
Technically, this approach is actually more conservative that
|
||
it needs to be. In particular, `const int *' and `int *'
|
||
should be in different alias sets, according to the C and C++
|
||
standard, since their types are not the same, and so,
|
||
technically, an `int **' and `const int **' cannot point at
|
||
the same thing.
|
||
|
||
But, the standard is wrong. In particular, this code is
|
||
legal C++:
|
||
|
||
int *ip;
|
||
int **ipp = &ip;
|
||
const int* const* cipp = ipp;
|
||
And, it doesn't make sense for that to be legal unless you
|
||
can dereference IPP and CIPP. So, we ignore cv-qualifiers on
|
||
the pointed-to types. This issue has been reported to the
|
||
C++ committee.
|
||
|
||
For this reason go to canonical type of the unqalified pointer type.
|
||
Until GCC 6 this code set all pointers sets to have alias set of
|
||
ptr_type_node but that is a bad idea, because it prevents disabiguations
|
||
in between pointers. For Firefox this accounts about 20% of all
|
||
disambiguations in the program. */
|
||
else if (POINTER_TYPE_P (t) && t != ptr_type_node)
|
||
{
|
||
tree p;
|
||
auto_vec <bool, 8> reference;
|
||
|
||
/* Unnest all pointers and references.
|
||
We also want to make pointer to array/vector equivalent to pointer to
|
||
its element (see the reasoning above). Skip all those types, too. */
|
||
for (p = t; POINTER_TYPE_P (p)
|
||
|| (TREE_CODE (p) == ARRAY_TYPE
|
||
&& (!TYPE_NONALIASED_COMPONENT (p)
|
||
|| !COMPLETE_TYPE_P (p)
|
||
|| TYPE_STRUCTURAL_EQUALITY_P (p)))
|
||
|| TREE_CODE (p) == VECTOR_TYPE;
|
||
p = TREE_TYPE (p))
|
||
{
|
||
/* Ada supports recusive pointers. Instead of doing recrusion check
|
||
just give up once the preallocated space of 8 elements is up.
|
||
In this case just punt to void * alias set. */
|
||
if (reference.length () == 8)
|
||
{
|
||
p = ptr_type_node;
|
||
break;
|
||
}
|
||
if (TREE_CODE (p) == REFERENCE_TYPE)
|
||
/* In LTO we want languages that use references to be compatible
|
||
with languages that use pointers. */
|
||
reference.safe_push (true && !in_lto_p);
|
||
if (TREE_CODE (p) == POINTER_TYPE)
|
||
reference.safe_push (false);
|
||
}
|
||
p = TYPE_MAIN_VARIANT (p);
|
||
|
||
/* Make void * compatible with char * and also void **.
|
||
Programs are commonly violating TBAA by this.
|
||
|
||
We also make void * to conflict with every pointer
|
||
(see record_component_aliases) and thus it is safe it to use it for
|
||
pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
|
||
if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
|
||
set = get_alias_set (ptr_type_node);
|
||
else
|
||
{
|
||
/* Rebuild pointer type starting from canonical types using
|
||
unqualified pointers and references only. This way all such
|
||
pointers will have the same alias set and will conflict with
|
||
each other.
|
||
|
||
Most of time we already have pointers or references of a given type.
|
||
If not we build new one just to be sure that if someone later
|
||
(probably only middle-end can, as we should assign all alias
|
||
classes only after finishing translation unit) builds the pointer
|
||
type, the canonical type will match. */
|
||
p = TYPE_CANONICAL (p);
|
||
while (!reference.is_empty ())
|
||
{
|
||
if (reference.pop ())
|
||
p = build_reference_type (p);
|
||
else
|
||
p = build_pointer_type (p);
|
||
gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
|
||
/* build_pointer_type should always return the canonical type.
|
||
For LTO TYPE_CANOINCAL may be NULL, because we do not compute
|
||
them. Be sure that frontends do not glob canonical types of
|
||
pointers in unexpected way and that p == TYPE_CANONICAL (p)
|
||
in all other cases. */
|
||
gcc_checking_assert (!TYPE_CANONICAL (p)
|
||
|| p == TYPE_CANONICAL (p));
|
||
}
|
||
|
||
/* Assign the alias set to both p and t.
|
||
We can not call get_alias_set (p) here as that would trigger
|
||
infinite recursion when p == t. In other cases it would just
|
||
trigger unnecesary legwork of rebuilding the pointer again. */
|
||
gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
|
||
if (TYPE_ALIAS_SET_KNOWN_P (p))
|
||
set = TYPE_ALIAS_SET (p);
|
||
else
|
||
{
|
||
set = new_alias_set ();
|
||
TYPE_ALIAS_SET (p) = set;
|
||
}
|
||
}
|
||
}
|
||
/* Alias set of ptr_type_node is special and serve as universal pointer which
|
||
is TBAA compatible with every other pointer type. Be sure we have the
|
||
alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
|
||
of pointer types NULL. */
|
||
else if (t == ptr_type_node)
|
||
set = new_alias_set ();
|
||
|
||
/* Otherwise make a new alias set for this type. */
|
||
else
|
||
{
|
||
/* Each canonical type gets its own alias set, so canonical types
|
||
shouldn't form a tree. It doesn't really matter for types
|
||
we handle specially above, so only check it where it possibly
|
||
would result in a bogus alias set. */
|
||
gcc_checking_assert (TYPE_CANONICAL (t) == t);
|
||
|
||
set = new_alias_set ();
|
||
}
|
||
|
||
TYPE_ALIAS_SET (t) = set;
|
||
|
||
/* If this is an aggregate type or a complex type, we must record any
|
||
component aliasing information. */
|
||
if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
|
||
record_component_aliases (t);
|
||
|
||
/* We treat pointer types specially in alias_set_subset_of. */
|
||
if (POINTER_TYPE_P (t) && set)
|
||
{
|
||
alias_set_entry *ase = get_alias_set_entry (set);
|
||
if (!ase)
|
||
ase = init_alias_set_entry (set);
|
||
ase->is_pointer = true;
|
||
ase->has_pointer = true;
|
||
}
|
||
|
||
return set;
|
||
}
|
||
|
||
/* Return a brand-new alias set. */
|
||
|
||
alias_set_type
|
||
new_alias_set (void)
|
||
{
|
||
if (alias_sets == 0)
|
||
vec_safe_push (alias_sets, (alias_set_entry *) NULL);
|
||
vec_safe_push (alias_sets, (alias_set_entry *) NULL);
|
||
return alias_sets->length () - 1;
|
||
}
|
||
|
||
/* Indicate that things in SUBSET can alias things in SUPERSET, but that
|
||
not everything that aliases SUPERSET also aliases SUBSET. For example,
|
||
in C, a store to an `int' can alias a load of a structure containing an
|
||
`int', and vice versa. But it can't alias a load of a 'double' member
|
||
of the same structure. Here, the structure would be the SUPERSET and
|
||
`int' the SUBSET. This relationship is also described in the comment at
|
||
the beginning of this file.
|
||
|
||
This function should be called only once per SUPERSET/SUBSET pair.
|
||
|
||
It is illegal for SUPERSET to be zero; everything is implicitly a
|
||
subset of alias set zero. */
|
||
|
||
void
|
||
record_alias_subset (alias_set_type superset, alias_set_type subset)
|
||
{
|
||
alias_set_entry *superset_entry;
|
||
alias_set_entry *subset_entry;
|
||
|
||
/* It is possible in complex type situations for both sets to be the same,
|
||
in which case we can ignore this operation. */
|
||
if (superset == subset)
|
||
return;
|
||
|
||
gcc_assert (superset);
|
||
|
||
superset_entry = get_alias_set_entry (superset);
|
||
if (superset_entry == 0)
|
||
{
|
||
/* Create an entry for the SUPERSET, so that we have a place to
|
||
attach the SUBSET. */
|
||
superset_entry = init_alias_set_entry (superset);
|
||
}
|
||
|
||
if (subset == 0)
|
||
superset_entry->has_zero_child = 1;
|
||
else
|
||
{
|
||
subset_entry = get_alias_set_entry (subset);
|
||
if (!superset_entry->children)
|
||
superset_entry->children
|
||
= hash_map<alias_set_hash, int>::create_ggc (64);
|
||
/* If there is an entry for the subset, enter all of its children
|
||
(if they are not already present) as children of the SUPERSET. */
|
||
if (subset_entry)
|
||
{
|
||
if (subset_entry->has_zero_child)
|
||
superset_entry->has_zero_child = true;
|
||
if (subset_entry->has_pointer)
|
||
superset_entry->has_pointer = true;
|
||
|
||
if (subset_entry->children)
|
||
{
|
||
hash_map<alias_set_hash, int>::iterator iter
|
||
= subset_entry->children->begin ();
|
||
for (; iter != subset_entry->children->end (); ++iter)
|
||
superset_entry->children->put ((*iter).first, (*iter).second);
|
||
}
|
||
}
|
||
|
||
/* Enter the SUBSET itself as a child of the SUPERSET. */
|
||
superset_entry->children->put (subset, 0);
|
||
}
|
||
}
|
||
|
||
/* Record that component types of TYPE, if any, are part of that type for
|
||
aliasing purposes. For record types, we only record component types
|
||
for fields that are not marked non-addressable. For array types, we
|
||
only record the component type if it is not marked non-aliased. */
|
||
|
||
void
|
||
record_component_aliases (tree type)
|
||
{
|
||
alias_set_type superset = get_alias_set (type);
|
||
tree field;
|
||
|
||
if (superset == 0)
|
||
return;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
|
||
{
|
||
/* LTO type merging does not make any difference between
|
||
component pointer types. We may have
|
||
|
||
struct foo {int *a;};
|
||
|
||
as TYPE_CANONICAL of
|
||
|
||
struct bar {float *a;};
|
||
|
||
Because accesses to int * and float * do not alias, we would get
|
||
false negative when accessing the same memory location by
|
||
float ** and bar *. We thus record the canonical type as:
|
||
|
||
struct {void *a;};
|
||
|
||
void * is special cased and works as a universal pointer type.
|
||
Accesses to it conflicts with accesses to any other pointer
|
||
type. */
|
||
tree t = TREE_TYPE (field);
|
||
if (in_lto_p)
|
||
{
|
||
/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
|
||
element type and that type has to be normalized to void *,
|
||
too, in the case it is a pointer. */
|
||
while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
|
||
{
|
||
gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
|
||
t = TREE_TYPE (t);
|
||
}
|
||
if (POINTER_TYPE_P (t))
|
||
t = ptr_type_node;
|
||
else if (flag_checking)
|
||
gcc_checking_assert (get_alias_set (t)
|
||
== get_alias_set (TREE_TYPE (field)));
|
||
}
|
||
|
||
record_alias_subset (superset, get_alias_set (t));
|
||
}
|
||
break;
|
||
|
||
case COMPLEX_TYPE:
|
||
record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
|
||
break;
|
||
|
||
/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
|
||
element type. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Allocate an alias set for use in storing and reading from the varargs
|
||
spill area. */
|
||
|
||
static GTY(()) alias_set_type varargs_set = -1;
|
||
|
||
alias_set_type
|
||
get_varargs_alias_set (void)
|
||
{
|
||
#if 1
|
||
/* We now lower VA_ARG_EXPR, and there's currently no way to attach the
|
||
varargs alias set to an INDIRECT_REF (FIXME!), so we can't
|
||
consistently use the varargs alias set for loads from the varargs
|
||
area. So don't use it anywhere. */
|
||
return 0;
|
||
#else
|
||
if (varargs_set == -1)
|
||
varargs_set = new_alias_set ();
|
||
|
||
return varargs_set;
|
||
#endif
|
||
}
|
||
|
||
/* Likewise, but used for the fixed portions of the frame, e.g., register
|
||
save areas. */
|
||
|
||
static GTY(()) alias_set_type frame_set = -1;
|
||
|
||
alias_set_type
|
||
get_frame_alias_set (void)
|
||
{
|
||
if (frame_set == -1)
|
||
frame_set = new_alias_set ();
|
||
|
||
return frame_set;
|
||
}
|
||
|
||
/* Create a new, unique base with id ID. */
|
||
|
||
static rtx
|
||
unique_base_value (HOST_WIDE_INT id)
|
||
{
|
||
return gen_rtx_ADDRESS (Pmode, id);
|
||
}
|
||
|
||
/* Return true if accesses based on any other base value cannot alias
|
||
those based on X. */
|
||
|
||
static bool
|
||
unique_base_value_p (rtx x)
|
||
{
|
||
return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
|
||
}
|
||
|
||
/* Return true if X is known to be a base value. */
|
||
|
||
static bool
|
||
known_base_value_p (rtx x)
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
return true;
|
||
|
||
case ADDRESS:
|
||
/* Arguments may or may not be bases; we don't know for sure. */
|
||
return GET_MODE (x) != VOIDmode;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Inside SRC, the source of a SET, find a base address. */
|
||
|
||
static rtx
|
||
find_base_value (rtx src)
|
||
{
|
||
unsigned int regno;
|
||
|
||
#if defined (FIND_BASE_TERM)
|
||
/* Try machine-dependent ways to find the base term. */
|
||
src = FIND_BASE_TERM (src);
|
||
#endif
|
||
|
||
switch (GET_CODE (src))
|
||
{
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return src;
|
||
|
||
case REG:
|
||
regno = REGNO (src);
|
||
/* At the start of a function, argument registers have known base
|
||
values which may be lost later. Returning an ADDRESS
|
||
expression here allows optimization based on argument values
|
||
even when the argument registers are used for other purposes. */
|
||
if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
|
||
return new_reg_base_value[regno];
|
||
|
||
/* If a pseudo has a known base value, return it. Do not do this
|
||
for non-fixed hard regs since it can result in a circular
|
||
dependency chain for registers which have values at function entry.
|
||
|
||
The test above is not sufficient because the scheduler may move
|
||
a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
|
||
if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
|
||
&& regno < vec_safe_length (reg_base_value))
|
||
{
|
||
/* If we're inside init_alias_analysis, use new_reg_base_value
|
||
to reduce the number of relaxation iterations. */
|
||
if (new_reg_base_value && new_reg_base_value[regno]
|
||
&& DF_REG_DEF_COUNT (regno) == 1)
|
||
return new_reg_base_value[regno];
|
||
|
||
if ((*reg_base_value)[regno])
|
||
return (*reg_base_value)[regno];
|
||
}
|
||
|
||
return 0;
|
||
|
||
case MEM:
|
||
/* Check for an argument passed in memory. Only record in the
|
||
copying-arguments block; it is too hard to track changes
|
||
otherwise. */
|
||
if (copying_arguments
|
||
&& (XEXP (src, 0) == arg_pointer_rtx
|
||
|| (GET_CODE (XEXP (src, 0)) == PLUS
|
||
&& XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
|
||
return arg_base_value;
|
||
return 0;
|
||
|
||
case CONST:
|
||
src = XEXP (src, 0);
|
||
if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
|
||
break;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case PLUS:
|
||
case MINUS:
|
||
{
|
||
rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
|
||
|
||
/* If either operand is a REG that is a known pointer, then it
|
||
is the base. */
|
||
if (REG_P (src_0) && REG_POINTER (src_0))
|
||
return find_base_value (src_0);
|
||
if (REG_P (src_1) && REG_POINTER (src_1))
|
||
return find_base_value (src_1);
|
||
|
||
/* If either operand is a REG, then see if we already have
|
||
a known value for it. */
|
||
if (REG_P (src_0))
|
||
{
|
||
temp = find_base_value (src_0);
|
||
if (temp != 0)
|
||
src_0 = temp;
|
||
}
|
||
|
||
if (REG_P (src_1))
|
||
{
|
||
temp = find_base_value (src_1);
|
||
if (temp!= 0)
|
||
src_1 = temp;
|
||
}
|
||
|
||
/* If either base is named object or a special address
|
||
(like an argument or stack reference), then use it for the
|
||
base term. */
|
||
if (src_0 != 0 && known_base_value_p (src_0))
|
||
return src_0;
|
||
|
||
if (src_1 != 0 && known_base_value_p (src_1))
|
||
return src_1;
|
||
|
||
/* Guess which operand is the base address:
|
||
If either operand is a symbol, then it is the base. If
|
||
either operand is a CONST_INT, then the other is the base. */
|
||
if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
|
||
return find_base_value (src_0);
|
||
else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
|
||
return find_base_value (src_1);
|
||
|
||
return 0;
|
||
}
|
||
|
||
case LO_SUM:
|
||
/* The standard form is (lo_sum reg sym) so look only at the
|
||
second operand. */
|
||
return find_base_value (XEXP (src, 1));
|
||
|
||
case AND:
|
||
/* If the second operand is constant set the base
|
||
address to the first operand. */
|
||
if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
|
||
return find_base_value (XEXP (src, 0));
|
||
return 0;
|
||
|
||
case TRUNCATE:
|
||
/* As we do not know which address space the pointer is referring to, we can
|
||
handle this only if the target does not support different pointer or
|
||
address modes depending on the address space. */
|
||
if (!target_default_pointer_address_modes_p ())
|
||
break;
|
||
if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
|
||
break;
|
||
/* Fall through. */
|
||
case HIGH:
|
||
case PRE_INC:
|
||
case PRE_DEC:
|
||
case POST_INC:
|
||
case POST_DEC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
return find_base_value (XEXP (src, 0));
|
||
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND: /* used for NT/Alpha pointers */
|
||
/* As we do not know which address space the pointer is referring to, we can
|
||
handle this only if the target does not support different pointer or
|
||
address modes depending on the address space. */
|
||
if (!target_default_pointer_address_modes_p ())
|
||
break;
|
||
|
||
{
|
||
rtx temp = find_base_value (XEXP (src, 0));
|
||
|
||
if (temp != 0 && CONSTANT_P (temp))
|
||
temp = convert_memory_address (Pmode, temp);
|
||
|
||
return temp;
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Called from init_alias_analysis indirectly through note_stores,
|
||
or directly if DEST is a register with a REG_NOALIAS note attached.
|
||
SET is null in the latter case. */
|
||
|
||
/* While scanning insns to find base values, reg_seen[N] is nonzero if
|
||
register N has been set in this function. */
|
||
static sbitmap reg_seen;
|
||
|
||
static void
|
||
record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned regno;
|
||
rtx src;
|
||
int n;
|
||
|
||
if (!REG_P (dest))
|
||
return;
|
||
|
||
regno = REGNO (dest);
|
||
|
||
gcc_checking_assert (regno < reg_base_value->length ());
|
||
|
||
n = REG_NREGS (dest);
|
||
if (n != 1)
|
||
{
|
||
while (--n >= 0)
|
||
{
|
||
bitmap_set_bit (reg_seen, regno + n);
|
||
new_reg_base_value[regno + n] = 0;
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (set)
|
||
{
|
||
/* A CLOBBER wipes out any old value but does not prevent a previously
|
||
unset register from acquiring a base address (i.e. reg_seen is not
|
||
set). */
|
||
if (GET_CODE (set) == CLOBBER)
|
||
{
|
||
new_reg_base_value[regno] = 0;
|
||
return;
|
||
}
|
||
src = SET_SRC (set);
|
||
}
|
||
else
|
||
{
|
||
/* There's a REG_NOALIAS note against DEST. */
|
||
if (bitmap_bit_p (reg_seen, regno))
|
||
{
|
||
new_reg_base_value[regno] = 0;
|
||
return;
|
||
}
|
||
bitmap_set_bit (reg_seen, regno);
|
||
new_reg_base_value[regno] = unique_base_value (unique_id++);
|
||
return;
|
||
}
|
||
|
||
/* If this is not the first set of REGNO, see whether the new value
|
||
is related to the old one. There are two cases of interest:
|
||
|
||
(1) The register might be assigned an entirely new value
|
||
that has the same base term as the original set.
|
||
|
||
(2) The set might be a simple self-modification that
|
||
cannot change REGNO's base value.
|
||
|
||
If neither case holds, reject the original base value as invalid.
|
||
Note that the following situation is not detected:
|
||
|
||
extern int x, y; int *p = &x; p += (&y-&x);
|
||
|
||
ANSI C does not allow computing the difference of addresses
|
||
of distinct top level objects. */
|
||
if (new_reg_base_value[regno] != 0
|
||
&& find_base_value (src) != new_reg_base_value[regno])
|
||
switch (GET_CODE (src))
|
||
{
|
||
case LO_SUM:
|
||
case MINUS:
|
||
if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
|
||
new_reg_base_value[regno] = 0;
|
||
break;
|
||
case PLUS:
|
||
/* If the value we add in the PLUS is also a valid base value,
|
||
this might be the actual base value, and the original value
|
||
an index. */
|
||
{
|
||
rtx other = NULL_RTX;
|
||
|
||
if (XEXP (src, 0) == dest)
|
||
other = XEXP (src, 1);
|
||
else if (XEXP (src, 1) == dest)
|
||
other = XEXP (src, 0);
|
||
|
||
if (! other || find_base_value (other))
|
||
new_reg_base_value[regno] = 0;
|
||
break;
|
||
}
|
||
case AND:
|
||
if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
|
||
new_reg_base_value[regno] = 0;
|
||
break;
|
||
default:
|
||
new_reg_base_value[regno] = 0;
|
||
break;
|
||
}
|
||
/* If this is the first set of a register, record the value. */
|
||
else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
|
||
&& ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
|
||
new_reg_base_value[regno] = find_base_value (src);
|
||
|
||
bitmap_set_bit (reg_seen, regno);
|
||
}
|
||
|
||
/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
|
||
using hard registers with non-null REG_BASE_VALUE for renaming. */
|
||
rtx
|
||
get_reg_base_value (unsigned int regno)
|
||
{
|
||
return (*reg_base_value)[regno];
|
||
}
|
||
|
||
/* If a value is known for REGNO, return it. */
|
||
|
||
rtx
|
||
get_reg_known_value (unsigned int regno)
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
regno -= FIRST_PSEUDO_REGISTER;
|
||
if (regno < vec_safe_length (reg_known_value))
|
||
return (*reg_known_value)[regno];
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Set it. */
|
||
|
||
static void
|
||
set_reg_known_value (unsigned int regno, rtx val)
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
regno -= FIRST_PSEUDO_REGISTER;
|
||
if (regno < vec_safe_length (reg_known_value))
|
||
(*reg_known_value)[regno] = val;
|
||
}
|
||
}
|
||
|
||
/* Similarly for reg_known_equiv_p. */
|
||
|
||
bool
|
||
get_reg_known_equiv_p (unsigned int regno)
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
regno -= FIRST_PSEUDO_REGISTER;
|
||
if (regno < vec_safe_length (reg_known_value))
|
||
return bitmap_bit_p (reg_known_equiv_p, regno);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
set_reg_known_equiv_p (unsigned int regno, bool val)
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
regno -= FIRST_PSEUDO_REGISTER;
|
||
if (regno < vec_safe_length (reg_known_value))
|
||
{
|
||
if (val)
|
||
bitmap_set_bit (reg_known_equiv_p, regno);
|
||
else
|
||
bitmap_clear_bit (reg_known_equiv_p, regno);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Returns a canonical version of X, from the point of view alias
|
||
analysis. (For example, if X is a MEM whose address is a register,
|
||
and the register has a known value (say a SYMBOL_REF), then a MEM
|
||
whose address is the SYMBOL_REF is returned.) */
|
||
|
||
rtx
|
||
canon_rtx (rtx x)
|
||
{
|
||
/* Recursively look for equivalences. */
|
||
if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
rtx t = get_reg_known_value (REGNO (x));
|
||
if (t == x)
|
||
return x;
|
||
if (t)
|
||
return canon_rtx (t);
|
||
}
|
||
|
||
if (GET_CODE (x) == PLUS)
|
||
{
|
||
rtx x0 = canon_rtx (XEXP (x, 0));
|
||
rtx x1 = canon_rtx (XEXP (x, 1));
|
||
|
||
if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
|
||
{
|
||
if (CONST_INT_P (x0))
|
||
return plus_constant (GET_MODE (x), x1, INTVAL (x0));
|
||
else if (CONST_INT_P (x1))
|
||
return plus_constant (GET_MODE (x), x0, INTVAL (x1));
|
||
return gen_rtx_PLUS (GET_MODE (x), x0, x1);
|
||
}
|
||
}
|
||
|
||
/* This gives us much better alias analysis when called from
|
||
the loop optimizer. Note we want to leave the original
|
||
MEM alone, but need to return the canonicalized MEM with
|
||
all the flags with their original values. */
|
||
else if (MEM_P (x))
|
||
x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Return 1 if X and Y are identical-looking rtx's.
|
||
Expect that X and Y has been already canonicalized.
|
||
|
||
We use the data in reg_known_value above to see if two registers with
|
||
different numbers are, in fact, equivalent. */
|
||
|
||
static int
|
||
rtx_equal_for_memref_p (const_rtx x, const_rtx y)
|
||
{
|
||
int i;
|
||
int j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
if (x == 0 && y == 0)
|
||
return 1;
|
||
if (x == 0 || y == 0)
|
||
return 0;
|
||
|
||
if (x == y)
|
||
return 1;
|
||
|
||
code = GET_CODE (x);
|
||
/* Rtx's of different codes cannot be equal. */
|
||
if (code != GET_CODE (y))
|
||
return 0;
|
||
|
||
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
|
||
(REG:SI x) and (REG:HI x) are NOT equivalent. */
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* Some RTL can be compared without a recursive examination. */
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
return REGNO (x) == REGNO (y);
|
||
|
||
case LABEL_REF:
|
||
return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
|
||
|
||
case SYMBOL_REF:
|
||
return compare_base_symbol_refs (x, y) == 1;
|
||
|
||
case ENTRY_VALUE:
|
||
/* This is magic, don't go through canonicalization et al. */
|
||
return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
|
||
|
||
case VALUE:
|
||
CASE_CONST_UNIQUE:
|
||
/* Pointer equality guarantees equality for these nodes. */
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* canon_rtx knows how to handle plus. No need to canonicalize. */
|
||
if (code == PLUS)
|
||
return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
|
||
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
|
||
|| (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
|
||
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
|
||
/* For commutative operations, the RTX match if the operand match in any
|
||
order. Also handle the simple binary and unary cases without a loop. */
|
||
if (COMMUTATIVE_P (x))
|
||
{
|
||
rtx xop0 = canon_rtx (XEXP (x, 0));
|
||
rtx yop0 = canon_rtx (XEXP (y, 0));
|
||
rtx yop1 = canon_rtx (XEXP (y, 1));
|
||
|
||
return ((rtx_equal_for_memref_p (xop0, yop0)
|
||
&& rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
|
||
|| (rtx_equal_for_memref_p (xop0, yop1)
|
||
&& rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
|
||
}
|
||
else if (NON_COMMUTATIVE_P (x))
|
||
{
|
||
return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
|
||
canon_rtx (XEXP (y, 0)))
|
||
&& rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
|
||
canon_rtx (XEXP (y, 1))));
|
||
}
|
||
else if (UNARY_P (x))
|
||
return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
|
||
canon_rtx (XEXP (y, 0)));
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things.
|
||
|
||
Limit cases to types which actually appear in addresses. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'i':
|
||
if (XINT (x, i) != XINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 'E':
|
||
/* Two vectors must have the same length. */
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return 0;
|
||
|
||
/* And the corresponding elements must match. */
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
|
||
canon_rtx (XVECEXP (y, i, j))) == 0)
|
||
return 0;
|
||
break;
|
||
|
||
case 'e':
|
||
if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
|
||
canon_rtx (XEXP (y, i))) == 0)
|
||
return 0;
|
||
break;
|
||
|
||
/* This can happen for asm operands. */
|
||
case 's':
|
||
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
/* This can happen for an asm which clobbers memory. */
|
||
case '0':
|
||
break;
|
||
|
||
/* It is believed that rtx's at this level will never
|
||
contain anything but integers and other rtx's,
|
||
except for within LABEL_REFs and SYMBOL_REFs. */
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static rtx
|
||
find_base_term (rtx x)
|
||
{
|
||
cselib_val *val;
|
||
struct elt_loc_list *l, *f;
|
||
rtx ret;
|
||
|
||
#if defined (FIND_BASE_TERM)
|
||
/* Try machine-dependent ways to find the base term. */
|
||
x = FIND_BASE_TERM (x);
|
||
#endif
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
return REG_BASE_VALUE (x);
|
||
|
||
case TRUNCATE:
|
||
/* As we do not know which address space the pointer is referring to, we can
|
||
handle this only if the target does not support different pointer or
|
||
address modes depending on the address space. */
|
||
if (!target_default_pointer_address_modes_p ())
|
||
return 0;
|
||
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
|
||
return 0;
|
||
/* Fall through. */
|
||
case HIGH:
|
||
case PRE_INC:
|
||
case PRE_DEC:
|
||
case POST_INC:
|
||
case POST_DEC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
return find_base_term (XEXP (x, 0));
|
||
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND: /* Used for Alpha/NT pointers */
|
||
/* As we do not know which address space the pointer is referring to, we can
|
||
handle this only if the target does not support different pointer or
|
||
address modes depending on the address space. */
|
||
if (!target_default_pointer_address_modes_p ())
|
||
return 0;
|
||
|
||
{
|
||
rtx temp = find_base_term (XEXP (x, 0));
|
||
|
||
if (temp != 0 && CONSTANT_P (temp))
|
||
temp = convert_memory_address (Pmode, temp);
|
||
|
||
return temp;
|
||
}
|
||
|
||
case VALUE:
|
||
val = CSELIB_VAL_PTR (x);
|
||
ret = NULL_RTX;
|
||
|
||
if (!val)
|
||
return ret;
|
||
|
||
if (cselib_sp_based_value_p (val))
|
||
return static_reg_base_value[STACK_POINTER_REGNUM];
|
||
|
||
f = val->locs;
|
||
/* Temporarily reset val->locs to avoid infinite recursion. */
|
||
val->locs = NULL;
|
||
|
||
for (l = f; l; l = l->next)
|
||
if (GET_CODE (l->loc) == VALUE
|
||
&& CSELIB_VAL_PTR (l->loc)->locs
|
||
&& !CSELIB_VAL_PTR (l->loc)->locs->next
|
||
&& CSELIB_VAL_PTR (l->loc)->locs->loc == x)
|
||
continue;
|
||
else if ((ret = find_base_term (l->loc)) != 0)
|
||
break;
|
||
|
||
val->locs = f;
|
||
return ret;
|
||
|
||
case LO_SUM:
|
||
/* The standard form is (lo_sum reg sym) so look only at the
|
||
second operand. */
|
||
return find_base_term (XEXP (x, 1));
|
||
|
||
case CONST:
|
||
x = XEXP (x, 0);
|
||
if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
|
||
return 0;
|
||
/* Fall through. */
|
||
case PLUS:
|
||
case MINUS:
|
||
{
|
||
rtx tmp1 = XEXP (x, 0);
|
||
rtx tmp2 = XEXP (x, 1);
|
||
|
||
/* This is a little bit tricky since we have to determine which of
|
||
the two operands represents the real base address. Otherwise this
|
||
routine may return the index register instead of the base register.
|
||
|
||
That may cause us to believe no aliasing was possible, when in
|
||
fact aliasing is possible.
|
||
|
||
We use a few simple tests to guess the base register. Additional
|
||
tests can certainly be added. For example, if one of the operands
|
||
is a shift or multiply, then it must be the index register and the
|
||
other operand is the base register. */
|
||
|
||
if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
|
||
return find_base_term (tmp2);
|
||
|
||
/* If either operand is known to be a pointer, then prefer it
|
||
to determine the base term. */
|
||
if (REG_P (tmp1) && REG_POINTER (tmp1))
|
||
;
|
||
else if (REG_P (tmp2) && REG_POINTER (tmp2))
|
||
std::swap (tmp1, tmp2);
|
||
/* If second argument is constant which has base term, prefer it
|
||
over variable tmp1. See PR64025. */
|
||
else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
|
||
std::swap (tmp1, tmp2);
|
||
|
||
/* Go ahead and find the base term for both operands. If either base
|
||
term is from a pointer or is a named object or a special address
|
||
(like an argument or stack reference), then use it for the
|
||
base term. */
|
||
rtx base = find_base_term (tmp1);
|
||
if (base != NULL_RTX
|
||
&& ((REG_P (tmp1) && REG_POINTER (tmp1))
|
||
|| known_base_value_p (base)))
|
||
return base;
|
||
base = find_base_term (tmp2);
|
||
if (base != NULL_RTX
|
||
&& ((REG_P (tmp2) && REG_POINTER (tmp2))
|
||
|| known_base_value_p (base)))
|
||
return base;
|
||
|
||
/* We could not determine which of the two operands was the
|
||
base register and which was the index. So we can determine
|
||
nothing from the base alias check. */
|
||
return 0;
|
||
}
|
||
|
||
case AND:
|
||
if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
|
||
return find_base_term (XEXP (x, 0));
|
||
return 0;
|
||
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return x;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return true if accesses to address X may alias accesses based
|
||
on the stack pointer. */
|
||
|
||
bool
|
||
may_be_sp_based_p (rtx x)
|
||
{
|
||
rtx base = find_base_term (x);
|
||
return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
|
||
}
|
||
|
||
/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
|
||
if they refer to different objects and -1 if we can not decide. */
|
||
|
||
int
|
||
compare_base_decls (tree base1, tree base2)
|
||
{
|
||
int ret;
|
||
gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
|
||
if (base1 == base2)
|
||
return 1;
|
||
|
||
/* Declarations of non-automatic variables may have aliases. All other
|
||
decls are unique. */
|
||
if (!decl_in_symtab_p (base1)
|
||
|| !decl_in_symtab_p (base2))
|
||
return 0;
|
||
|
||
/* Don't cause symbols to be inserted by the act of checking. */
|
||
symtab_node *node1 = symtab_node::get (base1);
|
||
if (!node1)
|
||
return 0;
|
||
symtab_node *node2 = symtab_node::get (base2);
|
||
if (!node2)
|
||
return 0;
|
||
|
||
ret = node1->equal_address_to (node2, true);
|
||
return ret;
|
||
}
|
||
|
||
/* Same as compare_base_decls but for SYMBOL_REF. */
|
||
|
||
static int
|
||
compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
|
||
{
|
||
tree x_decl = SYMBOL_REF_DECL (x_base);
|
||
tree y_decl = SYMBOL_REF_DECL (y_base);
|
||
bool binds_def = true;
|
||
|
||
if (XSTR (x_base, 0) == XSTR (y_base, 0))
|
||
return 1;
|
||
if (x_decl && y_decl)
|
||
return compare_base_decls (x_decl, y_decl);
|
||
if (x_decl || y_decl)
|
||
{
|
||
if (!x_decl)
|
||
{
|
||
std::swap (x_decl, y_decl);
|
||
std::swap (x_base, y_base);
|
||
}
|
||
/* We handle specially only section anchors and assume that other
|
||
labels may overlap with user variables in an arbitrary way. */
|
||
if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
|
||
return -1;
|
||
/* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
|
||
to ignore CONST_DECLs because they are readonly. */
|
||
if (TREE_CODE (x_decl) != VAR_DECL
|
||
|| (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
|
||
return 0;
|
||
|
||
symtab_node *x_node = symtab_node::get_create (x_decl)
|
||
->ultimate_alias_target ();
|
||
/* External variable can not be in section anchor. */
|
||
if (!x_node->definition)
|
||
return 0;
|
||
x_base = XEXP (DECL_RTL (x_node->decl), 0);
|
||
/* If not in anchor, we can disambiguate. */
|
||
if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
|
||
return 0;
|
||
|
||
/* We have an alias of anchored variable. If it can be interposed;
|
||
we must assume it may or may not alias its anchor. */
|
||
binds_def = decl_binds_to_current_def_p (x_decl);
|
||
}
|
||
/* If we have variable in section anchor, we can compare by offset. */
|
||
if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
|
||
&& SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
|
||
{
|
||
if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
|
||
return 0;
|
||
if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
|
||
return binds_def ? 1 : -1;
|
||
if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
|
||
return -1;
|
||
return 0;
|
||
}
|
||
/* In general we assume that memory locations pointed to by different labels
|
||
may overlap in undefined ways. */
|
||
return -1;
|
||
}
|
||
|
||
/* Return 0 if the addresses X and Y are known to point to different
|
||
objects, 1 if they might be pointers to the same object. */
|
||
|
||
static int
|
||
base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
|
||
machine_mode x_mode, machine_mode y_mode)
|
||
{
|
||
/* If the address itself has no known base see if a known equivalent
|
||
value has one. If either address still has no known base, nothing
|
||
is known about aliasing. */
|
||
if (x_base == 0)
|
||
{
|
||
rtx x_c;
|
||
|
||
if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
|
||
return 1;
|
||
|
||
x_base = find_base_term (x_c);
|
||
if (x_base == 0)
|
||
return 1;
|
||
}
|
||
|
||
if (y_base == 0)
|
||
{
|
||
rtx y_c;
|
||
if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
|
||
return 1;
|
||
|
||
y_base = find_base_term (y_c);
|
||
if (y_base == 0)
|
||
return 1;
|
||
}
|
||
|
||
/* If the base addresses are equal nothing is known about aliasing. */
|
||
if (rtx_equal_p (x_base, y_base))
|
||
return 1;
|
||
|
||
/* The base addresses are different expressions. If they are not accessed
|
||
via AND, there is no conflict. We can bring knowledge of object
|
||
alignment into play here. For example, on alpha, "char a, b;" can
|
||
alias one another, though "char a; long b;" cannot. AND addesses may
|
||
implicitly alias surrounding objects; i.e. unaligned access in DImode
|
||
via AND address can alias all surrounding object types except those
|
||
with aligment 8 or higher. */
|
||
if (GET_CODE (x) == AND && GET_CODE (y) == AND)
|
||
return 1;
|
||
if (GET_CODE (x) == AND
|
||
&& (!CONST_INT_P (XEXP (x, 1))
|
||
|| (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
|
||
return 1;
|
||
if (GET_CODE (y) == AND
|
||
&& (!CONST_INT_P (XEXP (y, 1))
|
||
|| (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
|
||
return 1;
|
||
|
||
/* Differing symbols not accessed via AND never alias. */
|
||
if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
|
||
return compare_base_symbol_refs (x_base, y_base) != 0;
|
||
|
||
if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
|
||
return 0;
|
||
|
||
if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
|
||
(or equal to) that of V. */
|
||
|
||
static bool
|
||
refs_newer_value_p (const_rtx expr, rtx v)
|
||
{
|
||
int minuid = CSELIB_VAL_PTR (v)->uid;
|
||
subrtx_iterator::array_type array;
|
||
FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
|
||
if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Convert the address X into something we can use. This is done by returning
|
||
it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
|
||
we call cselib to get a more useful rtx. */
|
||
|
||
rtx
|
||
get_addr (rtx x)
|
||
{
|
||
cselib_val *v;
|
||
struct elt_loc_list *l;
|
||
|
||
if (GET_CODE (x) != VALUE)
|
||
{
|
||
if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
|
||
&& GET_CODE (XEXP (x, 0)) == VALUE
|
||
&& CONST_SCALAR_INT_P (XEXP (x, 1)))
|
||
{
|
||
rtx op0 = get_addr (XEXP (x, 0));
|
||
if (op0 != XEXP (x, 0))
|
||
{
|
||
if (GET_CODE (x) == PLUS
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
|
||
return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
|
||
op0, XEXP (x, 1));
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
v = CSELIB_VAL_PTR (x);
|
||
if (v)
|
||
{
|
||
bool have_equivs = cselib_have_permanent_equivalences ();
|
||
if (have_equivs)
|
||
v = canonical_cselib_val (v);
|
||
for (l = v->locs; l; l = l->next)
|
||
if (CONSTANT_P (l->loc))
|
||
return l->loc;
|
||
for (l = v->locs; l; l = l->next)
|
||
if (!REG_P (l->loc) && !MEM_P (l->loc)
|
||
/* Avoid infinite recursion when potentially dealing with
|
||
var-tracking artificial equivalences, by skipping the
|
||
equivalences themselves, and not choosing expressions
|
||
that refer to newer VALUEs. */
|
||
&& (!have_equivs
|
||
|| (GET_CODE (l->loc) != VALUE
|
||
&& !refs_newer_value_p (l->loc, x))))
|
||
return l->loc;
|
||
if (have_equivs)
|
||
{
|
||
for (l = v->locs; l; l = l->next)
|
||
if (REG_P (l->loc)
|
||
|| (GET_CODE (l->loc) != VALUE
|
||
&& !refs_newer_value_p (l->loc, x)))
|
||
return l->loc;
|
||
/* Return the canonical value. */
|
||
return v->val_rtx;
|
||
}
|
||
if (v->locs)
|
||
return v->locs->loc;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Return the address of the (N_REFS + 1)th memory reference to ADDR
|
||
where SIZE is the size in bytes of the memory reference. If ADDR
|
||
is not modified by the memory reference then ADDR is returned. */
|
||
|
||
static rtx
|
||
addr_side_effect_eval (rtx addr, int size, int n_refs)
|
||
{
|
||
int offset = 0;
|
||
|
||
switch (GET_CODE (addr))
|
||
{
|
||
case PRE_INC:
|
||
offset = (n_refs + 1) * size;
|
||
break;
|
||
case PRE_DEC:
|
||
offset = -(n_refs + 1) * size;
|
||
break;
|
||
case POST_INC:
|
||
offset = n_refs * size;
|
||
break;
|
||
case POST_DEC:
|
||
offset = -n_refs * size;
|
||
break;
|
||
|
||
default:
|
||
return addr;
|
||
}
|
||
|
||
if (offset)
|
||
addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
|
||
gen_int_mode (offset, GET_MODE (addr)));
|
||
else
|
||
addr = XEXP (addr, 0);
|
||
addr = canon_rtx (addr);
|
||
|
||
return addr;
|
||
}
|
||
|
||
/* Return TRUE if an object X sized at XSIZE bytes and another object
|
||
Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
|
||
any of the sizes is zero, assume an overlap, otherwise use the
|
||
absolute value of the sizes as the actual sizes. */
|
||
|
||
static inline bool
|
||
offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
|
||
{
|
||
return (xsize == 0 || ysize == 0
|
||
|| (c >= 0
|
||
? (abs (xsize) > c)
|
||
: (abs (ysize) > -c)));
|
||
}
|
||
|
||
/* Return one if X and Y (memory addresses) reference the
|
||
same location in memory or if the references overlap.
|
||
Return zero if they do not overlap, else return
|
||
minus one in which case they still might reference the same location.
|
||
|
||
C is an offset accumulator. When
|
||
C is nonzero, we are testing aliases between X and Y + C.
|
||
XSIZE is the size in bytes of the X reference,
|
||
similarly YSIZE is the size in bytes for Y.
|
||
Expect that canon_rtx has been already called for X and Y.
|
||
|
||
If XSIZE or YSIZE is zero, we do not know the amount of memory being
|
||
referenced (the reference was BLKmode), so make the most pessimistic
|
||
assumptions.
|
||
|
||
If XSIZE or YSIZE is negative, we may access memory outside the object
|
||
being referenced as a side effect. This can happen when using AND to
|
||
align memory references, as is done on the Alpha.
|
||
|
||
Nice to notice that varying addresses cannot conflict with fp if no
|
||
local variables had their addresses taken, but that's too hard now.
|
||
|
||
??? Contrary to the tree alias oracle this does not return
|
||
one for X + non-constant and Y + non-constant when X and Y are equal.
|
||
If that is fixed the TBAA hack for union type-punning can be removed. */
|
||
|
||
static int
|
||
memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
|
||
{
|
||
if (GET_CODE (x) == VALUE)
|
||
{
|
||
if (REG_P (y))
|
||
{
|
||
struct elt_loc_list *l = NULL;
|
||
if (CSELIB_VAL_PTR (x))
|
||
for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
|
||
l; l = l->next)
|
||
if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
|
||
break;
|
||
if (l)
|
||
x = y;
|
||
else
|
||
x = get_addr (x);
|
||
}
|
||
/* Don't call get_addr if y is the same VALUE. */
|
||
else if (x != y)
|
||
x = get_addr (x);
|
||
}
|
||
if (GET_CODE (y) == VALUE)
|
||
{
|
||
if (REG_P (x))
|
||
{
|
||
struct elt_loc_list *l = NULL;
|
||
if (CSELIB_VAL_PTR (y))
|
||
for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
|
||
l; l = l->next)
|
||
if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
|
||
break;
|
||
if (l)
|
||
y = x;
|
||
else
|
||
y = get_addr (y);
|
||
}
|
||
/* Don't call get_addr if x is the same VALUE. */
|
||
else if (y != x)
|
||
y = get_addr (y);
|
||
}
|
||
if (GET_CODE (x) == HIGH)
|
||
x = XEXP (x, 0);
|
||
else if (GET_CODE (x) == LO_SUM)
|
||
x = XEXP (x, 1);
|
||
else
|
||
x = addr_side_effect_eval (x, abs (xsize), 0);
|
||
if (GET_CODE (y) == HIGH)
|
||
y = XEXP (y, 0);
|
||
else if (GET_CODE (y) == LO_SUM)
|
||
y = XEXP (y, 1);
|
||
else
|
||
y = addr_side_effect_eval (y, abs (ysize), 0);
|
||
|
||
if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
|
||
{
|
||
int cmp = compare_base_symbol_refs (x,y);
|
||
|
||
/* If both decls are the same, decide by offsets. */
|
||
if (cmp == 1)
|
||
return offset_overlap_p (c, xsize, ysize);
|
||
/* Assume a potential overlap for symbolic addresses that went
|
||
through alignment adjustments (i.e., that have negative
|
||
sizes), because we can't know how far they are from each
|
||
other. */
|
||
if (xsize < 0 || ysize < 0)
|
||
return -1;
|
||
/* If decls are different or we know by offsets that there is no overlap,
|
||
we win. */
|
||
if (!cmp || !offset_overlap_p (c, xsize, ysize))
|
||
return 0;
|
||
/* Decls may or may not be different and offsets overlap....*/
|
||
return -1;
|
||
}
|
||
else if (rtx_equal_for_memref_p (x, y))
|
||
{
|
||
return offset_overlap_p (c, xsize, ysize);
|
||
}
|
||
|
||
/* This code used to check for conflicts involving stack references and
|
||
globals but the base address alias code now handles these cases. */
|
||
|
||
if (GET_CODE (x) == PLUS)
|
||
{
|
||
/* The fact that X is canonicalized means that this
|
||
PLUS rtx is canonicalized. */
|
||
rtx x0 = XEXP (x, 0);
|
||
rtx x1 = XEXP (x, 1);
|
||
|
||
/* However, VALUEs might end up in different positions even in
|
||
canonical PLUSes. Comparing their addresses is enough. */
|
||
if (x0 == y)
|
||
return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
|
||
else if (x1 == y)
|
||
return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
|
||
|
||
if (GET_CODE (y) == PLUS)
|
||
{
|
||
/* The fact that Y is canonicalized means that this
|
||
PLUS rtx is canonicalized. */
|
||
rtx y0 = XEXP (y, 0);
|
||
rtx y1 = XEXP (y, 1);
|
||
|
||
if (x0 == y1)
|
||
return memrefs_conflict_p (xsize, x1, ysize, y0, c);
|
||
if (x1 == y0)
|
||
return memrefs_conflict_p (xsize, x0, ysize, y1, c);
|
||
|
||
if (rtx_equal_for_memref_p (x1, y1))
|
||
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
|
||
if (rtx_equal_for_memref_p (x0, y0))
|
||
return memrefs_conflict_p (xsize, x1, ysize, y1, c);
|
||
if (CONST_INT_P (x1))
|
||
{
|
||
if (CONST_INT_P (y1))
|
||
return memrefs_conflict_p (xsize, x0, ysize, y0,
|
||
c - INTVAL (x1) + INTVAL (y1));
|
||
else
|
||
return memrefs_conflict_p (xsize, x0, ysize, y,
|
||
c - INTVAL (x1));
|
||
}
|
||
else if (CONST_INT_P (y1))
|
||
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
|
||
|
||
return -1;
|
||
}
|
||
else if (CONST_INT_P (x1))
|
||
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
|
||
}
|
||
else if (GET_CODE (y) == PLUS)
|
||
{
|
||
/* The fact that Y is canonicalized means that this
|
||
PLUS rtx is canonicalized. */
|
||
rtx y0 = XEXP (y, 0);
|
||
rtx y1 = XEXP (y, 1);
|
||
|
||
if (x == y0)
|
||
return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
|
||
if (x == y1)
|
||
return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
|
||
|
||
if (CONST_INT_P (y1))
|
||
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
if (GET_CODE (x) == GET_CODE (y))
|
||
switch (GET_CODE (x))
|
||
{
|
||
case MULT:
|
||
{
|
||
/* Handle cases where we expect the second operands to be the
|
||
same, and check only whether the first operand would conflict
|
||
or not. */
|
||
rtx x0, y0;
|
||
rtx x1 = canon_rtx (XEXP (x, 1));
|
||
rtx y1 = canon_rtx (XEXP (y, 1));
|
||
if (! rtx_equal_for_memref_p (x1, y1))
|
||
return -1;
|
||
x0 = canon_rtx (XEXP (x, 0));
|
||
y0 = canon_rtx (XEXP (y, 0));
|
||
if (rtx_equal_for_memref_p (x0, y0))
|
||
return offset_overlap_p (c, xsize, ysize);
|
||
|
||
/* Can't properly adjust our sizes. */
|
||
if (!CONST_INT_P (x1))
|
||
return -1;
|
||
xsize /= INTVAL (x1);
|
||
ysize /= INTVAL (x1);
|
||
c /= INTVAL (x1);
|
||
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Deal with alignment ANDs by adjusting offset and size so as to
|
||
cover the maximum range, without taking any previously known
|
||
alignment into account. Make a size negative after such an
|
||
adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
|
||
assume a potential overlap, because they may end up in contiguous
|
||
memory locations and the stricter-alignment access may span over
|
||
part of both. */
|
||
if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
|
||
{
|
||
HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
|
||
unsigned HOST_WIDE_INT uc = sc;
|
||
if (sc < 0 && -uc == (uc & -uc))
|
||
{
|
||
if (xsize > 0)
|
||
xsize = -xsize;
|
||
if (xsize)
|
||
xsize += sc + 1;
|
||
c -= sc + 1;
|
||
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
|
||
ysize, y, c);
|
||
}
|
||
}
|
||
if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
|
||
{
|
||
HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
|
||
unsigned HOST_WIDE_INT uc = sc;
|
||
if (sc < 0 && -uc == (uc & -uc))
|
||
{
|
||
if (ysize > 0)
|
||
ysize = -ysize;
|
||
if (ysize)
|
||
ysize += sc + 1;
|
||
c += sc + 1;
|
||
return memrefs_conflict_p (xsize, x,
|
||
ysize, canon_rtx (XEXP (y, 0)), c);
|
||
}
|
||
}
|
||
|
||
if (CONSTANT_P (x))
|
||
{
|
||
if (CONST_INT_P (x) && CONST_INT_P (y))
|
||
{
|
||
c += (INTVAL (y) - INTVAL (x));
|
||
return offset_overlap_p (c, xsize, ysize);
|
||
}
|
||
|
||
if (GET_CODE (x) == CONST)
|
||
{
|
||
if (GET_CODE (y) == CONST)
|
||
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
|
||
ysize, canon_rtx (XEXP (y, 0)), c);
|
||
else
|
||
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
|
||
ysize, y, c);
|
||
}
|
||
if (GET_CODE (y) == CONST)
|
||
return memrefs_conflict_p (xsize, x, ysize,
|
||
canon_rtx (XEXP (y, 0)), c);
|
||
|
||
/* Assume a potential overlap for symbolic addresses that went
|
||
through alignment adjustments (i.e., that have negative
|
||
sizes), because we can't know how far they are from each
|
||
other. */
|
||
if (CONSTANT_P (y))
|
||
return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
|
||
|
||
return -1;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Functions to compute memory dependencies.
|
||
|
||
Since we process the insns in execution order, we can build tables
|
||
to keep track of what registers are fixed (and not aliased), what registers
|
||
are varying in known ways, and what registers are varying in unknown
|
||
ways.
|
||
|
||
If both memory references are volatile, then there must always be a
|
||
dependence between the two references, since their order can not be
|
||
changed. A volatile and non-volatile reference can be interchanged
|
||
though.
|
||
|
||
We also must allow AND addresses, because they may generate accesses
|
||
outside the object being referenced. This is used to generate aligned
|
||
addresses from unaligned addresses, for instance, the alpha
|
||
storeqi_unaligned pattern. */
|
||
|
||
/* Read dependence: X is read after read in MEM takes place. There can
|
||
only be a dependence here if both reads are volatile, or if either is
|
||
an explicit barrier. */
|
||
|
||
int
|
||
read_dependence (const_rtx mem, const_rtx x)
|
||
{
|
||
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|
||
return true;
|
||
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|
||
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
|
||
|
||
static tree
|
||
decl_for_component_ref (tree x)
|
||
{
|
||
do
|
||
{
|
||
x = TREE_OPERAND (x, 0);
|
||
}
|
||
while (x && TREE_CODE (x) == COMPONENT_REF);
|
||
|
||
return x && DECL_P (x) ? x : NULL_TREE;
|
||
}
|
||
|
||
/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
|
||
for the offset of the field reference. *KNOWN_P says whether the
|
||
offset is known. */
|
||
|
||
static void
|
||
adjust_offset_for_component_ref (tree x, bool *known_p,
|
||
HOST_WIDE_INT *offset)
|
||
{
|
||
if (!*known_p)
|
||
return;
|
||
do
|
||
{
|
||
tree xoffset = component_ref_field_offset (x);
|
||
tree field = TREE_OPERAND (x, 1);
|
||
if (TREE_CODE (xoffset) != INTEGER_CST)
|
||
{
|
||
*known_p = false;
|
||
return;
|
||
}
|
||
|
||
offset_int woffset
|
||
= (wi::to_offset (xoffset)
|
||
+ wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
|
||
LOG2_BITS_PER_UNIT));
|
||
if (!wi::fits_uhwi_p (woffset))
|
||
{
|
||
*known_p = false;
|
||
return;
|
||
}
|
||
*offset += woffset.to_uhwi ();
|
||
|
||
x = TREE_OPERAND (x, 0);
|
||
}
|
||
while (x && TREE_CODE (x) == COMPONENT_REF);
|
||
}
|
||
|
||
/* Return nonzero if we can determine the exprs corresponding to memrefs
|
||
X and Y and they do not overlap.
|
||
If LOOP_VARIANT is set, skip offset-based disambiguation */
|
||
|
||
int
|
||
nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
|
||
{
|
||
tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
|
||
rtx rtlx, rtly;
|
||
rtx basex, basey;
|
||
bool moffsetx_known_p, moffsety_known_p;
|
||
HOST_WIDE_INT moffsetx = 0, moffsety = 0;
|
||
HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
|
||
|
||
/* Unless both have exprs, we can't tell anything. */
|
||
if (exprx == 0 || expry == 0)
|
||
return 0;
|
||
|
||
/* For spill-slot accesses make sure we have valid offsets. */
|
||
if ((exprx == get_spill_slot_decl (false)
|
||
&& ! MEM_OFFSET_KNOWN_P (x))
|
||
|| (expry == get_spill_slot_decl (false)
|
||
&& ! MEM_OFFSET_KNOWN_P (y)))
|
||
return 0;
|
||
|
||
/* If the field reference test failed, look at the DECLs involved. */
|
||
moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
|
||
if (moffsetx_known_p)
|
||
moffsetx = MEM_OFFSET (x);
|
||
if (TREE_CODE (exprx) == COMPONENT_REF)
|
||
{
|
||
tree t = decl_for_component_ref (exprx);
|
||
if (! t)
|
||
return 0;
|
||
adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
|
||
exprx = t;
|
||
}
|
||
|
||
moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
|
||
if (moffsety_known_p)
|
||
moffsety = MEM_OFFSET (y);
|
||
if (TREE_CODE (expry) == COMPONENT_REF)
|
||
{
|
||
tree t = decl_for_component_ref (expry);
|
||
if (! t)
|
||
return 0;
|
||
adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
|
||
expry = t;
|
||
}
|
||
|
||
if (! DECL_P (exprx) || ! DECL_P (expry))
|
||
return 0;
|
||
|
||
/* If we refer to different gimple registers, or one gimple register
|
||
and one non-gimple-register, we know they can't overlap. First,
|
||
gimple registers don't have their addresses taken. Now, there
|
||
could be more than one stack slot for (different versions of) the
|
||
same gimple register, but we can presumably tell they don't
|
||
overlap based on offsets from stack base addresses elsewhere.
|
||
It's important that we don't proceed to DECL_RTL, because gimple
|
||
registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
|
||
able to do anything about them since no SSA information will have
|
||
remained to guide it. */
|
||
if (is_gimple_reg (exprx) || is_gimple_reg (expry))
|
||
return exprx != expry
|
||
|| (moffsetx_known_p && moffsety_known_p
|
||
&& MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
|
||
&& !offset_overlap_p (moffsety - moffsetx,
|
||
MEM_SIZE (x), MEM_SIZE (y)));
|
||
|
||
/* With invalid code we can end up storing into the constant pool.
|
||
Bail out to avoid ICEing when creating RTL for this.
|
||
See gfortran.dg/lto/20091028-2_0.f90. */
|
||
if (TREE_CODE (exprx) == CONST_DECL
|
||
|| TREE_CODE (expry) == CONST_DECL)
|
||
return 1;
|
||
|
||
rtlx = DECL_RTL (exprx);
|
||
rtly = DECL_RTL (expry);
|
||
|
||
/* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
|
||
can't overlap unless they are the same because we never reuse that part
|
||
of the stack frame used for locals for spilled pseudos. */
|
||
if ((!MEM_P (rtlx) || !MEM_P (rtly))
|
||
&& ! rtx_equal_p (rtlx, rtly))
|
||
return 1;
|
||
|
||
/* If we have MEMs referring to different address spaces (which can
|
||
potentially overlap), we cannot easily tell from the addresses
|
||
whether the references overlap. */
|
||
if (MEM_P (rtlx) && MEM_P (rtly)
|
||
&& MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
|
||
return 0;
|
||
|
||
/* Get the base and offsets of both decls. If either is a register, we
|
||
know both are and are the same, so use that as the base. The only
|
||
we can avoid overlap is if we can deduce that they are nonoverlapping
|
||
pieces of that decl, which is very rare. */
|
||
basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
|
||
if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
|
||
offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
|
||
|
||
basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
|
||
if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
|
||
offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
|
||
|
||
/* If the bases are different, we know they do not overlap if both
|
||
are constants or if one is a constant and the other a pointer into the
|
||
stack frame. Otherwise a different base means we can't tell if they
|
||
overlap or not. */
|
||
if (compare_base_decls (exprx, expry) == 0)
|
||
return ((CONSTANT_P (basex) && CONSTANT_P (basey))
|
||
|| (CONSTANT_P (basex) && REG_P (basey)
|
||
&& REGNO_PTR_FRAME_P (REGNO (basey)))
|
||
|| (CONSTANT_P (basey) && REG_P (basex)
|
||
&& REGNO_PTR_FRAME_P (REGNO (basex))));
|
||
|
||
/* Offset based disambiguation not appropriate for loop invariant */
|
||
if (loop_invariant)
|
||
return 0;
|
||
|
||
/* Offset based disambiguation is OK even if we do not know that the
|
||
declarations are necessarily different
|
||
(i.e. compare_base_decls (exprx, expry) == -1) */
|
||
|
||
sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
|
||
: MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
|
||
: -1);
|
||
sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
|
||
: MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
|
||
: -1);
|
||
|
||
/* If we have an offset for either memref, it can update the values computed
|
||
above. */
|
||
if (moffsetx_known_p)
|
||
offsetx += moffsetx, sizex -= moffsetx;
|
||
if (moffsety_known_p)
|
||
offsety += moffsety, sizey -= moffsety;
|
||
|
||
/* If a memref has both a size and an offset, we can use the smaller size.
|
||
We can't do this if the offset isn't known because we must view this
|
||
memref as being anywhere inside the DECL's MEM. */
|
||
if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
|
||
sizex = MEM_SIZE (x);
|
||
if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
|
||
sizey = MEM_SIZE (y);
|
||
|
||
/* Put the values of the memref with the lower offset in X's values. */
|
||
if (offsetx > offsety)
|
||
{
|
||
std::swap (offsetx, offsety);
|
||
std::swap (sizex, sizey);
|
||
}
|
||
|
||
/* If we don't know the size of the lower-offset value, we can't tell
|
||
if they conflict. Otherwise, we do the test. */
|
||
return sizex >= 0 && offsety >= offsetx + sizex;
|
||
}
|
||
|
||
/* Helper for true_dependence and canon_true_dependence.
|
||
Checks for true dependence: X is read after store in MEM takes place.
|
||
|
||
If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
|
||
NULL_RTX, and the canonical addresses of MEM and X are both computed
|
||
here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
|
||
|
||
If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
|
||
|
||
Returns 1 if there is a true dependence, 0 otherwise. */
|
||
|
||
static int
|
||
true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
|
||
const_rtx x, rtx x_addr, bool mem_canonicalized)
|
||
{
|
||
rtx true_mem_addr;
|
||
rtx base;
|
||
int ret;
|
||
|
||
gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
|
||
: (mem_addr == NULL_RTX && x_addr == NULL_RTX));
|
||
|
||
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|
||
return 1;
|
||
|
||
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
|
||
This is used in epilogue deallocation functions, and in cselib. */
|
||
if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
|
||
return 1;
|
||
if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
|
||
return 1;
|
||
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|
||
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
|
||
return 1;
|
||
|
||
if (! x_addr)
|
||
x_addr = XEXP (x, 0);
|
||
x_addr = get_addr (x_addr);
|
||
|
||
if (! mem_addr)
|
||
{
|
||
mem_addr = XEXP (mem, 0);
|
||
if (mem_mode == VOIDmode)
|
||
mem_mode = GET_MODE (mem);
|
||
}
|
||
true_mem_addr = get_addr (mem_addr);
|
||
|
||
/* Read-only memory is by definition never modified, and therefore can't
|
||
conflict with anything. However, don't assume anything when AND
|
||
addresses are involved and leave to the code below to determine
|
||
dependence. We don't expect to find read-only set on MEM, but
|
||
stupid user tricks can produce them, so don't die. */
|
||
if (MEM_READONLY_P (x)
|
||
&& GET_CODE (x_addr) != AND
|
||
&& GET_CODE (true_mem_addr) != AND)
|
||
return 0;
|
||
|
||
/* If we have MEMs referring to different address spaces (which can
|
||
potentially overlap), we cannot easily tell from the addresses
|
||
whether the references overlap. */
|
||
if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
|
||
return 1;
|
||
|
||
base = find_base_term (x_addr);
|
||
if (base && (GET_CODE (base) == LABEL_REF
|
||
|| (GET_CODE (base) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (base))))
|
||
return 0;
|
||
|
||
rtx mem_base = find_base_term (true_mem_addr);
|
||
if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
|
||
GET_MODE (x), mem_mode))
|
||
return 0;
|
||
|
||
x_addr = canon_rtx (x_addr);
|
||
if (!mem_canonicalized)
|
||
mem_addr = canon_rtx (true_mem_addr);
|
||
|
||
if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
|
||
SIZE_FOR_MODE (x), x_addr, 0)) != -1)
|
||
return ret;
|
||
|
||
if (mems_in_disjoint_alias_sets_p (x, mem))
|
||
return 0;
|
||
|
||
if (nonoverlapping_memrefs_p (mem, x, false))
|
||
return 0;
|
||
|
||
return rtx_refs_may_alias_p (x, mem, true);
|
||
}
|
||
|
||
/* True dependence: X is read after store in MEM takes place. */
|
||
|
||
int
|
||
true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
|
||
{
|
||
return true_dependence_1 (mem, mem_mode, NULL_RTX,
|
||
x, NULL_RTX, /*mem_canonicalized=*/false);
|
||
}
|
||
|
||
/* Canonical true dependence: X is read after store in MEM takes place.
|
||
Variant of true_dependence which assumes MEM has already been
|
||
canonicalized (hence we no longer do that here).
|
||
The mem_addr argument has been added, since true_dependence_1 computed
|
||
this value prior to canonicalizing. */
|
||
|
||
int
|
||
canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
|
||
const_rtx x, rtx x_addr)
|
||
{
|
||
return true_dependence_1 (mem, mem_mode, mem_addr,
|
||
x, x_addr, /*mem_canonicalized=*/true);
|
||
}
|
||
|
||
/* Returns nonzero if a write to X might alias a previous read from
|
||
(or, if WRITEP is true, a write to) MEM.
|
||
If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
|
||
and X_MODE the mode for that access.
|
||
If MEM_CANONICALIZED is true, MEM is canonicalized. */
|
||
|
||
static int
|
||
write_dependence_p (const_rtx mem,
|
||
const_rtx x, machine_mode x_mode, rtx x_addr,
|
||
bool mem_canonicalized, bool x_canonicalized, bool writep)
|
||
{
|
||
rtx mem_addr;
|
||
rtx true_mem_addr, true_x_addr;
|
||
rtx base;
|
||
int ret;
|
||
|
||
gcc_checking_assert (x_canonicalized
|
||
? (x_addr != NULL_RTX && x_mode != VOIDmode)
|
||
: (x_addr == NULL_RTX && x_mode == VOIDmode));
|
||
|
||
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|
||
return 1;
|
||
|
||
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
|
||
This is used in epilogue deallocation functions. */
|
||
if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
|
||
return 1;
|
||
if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
|
||
return 1;
|
||
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|
||
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
|
||
return 1;
|
||
|
||
if (!x_addr)
|
||
x_addr = XEXP (x, 0);
|
||
true_x_addr = get_addr (x_addr);
|
||
|
||
mem_addr = XEXP (mem, 0);
|
||
true_mem_addr = get_addr (mem_addr);
|
||
|
||
/* A read from read-only memory can't conflict with read-write memory.
|
||
Don't assume anything when AND addresses are involved and leave to
|
||
the code below to determine dependence. */
|
||
if (!writep
|
||
&& MEM_READONLY_P (mem)
|
||
&& GET_CODE (true_x_addr) != AND
|
||
&& GET_CODE (true_mem_addr) != AND)
|
||
return 0;
|
||
|
||
/* If we have MEMs referring to different address spaces (which can
|
||
potentially overlap), we cannot easily tell from the addresses
|
||
whether the references overlap. */
|
||
if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
|
||
return 1;
|
||
|
||
base = find_base_term (true_mem_addr);
|
||
if (! writep
|
||
&& base
|
||
&& (GET_CODE (base) == LABEL_REF
|
||
|| (GET_CODE (base) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (base))))
|
||
return 0;
|
||
|
||
rtx x_base = find_base_term (true_x_addr);
|
||
if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
|
||
GET_MODE (x), GET_MODE (mem)))
|
||
return 0;
|
||
|
||
if (!x_canonicalized)
|
||
{
|
||
x_addr = canon_rtx (true_x_addr);
|
||
x_mode = GET_MODE (x);
|
||
}
|
||
if (!mem_canonicalized)
|
||
mem_addr = canon_rtx (true_mem_addr);
|
||
|
||
if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
|
||
GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
|
||
return ret;
|
||
|
||
if (nonoverlapping_memrefs_p (x, mem, false))
|
||
return 0;
|
||
|
||
return rtx_refs_may_alias_p (x, mem, false);
|
||
}
|
||
|
||
/* Anti dependence: X is written after read in MEM takes place. */
|
||
|
||
int
|
||
anti_dependence (const_rtx mem, const_rtx x)
|
||
{
|
||
return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
|
||
/*mem_canonicalized=*/false,
|
||
/*x_canonicalized*/false, /*writep=*/false);
|
||
}
|
||
|
||
/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
|
||
Also, consider X in X_MODE (which might be from an enclosing
|
||
STRICT_LOW_PART / ZERO_EXTRACT).
|
||
If MEM_CANONICALIZED is true, MEM is canonicalized. */
|
||
|
||
int
|
||
canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
|
||
const_rtx x, machine_mode x_mode, rtx x_addr)
|
||
{
|
||
return write_dependence_p (mem, x, x_mode, x_addr,
|
||
mem_canonicalized, /*x_canonicalized=*/true,
|
||
/*writep=*/false);
|
||
}
|
||
|
||
/* Output dependence: X is written after store in MEM takes place. */
|
||
|
||
int
|
||
output_dependence (const_rtx mem, const_rtx x)
|
||
{
|
||
return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
|
||
/*mem_canonicalized=*/false,
|
||
/*x_canonicalized*/false, /*writep=*/true);
|
||
}
|
||
|
||
/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
|
||
Also, consider X in X_MODE (which might be from an enclosing
|
||
STRICT_LOW_PART / ZERO_EXTRACT).
|
||
If MEM_CANONICALIZED is true, MEM is canonicalized. */
|
||
|
||
int
|
||
canon_output_dependence (const_rtx mem, bool mem_canonicalized,
|
||
const_rtx x, machine_mode x_mode, rtx x_addr)
|
||
{
|
||
return write_dependence_p (mem, x, x_mode, x_addr,
|
||
mem_canonicalized, /*x_canonicalized=*/true,
|
||
/*writep=*/true);
|
||
}
|
||
|
||
|
||
|
||
/* Check whether X may be aliased with MEM. Don't do offset-based
|
||
memory disambiguation & TBAA. */
|
||
int
|
||
may_alias_p (const_rtx mem, const_rtx x)
|
||
{
|
||
rtx x_addr, mem_addr;
|
||
|
||
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|
||
return 1;
|
||
|
||
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
|
||
This is used in epilogue deallocation functions. */
|
||
if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
|
||
return 1;
|
||
if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
|
||
return 1;
|
||
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|
||
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
|
||
return 1;
|
||
|
||
x_addr = XEXP (x, 0);
|
||
x_addr = get_addr (x_addr);
|
||
|
||
mem_addr = XEXP (mem, 0);
|
||
mem_addr = get_addr (mem_addr);
|
||
|
||
/* Read-only memory is by definition never modified, and therefore can't
|
||
conflict with anything. However, don't assume anything when AND
|
||
addresses are involved and leave to the code below to determine
|
||
dependence. We don't expect to find read-only set on MEM, but
|
||
stupid user tricks can produce them, so don't die. */
|
||
if (MEM_READONLY_P (x)
|
||
&& GET_CODE (x_addr) != AND
|
||
&& GET_CODE (mem_addr) != AND)
|
||
return 0;
|
||
|
||
/* If we have MEMs referring to different address spaces (which can
|
||
potentially overlap), we cannot easily tell from the addresses
|
||
whether the references overlap. */
|
||
if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
|
||
return 1;
|
||
|
||
rtx x_base = find_base_term (x_addr);
|
||
rtx mem_base = find_base_term (mem_addr);
|
||
if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
|
||
GET_MODE (x), GET_MODE (mem_addr)))
|
||
return 0;
|
||
|
||
if (nonoverlapping_memrefs_p (mem, x, true))
|
||
return 0;
|
||
|
||
/* TBAA not valid for loop_invarint */
|
||
return rtx_refs_may_alias_p (x, mem, false);
|
||
}
|
||
|
||
void
|
||
init_alias_target (void)
|
||
{
|
||
int i;
|
||
|
||
if (!arg_base_value)
|
||
arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
|
||
|
||
memset (static_reg_base_value, 0, sizeof static_reg_base_value);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
/* Check whether this register can hold an incoming pointer
|
||
argument. FUNCTION_ARG_REGNO_P tests outgoing register
|
||
numbers, so translate if necessary due to register windows. */
|
||
if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
|
||
&& HARD_REGNO_MODE_OK (i, Pmode))
|
||
static_reg_base_value[i] = arg_base_value;
|
||
|
||
static_reg_base_value[STACK_POINTER_REGNUM]
|
||
= unique_base_value (UNIQUE_BASE_VALUE_SP);
|
||
static_reg_base_value[ARG_POINTER_REGNUM]
|
||
= unique_base_value (UNIQUE_BASE_VALUE_ARGP);
|
||
static_reg_base_value[FRAME_POINTER_REGNUM]
|
||
= unique_base_value (UNIQUE_BASE_VALUE_FP);
|
||
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
|
||
static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
|
||
= unique_base_value (UNIQUE_BASE_VALUE_HFP);
|
||
}
|
||
|
||
/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
|
||
to be memory reference. */
|
||
static bool memory_modified;
|
||
static void
|
||
memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
|
||
{
|
||
if (MEM_P (x))
|
||
{
|
||
if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
|
||
memory_modified = true;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true when INSN possibly modify memory contents of MEM
|
||
(i.e. address can be modified). */
|
||
bool
|
||
memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
|
||
{
|
||
if (!INSN_P (insn))
|
||
return false;
|
||
memory_modified = false;
|
||
note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
|
||
return memory_modified;
|
||
}
|
||
|
||
/* Return TRUE if the destination of a set is rtx identical to
|
||
ITEM. */
|
||
static inline bool
|
||
set_dest_equal_p (const_rtx set, const_rtx item)
|
||
{
|
||
rtx dest = SET_DEST (set);
|
||
return rtx_equal_p (dest, item);
|
||
}
|
||
|
||
/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
|
||
array. */
|
||
|
||
void
|
||
init_alias_analysis (void)
|
||
{
|
||
unsigned int maxreg = max_reg_num ();
|
||
int changed, pass;
|
||
int i;
|
||
unsigned int ui;
|
||
rtx_insn *insn;
|
||
rtx val;
|
||
int rpo_cnt;
|
||
int *rpo;
|
||
|
||
timevar_push (TV_ALIAS_ANALYSIS);
|
||
|
||
vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
|
||
reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
|
||
bitmap_clear (reg_known_equiv_p);
|
||
|
||
/* If we have memory allocated from the previous run, use it. */
|
||
if (old_reg_base_value)
|
||
reg_base_value = old_reg_base_value;
|
||
|
||
if (reg_base_value)
|
||
reg_base_value->truncate (0);
|
||
|
||
vec_safe_grow_cleared (reg_base_value, maxreg);
|
||
|
||
new_reg_base_value = XNEWVEC (rtx, maxreg);
|
||
reg_seen = sbitmap_alloc (maxreg);
|
||
|
||
/* The basic idea is that each pass through this loop will use the
|
||
"constant" information from the previous pass to propagate alias
|
||
information through another level of assignments.
|
||
|
||
The propagation is done on the CFG in reverse post-order, to propagate
|
||
things forward as far as possible in each iteration.
|
||
|
||
This could get expensive if the assignment chains are long. Maybe
|
||
we should throttle the number of iterations, possibly based on
|
||
the optimization level or flag_expensive_optimizations.
|
||
|
||
We could propagate more information in the first pass by making use
|
||
of DF_REG_DEF_COUNT to determine immediately that the alias information
|
||
for a pseudo is "constant".
|
||
|
||
A program with an uninitialized variable can cause an infinite loop
|
||
here. Instead of doing a full dataflow analysis to detect such problems
|
||
we just cap the number of iterations for the loop.
|
||
|
||
The state of the arrays for the set chain in question does not matter
|
||
since the program has undefined behavior. */
|
||
|
||
rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
||
rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
|
||
|
||
/* The prologue/epilogue insns are not threaded onto the
|
||
insn chain until after reload has completed. Thus,
|
||
there is no sense wasting time checking if INSN is in
|
||
the prologue/epilogue until after reload has completed. */
|
||
bool could_be_prologue_epilogue = ((targetm.have_prologue ()
|
||
|| targetm.have_epilogue ())
|
||
&& reload_completed);
|
||
|
||
pass = 0;
|
||
do
|
||
{
|
||
/* Assume nothing will change this iteration of the loop. */
|
||
changed = 0;
|
||
|
||
/* We want to assign the same IDs each iteration of this loop, so
|
||
start counting from one each iteration of the loop. */
|
||
unique_id = 1;
|
||
|
||
/* We're at the start of the function each iteration through the
|
||
loop, so we're copying arguments. */
|
||
copying_arguments = true;
|
||
|
||
/* Wipe the potential alias information clean for this pass. */
|
||
memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
|
||
|
||
/* Wipe the reg_seen array clean. */
|
||
bitmap_clear (reg_seen);
|
||
|
||
/* Initialize the alias information for this pass. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (static_reg_base_value[i])
|
||
{
|
||
new_reg_base_value[i] = static_reg_base_value[i];
|
||
bitmap_set_bit (reg_seen, i);
|
||
}
|
||
|
||
/* Walk the insns adding values to the new_reg_base_value array. */
|
||
for (i = 0; i < rpo_cnt; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
rtx note, set;
|
||
|
||
if (could_be_prologue_epilogue
|
||
&& prologue_epilogue_contains (insn))
|
||
continue;
|
||
|
||
/* If this insn has a noalias note, process it, Otherwise,
|
||
scan for sets. A simple set will have no side effects
|
||
which could change the base value of any other register. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET
|
||
&& REG_NOTES (insn) != 0
|
||
&& find_reg_note (insn, REG_NOALIAS, NULL_RTX))
|
||
record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
|
||
else
|
||
note_stores (PATTERN (insn), record_set, NULL);
|
||
|
||
set = single_set (insn);
|
||
|
||
if (set != 0
|
||
&& REG_P (SET_DEST (set))
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
unsigned int regno = REGNO (SET_DEST (set));
|
||
rtx src = SET_SRC (set);
|
||
rtx t;
|
||
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (note && REG_NOTE_KIND (note) == REG_EQUAL
|
||
&& DF_REG_DEF_COUNT (regno) != 1)
|
||
note = NULL_RTX;
|
||
|
||
if (note != NULL_RTX
|
||
&& GET_CODE (XEXP (note, 0)) != EXPR_LIST
|
||
&& ! rtx_varies_p (XEXP (note, 0), 1)
|
||
&& ! reg_overlap_mentioned_p (SET_DEST (set),
|
||
XEXP (note, 0)))
|
||
{
|
||
set_reg_known_value (regno, XEXP (note, 0));
|
||
set_reg_known_equiv_p (regno,
|
||
REG_NOTE_KIND (note) == REG_EQUIV);
|
||
}
|
||
else if (DF_REG_DEF_COUNT (regno) == 1
|
||
&& GET_CODE (src) == PLUS
|
||
&& REG_P (XEXP (src, 0))
|
||
&& (t = get_reg_known_value (REGNO (XEXP (src, 0))))
|
||
&& CONST_INT_P (XEXP (src, 1)))
|
||
{
|
||
t = plus_constant (GET_MODE (src), t,
|
||
INTVAL (XEXP (src, 1)));
|
||
set_reg_known_value (regno, t);
|
||
set_reg_known_equiv_p (regno, false);
|
||
}
|
||
else if (DF_REG_DEF_COUNT (regno) == 1
|
||
&& ! rtx_varies_p (src, 1))
|
||
{
|
||
set_reg_known_value (regno, src);
|
||
set_reg_known_equiv_p (regno, false);
|
||
}
|
||
}
|
||
}
|
||
else if (NOTE_P (insn)
|
||
&& NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
|
||
copying_arguments = false;
|
||
}
|
||
}
|
||
|
||
/* Now propagate values from new_reg_base_value to reg_base_value. */
|
||
gcc_assert (maxreg == (unsigned int) max_reg_num ());
|
||
|
||
for (ui = 0; ui < maxreg; ui++)
|
||
{
|
||
if (new_reg_base_value[ui]
|
||
&& new_reg_base_value[ui] != (*reg_base_value)[ui]
|
||
&& ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
|
||
{
|
||
(*reg_base_value)[ui] = new_reg_base_value[ui];
|
||
changed = 1;
|
||
}
|
||
}
|
||
}
|
||
while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
|
||
XDELETEVEC (rpo);
|
||
|
||
/* Fill in the remaining entries. */
|
||
FOR_EACH_VEC_ELT (*reg_known_value, i, val)
|
||
{
|
||
int regno = i + FIRST_PSEUDO_REGISTER;
|
||
if (! val)
|
||
set_reg_known_value (regno, regno_reg_rtx[regno]);
|
||
}
|
||
|
||
/* Clean up. */
|
||
free (new_reg_base_value);
|
||
new_reg_base_value = 0;
|
||
sbitmap_free (reg_seen);
|
||
reg_seen = 0;
|
||
timevar_pop (TV_ALIAS_ANALYSIS);
|
||
}
|
||
|
||
/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
|
||
Special API for var-tracking pass purposes. */
|
||
|
||
void
|
||
vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
|
||
{
|
||
(*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
|
||
}
|
||
|
||
void
|
||
end_alias_analysis (void)
|
||
{
|
||
old_reg_base_value = reg_base_value;
|
||
vec_free (reg_known_value);
|
||
sbitmap_free (reg_known_equiv_p);
|
||
}
|
||
|
||
void
|
||
dump_alias_stats_in_alias_c (FILE *s)
|
||
{
|
||
fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
|
||
" %llu are in alias set 0\n"
|
||
" %llu queries asked about the same object\n"
|
||
" %llu queries asked about the same alias set\n"
|
||
" %llu access volatile\n"
|
||
" %llu are dependent in the DAG\n"
|
||
" %llu are aritificially in conflict with void *\n",
|
||
alias_stats.num_disambiguated,
|
||
alias_stats.num_alias_zero + alias_stats.num_same_alias_set
|
||
+ alias_stats.num_same_objects + alias_stats.num_volatile
|
||
+ alias_stats.num_dag + alias_stats.num_disambiguated
|
||
+ alias_stats.num_universal,
|
||
alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
|
||
alias_stats.num_same_objects, alias_stats.num_volatile,
|
||
alias_stats.num_dag, alias_stats.num_universal);
|
||
}
|
||
#include "gt-alias.h"
|